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Abstract

We employ data from precision electroweak tests and collider searches to derive constraints
on the possibility that weak-singlet fermions mix with the ordinary Standard Model fermions.
Our findings are presented within the context of a theory with weak-singlet partners for all
ordinary fermions and theories in which only third-generation fermions mix with weak singlets.
In addition, we indicate how our results can be applied more widely in theories containing exotic
fermions.
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1 Introduction

The origins of electroweak and flavor symmetry breaking remain unknown. The Standard Model
of particle physics describes both symmetry breakings in terms of the Higgs boson. Electroweak
symmetry breaking occurs when the Higgs spontaneously acquires a non-zero vacuum expectation
value; flavor symmetry breaking is implicit in the non-universal couplings of the Higgs to the
fermions. However, the gauge hierarchy and triviality problems imply that the Standard Model
is only an effective field theory, valid below some finite momentum cutoff. The true dynamics
responsible for the origin of mass must therefore involve physics beyond the Standard Model. This
raises the question of whether the two symmetry breakings might be driven by different mechanisms.
Many theories of non-Standard physics invoke separate origins for electroweak and flavor symmetry
breaking, and place flavor physics at higher energies in order to satisfy constraints from precision
electroweak test and flavor-changing neutral currents.

In this paper, we explore the possibility that flavor symmetry breaking and fermion masses
may be connected with the presence of weak-singlet fermions mixing with the ordinary Standard
Model fermions. Specifically, we consider theories in which some of the observed fermions’ masses
arise through a seesaw mechanism that results in the presence of two mass eigenstates for each
affected flavor: a lighter mass eigensate whose left-handed component is predominantly weak-
doublet, and a heavier one that is mostly weak-singlet. Such seesaw mass structures involving
either third-generation fermions [6, 7] or all fermions [8] have played a prominent role in recent
work on dynamical symmetry breaking.

This work uses published experimental data to elicit constraints on the masses and mixing
strengths of the exotic fermions. We both interpret our findings within the context of several
specific models and indicate where our results can be applied more widely. Our initial approach
is to study Z-pole and low-energy data for signs that the known fermions include a non-Standard,
weak-singlet component. Previous limits of this type [1, 2, 3] have found that the mixing fraction
sin2 θmix can be at most a few percent for any given fermion species. As a complementary test
we also look for evidence that new heavy fermions with a large weak-singlet component are being
pair-produced in high-energy collider experiments. This can provide a direct lower bound on the
mass of the new fermions. Most recent limits on production of new fermions focus on sequential
fermions (LH doublets and RH singlets), mirror fermions (RH doublets and LH singlets), and vector
fermions (LH and RH doublets) [4]. These limits need not apply directly to weak singlet fermions,
as their production cross-sections and decay paths can differ significantly from those of the other
types of fermions.

We take as our benchmark a model [5] in which each ordinary fermion flavor mixes with a sep-
arate weak-singlet fermion; this allows us to consider the diverse phenomenological consequences
of the singlet partners for quarks and leptons of each generation. The low-energy spectrum is com-
pletely specified, so that it is possible to calculate branching ratios and precision effects. Electroweak
symmetry breaking is caused by a scalar, Φ, with flavor-symmetric couplings to the fermions. Fla-
vor symmetry breaking arises from physics at higher scales that manifests itself at low energies in
the form of soft symmetry-breaking mass terms linking ordinary and weak-singlet fermions. The
fermions’ chiral symmetries enforce a GIM mechanism and ensure that the flavor structure is pre-
served under renormalization. Due to recent interest in using weak singlets to explain the mass
of the top quark [6], we also analyze variants of our benchmark model in which only the third-
generation fermions have weak-singlet partners. Furthermore, we indicate how our results can be
applied to other theories with weak-singlet fermions.

Since our benchmark model includes a scalar boson, it should be considered as the low-energy
effective theory of a more complete dynamical model; specifically, at some finite energy scale, the
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scalar Φ, like the Higgs boson of the Standard Model, would reveal itself to be composite. That more
complete model would be akin to dynamical top seesaw models [6, 7, 8], which include composite
scalars, formed by new strong interactions among quarks, and also have top and bottom quarks’
masses created or enhanced by mixing with weak-singlet states. Those particular top seesaw models
generally have multiple composite scalars when more than one fermion has a weak-singlet partner;
these tend to be heavier than the single scalar in our models. Moreover, in the “flavor-universal”
versions [8] generation-symmetry-breaking masses for the weak singlet fermions are the source of
the differences between the masses of, say, the up and top quarks; the flavor structure of our models
is different. Despite these differences, most of our phenomenological results are relevant to the top
seesaw models.

In the next section, we review the structure of our benchmark model, focusing on the masses,
mixings, and couplings of the fermions. Section 3 discusses our fit to precision electroweak data [9]
and the resulting general limits on the mixing angles between ordinary and weak-singlet fermions.
We then use the constraints on mixing angles to find lower bounds on the masses of the new heavy
fermion eigenstates. Section 5 discusses the new fermions’ decay modes and extracts lower bounds
on the fermion masses from LEP II [10, 11] and Tevatron [12, 13] data. Oblique corrections are
discussed in section 6 and our conclusions are summarized in the final section.

2 The Model

At experimentally accessible energies, the models we consider have the gauge group of the Standard
Model: SU(3)C × SU(2)W × U(1)Y . The gauge eigenstate fermions include three generations of
ordinary quarks and leptons, which are left-handed weak doublets and right-handed weak singlets

ψL =

(

U

D

)

L

, UR, DR U ≡ (u, c, t), D ≡ (d, s, b) ,

LL =

(

νℓ
ℓ

)

L

, ℓR ℓ ≡ (e, µ, τ) . (2.1)

In our general, benchmark model to each ‘ordinary’ charged fermion there corresponds a ‘primed’
weak-singlet fermion with the same electric charge1

U ′
L,R, D′

L,R, ℓ′L,R . (2.2)

We will also discuss the phenomenology of more specialized models in which only third-generation
fermions have ‘primed’ weak-singlet partners.

The gauge symmetry allows bare mass terms for the weak-singlet fermions

MU Ū
′
LU

′
R +MDD̄

′
LD

′
R +Mℓℓ̄

′
Lℓ

′
R (2.3)

and we take each of these mass matrices Mf to be proportional to the identity matrix.
The model includes a scalar doublet field

Φ =

(

Φ+

Φ0

)

(2.4)

1In principle, one could include weak singlet partners for the neutrinos as well. The neutrino phenomenology is
largely separate from the issues treated here and will not be considered in this paper.
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whose VEV breaks the electroweak symmetry. This scalar has Yukawa couplings that link left-
handed ordinary to right-handed primed fermionic gauge eigenstates

λU ψ̄LΦ̃U
′
R + λDψ̄LΦD

′
R + λℓL̄LΦ ℓ

′
R . (2.5)

The coupling matrices λf are taken to be proportional to the identity matrix. The mass of the
scalar is assumed to be small enough that the scalar’s contributions will prevent unitarity violation
in scattering of longitudinal weak vector bosons.

Finally, there are mass terms connecting left-handed primed and right-handed ordinary fermions

Ū ′
LmUUR + D̄′

LmDDR + ℓ̄′LmℓℓR. (2.6)

which break the fermions’ flavor symmetries. We shall require the flavor-symmetry violation to be
small: any mass mf should be no greater than the corresponding mass Mf . This allows our model
to incorporate the wide range of observed fermion masses without jeopardizing universality [5].

As discussed in reference [5], this flavor structure is stable under renormalization. On the one
hand, the flavor-symmetry-breaking mass terms (2.6) are dimension-three and cannot renormalize
the flavor-symmetric dimension-four Yukawa terms (2.5). On the other, because all dimension-four
terms (including the Yukawa couplings (2.5)) respect the full set of global chiral symmetries,

SU(3)ψL,U
′
R
,D′

R
× SU(3)U ′

L
× SU(3)D′

L
× SU(3)UR

× SU(3)DR
×

SU(3)LL,l
′
R
× SU(3)l′

L
× SU(3)lR (2.7)

they do not mix the mass terms (2.3) and (2.6) which break those symmetries differently. Fur-
thermore, the global symmetries of this model lead to a viable pattern of inter-generational mixing
among the fermions. Including the Mf terms (2.3) breaks the flavor symmetries to a form

SU(3)ψL,U ′,D′ × SU(3)UR
× SU(3)DR

× SU(3)LL,l′ × SU(3)lR (2.8)

nearly identical to that of the Standard Model with massless fermions. Once the flavor-symmetry-
breaking masses of equation (2.6) are added, the quarks’ flavor symmetries are completely broken,
leading to the presence of a CKM-type quark mixing matrix and an associated GIM mechanism that
suppresses flavor-changing neutral currents. The lepton sector retains the U(1)’s corresponding to
conservation of three separate lepton numbers.

