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Abstract

The application of genomic approaches to the phenomenon of plant domestication
promises a better understanding of the origins of agriculture, but also of the way plant
genomes in general are organized and expressed. Building on earlier genetic research, more
detailed information has become available on the organization of genetic diversity at the
genome level and the effects of gene flow on diversity in different regions of the genome. In
addition, putative domestication genes have been identified through population genomics
approaches (selective sweeps or divergence scanning). Further information has been
obtained on the origin of domestication syndrome mutations and the dispersal and
adaptation of crops after domestication. For the future, increasingly multidisciplinary
approaches using combinations of genomics and other approaches will prevail.



Introduction

The importance of the Neolithic revolution that took place some 12,000 - 10,000 years ago
cannot be overstated. At that time, the human species embarked on a radical change in the
way it had procured its food and other products for millions of years. In addition to the
transition from hunting-gathering to plant (and animal) agriculture, other major changes
taking place more or less simultaneously included sedentism, the formation of villages, and
the introduction of ceramics. Eventually, these developments led to the formation of more
hierarchical societies and states and the development of civilizations [1,2]. The Neolithic
revolution had a tremendous impact on the biosphere and human societies, consequences
that still affect us today. This transition took place in several areas of the Earth and often
gave rise to a complementary group of crops that satisfied human needs, not only
nutritionally but for other uses as well (Figure 1).

One of the key technological elements of the transition to agriculture is domestication. The
cultivation of plants represents an important change in their environment. These changes
set in motion several evolutionary processes that led to major morphological and
physiological changes, such that often crop plants became quite different from their wild
progenitors and, in the most pronounced cases of domestication, could not survive without
human intervention [3].

Domestication draws attention from several viewpoints. In addition to its role in human
cultural evolution, it is also an experimental system for the study of biological evolution. In
addition, many of the differences between wild and domesticated types are important traits
or processes in basic biology such as plant development, reproduction, and adaptation [4].
Furthermore, the efficient utilization of crop genetic resources for varietal breeding
depends on detailed information about genetic relationships in these collections, which
were affected in large part by the domestication process [5,6].

Elucidating the transition from hunting-gathering to agriculture has always been a
multidisciplinary research endeavor [e.g., 7,8,9,10,11,12,13,14®, 15; for a recent example: 169].
As science has progressed, new approaches have been incorporated [molecular biology:
17,18®; bioinformatics: e.g., 19].

Genomic approaches have become especially important since the introduction of next-
generation DNA sequencing [20,21] because these technologies allow for the sequencing of
multiple genotypes in a low-cost, high-throughput way, and open new avenues for
population, landscape, and ecological genomics [22,23,24,25].

Origins of domestication and structure of wild and domesticated gene pools
One of the most generalizable observations in crop domestication studies is the reduction in
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genetic diversity during and subsequent to domestication, e.g., [26,27,28,29,30%,
31,32,33%33,34,35,36%]. This reduction is due to the two-fold action of genetic drift and
selection that operate at each stage of the domestication process (Figure 2). Additional
factors affect reduction in genetic diversity, including the specific stage of the crop
evolution process, with the initial domestication phase usually causing the biggest drop in
genetic diversity [e.g., 36%37] compared to later steps, including modern plant breeding
efforts [32,35,37] (Fig. 1).

Recent genomic studies have improved our knowledge of the fate of genetic diversity in two
ways. First, they have expanded our horizons to other crops than the major cereal crops and
grain legumes and provided contrasting views of changes in genetic diversity. Next-
generation sequencing, various forms of reduced representation libraries, and synteny
combined with considerable bioinformatic analyses make it now easier to directly sequence
additional taxa (even non-model ones) or additional accessions within taxa, with or without
the availability of a whole-genome reference sequence (e.g., [27,33,39%40%)). The reduction
in genetic diversity can be much more modest in fruit and nut trees or vines [39%], which
have been propagated mostly vegetatively with a limited number of sexual generations. In
contrast, certain vegetables [e.g., 33*] exhibit a stronger reduction in genetic diversity,
probably reflecting a more severe bottleneck as may be expected from crops planted mainly
in gardens or smaller field surfaces and maintained for specific horticultural phenotypes. An
exception to the pattern of reduced genetic diversity upon domestication, is carrot [40%] in
which no reduction was observed, due to post-domestication gene flow between wild and
domesticated types and a strong inbreeding depression.

