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Abstract: Background: The swift expansion of the invasive malaria vector Anopheles stephensi through-
out Africa presents a major challenge to malaria control initiatives. Unlike the native African vectors,
An. stephensi thrives in urban settings and has developed resistance to multiple classes of insecticides,
including pyrethroids, organophosphates, and carbamates. Methods: Insecticide susceptibility tests
were performed on field-collected An. stephensi mosquitoes from Awash Sebac Kilo, Ethiopia, to assess
insecticide resistance levels. Illumina RNA-seq analysis was then employed to compare the transcrip-
tomes of field-resistant populations and susceptible laboratory strains (STE2). Results: An. stephensi
populations exhibited high levels of resistance to both deltamethrin (mortality, 39.4 ± 6.0%) and
permethrin (mortality, 59.3 ± 26.3%) in WHO tube bioassays. RNA-seq analysis revealed that both
field-resistant and field-unexposed populations exhibited increased expressions of genes associated
with pyrethroid resistance, including esterases, P450s, and GSTs, compared to the susceptible STE2
strain. Notably, esterase E4 and venom carboxylesterase-6 were significantly overexpressed, up
to 70-fold, compared to the laboratory strain. Functional enrichment analysis revealed a signifi-
cant overrepresentation of genes associated with catalytic activity under molecular functions and
metabolic process under biological process. Using weighted gene co-expression network analysis
(WGCNA), we identified two co-expression modules (green and blue) that included 48 genes strongly
linked to pyrethroid insecticide resistance. A co-expression network was subsequently built based
on the weight values within these modules. Conclusions: This study highlights the role of esterases
in the pyrethroid resistance of an An. stephensi population. The identification of candidate genes
associated with insecticide resistance will facilitate the development of rapid diagnostic tools to
monitor resistance trends.

Keywords: Anopheles stephensi; invasive malaria vector; RNA-seq; differentially expressed genes;
co-expression network; Ethiopia

1. Introduction

The rapid spread of the invasive malaria vector, An. stephensi, across Africa poses
a significant threat to malaria control efforts. Originating from Southeast Asia and the
Arabian Peninsula, this mosquito species has rapidly colonized multiple African countries
such as Djibouti, Ethiopia, Somalia, Kenya, Sudan, Nigeria, and Ghana, leading to an
increase in malaria cases [1,2]. Unlike the native African vectors, An. stephensi thrives in
urban settings and has developed resistance to multiple classes of insecticides, including
pyrethroids, organophosphates, and carbamates [3–5]. This widespread resistance under-
mines the effectiveness of the traditional vector control measures, such as long-lasting
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insecticidal nets (LLINs) and indoor residual spraying (IRS) [6,7]. To effectively man-
age insecticide resistance, it is crucial to monitor resistance patterns and understand the
underlying mechanisms.

Insecticide resistance is primarily driven by two mechanisms: target-site insensitivity
and metabolic resistance [8]. Target-site insensitivity, particularly mutations in the voltage-
gated sodium channel (VGSC) gene, confers resistance (knockdown resistance, kdr) to
pyrethroids and DDT. Mutations and duplications in the acetylcholinesterase 1 (Ace-1) gene
have been associated with resistance to carbamates and organophosphates, while mutations
in the GABA receptor (Rdl) gene confer resistance to phenylpyrazoles and organochlorines.
Additionally, metabolic resistance, which is often associated with the overexpression of
detoxification enzymes, can contribute to resistance to multiple insecticide classes. Other
potential mechanisms, such as alterations in the mosquito microbiome and cuticle, may
also play a role [9,10].

