UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A Modular Natural Language Processing Architechture to Aid Novel Interpretation

Permalink
https://escholarship.org/uc/item/132260sd

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Authors
Peterson, Justin
Billman, Dorrit

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/132260sd
https://escholarship.org
http://www.cdlib.org/

A Modular Natural Language Processing Architecture to Aid Novel
Interpretation

Justin Peterson
College of Computing
Justin@pravda.gatech.edu

Dorrit Billman
School of Psychology
billman@pravda.gatech.edu

Georgia Institute of Technology
Atlanta, GA 30332

Abstract

Successful and robust natural language processing must
efficiently integrate multiple types of information to pro-
duce an interpretation of input. Previous approaches
often rely heavily on either syntax or semantics, verb-
specific or highly general representations. A careful task
analysis identifies principled subsets of information from
across these spectra are needed. This presents challenges
to efficient and accurate processing. We present a mod-
ular architecture whose components reflect the distinct
types of information used in processing. Its control mech-
anism specifies the principled manner in which compo-
nents share information. We believe this architecture pro-
vides benefits for processing sentences with novel verbs,
ambiguous sentences, and sentences with constituents
placed outside their canonical position.

Introduction

The task of natural language processing is to produce an
interpretation of the linguistic input. This task is ex-
tremely difficult because the mapping from input to in-
terpretation is complex: a single form can have multiple
meanings and a single meaning can be expressed in several
different ways. Further, language comprehension occurs
over a very wide range of circumstances. We compre-
hend novel utterances, with novel verbs, Far me a betier
copy as well as close variations on familiar phrases Hope
you're feeling better. As a consequence, it is hard to iden-
tify the information and processes sufficient for the task
across varied circumstances. Is the critical information
syntactic or conceptual? Is it highly specific, such as a
verb’s meaning and argument structure, or quite general,
such as specifying that direct objects must immediately
follow the verb? Are sentence interpretations retrieved
from memory or constructed anew?

Our research attempts systematically to identify what
distinctions in the input and in memory provide the in-
formation needed. By taking a task-analysis approach we
attempt to specify just what distinctions of each type are
important. We propose that very selective yet heteroge-
neous clues are used in interpretation. A discussion of this
proposal as well the assumptions we have adopted from
the work of others can be found in (Peterson & Billman
1990). The focus of this paper, however, is to outline an

857

architecture for sentence interpretation which efficiently
operates on these varied sources of information to produce
a sentence interpretation.

Prior Work

Natural language processing systems vary in their as-
sumptions about the importance of syntactic versus con-
ceptual structure. They differ in emphasizing general
principles versus specific content knowledge. And they
contrast in treating language processing as retrieval of an
interpretation from memory versus treating it as genera-
tion of a novel structure from much smaller, known, com-
ponents. Two quite opposite sets of choices have domi-
nated prior work. Some natural language processing sys-
tems emphasize detailed, highly specific representations
that contain primarily conceptual (or semantic) infor-
mation and treat interpretation as retrieving the famil-
iar events or situation being described (Riesbeck & Mar-
tin 1986). Semantic expectations are central to this ap-
proach. We shall call this extreme the conceptual recog-
nition view. Other systems emphasize highly schematic
principles of broad scope that are primarily syntactic and
that treat sentence processing as generation of the novel
structure specified in a unique utterance (Woods 1978).
We shall call this the syntactic construction view.

The conceptual recognition view fares well when the
sentence does indeed refer to a familiar event using a fa-
miliar form. For example, a familiar verb can be accessed
from the lexicon, specify slots for its arguments, and thus
allow arguments to be bound to a completely prespeci-
fied structure in a simple and stereotyped way (Birnbaum
& Selfridge 1981). Where expectations and background
knowledge are both complete and correct, this provides a
fast and effective processing strategy. Difficulties arise if
the detailed expectations mismatch the utterance. This
might be because 1) the event is unfamiliar, metaphori-
cal, or in some way discrepant from expectation, 2) the
sentence form is unfamiliar or novel or 3) a novel verb is
used for which the system has no lexical entry. For exam-
ple, utterances such as I stared the man out of the room,
a new sentence form, or Lucia zorched the book tnio the
fire, a new verb, would be uninterpretable.

The syntactic generation view has a complementary
set of faults and virtues. Here the system can process

mailto:justin@pravda.gatech.edu

syntactic

Input / processor
lexical working linking
processor memory e
\ semantic
processor —Output

Figure 1: System Architecture

novel utterances as well as stereotyped ones. However, the
generality is purchased at the cost of efficiency: a large
number of structures might be consistent with the initial
segments of input and a forest of possibilities generated.
Since many forms can encode similar meanings a multi-
tude of parsing rules are needed and a multitude of partial
structures generated. Consider what would be needed to
interpret Which man did Pat punch in the mouth?: 1) all
possible functional roles for which man could be gener-
ated, 2) the identification of what element is being ques-
tioned must be delayed to the end of the sentence, and
3) many sets of rules are needed since the rules needed
to process this sentence are not those used for related
sentences such as Pat punched the man in the mouth.