The ordinary and primed fermions mix to form mass eigenstates; for each type of charged
fermion (f ≡ U , D, ℓ) the mass matrix in the gauge basis is of the form

(

f̄ f̄ ′
)

L

(

0 vλf
mf Mf

)

(

f

f ′

)

R

. (2.9)

This is diagonalized by performing separate rotations on the left-handed and right-handed fermion
fields. The phenomenological issues we shall examine will depend almost exclusively on the mixing
among the left-handed fermions. Hence, our discussion related to fermion mixing and its effects will
focus on the left-handed fermion fields. For brevity, we omit “left” subscripts on the left-handed
mixing angles and fields; we include “right” subscripts in the few instances where the right-handed
mixings play a role.

To evaluate the degree of mixing among the left-handed weak-doublet and weak-singlet fields,
we diagonalize the mass-squared matrix (M †M). The rotation angle among left-handed fermions
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is given by2

sin2 φf = 1− B2

2A2 + 2B2 − 2A
√
A2 +B2

B = 2vλfMf (2.10)

A = M2
f +m

2
f − v2λ2f

and the mass-squared eigenvalues are

Λ±
f =

1

2

(

M2
f +m

2
f + v2λ2f

) (

1±
√

1− (4v2λ2fm
2
f )/(M

2
f +m

2
f + v2λ2f )

2

)

. (2.11)

Due to the matrix’s seesaw structure, one mass eigenstate (fL) has a relatively small mass, while
the mass of the other eigenstate (fH) is far larger. The lighter eigenstate, which has a left-handed
component dominated by the ordinary weak-doublet state,

fL = cosφff − sinφff
′ , (2.12)

corresponds to one of the fermions already observed by experiment. Its mass is approximately given
by (for vλf < Mf and mf ≤Mf )

(mL
f )

2 ≈ (vλfmf )
2

M2
f + (vλf )2 +m

2
f

. (2.13)

The heavier eigenstate, whose left-handed component is largely weak-singlet,

fH = sinφff + cosφff
′ (2.14)

has a mass of order
(mH

f )
2 ≈M2

f + (vλf )
2 +m

2
f − (mL

f )
2 . (2.15)

The interactions of the mass eigenstates with the weak gauge bosons differ from those in the
Standard Model because the primed fermions lack weak charge3. The coupling of fL (fH) to the
W boson is proportional to cosφf (sinφf ); the right-handed states are purely weak-singlet and do
not couple to the W boson. Thus the couplings of left-handed leptons to the W boson look like
(since we neglect neutrino mixing)

ie

sin θW

(

ℓLγµν̄ℓ cosφℓ + ℓHγµν̄ℓ sinφℓ
)

W µ (2.16)

When weak-singlet partners exist for all three generations of quarks, the left-handed quarks’ cou-
pling to the W bosons is of the form

ie

sin θW
(ŪL, ŪH)γµVUD

(

DL

DH

)

W µ (2.17)

The 6×6 non-unitary matrix VUD is related to the underlying 3×3 unitary matrix AUD that mixes
quarks of different generations

VUD =

(

CU AUD CD −CU AUD SD
−SU AUD CD SU AUD SD

)

(2.18)

2To study the rotation angle among right-handed fermions, one diagonalizes (MM†) and obtains analogous results.
3For a general discussion of fermion mixing and gauge couplings in the presence of exotic fermions, see [1].
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through diagonal matrices of mixing factors

CU ≡ diag(cos φu, cosφc, cosφt) , CD ≡ diag(cos φd, cosφs, cosφb) ,

SU ≡ diag(sin φu, sinφc, sinφt) , SD ≡ diag(sin φd, sinφs, sinφb) .

The unitary mixing matrix AUD, like the CKM matrix in the Standard Model, is characterized
by three real angles and one CP-violating phase. But it is the elements of VUD which are directly
accessible to experiment. While VUD is non-unitary, any two columns (or rows) are still orthogonal.

The coupling of left-handed mass-eigenstate fermions to the Z boson is of the form

ie

sin θW cos θW
(f̄L, ¯fH)γµ

(

cos2 φfT3 −Q sin2 θW cosφf sinφfT3
cosφf sinφfT3 sin2 φfT3 −Q sin2 θW

)(

fL

fH

)

Zµ (2.19)

where T3 and Q are the weak and electromagnetic charges of the ordinary fermion. The right-handed
states, being weak singlets, couple to the Z exactly as Standard Model right-handed fermions would.

The scalar boson Φ couples to the mass-eigenstate fermions according to the Lagrangian term

λf (f̄L,
¯fH)left

(

− cosφf sinφf,right cosφf cosφf,right
− sinφf sinφf,right sinφf cosφf,right

)(

fL

fH

)

right

Φ + h.c. (2.20)

where φf,right is the mixing angle for right-handed fermions.
A few notes about neutral-current physics are in order. Flavor-conserving neutral-current decays

of the heavy states into light ones are possible (e.g. µH → µLνµν̄µ). This affects the branching ratios
in heavy fermion decays and will be important in discussing searches for the heavy states in Section
5. Flavor-changing neutral (FCNC) processes are absent at tree-level and highly-suppressed at
higher order in the benchmark model, due to the GIM mechanism mentioned earlier. For example,
we have evaluated the fractional shift in the predicted value of Γ(b → sγ) by adapting the results
in [3]. As we shall see in sections 3 and 4, electroweak data already constrain the mixings between
ordinary and singlet fermions to be small and the masses of the heavy up-type fermion eigenstates
to be large (so that the Wilson coefficients c7(mf ) that enter the calculation of Γ(b → sγ) are all
in the high-mass asymptotic regime). The shift in Γ(b → sγ) is therefore at most a few percent,
which is well within the 10% - 30% uncertainty of the Standard Model theoretical predictions [14]
and experimental observations [15].

3 General limits on mixing angles

Precision electroweak measurements constrain the degree to which the observed fermions can con-
tain an admixture of weak-singlet exotic fermions. The mixing alters the couplings of the light
fermions to the W and Z from their Standard Model values, as discussed above, and the shift in
couplings alters the predicted values of many observables. Using the general approach of reference
[16], we have calculated how inclusion of mixing affects the electroweak observables listed in Table
1. The resulting expressions for these leading (tree-level) alterations are given in the Appendix as
functions of the mixing angles. We then performed a global fit to the electroweak precision data to
constrain the mixing angles between singlet and ordinary fermions. The experimental values of the
observables used in the fit and their predicted values in the Standard Model are listed in Table 1.

To begin, we considered the benchmark scenario (called Case A, hereafter) in which all elec-
trically charged fermions have weak-singlet partners [5]. All of the electroweak observables given
in Table 1 receive corrections from fermion mixings in this case. We performed a global fit for the
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values of the 8 mixing angles of the fermions light enough to be produced at the Z-pole: the 3
leptons, 3 down-type quarks and 2 up-type quarks. At 95% (90%) confidence level, we obtain the
following upper bounds on the mixing angles:

sin2 φe ≤ 0.0024 (0.0020) , sin2 φµ ≤ 0.0030 (0.0026) , sin2 φτ ≤ 0.0030 (0.0025)

sin2 φd ≤ 0.015 (0.013) , sin2 φs ≤ 0.015 (0.011) , sin2 φb ≤ 0.0025 (0.0019)

sin2 φu ≤ 0.013 (0.011) , sin2 φc ≤ 0.020 (0.017) . (3.1)

The 90% c.l. limits are included to allow comparison with the slightly weaker limits resulting from
the similar analysis of earlier data in reference [2].

The limits on the mixing angles are correlated to some degree. For example, most observables
that are sensitive to d or s quark mixing depend on sin2 φd + sin2 φs. Indeed, repeating the global
fit using the linear combinations (sin2 φd ± sin2 φs)/2 yields a slightly stronger limit for the sum
(sin2 φd + sin2 φs)/2 ≤ .0094 and a slightly looser one for the difference −0.0071 < (sin2 φd −
sin2 φs)/2 ≤ .0195. This turns out not to affect our use of the mixing angles to set mass limits
in the next section of the paper: limits on the dH and sH masses arise from the more tightly-
constrained b-quark mixing factor sin2 φb instead.