In An. stephensi, several target-site mutations associated with insecticide resistance
have been detected. These include the kdr-West (L1014F) and kdr-east (L1014S) mutations
in the voltage-gated sodium channel gene, the N177D mutation in the acetylcholinesterase
1 (Ace-1) gene, and the A296S mutation in the GABA receptor (Rdl) gene [11–14]. However,
the frequency of these mutations is generally low. For instance, the kdr-West mutation has
been reported at low frequencies in various populations of different countries [11,14–16].
Additionally, the V189L mutation in the GSTe2 gene has been detected at a low frequency in
An. stephensi populations from Ethiopia [13]. These findings suggest that while target-site
mutations contribute to insecticide resistance in An. stephensi, other mechanisms, such as
metabolic resistance, may play a more significant role. Increased activity of detoxification
enzymes, including glutathione S-transferases (GSTs), esterases, and cytochrome P450s,
has been implicated in insecticide resistance [17]. Additionally, alterations in membrane
transporters, such as ABC transporters, may contribute to reduced insecticide penetra-
tion [18,19]. Sanil et al. (2014) demonstrated a strong association between increased GST
activity and resistance to multiple insecticide classes, including pyrethroids, organophos-
phates, organochlorines, carbamates, and biocides [20]. Recently, RNA-seq technology has
been utilized to identify genes that are differentially expressed in An. stephensi larvae fol-
lowing permethrin exposure [21]. However, comprehensive whole-transcriptome analyses
specifically focusing on the molecular mechanisms of pyrethroid resistance in the newly
invasive An. stephensi population have not yet been conducted.

In this study, we performed standard World Health Organization (WHO) bioassays to
evaluate the insecticide susceptibility of a newly invasive field population of An. stephensi
from Ethiopia. To investigate the molecular mechanisms underlying insecticide resistance,
we conducted a whole-transcriptome analysis comparing the gene expression profiles of
field-resistant populations with a susceptible laboratory strain (STE2). We further compared
the transcriptomic profiles of field-unexposed populations to identify shared patterns of
gene expression associated with insecticide resistance.

2. Materials and Methods
2.1. Mosquito Larval Sampling and Insecticide Susceptibility Bioassay

Anopheles mosquitoes were sampled from Awash Subac Kilo, a market town located in
central Ethiopia at an altitude of approximately 1000 m. With a population of 34,669 (as
of July 2021), this region experiences a hot, semi-arid climate characterized by minimal
rainfall and a short wet season from July to September. Both Plasmodium falciparum and
Plasmodium vivax malaria parasites are present in this region. In June–July 2022, Anopheles
larvae and pupae were collected from diverse larval breeding habitats, including concrete
water cisterns, water tanks, steel drums, plastic containers, plastic sheet water storage at
construction sites, and discarded buckets. To minimize the collection of related individuals,
no more than ten specimens were collected from each habitat using a standard 350 mL-
capacity mosquito dipper. The collected larvae and pupae were pooled and reared to
adulthood in an insectary for subsequent bioassays. Prior to the insecticide susceptibility
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bioassay, the morphological identification of Anopheles individuals was performed while the
mosquitoes were alive (with a brief chill on ice if needed) following the taxonomic keys [22].
Adult female An. stephensi mosquitoes (3–5 days old) were then used in the bioassay, where
they were exposed to pyrethroid insecticide-impregnated papers (0.05% deltamethrin and
0.75% permethrin) at diagnostic doses using WHO test tubes in a bio-secure insectary.
Each insecticide was tested with batches of 25 female An. stephensi mosquitoes in both
test and control tubes. At least 100 mosquitoes were exposed to each insecticide in four
replicates (25 per replicate) for 1 h. Mortality was assessed 24 h after exposure. Abbot’s
formula was applied to adjust for control mortality when needed. According to the WHO
guidelines, mosquito populations were classified as “resistant” if the mortality rates were
below 90%, as “suspected resistant” if the mortality rates were between 90% and 98%,
and “susceptible” if the mortality rates were > 98% [8]. The An. stephensi mosquitoes that
survived the insecticide exposure test, along with unexposed samples, were promptly
killed by placing them in a deep freezer for about 30 min until complete knockdown
occurred. The samples were immediately stored in 0.5 mL Eppendorf tubes with RNALater
for subsequent molecular and whole transcriptome analysis.