People do not seem afflicted with either set of problems.
New verbs and new uses of old verbs are constantly being
introduced into the language; introspection and anecdote
show people are quite capable of interpretation even un-
der these circumstances. Psycholinguistic evidence shows
that people do begin interpretation of a clause as infor-
mation accrues and are not hamstrung prior to the final
word.

Of course, the field is not as simply or as strongly
polarized between the two possibilities as sketched here.
Head-driven Phrase Structure Grammar (Pollard & Sag
1987) relies on syntactic information to drive interpreta-
tion, yet it specifies this in a very specific, word by word
manner, not as general rules. (Lytinen 1986) proposed
an approach in which semantic constraints are used to
perform syntactic analysis. We believe this type of in-
tegration must be taken much further. Successful NLP
systems will require a careful combinations of the avail-
able techniques and a careful analysis of what information
needs to be supplied. Both syntax and semantics, both
general and specific patterns, and both construction and

858

memory will play comparably important roles in language
interpretation. However, the following questions remain
open: What syntactic distinctions map reliably onto sub-
tle differences in meaning? When and in what form are
highly specific forms of information used? What form
need to be constructed and what can be retrieved from
memory? Our research program divides in two parts: 1) a
task analysis for identifying critical distinctions that con-
strain meaning and 2) a processing mechanism that can
combine the multiple cue and constraints to provide an
interpretation. Clearly both tasks are substantial and in
both we are able to capitalize on many parts of analyses
done by others. We focus here on describing an archi-
tecture that can derive lexical, semantic, and syntactic
information and use these distinct but principled sets of
cues to effectively drive sentence interpretation.

Architecture

An implementation of our approach needs to satisfy a
number of requirements. First, it must provide a means
of mutual communication between syntactic and semantic
processing. Second, it must access and use word-specific
information when it is available. Third, it must have a
general information to resort to when word-specific in-
formation is absent. Fourth, both syntactic and semantic
information must be used to guide structure composition.

We propose the architecture pictured in figure 1. The
architecture has been modularized to reflect the structure
of the task. Each module contains a distinct sort of in-
formation and distinct function. Within this model, data
flows along two paths. Word-specific information flows
from the lexical processor to the working memory where
it is made available to the semantic, syntactic, and link-
ing rules processor. Structural information flows through
the linking rules processor. The syntactic processor and

the semantic processor communicate their structural de-
cisions to one another by sending their products to the
linking rules processor. The final interpretation is pro-
vided by the semantic processor. Below, we describe each
of these modules as well as the system control.

Lexical Processor

The lexical processor provides the word-specific informa-
tion to the system. It accepts a character string as input,
and produces all the lexical entries associated with the
word. Each lexical entry is denoted by a unique identifier.
This allows individual components to ascertain which en-
try is being referred to in the working memory. Lexical
entries contain syntactic, semantic, and correspondence
information.

The syntactic information consists of a lexical category
and an argument structure. For verb entries, the syn-
tactic information includes a predicate argument struc-
ture which represents the argument structure of semantic
functions (Rappaport & Levin 1988). Predicate argument
structures perform two services. First, they denote the
number of arguments a syntactic structure takes. For in-
stance, the verb put has the following arguments

|

This representation indicates that the verb has a subject,
a direct object, and a prepositional complement as argu-
ments. Second, they denote the syntactic relations the
verb licenses.

direct v

external :c]
indirect z

put : VP — NP PP loc]

This indicates the verb-phrase can be the mother node for
both a noun phrase and a locative prepositional phrase.

The semantic information is either a semantic function
or term. Verbs denote semantic functions. Consider the
semantic entry for put

- ACT (z y)
pPUl | |event effCCt [euen!GO (y [pathTO [plucez]])]

It can be roughly characterized as ’an actor acts upon
an object causing it to move along some path’. Variables
such as y are used to maintain identity relations among
the semantic arguments. So for example in the lexical en-
try for put, the thing being acted upon y is also the thing
being moved. These variables are also used to specify se-
mantic constraints. Above the semantic term assigned to
the variable z must be a place.