Second, compared to genetic information, genomic approaches provide additional
information related to the general reduction in genetic diversity. Linkage disequilibrium (LD)
and the size of haplotype blocks are increased in domesticates compared to their wild
ancestor [26,28,37,41%). Further increases in LD can be seen within the domesticated gene
pool as a consequence of selection for particular domesticated types such as in yard-long
beans, an Asian variety of cowpea (Vigna unguiculata L. Walp.), the latter having been
domesticated in Africa [42]. Individual genome areas may show different patterns. For
example, in barley (Hordeum vulgare) in the Rrs2 region controlling resistance to barley leaf
scald (Rhynchosporium secale (Oudem.) J.J. Davis), an increase in the number of haplotypes
and recombinations was observed in the domesticated gene pool [31], potentially
attributable to recent selection by the pathogen, heterogeneous selection in time and
space, or redundancy. Thus, genomics provides both a broader view across taxa and across
individual genomes on the effects of domestication on genetic diversity.

Effects of gene flow
The widespread occurrence of gene flow should not be a surprise given that in most cases
crop plants and their wild progenitors belong to the same biological species. Gene flow
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between wild and domesticated populations has multiple potential consequences, from the
positive (increase in diversity and adaptation [43,44%)) to the negative (unwanted escape of
genes leading to crop weeds or spread of transgenes [45,46]). The magnitude of gene flow
between wild and domesticated types can be studied in sympatric pairs of wild and
domesticated populations [47,48,49,50,44%]. These studies share several results. First, the
wild and domesticated types remain overall phenotypically distinct in spite of the detectable
presence of gene flow. Second, introgression is not uniform across the genome. Regions
lacking introgression showed increased differentiation, decreased diversity, and a higher
number of fixed or private differences. Gene flow may also be asymmetric although the
direction is inconsistent: mainly from domesticated to wild in common bean [47] and
conversely in maize [44%]. Genetic diversity is decreased and differentiation is increased
around putative domestication genes, suggesting that introgressed traits may be selected
against. In maize, introgression from Z. mays ssp. mexicana into domesticated maize at
higher altitude in central Mexico explains why highland Mexico maize is closer to Z. mays
ssp. parviglumis, the actual progenitor of domesticated maize, even though the latter is
distributed at lower and mid-altitudes in Mexico [51].

Gene flow can lead to incongruence between genome-wide and local genomic patterns of
genetic diversity, LD and genealogical history, as shown by rice [29,52]. While the former
article [29] follows a “bottom up” approach based on population genetic argument
(including the identification of low-diversity regions presumably resulting from selection),
the later article [52] reviews top-down experiments leading to the cloning of specific genes
underlying important rice domestication traits. Both, however, end up positing selection of
domestication alleles in japonica (or proto-japonica) types followed by introgression into
indica types. Clearly, a better understanding of genetic diversity in the rice ancestor, Oryza
rufipogon is needed, based on more comprehensive field collections to elucidate fully the
rice domestication history. Overall, the abundance of markers provided by genomic
approaches allow us to identify specific regions of the genome that have been affected by
gene flow and the relationship of these regions with those harboring genes controlling the
domestication syndrome.

Discovery of domestication syndrome genes through population genomic approaches -
selective sweeps and association studies
The domestication syndrome is a set of traits that were or are still selected for because they
confer adaptation to a cultivated environment such as a reduction in seed dormancy, a more
compact, less branched growth habit, a larger number or greater size of fruit and seed, and
reduced seed shattering. Additional traits include those that please the consumer through
novelty (e.g., pigmentation), better taste, reduced toxicity, or additional uses. Multiple
criteria can now be used to determine whether a gene is the underlying molecular basis of a
phenotypic trait involved in the domestication syndrome. From a bottom-up standpoint,
population genetics argument can be used such as increases in LD and Fsr or decreases in
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genetic diversity in domesticated types compared to the wild progenitor. From a top-down
perspective, bi- or multi-parental mapping and synteny with candidate genes can be used.
An advantage of the bottom-up approach is that it does not assume prior knowledge of
relevant domestication traits [4].