2.2. Molecular Identification of Anopheles Mosquito Species

DNA was extracted from a single leg of a subset of Anopheles mosquitoes to confirm
species via quantitative polymerase chain reaction (qPCR). The highly sensitive TaqMan
probe-based qPCR method was used to identify An. arabiensis and An. stephensi [23,24]. A
total of 480 mosquitoes were tested for molecular confirmation of species identification.
Additionally, a subset of 20 mosquitoes from each species underwent Sanger sequencing of
ITS2 PCR products to further validate species identity [25].

2.3. RNA Extraction and Transcriptome Sequencing (RNA-seq)

RNA was extracted individually from female An. stephensi samples using column-
based RNA extraction kits (cat # 2050, Zymo Research, Irvine, CA, USA). The RNA was
assessed for quality using agarose gel electrophoresis (1%) and quantified with the Qubit
3.0 RNA HS Assay (ThermoFisher, Waltham, MA, USA). The RNA samples comprised three
groups: field deltamethrin-resistant (AWR) mosquitoes, field-unexposed control (AWK)
mosquitoes, and a susceptible laboratory strain (STE2: BEI Resources, Cat# MRA-128).
For each group, 10 RNA samples were pooled in equal amounts to create 1 composite
sample. Specifically, 200 ng of RNA from each sample was combined, and the final volume
was adjusted to 100 µL per pool with nuclease-free water, resulting in a pooled RNA
concentration of 200 ng/µL. Two replicates/pools were prepared per group. In total,
6 pools comprising 60 mosquitoes were generated for RNA library preparation and RNA-
seq. The IDT xGen RNA library prep kit (Coralville, IA, USA) with Illumina Ribo-zero
Plus (San Diego, CA, USA) was used for library preparation. Final quality control was
performed using Kapa qPCR (Roche, Basel, Switzerland) and Agilent TapeStation (Santa
Clara, CA, USA). The libraries were sequenced on an Illumina® NovaSeq S4-PE150 (San
Diego, CA, USA).

2.4. Data Filtering, Mapping Reads, and Transcriptome Analysis

The generated sequences underwent an initial filtering process. Raw paired-end se-
quence reads were assessed for quality using FASTQC (v0.12.1) [26], and Trimmomatic
(v.0.39) [27] was employed to remove Illumina adapters. After quality control and filter-
ing, the sequence reads were analyzed using CLC Genomics Workbench v23 (CLC Bio,
Cambridge, MD, USA), with the reference genome VectorBase-68_AstephensiUCISS2018.
RNA-seq analysis was conducted using the RNA-seq tool and the reference genome anno-
tated with genes and transcripts, applying the following parameters: mismatch cost = 2,
insertion cost = 3, deletion cost = 3, length fraction = 0.8, similarity fraction = 0.8, maximum
number of hits per read = 10, count paired reads as two = no, ignore broken pairs = yes,
and expression value = RPKM. The Differential Expression in Two Groups tool in CLC was
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used to conduct a statistical differential expression analysis of a set of expression tracks and
a control. The experiments included two biological replicates for both the field population
group and the lab strain control group. The raw gene expression matrix was transformed
into a normalized gene expression matrix. The biological coefficient of variation (BCV),
representing biological variability, was estimated using edgeR, which models RNA-seq
data variability through a negative binomial distribution [28]. Differentially expressed
genes (DEGs) were identified using the Differential Expression in Two Groups tool in
CLC, with the STE2 group used as the control. All RNA-seq data were screened for the
false discovery rate (FDR), and the results were deemed valid if the FDR was less than
0.05 [29]. DEGs were determined based on a |fold-change| > 1.5 and false discovery rate
(FDR) < 0.05. The ShinyGo bioinformatics tool was used for functional annotation and
pathway analysis of the DEGs [30].