The correspondence information maintains the linkings
between the syntactic and semantic variables specified in
the lexical entry. Put specifies the following correspon-
dences

external = zin ACT(zy)
put: direct = yin ACT (z y)
indirect = zin GO (¥ [pathTO [piacez]])

859

Syntactic Processor

The syntactic processor contains general rules of syntax
and constructs syntactic structures. It accepts as input
the lexical entries from the lexical processor and any argu-
ment bindings already assigned by the linking rules pro-
cessor (see below). It produces as output a parse tree and
predicate argument bindings.

The syntactic processor is an adaptation of Abney’s
Licensing-Structure Parser (Abney 1989). It has two ba-
sic modes of operation: attachment and argument bind-
ing. The attachment operation constructs parse trees.
The argument binding operation fills the predicate ar-
gument structure. Each attachment operation evokes a
binding operation updating the predicate argument struc-
ture of the mother node.

As an example, consider how parser processes the follow
phrase segment

put Mike ...

The put is the head of the verb phrase, and Mike is a noun
phrase. An attachment is licensed by put

put:VP—-V NP

So the noun phrase Mike is attached to the verb phrase
and assigned to y, and the processing of this fragment is
complete. In cases where the predicate argument struc-
ture for put is not available, the syntactic processor in-
vokes a general set of rules that license argument attach-
ment (i.e., lexical redundancy rules).

The syntactic processor must check for internal incon-
sistency. Parsing inconsistencies are simply misparses.
Misparses are identified with the aid of a parsing state.
This state is used to indicate how much of the phrase
has been parsed and what the possible continuations are.
When the input is not a possible continuation, a misparse
has occurred.

Semantic Processor

The semantic processor contains the general semantic in-
formation and constructs semantic representations. It
accepts as input lexical entries from the lexical proces-
sor and semantic function bindings from the linking rules
processor. It produces both complete semantic interpre-
tation for system output and partial products used by the
linking rules processor.

Like the syntactic processor, the semantic processor
combines partial information. The semantic processor
has two modes of operation: semantic function argument
binding and function composition. Function argument
binding assigns values to semantic functions. As an ex-
ample consider the processing of the following fragment

put Mike
ACT (z y)]

put: [event effect [euentGO (y [pathTO [placeZ]D]
Mike : [HUMAN ANIMATE THING]

Since Mike has no arguments, the possible assignments
are to an argument of put. There are two possible as-
signments y = Mike and z = Mike. This assignment
may be initiated by either the information provided by
the linking rules processor or the semantic processor it-
self. Semantic function composition constructs complex
function structures from two functions and will be dis-
cussed in an example following this section.

The semantic processor must check for internal incon-
sistency. There are two types of inconsistencies, violations
of composition constraints and of argument binding con-
straints. The assignment z = Mike violates the place
constraint on z; without a locative preposition, Mike
does not designate a place. When a violation occurs, the
semantic processor attempts to propose an alternative.

Linking Rules Processor

The linking rules processor executes the bi-directional
mapping between syntax and semantics. Given a pred-
icate argument binding (produced by the syntactic pro-
cessor)as input, it produces a semantic function binding
as output. Operating in the opposite mode, given func-
tion binding (produced by the semantic processor) as in-
put, it produces an predicate argument binding as output.
Linking rules allow the system to capitalize on regular cor-
respondences between syntactic arguments and semantic
roles, as in lexical redundancy rules. It has a general set
of linking rules that can be extended by the correspon-
dences specified in individual lexical entries. When these
are provided, it prefers the execution of these lexically
specific mappings over the general rules.

As an example consider the following linking rule
direct = y in ACT (z y)

If the direct object is bound by the syntactic processor,
the linking processor can derive a semantic binding from
the direct object assignment. The semantic processor ex-
ecutes this binding when it is provided. If it results in an
semantic inconsistency, the semantic processor can pro-
pose an alternative (which is then communicated to the
linking rules processor.) In the case of a conflict, the se-
mantic processor takes precedence.

Working memory

Working memory executes two roles. It provides a means
of communication between the lexical processor and the
other processors, and it maintains the current lexical en-
tries, a set of unique lexical items. The lexical processor
provides all the lexical entries associated with each par-
ticular word. Processing is initiated with most-preferred
lexical entries. If either processor finds a lexical entry un-
acceptable it may select another (i.e., the syntactic pro-
cessor communicates its lexical category decisions, and
the semantic processor specifies its selection of lexical en-
tries.) Working memory must notify the processors of
changes in the current lexical entries.

860

Communication

Information flows along two paths in the system. Word-
specific information flows from the lexical processor to the
working memory where it is made available to the seman-
tic, syntactic, and linking rules processor, and structural
information flows through the linking rules processor to
the semantic and syntactic processors. Consider flow of
information during the processing of the text fragment we
have been pursuing in this section.