We, similarly, placed limits on the relevant mixing angles for three scenarios in which only third-
generation fermions have weak-singlet partners. In Case B where the top quark, bottom quark and
tau lepton have partners, the 12 sensitive observables are ΓZ , σh, Rb, c, e, µ, τ , A

b,τ
FB ,Ab, and Reτ,µτ .

The resulting 95% (90%) confidence level limits on the bottom and tau mixing angles are

sin2 φτ ≤ 0.0018 (0.0014) , sin2 φb ≤ 0.0013 (0.00084) (3.2)

In Case C, where only the top and bottom quarks have partners, the nine affected quantities are
ΓZ , σh, Rb, c, e, µ, τ , A

b
FB, and Ab. The sole constraint is

sin2 φb ≤ 0.0013 (0.00084) (3.3)

In Case D, where only the tau leptons have partners, only the six quantities ΓZ , σh, Rτ , A
τ
FB, and

Reτ,µτ are sensitive, and the limit on the tau mixing angle is

sin2 φτ ≤ 0.0020 (0.0016) (3.4)

These upper bounds on the mixing angles depend only on which fermions have weak partners,
and not on other model-specific details. They apply broadly to theories in which the low-energy
spectrum is that of the Standard Model plus weak-singlet fermions.

4 From mixing angles to mass limits

The constraints on the mixing between the ordinary and exotic fermions imply specific lower bounds
on the masses of the heavy fermion mass eigenstates (2.15). We will extract mass limits from mixing
angle limits first in the general case [5] in which all charged fermions have singlet partners, and
then in scenarios where only the third generation fermions do.

4.1 Case A: all generations mix with singlets

Because the heavy fermion masses mH
f depend on vλf ,Mf , and mf , we must determine the allowed

values of all three of these quantities in order to find lower bounds on themH
f . For the three fermions
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Quantity Experiment SM Reference

ΓZ 2.4939 ± 0.0024 2.4958 [9]
σh 41.491 ± 0.058 41.473 [9]

Aτ (Pτ ) 0.1431 ± 0.0045 0.1467 [9]
Ae(Pτ ) 0.1479 ± 0.0051 0.1467 [9]
ALR 0.1550 ± 0.0034 0.1467 [4] (ref. 59)
Rb 0.21656 ± 0.00074 0.21590 [9]
Rc 0.1735 ± 0.0044 0.1722 [9]
AbFB 0.0990 ± 0.0021 0.1028 [9]
AcFB 0.0709 ± 0.0044 0.0734 [9]
Ab 0.867 ± 0.035 0.935 [9]
Ac 0.647 ± 0.040 0.668 [9]

QW (Cs) -72.41 ±.25 ± .80 -73.12 ± .06 [4] (refs. 48, 49)
QW (T l) -114.8 ± 1.2 ± 3.4 -116.7 ± .1 [4] (refs. 48, 49)
Re 20.783 ± 0.052 20.748 [9]
Rµ 20.789 ± 0.034 20.748 [9]
Rτ 20.764 ± 0.045 20.748 [9]
AeFB 0.0153 ± 0.0025 0.01613 [9]
AµFB 0.0164 ± 0.0013 0.01613 [9]
AτFB 0.0183 ± 0.0017 0.01613 [9]
AsFB 0.118 ± 0.018 0.1031 ±.0009 [4]
MW 80.39 ± 0.06 80.38 [17]

geV (νe→ νe) -0.041± 0.015 -0.0395±.0005 [4]
geA(νe→ νe) -0.507 ± 0.014 -0.5064±.0002 [4]
g2L(νN → νX) 0.3009±0.0028 0.3040 ± .0003 [4]
g2R(νN → νX) 0.0328 ± 0.0030 0.0300 [4]

Rπ (1.230 ± .004)×10−4 (1.2352 ± .0005)×10−4 [4], [18]
Rτ (1.347 ± .0082)×106 1.343 ×106 [4], [19]
Rµτ (1.312 ± .0087)×106 1.304 ×106 [4], [19]

Table 1: Data used in fits to constrain mixing angles: experimentally measured electroweak ob-
servables and their values within the Standard Model.

of a given type, (e.g. e, µ, τ), the values of λf and Mf are common. The different values of mL
f

arise from differences among the mf , and the form of equation (2.13) makes it clear that larger
values of mf correspond to larger values of mL

f .
How can we ensure that the third-generation fermion in the set gets a large enough mass ? If

we set mf to the largest possible value, mf = Mf , there is a minimum value of vλf required to
make mL

f large enough. A smaller value of mf would require a still larger value of vλf to arrive at

the same mL
f . In other words, starting from (2.13), and recalling vλf < Mf we find

vλf ≥
√
2mL

f3 (4.1)

where “f3” denotes the third-generation fermion of the same type as “f” (e.g. if “f” is the electron,
“f3” is the tau lepton). The specific limits for the three types of charged fermions are:

vλℓ ≥ 2.5 GeV, vλD ≥ 6.0 GeV vλU ≥ 247 GeV (4.2)
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Knowing this allows us to obtain a rough lower bound on the heavy fermion mass eigenstates.
Since we require Mf ≥ vλf and since the smallest possible value of mf is zero, we can immediately
apply (4.1) to (2.15) and find

(mH
f )

2 >∼ 4(m2
f3)− (mL

f )
2 (4.3)

For instance, the mass of the heavy top eigenstate must be at least

mH
t

>∼
√
3mL

t ≈ 300GeV (4.4)

We can improve on these lower bounds in the following way. Because (mH
f )

2 is a monotonically

increasing function of (vλ)2, the minimum vλf , found above, yields the lowest possible value of
mH
f . Thus, if we know what value of mf should be used self-consistently with the smallest vλf , we

can use (2.15) to obtain a more stringent lower bound on mH
f . The appropriate values

mf = Mf (3rd generation) (4.5)

mf = mL
f

√

√

√

√

M2
f + v2λ2f

v2λ2f − (mL
f )

2
(1st or 2nd generation) (4.6)

follow from our previous discussion and from inverting equation (2.13), respectively. Because
mf << Mf for the first and second generation fermions, our previous lower bound on mH

f for those
generations is not appreciably altered. For the third generation we obtain the more restrictive

(mH
f )

2 >∼ 5(mL
f3)

2 (4.7)

so that, for example,

mH
t

>∼
√
5mL

t ≈ 390 GeV . (4.8)

We can do still better by invoking our precision bounds on the mixing angles sinφf . Recalling
vλf < Mf and mf ≤Mf , allows us to approximate our expression (2.10) for the mixing angle as

sinφf ≈ vλfMf

M2
f +m

2
f − v2λ2f

. (4.9)

Further simplification of this relation depends on the generation to which fermion f belongs. For
example, among the charged leptons, me andmµ are far smaller thanMℓ, whilemτ could conceivably
be of the same order as Mℓ. Thus the limits on the leptons’ mixing angles imply

Mℓ ≥ Max

[

vλℓ
2 sinφτ

,
vλℓ

sinφµ
,
vλℓ
sinφe

]

(4.10)

The strongest bound on Mℓ comes from sinφe; that for MD, from sinφb; that for MU , from sinφu:

Mℓ ≥
vλℓ
sinφe

≥ 51GeV, MU ≥ vλU
sinφu

≥ 2.2TeV, MD ≥ vλD
2 sin φb

≥ 60GeV (4.11)

Combining those stricter lower limits on Mf with our bounds (4.1) on vλf and our expression
for the heavy fermion mass (2.15) gives us a lower bound on the mH

f for each fermion flavor. For
the third generation fermions we use (4.5) for the value of mf and obtain the 95% c.l. lower bounds

mH
τ ≥ mL

τ

√

1 + 4/ sin2 φe ≥ 73 GeV (4.12)

mH
t ≥ mL

t

√

1 + 4/ sin2 φu ≥ 3.1 TeV (4.13)

mH
b ≥ mL

b

√

1 + 1/ sin2 φb ≥ 86 GeV . (4.14)
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For the lighter fermions, we use equation (4.6) for the mf . Since mf << Mf in these cases, we find

mH
e ,m

H
µ

>∼ mL
τ

√

2 + 2/ sin2 φe ≥ 51GeV (4.15)

mH
u ,m

H
c

>∼ mL
t

√

2 + 2/ sin2 φu ≥ 2.2TeV (4.16)

mH
d ,m

H
s

>∼ mL
b

√

2 + 1/2 sin2 φb ≥ 61GeV . (4.17)