2.5. Gene Co-Expression Network Construction with WGCNA

Gene co-expression network analysis was conducted using the WGCNA package
(version 1.72) in R based on differentially expressed genes (DEGs) [31]. The soft threshold
(power) was determined using the “pickSoftThreshold” function to generate a scale-free
network for both population datasets. The cluster dendrogram and co-expression gene
module tree for DEGs were created using the “Dynamic Tree Cut” and “Merged Dy-
namic” methods. The module eigengene (ME), representing the expression profiles of the
module genes, was calculated using WGCNA. Gene co-expression networks were then
independently constructed with the "blockwise Modules" function using these parameters:
power = 28, minModuleSize = 30, deepSplit = 2, and mergeCutHeight = 0.3. The edge and
node data of the target module were exported with the “export Network To Cytoscape”
function to build a co-expression network, which was visualized using Cytoscape software
(Version 3.10.2) [32].

3. Results
3.1. Species Composition and Pyrethroid Susceptibility of An. stephensi

Molecular identification of the Anopheles species indicated that 88.3% were An. stephensi
and 11.7% were An. arabiensis (n = 480), with no other Anopheles species identified. High
levels of pyrethroid resistance were detected in the An. stephensi field population, with
mortality rates falling below 60% for both tested insecticides. The mortality rate for perme-
thrin was 59.3% ± 26.3% (mean ± SD, n = 8), while for deltamethrin, it was 39.4% ± 18.9%
(mean ± SD, n = 10) (Figure S1). The estimated coefficient of variation (CV%) among the
biological replicates was 47.9% for permethrin and 44.3% for deltamethrin, respectively.

3.2. RNA Sequencing and Preliminary Analysis of the Raw Data

RNA-seq was performed using three different groups: field-resistant (AWR), field-
unexposed (AWK), and lab strain (STE2), with two independent biological replicates per
group. The RNA used for library construction had to pass quantity and quality control
criteria. Six libraries were constructed from the three different groups, and raw reads were
produced from the six libraries using the Illumina sequencing platform. The RNA-seq
generated a total of 70–85 million reads per sample, with an average of 80.6 ± 23.6 million
reads. After trimming, 57.5% ± 0.7% of paired end reads, 19.5% ± 0.2% of forward reads,
and 9.4% ± 0.3% of reverse reads were retained, while 14.1% ± 0.5% of reads were discarded
(Table 1).
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Table 1. RNA-seq read filtering statistics for An. stephensi field population from Ethiopia and
susceptible lab strain.

Sample Population Input Raw
Reads (PE150)

Both
Surviving %

Only
Forward

Surviving
%

Only
Reverse

Surviving
% Dropped %

AWK.1 Unexposed 84,895,174 47,073,550 55.5% 16,517,385 19.5% 8,087,876 9.5% 13216363 15.6%
AWK.2 Unexposed 70,500,535 40,077,550 56.9% 13,039,840 18.5% 7,395,075 10.5% 9,988,070 14.2%
AWR.1 Resistant 77,387,200 44,172,164 57.1% 14,860,161 19.2% 7,087,466 9.2% 11,267,409 14.6%
AWR.2 Resistant 81,621,753 49,604,580 60.8% 15,114,460 18.5% 6,958,266 8.5% 9,944,447 12.2%
STE2.1 STE2 (Lab) 83,335,260 46,749,249 56.1% 15,935,401 19.1% 8,002,670 9.6% 1,2647,940 15.2%
STE2.2 STE2 (Lab) 85,893,152 50,424,191 58.7% 16,746,130 19.5% 7,601,598 8.9% 11,121,233 13.0%

Average 80,605,512 46,350,214 57.5% 15,368,896 19.1% 7,522,159 9.4% 11,364,244 14.1%
Standard Error (SE) 2,361,586 1,548,772 0.8% 556,320 0.2% 189,764 0.3% 549,434 0.5%

3.3. Differentially Expressed Gene Analyses

The cleaned, high-quality RNA-seq reads were used to evaluate the differences in
gene expression (Figure 1), with the FPKM values calculated to quantify the expression
levels across all genes in the three groups (six pooled samples). The raw gene expression
matrix was transformed into a normalized gene expression matrix (Figure S2). A total of
10,568 protein-coding genes (83.2% of the 12,705 total genes) were expressed at a minimum
exon read count of five across the six pooled samples (Table S1). Principal component
analysis (PCA) of the RNA-seq data revealed greater variation among the groups than
within the groups (Figure 2A). The estimated coefficient of variation was 0.0517, corre-
sponding to a biological coefficient of variation (BCV) of 0.2273. This BCV value is lower
than that typically observed in other studies for well-controlled experiments (BCV = 0.4)
(Figure 2B) [33], indicating the stability and reliability of the RNA-seq data.
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abundance-dependent dispersion trend, while the red line indicates the common dispersion value.