1. lexical processor —
[Put.1][Mike.1]

2. syntactic processor —
direct = [Mike.1)

3. linking rules processor —

v/ACT/EVENT = [Mike.1]

4. semantic processor —
ACT(..Mike.1)
event effect [guen;GO (Mike.l-..)]

In step 1, the lexical processor produces the lexical en-
tries for put and Mike. In step 2, the syntactic processor
assigns [Mike.1] to the direct object position. This is com-
municated to the linking rules processor. This processor
produces the semantic argument specification in step 3.
In step 4, the semantic processor makes the assignment
and executes the inference that Mike is both the thing
moving and thing being acted upon.

Global consistency is maintained by keeping the seman-
tic and syntactic processors internally consistent and re-
quiring that the semantic and syntactic processors be con-
sistent with the linking rule products. In cases where the
products of the linking rule processor conflicts with the
state of either the semantic or syntactic processors, the
linking rule products take precedence; linking rule prod-
ucts can only be overridden when they cause syntactic or
semantic inconsistencies or violate semantic preferences.

Novelty Example

As an example of how such information could be used to
process novel verbs, consider

Lucia zorched the book into the fire.

Since the predicate argument structure for zorched is un-
known, the syntactic processor must construct the parse
tree with the lexical redundancy rules, producing

external [Lucia.l]
direct [book.1)
indirect [into[fire.1]]

The linking rules processor executes the mappings
which are ambiguous. The subject-direct object pair
could correspond to a relation of possession or causal-
ity.

z/ACT/EVENT = [Lucia.l]
z/HAVE/STATE = [Lucia.l]

y/ACT/EVENT = [book.1]
y/HAV E/STATE = [book.1]

z/GO/EVENT = TO (IN ([fire.1]))

Given the mappings, the semantic processor attempts to
compose the predicates. The mapping ambiguity is re-
solved by the constraints on function composition, when
the partial results are combined. The information asso-
ciated with into is an effect of GOing and this must co-
occur with actions; hence, the HAVE mapping (a nonac-
tion) can be ruled out. Only effects such as GO co-occur
with actions, so the HAVE mapping can be ruled out.

[ACT ([Lucia.1] [book.1))]
cvent e f fect [cventGO ([book.1] TO (IN ([fire.1])))]

The resulting interpretation refers to an event in which
Lucia’s acting on the book causes it to go into the fire.

Summary

Our approach to processing provides a means of handling
novelty. It also helps with some other difficult problems
in natural language comprehension. Consider the case of
prepositional attachment ambiguity. Giving the semantic
processor the ability to propose structure allows it not
only to identify semantic anomalies in the attachments
proposed by the syntactic processors but also propose al-
ternative bindings. It also provides a means of making
early commitments in wh-questions. Rather than wait-
ing for a gap in the parse tree, the syntactic processor
can tentatively assign the wh-phrase to a syntactic argu-
ment. This assignment is sent to the semantic processor,
allowing it to evaluate the assignment and to propose a
new one if the assignment does not satisfy the semantic
constraints. Finally, it aids in resolving lexical ambiguity.
Changes to the lexical semantic representation of verbs
can be partial. We need not discard the assignments that
have already been made, if they still hold for the altered
verb representation.

References

Abney, S. 1989. A Computational Model of Human Pars-
ing. Journal of Psycholinguistic Research 18(1):129-144.
Birnbaum, L. & Selfridge M. 1981. Conceptual Analysis
of Natural Language In R. Schank & C. Riesbeck (Eds.),
Inside Computer Understanding. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Rappaport, M. & Levin, B. 1988. What to do with Theta-
roles. In W. Wilkins (Ed.), Syntaz and Semantics, Volume
21: Thematic Relations. New York: Academic Press.
Lytinen, S. 1986. Dynamically combining syntax and se-
mantics in natural language processing. Proceedings of the

861

Fifth National Conference on Artificial Intelligence, Los
Altos, Ca.: Morgan-Kaufman. 574-578.

Peterson, J. & Billman D. 1990. I'm With her and the
butler did it With the Knife. Unpublished Manuscript.
Pollard, C. & Sag, 1. 1987. An Information-based Syntaz
and Semantics, Volume 1: Fundamentals. Stanford, CA:
Center for the Study of Language and Information.
Riesbeck, C. & Martin, C. 1986. Towards Completely
Integrated Parsing and Inferencing. Proceedings of the
Eighth Annual Conference of the Cognitive Science So-
ciety. Hillsdale, NJ: Lawrence Erlbaum Associates.

Woods, W. 1978. Semantics and Quantification in Natu-
ral Language Question Answering. In M. Yovits (Ed.), Ad-
vances in Computers, Volume 17, 2-64. New York: Aca-
demic Press.

	cogsci_1991_857-861