The mass limits for the heavy leptons and down-type quarks are also represented graphically in
figures 1 and 2. In figure 1, which deals with the leptons, the axes are the flavor-universal quantities
Mℓ and vλℓ. The shaded region indicates the experimentally allowed region of the parameter space.
The lower edge of the allowed region is delimited by the lower bound on vλℓ of equation (4.2), as
represented by the horizontal dotted line. The left-hand edge of the allowed region is demarked
by the upper bound on the electron mixing factor, sin2 φe, as shown by the dashed curve with
that label. The form of this curve, sin2 φe(Mℓ, vλℓ) = 0.0024, was obtained numerically by using
equation (2.11) for mL

e to put the unknown me in terms of Mℓ, vλℓ and the observed mass of the
electron (mL

e = .511 MeV) and inserting the result into equation (2.10). The curves for the muon
and tau mixing angles were obtained similarly, but provide weaker limits on the parameter space
(as shown by the dashed curves labeled sin2 φµ, and sin2 φτ ). The lowest allowed values of the
heavy fermion masses mH

e,µ and mH
τ are those whose curves intersect the tip of the allowed region;

these are shown by the solid curves, obtained numerically by using equation (2.11) to replace the
unknown me,mτ by the known mL

e ,m
L
τ in our expressions for mH

e and mH
τ . Figure 2 shows the

analogous limits on the mixing angles and heavy-eigenstate masses for the down-type quarks.
We can also construct a plot of the allowed region of MU vs. vλU parameter space. The lower

edge comes from the lower bound on vλU and the left-hand edge, from the upper bound on sinφu.
We can then use the known value of mL

t to calculate the size of the top quark mixing factor sin2 φt
at any given point in the allowed region. Numerical evaluation reveals

sin2 φt ≤ 0.013 (0.011) (4.18)

at 95% (90%) c.l. This is a limit on top quark mixing imposed by self-consistency of the model.
In section 5, we will compare the mass limits just extracted from precision data with those

derived from searches for direct production of new fermions at the LEP II and Tevatron colliders.
The lower bounds on the masses of the heavy down-type quarks or charged leptons admit the
possibility of those particles’ being produced at current experiments. The heavy up-type quarks
are too massive to be even singly produced at existing colliders.

4.2 Cases B, C, and D: third-generation fermions mix with singlets

If only third-generation fermions have weak-singlet partners, there are a few differences in the
analysis that yields lower bound on heavy eigenstate masses. All follow from the fact that the
lower bounds on the Mf (as in equation (4.10)) can no longer come from precision limits on the
mixing angles of 1st or 2nd generation fermions (since those fermions no longer mix with weak
singlets).

To obtain the precision bounds on the masses of bH and τH , we start by writing the lower limits
on Mℓ and MD that come from the mixing angles:

Mℓ ≥
vλℓ

2 sinφτ
, MD ≥ vλDl

2 sinφb
. (4.19)
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The factor of 2 in the denominator arises because the mixing angles belong to a third-generation
fermion (so that mf =Mf ). We therefore find

mH
τ ≥ mL

τ

√

1 + 1/ sin2 φτ (4.20)

mH
b ≥ mL

b

√

1 + 1/ sin2 φb. (4.21)

In Case B where all third-generation fermions mix with weak-singlet fermions, the mixing angle
limits (3.2) based on the twelve sensitive observables yield 95% c.l. lower bounds

mH
τ ≥ 42 GeV (4.22)

mH
b ≥ 119 GeV (4.23)

In Case C, where only third-generation quarks have partners, (3.3) which was obtained by a fit to
the nine aaffected observables, gives

mH
b ≥ 119 GeV (4.24)

while in Case D, where only tau leptons have partners, (3.4) based on six affected precision elec-
troweak quantities implies

mH
τ ≥ 40 GeV (4.25)

Compared with the limits in Case A, we see that the lower bound on mH
b is strengthened because

the precision limit (3.2, 3.3) on sin2 φb is more stringent. In contrast, the lower bound on mH
τ

is weakened because the bound now depends on a third-generation instead of a first-generation
mixing angle: equation (4.20) is approximately mH

τ ≥ mL
τ / sin φτ whereas equation (4.12) was

roughly mH
τ ≥ 2mL

τ / sinφe.
Note that in theories where the top is the only up-type quark to have a weak-singlet partner,

such as Cases B and C, the only bound on mH
t comes from equation (4.8). While this is far weaker

than the limit in Case A, it still ensures that the heavy top eigenstate is too massive to have been
seen in existing collider experiments, even if singly produced.

5 Limits on direct production of singlet fermions

While interpreting the general mixing angle limits in terms of mass limits requires specifying an
underlying model structure, it is also possible to set more general mass limits by considering
searches for direct production of the new fermions. The LEP experiments have published limits
on new sequential charged leptons [10][11]; the Tevatron experiments have done the same for new
quarks [12][13]. In this section, we adapt the limits to apply to scenarios in which the new fermions
are weak singlets rather than sequential.

5.1 Decay rates of heavy fermions

A heavy fermion decays preferentially to a light fermion4 plus a Z, W, or Φ boson which subsequently
decays to a fermion-antifermion pair (see figure 3) 5

4Even where a heavy fermion is kinematically allowed to decay to another heavy fermion, the rate is doubly-
suppressed by small mixing factors (sinφf ) and, consequentially, negligible.

5In this section we confine our analysis to relatively light scalars, with mass below 130 GeV. For heavier scalar
one should include the scalar decays to W and Z pairs [20] and the resulting 5-fermion final states of heavy fermion
decays. We expect this to yield only a small change in the results of our quark-sector analysis and essentially no
alteration in our results for heavy lepton decays, due to the large kinematic suppression when mΦ >> mH

ℓ ∼ MW .
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Figure 3: Scalar (Φ) and weak boson (V ≡ Z or W) decay modes of a heavy fermion (fH).

At tree-level, and neglecting final state light fermion masses, we obtain the following partial
rates for vector boson decay modes of the heavy fermions

Γ(fHi → fLj V ) =
∑

k,l

Γ(fHi → fLj V → fLj f
L
k f

L
l ) (5.1)

=
∑

k,l

(cVij c
V
kl)

2

3π3 28
mH
fi
F

[(mH
fi

MV

)
2

,
ΓV
MV

]

where V represents a Z or W boson, while ΓV and MV are, respectively, the vector boson’s decay
rate and mass. Function F (x, y) is presented in appendix B. The vertex factors cVij (cVkl) are, as

shown in figure 3, the fHi f
L
j V (fLk f

L
l V ) couplings which may be read from equations (2.16) – (2.19).

Our results for the charged-current decay mode agree with those presented in integral form in
[21]. Moreover, equation yields the standard asymptotic behaviors in the limit of heavy fermion
masses far above or far below the electroweak bosons’ masses (see appendix B). Since some of our
heavy fermions can, instead, have masses of order 80-90 GeV, we use the full result (5.1) in our
evaluation of branching fractions and search potentials.

Similarly, we find the partial rate for the scalar decay mode to be

Γ(fHi → fLj Φ) =
∑

k,l

Γ(fHi → fLj Φ → fLj f
L
k f

L
l ) (5.2)

=
∑

k,l

(cΦij c
Φ
kl)

2

π3 210
mH
fi
G

[(

mH
fi

MΦ

)
2

,
ΓΦ

MΦ

]

where ΓΦ and MΦ are the decay rate and the mass of the scalar boson, Φ. Function G(x, y) and
additional details are given in appendix B. The vertex factors cΦij (cΦkl) are, as indicated in figure

3, the fHi f
L
j Φ (fLk f

L
l Φ) couplings which may be read off of equation (2.20).