Differential gene expression analysis identified 885 significantly differentially ex-
pressed genes (DEGs) between the two groups (Table S2). Specifically, 560 DEGs were
found between AWR and STE2, with 168 downregulated and 392 upregulated genes
(Figure 3A). Similarly, 490 DEGs were identified between AWK and STE2 (Figure 3B).
These results provide insights into the molecular mechanisms underlying the phenotypic
differences between the two groups.
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Figure 3. Volcano plot showing the transcripts identified by RNA-seq analysis of an An. stephensi
population. (A) AWR vs. STE2; (B) AWK vs. STE2. The gray dots represent the genes that do not
meet the criteria for log2 fold change (FC) > 1.5 (up or down) or a significant adjusted p value < 0.05.
The green dots represent the genes that meet the criterion for log2 FC > 1.5 (up or down) but not an
adjusted p value < 0.05. The blue dots represent the genes with an adjusted p value < 0.05 but not
log2 FC > 1.5 (up or down). The horizontal red dashed line is located at a value equivalent to the
adjusted p value (0.05). The vertical blue dashed lines are located at + and − 1.5 log2 FC. Several
highly differentially expressed genes across geographic locations are also labelled. D, down-regulated;
U, up-regulated.

3.4. Classification of the Differentially Expressed Genes

Cluster analysis of the 885 differentially expressed genes revealed distinct patterns
of gene expression between the two groups (Figure S3). Approximately one-third of the
genes (165) were shared between the two groups, while the remaining two-thirds (395
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and 325) were unique to each group, indicating significant genetic divergence among the
populations (Figure S4).

A total of 20 genes involved in metabolic detoxification (including P450s, GSTs, es-
terases, UGTs, and others) were identified and consistently differentially expressed (either
upregulated or downregulated) across field-resistant, field-unexposed, and susceptible
laboratory An. stephensi populations (Tables 2 and S2). Notably, genes from the esterase
family, including venom carboxylesterase-6 and esterase E4, exhibited the most significant
upregulation (up to 70-fold) in the resistant populations compared to the susceptible strain.
Additionally, four P450 genes and three UGT genes were consistently upregulated. In
contrast, a few genes, such as chorion peroxidase and protein arginine N-methyltransferase
5, were downregulated (Table 2).

Table 2. List of the 20 consistently expressed detoxification enzyme genes in field-resistant and
field-unexposed Anopheles stephensi populations.