Traditionally, the inheritance of the domestication syndromes has been determined by a top-
down approach, namely QTL analyses in biparental crosses domesticated x wild. Results
showed that many traits were controlled at least in part by a few major genes, that genetic
effects predominated over environmental ones, and that some genes were linked [6]. In
addition, candidate genes and synteny can be used to identify causal genes. An example of
the latter is that determinacy, a growth habit and flowering time trait, is controlled by
PvTFL1y, a homologue of the Arabidopsis TFL1 gene [53]. Given the importance of earliness
for food security of subsistence farmers, it is perhaps not surprising that farmers have
selected the determinacy trait multiple times in the common bean domesticated gene pool,
as revealed by the diversity of mutations identified in PvTFL1y [54®®). These results also
underscore the need to understand selection by farmers to better interpret genetic diversity
studies in crops such as common bean [e.g., 55,56] and pearl millet. (see later section).

These top-down studies are now complemented with bottom-up, population genetic
screenings of genome-wide diversity, including sequence diversity departures from
neutrality, scans for selective sweeps or highly divergent regions (Fsr), or genome-wide
association studies (GWAS). Further research is then needed to identify or confirm the
causal genes involved. Comparison of sequence diversity combined with neutrality tests in
wild and domesticated types can identify regions that appear to be affected by
domestication selection. Furthermore, wild-landrace comparisons focus specifically on the
effect of initial domestication, whereas landrace-improved cultivar comparisons measure
the effect of selection subsequent to domestication (including modern breeding). A few
studies [26,36% 32] now suggest that some 3-4% of the genome is affected by domestication
and improvement. Comparison of map locations of regions identified by QTL and re-
sequencing showed overlap for both domestication and post-domestication selections [369).
Some of the regions identified tended to be linked as has been reported before in several
crops [6].

In maize, modern breeding has had a negligible effect on genome-wide diversity or mean
haplotype length; selection coefficients are lower than those for domestication [32]. Itis
noteworthy that ~25% of domestication features were also breeding features, indicating
broad overlap between the two trait concepts. An intriguing observation is the reduction in
expression variation suggesting removal of cis-located variation and a selection focus on
highly expressed genes [32], perhaps to achieve genotypically and environmentally more
stable trait expression necessary for broader adaptation. In an analysis of modern US maize
germplasm, an increase in differentiation and linkage disequilibrium was observed
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concurrently with the development of heterotic groups that constitute the basis of current
hybrid maize improvement. Overall, 5% of SNPs showed some evidence of directional
selection, involving shade and stress response, lignin biosynthesis, and auxin response and
synthesis [57%. An additional recent example of selective sweeps include several regions in
sorghum encompassing genes for starch synthesis enzymes, seed shattering, plant height
and maturity loci [41*®). The latter study stands out by its large plant (n ~ 1000 accessions)
and genome (~ 265,000 SNPs) samples.

Origin of the domestication syndrome: pre-existing or de novo variation?

In the study of the inheritance of adaptedness, a central question is the origin of mutations
upon which selection acts. Either these mutations are part of the standing variation in the
population under selection, or they arise de novo. Compared with de novo mutations,
existing mutations will allow populations to evolve faster because there will be no lag period
and they may occur at higher frequency. In addition, selection of the two types of mutations
will have different selection signatures [58,59,60]. Selection for adaptation in humans has
acted both on standing variation and do novo mutations [59,60].

A selection experiment for flowering date in two maize inbred lines [61] showed generally a
rapid response to selection for both earlier and later flowering in spite of the presumably
uniform genetic background. There was also evidence for the segregation of a major gene in
the late flowering selection of one of the inbreds. Thus, the response was based not only on
standing variation but also on the appearance of novel, large-effect mutations.