We have numerically evaluated the couplings of the light fermions to the scalar6, Z, and W as
functions of the Mf and the vλf . In the region of the model parameter space that is allowed by
precision electroweak measurements, we find that these couplings are within 1% of their Standard
Model values. Therefore, in this section of the paper, we approximate the Φff and V ff couplings
for the light fermions by the Standard Model values. This allows us to express our results for

6To evaluate the mixing among right-handed fermions which appears in the fermion-scalar couplings, we derive a
relation analogous to (2.11) and apply equation 2.13 so that sin2 φf, right is written in terms of known light fermion
masses, the Mf and the vλf .
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Figure 4: Branching ratios in the heavy lepton sector: B(ℓH → ℓLX) where X is W, Z, or Φ. We set
vλℓ = 2mL

τ and MΦ = 100 GeV.

branching fractions and searches in the simple Mf vs. vλf planes for the up, down, and charged-
lepton sectors. In this approximation, the recent LEP lower bound on the mass of the Higgs boson
[22], MH ≥ 95.3 GeV, applies directly to the mass of the Φ scalar in our model:

MΦ ≥ 95.3 GeV (5.3)

The branching ratios for the decays of the heavy leptons are effectively flavor-universal, i.e. the
same for eH , µH , and τH . The charged-current decay mode dominates; decays by Z emission are
roughly half as frequent and decays by Φ emission contribute negligibly for mH

f ≤MΦ. In the limit

where the heavy lepton masses mH
ℓ are much larger than any boson mass, the branching ratios

for decays to W, Z, and Φ approach 60.5%, 30.5%, and 9%, respectively. The branching fractions
for heavy lepton decays are shown in figure 4 as a function of heavy lepton mass mH

ℓ , with MΦ

fixed at 100 GeV and vλℓ set equal to 2mL
3 . As the branching ratios have little dependence on the

small mixing factors sinφf (as we argue in more detail in the following subsection), they are also
insensitive to the value of vλf .

The branching fractions for decays of the heavy down-type quarks display a significant flavor-
dependence. Those for the dH and sH are essentially identical and resemble the branching fractions
for the heavy leptons. However, charged-current decays of bH with a mass less than 255 GeV (the
threshold for decay to an on-shell top and W) are doubly Cabbibo-suppressed, so that the bH

branching ratios do not resemble those of the other down-type quarks. Generally speaking, a bH

of relatively low mass decays almost exclusively by the process bH → ZbL. For mb
H larger than

255 GeV, the decay bH → tLW dominates and the Z-mode branching fraction is only about half
as large. If mH

b is above MΦ +mL
b but below 255 GeV, the scalar decay mode becomes significant

(in agreement with reference [23]). If the scalar mass lies above 255 GeV, the scalar decay mode is
much less important. In the asymptotic regime, where mH

D is much greater than mt or any boson’s
mass, the branching ratios for decays to W, Z, and Φ approach 49%, 25%, and 26%, respectively.
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Figure 5: Branching ratios in the heavy down-quark sector: B(DH → DLX) where X is W, Z, or Φ.
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b and MΦ = 100 GeV.

5.2 Heavy leptons at LEP II

The LEP II experiments have searched for evidence of new sequential leptons, working under the
assumptions that the new neutral lepton N is heavier than its charged partner L and that L decays
only via charged-current mixing with a Standard Model lepton (i.e. B(L → νℓW

∗) = 100%).
Recent limits from the OPAL experiment at

√
s = 172 GeV [10] and from the DELPHI experiment

at
√
s = 183 GeV [11] each set a lower bound of order 80 GeV on the mass of a sequential charged

lepton.
To illustrate how the LEP limits may be applied to our weak-singlet fermions, we review OPAL’s

analysis. The OPAL experiment searched for pair-produced charged sequential leptons undergoing
charged-current decay:

e+e− → L+L− → νℓν̄ℓW
+W− (5.4)

Their cuts selected final states in which at least one of theW ∗ bosons decayed hadronically. Events
with no isolated lepton were required to have at least 4 jets and substantial missing transverse
momentum; those with one or more isolated leptons were required to have at least 3 jets, less
than 100 GeV of visible energy, and substantial missing transverse momentum. The efficiencies for
selecting signal events were estimated at 20-25% by Monte Carlo. With 1 candidate event in the
data set and the expectation of 3 Standard Model background events, OPAL excluded, at 95% c.l.,
sequential leptons of mass less than 80.2 GeV, as these would have contributed least 3 signal events
to the data.

The heavy leptons in the models we are studying have different weak quantum numbers than
those OPAL sought. This alters both the production rate and the decay paths of the leptons.
The production rate of the ℓH should be larger than that for the sequential leptons. The pure
QED contribution is the same, as the heavy leptons have standard electric charges; the weak-
electromagnetic interference term is enhanced since the coupling to the Z is roughly sin2 θW > 0
rather than sin2 θW − 0.5 < 0 as in the Standard Model. By adapting the results of reference [24]
to include the couplings appropriate to our model, we have evaluated the production cross-section
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Figure 6: Production cross-section for a heavy lepton that is mostly weak-singlet as a function of lepton
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for heavy leptons at LEP II. Our results are shown in figure 6 as a function of heavy lepton mass
for several values of

√
s and lepton mixing angle.

On the other hand, the likelihood that our heavy leptons decay to final states visible to OPAL
is less than it would be for heavy sequential leptons. In events where both of the produced ℓH

decay via charged-currents, about 90% of the subsequent (standard) decays of the W bosons lead
to the final states OPAL sought – just as would be true for sequential leptons. But the heavy
leptons in our model are not limited to charged-current decays. In events where one or both of
the produced ℓH decay through neutral currents, the result need not be a final state visible to
OPAL. If there is one W and one Z in the intermediate state, about 36% of the events should
yield final states with sufficient jets, isolated leptons and missing energy to pass the OPAL cuts.
At the other extreme, if both ℓH decay by Φ emission, there will be virtually no final states with
sufficient missing energy, since Φ decays mostly to bb̄. The other decay patterns lie in between; for
intermediate ZZ (ΦZ, ΦW ) we expect 28% (19%, 30%) of the events to be visible to OPAL. The
total fraction of pair-produced heavy leptons that yield appropriate final states is the sum of these
various possibilities:

Bdecay = 0.896 (BW )2 + 0.280 (BZ )
2 + 2 ( 0.361BW · BZ

+ 0.190BZ · BΦ + 0.306BΦ ·BW ) (5.5)

where BW , BZ , and BΦ are the heavy lepton branching fractions for the W, Z and scalar decay
modes respectively, as calculated in section 5.1 (and shown in Figure 4).

In models (cases B and D) where there is only one species of heavy lepton (τH), setting a mass
limit is straightforward. We note that

σproduction · Bdecay = Nevents/ǫ · L (5.6)
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where, as in OPAL’s analysis, the integrated luminosity is L = 10.3 pb−1, the signal detection
efficiency7 is ǫ ≈ 20%, and the number of (unseen) signal events is Nevents ≈ 3. Thus an upper
bound on the number of signal events implies an upper bound on σproduction · Bdecay. Inserting
the branching fraction for ℓHℓH pairs to visible final states, Bdecay, as in equation (5.5) yields an
upper bound on the production cross-section. Since we have already calculated the cross-section
(σproduction(

√
s = 172 GeV)) as a function of heavy lepton mass, we can convert the bound on

σproduction into a a 95% c.l. lower bound on mH
τ :

mH
τ > 79.8 GeV. (5.7)

This is a great improvement over the bounds of order 40 GeV, (4.22) and (4.25), we obtained
earlier from precision electroweak data in cases B and D where the tau is the only lepton to have
a weak-singlet partner.

Our new lower bound on mH
τ further constrains the allowed region of the Mℓ vs. vλℓ parameter

space, as illustrated in figure 7. Contours on which the heavy tau mass takes on the values mH
τ =

70, 79.8 and 92 GeV are shown as a reference and to indicate how a tighter mass bound would
affect the size of the allowed region.

In case A, where e, µ, and τ all have singlet partners, the contributions from all three heavy
leptons to the signal have to be taken into account. While the eH and µH have nearly identical

7Our use of OPAL’s 20% signal efficiency is conservative. OPAL considered pair-production of sequential leptons
that decay via charged currents. About one-tenth of the time, both W’s decay leptonically; these ℓℓνννν final states
would be rejected by OPAL’s cuts. In considering cases where one or both of our heavy leptons decay via neutral
currents, we have not included the analogous ℓℓνννν events. Thus a higher fraction of the events we did include
should pass OPAL’s cuts.
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H is above OPAL’s pair-production
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masses and decays, the τH has slightly different properties. By adding the contributions from all
three flavors of heavy lepton, drawing the contour corresponding to Nevents = 3 on the Mℓ vs. vλℓ
parameter space, and comparing this with contours of constant mH

ℓ for each species, we obtain the
95% c.l. lower bounds on all three heavy lepton masses, as shown in figure 8

mH
e,µ > 84.9 GeV (5.8)

mH
τ > 93.9 GeV . (5.9)

Note that the bound on mH
τ comes simply from internal consistency of the model (the values of vλℓ

and Mℓ are flavor-universal), since it lies above OPAL’s pair-production threshold. These bounds
are a significant improvement over those we obtained from precision data, i.e. (4.15) and (4.12).