Gene ID Gene Description Length (bp) R vs. S (FC) U vs. S (FC) Gene
Expression

ASTEI20_031161 probable cytochrome P450 6a14 1797 3.62 3.60 up
ASTEI20_031508 esterase E4, transcript variant X2 2198 33.67 26.56 up
ASTEI20_031614 probable cytochrome P450 9f2 2220 4.50 3.36 up
ASTEI20_032042 xanthine dehydrogenase-like 4648 3.35 6.99 up
ASTEI20_032249 UDP-glycosyltransferase UGT5-like, transcript 1944 22.68 20.87 up
ASTEI20_033905 cytochrome b-c1 complex subunit 8 556 2.88 3.52 up
ASTEI20_034193 UDP-glycosyltransferase UGT4-like 1991 12.31 11.07 up
ASTEI20_035158 venom carboxylesterase-6-like 1930 69.94 51.97 up
ASTEI20_035228 esterase E4-like 1958 5.54 6.30 up
ASTEI20_035931 chorion peroxidase-like 2536 −2.98 −3.23 down
ASTEI20_036049 venom carboxylesterase-6-like 2722 −6.20 −5.81 down
ASTEI20_039992 multidrug resistance-associated protein 1-like 5024 11.68 5.64 up
ASTEI20_040345 glutathione S-transferase 1-like 1773 10.54 13.14 up
ASTEI20_041459 probable cytochrome P450 6a14 1767 4.09 3.57 up
ASTEI20_041713 probable cytochrome P450 6a14, transcript 4297 5.75 8.04 up
ASTEI20_042864 protein arginine N-methyltransferase 5 2130 −3.35 −7.23 down
ASTEI20_044419 UDP-glycosyltransferase UGT5-like, transcript 2008 5.81 3.63 up
ASTEI20_044800 esterase B1-like 2161 −6.41 −13.64 down
ASTEI20_044864 glutathione S-transferase 1-like, transcript 1973 8.25 5.16 up
ASTEI20_046113 multidrug resistance-associated protein 1-like 4601 3.51 3.66 up

Note: R, resistant population (AWR); U, field-unexposed population (AWK); S, susceptible population (STE2); FC,
fold change.

3.5. Functional Annotation of the Differentially Expressed Genes

Gene Ontology (GO) enrichment analysis was conducted to functionally annotate the
differentially expressed genes (DEGs) based on the An. stephensi SDA-500 annotation. The
GO analysis identified a total of 27 enriched GO categories, which included 9 biological pro-
cesses, 1 cellular component, and 17 molecular functions (Table S3). The most significantly
enriched categories were in the catalytic activity under molecular functions and metabolic
process under biological process (Figure 4). Furthermore, the pathway network analysis of
functional linkages highlighted the top 20 GO enrichments, including GO:0003824 catalytic
activity, GO:0016491 oxidoreductase activity, GO:0016787 hydrolase activity, GO:0004252
serine-type endopeptidase activity, GO:0008236 serine-type peptidase activity, GO:0017171
serine hydrolase activity, GO:0005576 extracellular region, GO:0008252 nucleotidase activity,
GO:0008061 chitin binding, GO:0004175 endopeptidase activity, GO:0016788 hydrolase
activity acting on ester bonds, GO:1901564 organonitrogen compound metabolic proc.,
GO:0008152 metabolic process, GO:0052689 carboxylic ester hydrolase activity, GO:0004497
monooxygenase activity, GO:0055085 transmembrane transport, GO:0005506 iron ion bind-
ing, GO:0022857 transmembrane transporter activity, GO:0005215 transporter activity, and
GO:0006575 cellular modified amino acid metabolic proc (Figure 5).
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3.6. Construction of Gene Co-Expression Network

A soft threshold (power) of 28 was applied to construct a scale-free network for
the differentially expressed genes (Figure S5A,B). From the 560 differentially expressed
genes between the field-resistant population and the susceptible lab strain, 5 gene co-
expression modules were identified from the original 20 modules (Figure 6). The blue
and green modules exhibited consistent expression patterns across replicates (Figure S6).
Most genes in the green module were upregulated, while those in the blue module were
downregulated. A total of 48 genes in each module showed co-expression (Tables S4 and S5).
Figure 7 presents the co-expression network of genes associated with pyrethroid insecticide
resistance in An. stephensi, with edge weight thresholds of 0.40 and 0.68, respectively.
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4. Discussion

The recent invasion of An. stephensi in Africa poses a significant threat to malaria con-
trol efforts. To effectively combat this invasive vector, it is crucial to assess its susceptibility
to insecticides and understand the mechanisms underlying its resistance. This study aimed
to investigate the molecular basis of insecticide resistance in An. stephensi populations from
Ethiopia. Through RNA-seq analysis, we identified significant upregulation of esterase E4
and venom carboxylesterase-6 in the field-resistant populations compared to a susceptible
laboratory strain. While the kdr mutation was reported at low frequencies, our findings
suggest that metabolic resistance, mediated by detoxification enzymes, could be a primary
driver of insecticide resistance in An. stephensi. These insights emphasize the need for im-
plementing insecticide resistance management strategies, which include integrated vector
management to combat this growing challenge.