The single-stem phenotype of domesticated maize is controlled by the dominant Tb-1 allele.
This allele arose prior to domestication through the insertion of a Hopscotch transposon
some 60 Kb upstream of the actual gene leading to an overexpression at the locus,
consistent with the dominant nature of the allele selected during domestication. The
insertion was dated at some 28,000-23,000 years BP, thus, predating domestication [62¢]. An
unanswered question is the dynamics of standing variation mutations, such as Tb1, in the
original population prior to domestication selection. What mechanisms or forces account for
their survival, given that their single-branched phenotype may reduce fitness in natural
populations?

A more systematic application of genomic approaches would allow us to assess how often
the two types of mutations have been selected during domestication. In turn, this
information could contribute to the debate on the speed of domestication. The existence of
standing variation, the rapid response to selection observed in empirical selection
experiments and computer models, and the simple genetic architecture of the
domestication syndrome suggest that, from a genetic perspective, domestication could
have proceeded rapidly. However, archaeological data appears to suggest otherwise, i.e.,
that domestication may have taken place during a long pre-domestication cultivation period
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of several 100 to several 1,000 years based on the presence of arable species and large
quantities of seeds in some archaeological sites [63]. Further research is needed on the
potential speed per se of selection vs. a better definition and evidence for the pre-
domestication cultivation period.

Post-domestication dispersal, adaptation, and the role of contemporary farmers

In its narrow definition, domestication refers to the initial process of selection that took a
wild plant to a domesticated one adapted to cultivation and consumers’ needs in its center
of domestication. The evolution of crops, however, does not stop there. Significant changes
to the crop’s genetic constitution can still take place in subsequent evolution through
migration and dissemination, setting in motion a succession of genetic drift, selection, and
recombination episodes that can have a profound effect on the organization of genetic
diversity of the crop. Numerous studies have traced the dispersal of crops from their centers
of domestication. However, far fewer have yet to apply genomic approaches to this issue.

Genomic approaches could avail themselves of the possibility of using ancient DNA in crop
remains. The use of DNA from plant remnants of varying age to explore issues of crop
evolution and domestication has been limited although some outstanding examples exist
(e.g.,[64]). For example, in a study on the spread of sweet potato [65%], strong evidence
was provided of a pre-Columbian spread of sweet potato from tropical America to the
Pacific islands based on an analysis of DNA from contemporary populations and herbarium
samples, including three herbaria from the Cook expedition in 1769.

Pearl millet is a major cereal in Western Africa and plays an important role as a drought-
tolerant crop. Flowering time is a crucial adaptation trait given the existence of a north-
south gradient in rainfall across the Sahel. Contemporary pearl millet farmers adapt to this
situation in part through the choice of early and late planting material. Hence, there has
been much interest in identifying potential targets of selection among different flowering
time genes by a combination of approaches, while disentangling selective from
demographic and gene flow effects through the development of alternative demographic
models by Approximate Bayesian Computation [30%66,67,68,69 Clotault et al. 2012].

Transcriptomics, proteomics and metabolomics of domestication

More recently, a few studies have addressed the functional genomics aspects of
domestication to assess how many and which genes show differences in expression in
comparisons between wild and domesticated types. Studies in maize and tomato [32,70,71].
In addition, placing these analyses in a phylogenetic context including wild and
domesticated species helps in identifying distinct expression patterns that correlate with
adaptive phenotypes, such as in S. pennellii, a desert-distributed species, and infer
domestication effects [71].



In developing cotton fibers, some 15% of 1,300 proteins were significantly up- or down-
regulated. Most of the changes took place in the early development stages consistent with
human selection for earlier activation of fiber elongation in domesticated compared to wild
types. Nevertheless, there was only limited overlap between transcript- and protein-level
inferences, as may be expected because protein abundances depend on translation,
localization, post-translational modifications and degradation processes [72].

Existing studies offer a glimpse of the complexity of gene networks and developmental and
biosynthetic pathways and promise a better understanding of the far-reaching
consequences domestication can have on these networks and pathways [Xin et al. 2013] or
how domestication has preferentially recruited specific categories of genes, such as
regulatory factor families [73]. A better understanding may also help reconcile the
sometimes contradictory results between QTL and population and structural genomic
studies, with regard to the number, magnitude and genome location of domestication
genes. For example, some genes may be more prone to being selected because they occupy
specific key positions in gene networks with downstream control.