While calculating the lower limits on the mH
ℓ required us to assume a value for MΦ (to evaluate

Bdecay), the result is insensitive to the precise value chosen. As noted in section 5.1, in the allowed
region of the vλℓ vs. Mℓ plane, LEP’s lower bound on the Higgs boson’s mass applies to Φ so that
min(mH

ℓ ) ≤ min(MΦ). In this case, B(ℓH → ΦℓL) is negligible.
Our limits are also insensitive to the precise values of the small lepton mixing angles sinφℓ. The

production rate has little dependence on sinφℓ because the ℓ
HℓHZ coupling (2.19) is dominated by

the “−Q sin2 θ” term. What little dependence there is on sinφℓ decreases as 2m
H
ℓ approaches

√
s,

and the mass limits tend to be set quite close to the production threshold. Moreover, the branching
fractions for the vector boson decays of the ℓH have only a weak dependence on sinφℓ. Both the
charged- and neutral-current decay rates are proportional to sin2 φℓ (and the rate for decay via
Higgs emission is negligible), so that the mixing angle dependence in the branching ratio comes
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only through factors of cos2 φℓ which are nearly equal to 1. As a result, our lower bounds on the
heavy fermion masses will stand even if improved electroweak measurements tighten constraints on
the mixing angles.

Because the mass limit tracks the pair-production threshold, stronger mass limits can be set by
data taken at higher center-of-mass energies. Figure 6 shows σproduction as a function of the heavy
lepton mass for several values of

√
s and sin2 φℓ. As data from higher energies provides a new, more

stringent upper bound on σproduction ·Bdecay, one can read an improved lower bound on the heavy
lepton mass from figure 6.

More generally, one can infer a lower mass limit on a heavy mostly-weak-singlet lepton from
other models using the same data by inserting the appropriate factor of Bdecay in equation (5.6).
For models in which the mixing angles between ordinary and singlet leptons are small and in which
B(ℓH → ΦℓL) is small, our results apply directly. This would be true, for example, of some of the
heavy leptons in the flavor-universal top seesaw models [8].

Since the lower bound the LEP II data sets on the mass of the heavy leptons is close to the
kinematic threshold for pair production, it seems prudent to investigate whether single production

e+e− → ℓHℓL (5.10)

would give a stronger bound. Single production proceeds only through Z exchange (the γfHfL

coupling is zero). Moreover, equation (2.19) shows that the ZℓHℓL coupling is suppressed by a
factor of sinφℓ; given the existing upper bounds on the mixing angles (3.1)-(3.4), the suppression
is by a factor of at least 10. As a result, only a fraction of a single-production event is predicted to
have occurred (let alone have been detected) in the 10 pb−1 of data each LEP detector has collected
– too little for setting a limit.

5.3 Heavy quarks at the Tevatron

New quarks decaying via mixing to an ordinary quark plus a heavy boson would contribute to
the dilepton events used by the Tevatron experiments to measure the top quark production cross-
section [12][13]. We will use the results of the existing top quark analysis and see what additional
physics is excluded. If evidence of new heavy fermions emerges in a future experiment, it will be
necessary to do a combined analysis that includes both the top quark and the new fermions and
that examines multiple decay channels.

Here, we use the dilepton events observed at Run I to set limits on direct production of new
largely-weak-singlet quarks (our qH). These new quarks are color triplets and would be produced
with the same cross-section as sequential quarks of identical mass. However, their weak-singlet com-
ponent would allow the new states to decay via neutral-currents as well as charged-currents. This
affects the branching fraction of the produced quarks into the final states to which the experimental
search is sensitive.

The DØ and CDF experiments searched for top quark events in the reaction

pp̄→ QQ̄→ qW q̄W → qq̄ℓνℓℓ
′νℓ′ (5.11)

by selecting the final states with dileptons, missing energy, and at least two jets. Di-electron and di-
muon events in which the dilepton invariant mass was close to the Z mass were rejected in order to
reduce Drell-Yan background. The top quark was assumed to have essentially 100% branching ratio
to an ordinary quark (q) plus a W, as in the Standard Model. The DØ (CDF) experiment observed
5 (9) dilepton events, as compared with 1.4 ± 0.4 (2.4 ± 0.5) events expected from Standard model
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backgrounds and 4.1 ± 0.7 (4.4 ± 0.6) events expected from top quark production. Thus, DØ
(CDF) measured the top production cross-section to be 5.5 ± 1.8 pb (8.2+4.4

−3.4 pb).
In using this data to provide limits on the production of heavy quarks in our models, we consider

dilepton events arising from top quark decays to be part of the background. Hence, from DØ (CDF),
we have 5 (9) dilepton events as compared with a background of 5.5 ± 0.8 (6.8 ± 0.8) events. At
95% confidence level, this implies an upper limit of 5.8 (9.6) on the number of additional events
that could have been present due to production and decays of new heavy quarks.

How many qH would be produced and seen ? The qH have the same QCD production cross-
section as a Standard Model quark of the same mass. The qH can decay by the same route as the
top quark (5.11). About 10% of the charged-current decays of pair-produced qH would yield final
states to which the FNAL dilepton searches were sensitive. The neutral current decays of the qH

reduce the charged-current branching fraction B(qH → qLW ), but will not, themselves, contribute
significantly8 to the dilepton sample since dileptons from Z decays are specifically rejected and the
Φ couplings to e and µ are extremely small. Then we estimate the fraction of heavy quark pair
events that would contribute to the dilepton sample as

Bdecay = Bℓℓ (BW )2 (5.12)

where Bℓℓ is the fraction of W pairs in which both bosons decay leptonically and BW ≡ B(qH →
qLW ) is calculated in section 5.1 and shown in figure 5.

The number of dilepton events expected in a heavy-quark production experiment with luminos-
ity L and detection efficiency for dilepton events ǫ is

N qH = σq
H · L · ǫ ·Bdecay (5.13)

Similarly in top searches the total number of events is

N t = σt · L · ǫ ·Bcc ·Bℓℓ (5.14)

where Bcc is the fraction of top quark pairs decaying via charged currents.
In comparing the number of events expected for produced top quarks with those for qH pairs, the

values of ǫ and L are the same; furthermore, Bcc of equation (5.14) is essentially 100% . Therefore
we may write

σq
H

(BW )2 = σt
N qH

N t
(5.15)

Using the values which the CDF and DØ experiments have determined for the three quantities on
the right-hand side (cf. previous discussion), we find

σq
H

(BW )2 ≤ 7.8 pb (DO)

≤ 12.0 pb (CDF). (5.16)

The dilepton sample at the Tevatron is sensitive only to the presence of the dH or sH quarks in our
models. The uH , cH and tH are, according to equations (4.8), (4.13) and (4.16), too heavy to be
produced, while the bH decay dominantly by neutral instead of charged currents, due to Cabibbo
suppression. Hence, this search tests only the models of case A, in which the light ordinary fermions
have weak-singlet partners.

8A Higgs-like scalar with a mass of order 130-150 GeV could have a relatively large branching fraction to two W

bosons [20] . This might allow some neutral-current decays of qH to contribute to the dilepton sample and change
our mass bounds slightly.
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Figure 9: A graphical representation of the Tevatron limits on heavy D quark masses. The region allowed
by precision electroweak tests (cf. fig 2) is bounded from above by the dashed line (sinφb
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by the dot-dashed line (vλD). Dotted lines represent curves of constant σprod · (BW )2 as in equation (5.15).
Solid vertical lines are curves of constant mH

d,s (mH
b ); their overlap with the dotted lines defines the lower

bound on the heavy fermion masses. We set MΦ = 100 GeV in calculating branching fractions.