Esterases are enzymes that catalyze the hydrolysis of ester bonds. Esterase E4 has
been previously implicated in insecticide resistance in other insects [34]. Recent studies
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have highlighted the potential role of venom carboxylesterase-6-like genes in insecticide
resistance. For instance, Wang et al. (2023) identified a potential insecticide resistance
marker within this gene in Bemisia tabaci [35]. Additionally, Kang et al. (2021) identified
venom carboxylesterase-6-like as a critical odorant-degrading enzyme (ODE) in Aphid-
ius gifuensis [36]. In our study, we observed significantly higher expression of venom
carboxylesterase-6-like (a 52- to 70-fold increase) and esterase E4 (a 26- to 33-fold increase)
in the field population. This suggests that these genes may play a role in the detoxifica-
tion of pyrethroid insecticides. Additionally, several other metabolic detoxification genes
were found to be overexpressed, including monooxygenases (e.g., CYP6D3), glutathione
S-transferases (e.g., GST1), and immunity genes (e.g., scaf, SP24D, SND1).

Next-generation sequencing (NGS), particularly RNA-seq, has revolutionized tran-
scriptomic analysis by providing a comprehensive and unbiased view of gene expres-
sion [37,38]. Despite advancements, challenges persist, especially with organisms that
have high rRNA content, such as archaea and certain insects [39–41]. Although RNA-seq
protocols have greatly improved, residual rRNA contamination can still affect data quality,
particularly in studies using kits developed for mammalian samples, where rRNA removal
may be less specific in non-target organisms like mosquitoes. In our study, we successfully
employed RNA-seq to identify differentially expressed genes in An. stephensi mosquitoes
despite these limitations. While the Illumina Ribo-Zero Plus rRNA Depletion Kit proved
effective, residual rRNA contamination was observed, highlighting the need for optimized
protocols for non-standard organisms.

This study demonstrated that pooled DNA-seq is a cost-effective and powerful tool for
analyzing RNA-seq data in field populations of An. stephensi. Pooling ten mosquito samples
helped to reduce technical variability among individual samples. However, this approach
has limitations, including reduced statistical power due to fewer effective replicates and
potential challenges in detecting low-abundance transcripts and rare variants [42]. Addi-
tionally, inaccuracies in sample pooling, such as uneven RNA quantities, can introduce bias
into the analysis [43]. To mitigate these limitations, careful experimental design, rigorous
data analysis, and appropriate statistical methods are essential.

In Ethiopia, An. stephensi populations have developed resistance to various insecticides.
Several target-site mutations, including kdr-West (L1014F) in the voltage-gated sodium
channel, N177D in acetylcholinesterase 1 (Ace-1), and A296S in the GABA receptor (Rdl),
have been detected in these populations [11–13]. While our RNA-seq analysis provides
valuable insights into gene expression patterns, it was not optimal for SNP detection due
to the limitations of pooled RNA-seq, such as reduced genomic coverage and potential
allele frequency bias. To address these limitations, future studies should focus on high-
quality RNA extraction and increased sequencing depth to enable accurate SNP detection
and analysis.

5. Conclusions

The rapid spread of the invasive malaria vector An. stephensi poses a significant threat
to malaria control efforts in Africa. The emergence of insecticide resistance in this species
further complicates vector control strategies. Our RNA-seq analysis revealed that An.
stephensi populations from Ethiopia exhibited elevated expression of genes associated with
pyrethroid resistance, including esterases (e.g., esterase E4 and venom carboxylesterase-
6), P450s, and GSTs. These findings suggest that metabolic resistance plays a crucial
role in the development of insecticide resistance in this species. Functional validation of
key genes involved in insecticide resistance, coupled with the development of improved
resistance markers, will be essential for monitoring resistance trends and guiding future
control efforts.
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