Vavilov’s Law of Homologous Variation and the molecular basis of phenotypic convergence
The Law of Homologous Variation [74] is based on the observation that similar phenotypes
were selected during domestication of related species, raising the question can whether
convergent phenotypic evolution is based on convergent molecular evolution (i.e.,
involvement of orthologous genes). Results are contradictory. For cereal seed dispersal, the
same or different genes may be involved [75,76,77]. In contrast, in a broad range of dicots
and monocots, homologues of the Arabidopsis TFL1 gene control flowering time and/or
growth habit [54%78,79,80]. Several factors appear to favor convergent evolution such as a
nodal position in gene regulatory networks, simple (biosynthetic) pathways, minimal
pleiotropic effect, homologous plant structures, and overall closer phylogenetic
relationships [81*]. A better understanding of the molecular convergence issue may help the
development of new crops.

Conclusions and a view towards the future

Genomics allows a substantial, in-depth sampling of species involved and their respective
genomes to study the effect of domestication, but also provides opportunities to address
new questions. New factors affecting gene expression should be integrated into
domestication studies (epigenesis [82], small RNAs [83]) as a complement to more
systematic transcriptomic, proteomic, and metabolomic research. A better understanding is
needed also of organism x organism relationship and how these have affected crop
evolution, including host-pathogen, host-pest, crop relationships in associated cropping, and
perhaps most importantly for crops, the role of farmers in molding crop biodiversity for their
own specific goals [84,85,86]. Given the importance of wild progenitors to analyze changes
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observed in domestication, more attention should be paid to the organization of genetic
diversity in these wild relatives and their adaptation (including phenotypic plasticity, to
biotic and abiotic conditions, including Pleistocene and early Holocene conditions [87],
combining biological approaches with demographic and geospatial modeling
[32,88,89,90%91]. Because of the increasing importance of wild progenitors to address
climate change issues in plant breeding [92], this approach will also facilitate the
development of climate-tolerant cultivars. Genomic approaches, therefore, provide a brand
new way to look at “old” problems and a platform for multidisciplinary research, combining
biological and social sciences.
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Figure 1. Centers of crop origin and domestication. Shaded regions indicate approximate
location of centers of origin and domestication of selected crops. Regions are approximate
due to uncertainties in the distribution of the wild progenitors, limited numbers of sites with
archaeobotanical remains, and the area of actual domestication. Examples of crops
domesticated in their respective centers are: Lowland South America: cassava, sweet
potato pineapple, groundnut, cashew, guarana, peach palm, Capsicum peppers; Andean
South America: potato, other Andean root crops (e.g., oca, arracacha), common & lima
bean, lupin, Capsicum peppers, Pima cotton, coca, quinoa, squash; Mesoamerica: Maize,
common & lima bean, Capsicum annuum pepper, Upland cotton, sisal, papaya, avocado,
prickly pear, squash, tomato, vanilla, cacao, amaranth; Eastern North America: sunflower,
sumpweed, goosefoot; Sahel & Ethiopian Highlands: African rice, pearl millet, sorghum,
cowpea, Bambara groundnut, hyacinth bean, tef, fonio, yam, watermelon, melon, okra,
kenaf, coffee, ensete, noog; Fertile Crescent: wheat, barley, oat, pea, chickpea (garbanzo),
lentil, faba bean, flax, olive, date palm, grape, onion, lettuce, saffron, poppy; Central Asia:
apple, carrot; Northern India: Asian rice (indica), mung bean, pigeon pea; Northern China:
Broomcorn millet, foxtail millet, Chinese cabbage, soybean; Southern China: Asian rice
(japonica), quince, persimmon, litchi, peach, tea; New Guinea: banana, sugar cane.
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Figure 2. Successive stages in the transition from wild-gathered to domesticated plants. The
actual duration of the transition may depend on the crop plant and center of domestication,
but is thought to have lasted from several 100 to 1000 years.
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