Since the pair-production cross-section for qH is the same as that for a heavy ordinary quark,
we use the cross-section plots of reference [25] and our calculated branching fraction Bdecay (5.12)
to translate equation (5.16) into lower bounds on heavy fermion masses. For Case A, in which both
the dH and sH quarks can contribute to the dilepton sample, we find (with MΦ = 100 GeV):

mH
d ,m

H
s ≥ 153 GeV (DO)

≥ 143 GeV (CDF)

mH
b ≥ 171 GeV (DO)

≥ 161 GeV (CDF). (5.17)

which are significantly stronger than those obtained from low-energy data in section 4 and also
stronger than the published limits on a fourth-generation sequential quark [26]. Note that since the
bH decays almost exclusively via neutral-currents due to Cabbibo suppression of the charged-current
mode, the lower bound on mH

b is, once again, an indirect limit implied by internal consistency of
the model. In the scenarios where only third-generation fermions have weak partners (Cases B and
C), we can obtain no limit on mH

b .
More generally, one can use the same data to infer an upper limit on the pair-production cross-

section for heavy mostly-weak-singlet quarks from other models by inserting the appropriate factor
of BW in equation (5.16). After taking into account the number of heavy quarks contributing, one
can use the cross-section vs. mass plots of [25] to determine lower bounds for the heavy quark
masses. For example, our cross-section limits (5.16) apply directly to the heavy mostly-singlet
quarks in the dynamical top-seesaw models that are kinematically unable to decay to scalars and
decay primarily by charged-currents. The corresponding mass limit depends on how many such
quarks are in the model.
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Figure 10: Comparing data on oblique corrections to theoretical predictions. Relative to the reference
[mt = 173.9 GeV, mH = 300 GeV, α−1(MZ) = 128.9], the cross shows the best experimental fit to S and
T ; the solid ellipses are at the corresponding 68%, 90% and 95% confidence levels [29] for two degrees of
freedom. The labels on both the solid and dotted ellipses indicate ∆χ2 relative to the experimental best-fit
point (cross). The heavy dotted curve shows how the predicted value of S and T in the Standard Model
varies as the scalar mass mΦ is varied by steps of 10 GeV (see text); lower masses are to the left. The value
of mΦ corresponding to the lowest χ2 (smallest dotted ellipse) is ≈ 80 GeV.

6 Oblique Corrections

The presence of new singlet fermions present in our models will shift the S and T parameters [27]
from their Standard Model values. In this section, we evaluate these changes and explore the limits
they impose on the fermion masses and couplings and the mass of the scalar, Φ. This analysis of
one-loop oblique corrections turns out to complement the analysis of tree-level effects on precision
data performed in section 3: the oblique corrections most strongly limit the top quark mixing angle
which the earlier analysis could not directly constrain.

In calculating the values of S and T predicted by our models, we started from the results of
[29], which cite the experimental values of S and T relative to the reference point [mt = 173.9
GeV, mH = 300 GeV, α−1(MZ) = 128.9]. We included the appropriately weighted variations of
mt and α−1 and obtained the minimal combined χ2 field on the S − Sref vs T − Tref plane; we
simultaneously obtained the corresponding mt(S, T ) and α

−1(S, T ) that minimize χ2 for each pair
of S and T parameters. The minimal combined χ2 is presented in in figure 10; the solid ellipses
represent joint 68.3%, 90%, and 95.4% c.l. limits on S and T with variations inmt and α

−1 included.
Next, within the Standard Model we allowed the Higgs mass to vary [28] from 40 GeV to 1 TeV in
steps of 10 GeV and obtained the “best fit Higgs curve” shown in figure 10; the circled points are
at 100, 200, 300, 400, and 500 GeV (smaller masses to the left). The dotted ellipses in the figure
are contours of constant minimal combined χ2 whose intersections with the “best fit Higgs curve”
define the best fit value and 68.3%, 90%, and 95.4% c.l. limits on Higgs mass. These values are
respectively 80 GeV (in good agreement with [9]), 190 GeV, 310 GeV, and 400 GeV.

We then added the effects of the extra fermions on S and T . The contribution of the singlet
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fermions to S was calculated numerically using the formalism described in [30]. The contribution
to T was found analytically [31, 32] by summing the vacuum-polarization diagrams containing the
heavy and light mass-eigenstate fermions present in the model of interest. For example, in models
containing weak-singlet partners for only the t and b quarks, we find that the contribution of the
tH , tL, bH and bL states to the T parameter is (in agreement with [7])

αT − αTH =
3GF

8π2
√
2

[

mL
t

2
c4t +mL

b

2
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2
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where TH is the Higgs contribution, and cf (sf ) is an abbreviation for cosφf (sinφf ). To isolate
the extra contribution caused by the presence of the weak-singlet partners for the t and b quarks,
we must subtract off the amount which t and b contribute in the Standard Model [32]:

αT − αTH =
3GF

8π2
√
2

[

mL
t

2
+ mL

b

2 − 2mL
t
2
mL
b

2

mL
t
2 −mL

b

2
ln

(

mL
t
2
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)]

(6.2)

Note that (6.1) correctly reduces to (6.2) in the limit where singlet and ordinary fermions do not
mix (sin2 φt, sin

2 φb → 0). From the form of equation (6.1), we see that experimental bounds on
the magnitude of T will constrain relatively heavy extra fermions to have small mixing angles.

To illustrate how oblique effects constrain non-standard fermions, we begin by including a weak-
singlet partner only for the top quark; that is, we send sin2 φb → 0 in equation (6.1). For a given
scalar mass mΦ, we add to the Standard Model S and T , the additional contribution caused by
mixing of an ordinary and weak-singlet top quark. For the T parameter, this extra contribution is
the difference between expressions (6.1) and (6.2) with sin2 φb = 0. By construction, for s2t → 0 the
new contributions to the S and T parameters both go to zero (i.e. δS = δT = 0). When mixing is
present (s2t 6= 0), one has δS < 0 and δT > 0, and the predicted values of S and T lie above the
“best fit Higgs curve”

We deem “allowed” the values of mH
t and sin2 φt for which the final values of S and T fall inside

the dotted ellipse labeled ∆χ2 = 5.25 – the 90% c.l. ellipse for the Standard Model alone. In other
words, we require that the model including new physics agree with experiment at least as well as
the Standard Model. This allows us to trace out a region of allowed heavy top mass and mixing
for different values of mΦ, as illustrated in figure 11. Note that the presence of non-zero mixing of
ordinary and singlet top quarks enables a heavier scalar to be consistent with the data9.

As a complementary limit on mH
t and sin2 φt, we note that the discussion in section 4 requires

mH
t ≥ mL

t

√

1 + 1/ sin2 φt. (6.3)

9 For a discussion of related issues for the Standard Model Higgs boson see [33].
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Figure 11: Lower bound on heavy top mass mH
t as a function of heavy top mixing sin2 φt. Based on the

oblique corrections, for mΦ = 100 GeV, the mass and mixing must fall below the solid curve; for mΦ = 350
GeV, they must fall in the band between the dashed curves; for mΦ = 520 GeV, they must lie within the
dotted curve. The additional lower bound on mH

t 6.3 is represented by the heavy solid curve; the allowed
region is to the right of this curve, leading to the constraints (6.4) and (6.5).

That is, for a given amount of mixing, the heavy top mass must lie above some minimum value.
Combining these limits yields the allowed region in the mixing vs. mass space in figure 11. For
example,

For mφ = 100GeV, mH
t

>∼ 1450GeV (6.4)

sin2 φt
<∼ .015

For mφ = 350GeV, mH
t

>∼ 1040GeV (6.5)

sin2 φt
<∼ .031

As illustrated in figure 11, if the scalar’s mass, MΦ, rises above 520 GeV, the regions of top mass
and mixing allowed by oblique corrections by equation (6.3) cease to intersect; this provides an
upper bound on the scalar mass.

To apply oblique-correction constraints to our models, we need to include weak-singlet partners
for quarks other than the top quark. Since these fermions contribute little to S [27], we can illustrate
the effects of including other singlet fermions by showing how they affect the T parameter. First,
we include the singlet partner for the b quark, as in equation (6.1). We can interpret the result
using figure 12, which shows the value of T within the coupling-mass plane for the up-sector quarks.
For reference, dotted nearly-vertical curves of constant heavy top mass mH

t are shown. The main
contents of the figure are the three sets of curves labeled δT = [0.3, 0.1, 0], where δT is the
contribution due to mixing between ordinary and singlet fermions. Within each set, the separate
curves correspond to different values of the heavy b mass and mixing. The solid curve obtains for
mH
b = 5 TeV and sin2 φb = 0.00090; the dashed curve, for mH

b = 5 TeV and sin2 φb = 0.00040; the
doted curve, for mH

b = 0.55 TeV and sin2 φb = 0.00027. Looking at the region where mH
t is of order

a few TeV, we see that the influence of the b-quark is small. Including the effects of partners for
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the other fermions yields a generalized version of equation 6.1 and similar results. Thus the lower
bounds on mH

t we found earlier by considering only mixing for the top quark will not be much
altered by including mixing for the other quarks, as in our models A, B, and C.

7 Conclusions

Precision electroweak data constrains the mixing between the ordinary standard model fermions
and new weak-singlet states to be small; our global fit to current data provides upper bounds on
those mixing angles. Even when the mixing angles are small, it is possible for most of the exotic
mass eigenstates which are largely weak-singlets to be light enough to be accessible to collider
searches for new fermions. We have analyzed in detail a class of models in which flavor-symmetry
breaking is conveyed to the ordinary fermions by soft symmetry-breaking mass terms connecting
them to new weak-singlet fermions; such models have a natural GIM mechanism and a flavor
structure that is stable under renormalization. By calculating the branching rates for the decays
of the heavy mass-eigenstates (which are significantly influenced by their being primarily weak-
singlet in nature) we have been able to adapt results from searches for new sequential fermions to
further constrain our models. We find that direct searches at LEP II now imply that the heavy
leptons ℓH must have masses in excess of 80-90 GeV; those limits are not sensitive to the precise
values of the small mixing angles. Current Tevatron data indicates that heavy quark states dH

and sH could be as light as about 140-150 GeV, while the mostly-weak-singlet bH must weigh at
least 160-170 GeV. In addition, the new fermions’ contributions to the oblique corrections allow
the scalar Φ to have a relatively large mass (up to about 500 GeV) while remaining consistent
with the data. Oblique corrections also constrain the mixing and mass of the the heavy top state
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which is mostly weak-singlet; in particular, mH
t must be at least 1 TeV. Finally, we have indicated

how our phenomenological results may be generalized to related models, including the dynamical
top-seesaw theories.

A Appendix: Mixing effects on electroweak observables

This appendix contains the expressions for the leading-order (in mixing angles) changes to elec-
troweak observables in the presence of fermion mixing. The expressions were derived using equations
(2.16 – 2.19) and the general approach of reference [16].

∆ΓZ/Γ
SM
Z = 0.603 (sin2 φe + sin2 φµ)− 0.072 sin2 φτ (A.1)

− 0.3535 (sin2 φd + sin2 φs + sin2 φb)− 0.287 (sin2 φu + sin2 φc)

∆σh/σ
SM
h = −1.409 sin2 φe + 0.736 sin2 φµ + 0.072 sin2 φτ (A.2)

− 0.1515 (sin2 φd + sin2 φs + sin2 φb)− 0.124 (sin2 φu + sin2 φc)

∆Aτ (Pτ ) = ∆Ae(Pτ ) = ∆ALR = −0.5180 sin2 φe + 1.2870 sin2 φµ (A.3)

∆Rb/R
SM
b = −0.0295 (sin2 φe + sin2 φµ) + 0.505 (sin2 φd + sin2 φs)

− 1.78 sin2 φb + 0.411 (sin2 φu + sin2 φc) (A.4)

∆Rc/R
SM
c = 0.0605 (sin2 φe + sin2 φµ) + 0.505 (sin2 φd + sin2 φs + sin2 φb)

+ 0.411 sin2 φu − 1.999 sin2 φc (A.5)

∆AbFB = −0.3300 sin2 φe + 0.8500 sin2 φµ − 0.0161 sin2 φb (A.6)

∆AcFB = −0.1785 sin2 φe + 0.6665 sin2 φµ − 0.0875 sin2 φc (A.7)

∆Ab = 0.1052 (sin2 φe + sin2 φµ)− 0.1472 sin2 φb (A.8)

∆Ac = 0.5719 (sin2 φe + sin2 φµ)− 0.7997 sin2 φc (A.9)

∆QW (Cs) = 72.7663 sin2 φe − 0.7239 sin2 φµ + 211.0024 sin2 φd − 187.9988 sin2 φu (A.10)

∆QW (T l) = 111.396 sin2 φe − 4.920 sin2 φµ + 327 sin2 φd − 285 sin2 φu (A.11)
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∆Re/R
SM
e = 2.275 sin2 φe + 0.130 sin2 φµ − 0.505 (sin2 φd + sin2 φs + sin2 φb)

− 0.411 (sin2 φu + sin2 φc) (A.12)

∆Rµ/R
SM
µ = 0.130 sin2 φe + 2.275 sin2 φµ − 0.505 (sin2 φd + sin2 φs + sin2 φb)

− 0.411 (sin2 φu + sin2 φc) (A.13)

∆Rτ/R
SM
τ = 0.130 (sin2 φe + sin2 φµ) + 2.145 sin2 φτ (A.14)

− 0.505 (sin2 φd + sin2 φs + sin2 φb)− 0.411 (sin2 φu + sin2 φc)

∆AeFB = −0.1230 sin2 φe + 0.3070 sin2 φµ (A.15)

∆AµFB = 0.0920 (sin2 φe + sin2 φµ) (A.16)

∆AτFB = 0.0920 sin2 φe + 0.3070 sin2 φµ − 0.2150 sin2 φτ (A.17)

∆AsFB = −0.3300 sin2 φe + 0.8500 sin2 φµ − 0.0161 sin2 φs (A.18)

∆MW /M
SM
W = 0.1065 (sin2 φe + sin2 φµ) (A.19)

∆geV (νe→ νe) = 0.1720 sin2 φe − 0.3650 sin2 φµ (A.20)

∆geA(νe→ νe) = 0.5000 sin2 φe − 0.5060 sin2 φµ (A.21)

∆g2L(νN → νX) = 0.1220 sin2 φe + 0.7260 sin2 φµ − 0.4280 sin2 φd − 0.3445 sin2 φu (A.22)

∆g2R(νN → νX) = −0.0425 sin2 φe + 0.0179 sin2 φµ (A.23)

∆Rπ/R
SM
π = − sin2 φe + sin2 φµ where Rπ ≡ Γ(π → eν̄e)

Γ(π → µν̄µ)
(A.24)

∆Reτ/R
SM
τ = sin2 φµ − sin2 φτ where Reτ ≡

Γ(τ → eν̄eντ )

Γ(µ→ eν̄eνµ)
(A.25)

∆Rµτ/R
SM
µτ = sin2 φe − sin2 φτ where Rµτ ≡ Γ(τ → µν̄µντ )

Γ(µ→ eν̄eνµ)
(A.26)
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B Appendix: Details of heavy fermion decays

This appendix contains details relevant to the heavy fermion decays discussed in section 5.1.
At tree-level and neglecting final-state light fermion masses, the kinematic factors F(x,y) and

G(x,y) referred to in the text have the following form:

F (x, y) =
1

x2
{2x (2 − x) + [3 (x− 1) + y2]A(x, y) (B.1)

+ [(x− 1)2(x+ 2) + 3 y2(x− 2)]B(x, y)}

G(x, y) =
1

x2
{x (4x− 3) + [x (4− x)− 3 + y2]A(x, y) (B.2)

+ 2[(x − 1)2 + y2(2x− 3)]B(x, y)}

where A and B are given by

A(x, y) = ln

[

1− x (x− 2)

(x− 1)2 + y2

]

(B.3)

B(x, y) =
1

y

[

tan−1

(

1

y

)

− tan−1

(

1− x

y

)]

(B.4)

To check our general expressions for the decay rates, we evaluated their behavior in the limiting
cases where the decaying heavy fermion is either much more massive or much less massive than the
vector or scalar boson involved in its decay. Equations 5.1 and B.1 for vector-boson decays yield
asymptotic behavior

Γ(fHi → fLj V )
mH

fi
≫MV
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(cVij)
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Γ(fHi → fLj V → fLj f
L
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where V may be either Z or W. Equations 5.2 and B.2 for scalar-boson decays yield

Γ(fHi → fLj Φ)
mH

fi
≫MΦ

−→
(cHij )
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32π

mH
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Γ(fHi → fLj Φ → fLj f
L
k f

L
l )

mH
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≪MΦ
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.
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