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DMRscaler: a scale‑aware method to identify 
regions of differential DNA methylation 
spanning basepair to multi‑megabase features
Leroy Bondhus1,3,4, Angela Wei1,2,3,4 and Valerie A. Arboleda1,2,3,4,5,6*    

Background
Genes that regulate chromatin structure and function are critical to coordination of 
complex developmental trajectories within an embryo. Mutations in these chroma-
tin modifier genes are enriched in clinical cohorts with autism [1–4], congenital heart 
disease [5, 6] and global developmental delay [3, 5]. Pathogenic mutations in chroma-
tin modifier genes can also result in specific syndromes that have both overlapping and 

Abstract 

Background:  Pathogenic mutations in genes that control chromatin function have 
been implicated in rare genetic syndromes. These chromatin modifiers exhibit extraor-
dinary diversity in the scale of the epigenetic changes they affect, from single basepair 
modifications by DNMT1 to whole genome structural changes by PRM1/2. Patterns of 
DNA methylation are related to a diverse set of epigenetic features across this full range 
of epigenetic scale, making DNA methylation valuable for mapping regions of general 
epigenetic dysregulation. However, existing methods are unable to accurately identify 
regions of differential methylation across this full range of epigenetic scale directly 
from DNA methylation data.

Results:  To address this, we developed DMRscaler, a novel method that uses an 
iterative windowing procedure to capture regions of differential DNA methylation 
(DMRs) ranging in size from single basepairs to whole chromosomes. We benchmarked 
DMRscaler against several DMR callers in simulated and natural data comparing XX and 
XY peripheral blood samples. DMRscaler was the only method that accurately called 
DMRs ranging in size from 100 bp to 1 Mb (pearson’s r = 0.94) and up to 152 Mb on 
the X-chromosome. We then analyzed methylation data from rare-disease cohorts that 
harbor chromatin modifier gene mutations in NSD1, EZH2, and KAT6A where DMRscaler 
identified novel DMRs spanning gene clusters involved in development.

Conclusion:  Taken together, our results show DMRscaler is uniquely able to capture 
the size of DMR features across the full range of epigenetic scale and identify novel, co-
regulated regions that drive epigenetic dysregulation in human disease.

Keywords:  Rare disease, Epigenome, Scale, DNA methylation, Chromatin, Arboleda-
Tham syndrome, Sotos syndrome, Weaver syndrome
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distinct phenotypic features [7–10]. While clinical phenotypes often converge around a 
common set of chromatin modifier genes, the underlying molecular mechanisms driving 
these phenotypes are not well characterized.

Chromatin modifiers work in protein complexes to bind chromatin and shape the 
physical and chemical landscape of the genome, i.e. the epigenome. The regions within 
the genome where a particular chromatin modifier exerts its influence are critical to 
defining its role in development. The genomic region controlled by a chromatin modi-
fier can be highly localized, as in methylation of individual cytosine nucleotides which 
modulates the binding affinity for certain transcription factors (TFs) [11–15], or it can 
extend across the chromatin landscape more globally, as occurs with the PRM1/2 medi-
ated compaction of the genome during spermatogenesis [16, 17] or Xist in condensing 
the X-chromosome in cells with multiple copies of the X-chromosome [18–20]. Between 
the local and the global are a diversity of epigenetic features that exist at intermediate 
scales from tens of kilobases to many megabases. These include features such as poly-
comb repressive domains (PRDs) [21–23] and topologically associated domains (TADs) 
[24] and co-regulated gene clusters. These intermediate-sized features coordinate higher 
order patterning events throughout the genome in development, such as PRD regula-
tion of Hox segmentation patterning [25], or organization of olfactory receptor gene 
clusters into TADs [26] with interdependent epigenetic regulation of the member olfac-
tory receptor genes [27, 28]. A comprehensive understanding of chromatin modifiers 
requires understanding the scale of their effect on the epigenetic landscape.

While the direction of causality is still an open question for the interaction between 
many epigenetic features, changes in DNA methylation (DNAme) are often associated 
with changes in other epigenetic features across the range of epigenetic scale. DNAme 
is the covalent addition of a methyl group to a single cytosine nucleotide usually in the 
context of a CpG dinucleotide [29]. While DNAme directly alters the binding affinity for 
a set of DNA binding proteins [11–15], it is also associated with higher order epigenetic 
features. At promoters and enhancers DNAme tends to be inversely correlated with gene 
activity [30, 31]. Over the tens to hundreds of kilobases of PRDs, DNA methylation is 
depleted by the antagonistic action of the polycomb repressive complex [32, 33], and as 
a result changes in polycomb activity over PRDs are often associated with differential 
methylation [33]. Megabase scale domains of active and inactive chromatin can be reli-
ably predicted from DNAme patterns [34], and in colon cancer, changes to DNAme have 
been reported to overlap with these megabase-sized inactive domains [35].

Phenotypic variability and genetic heterogeneity can make the diagnosis of rare syn-
dromes challenging. Even more challenging is the interpretation of the clinical signifi-
cance of rare genetic variants identified in whole genome sequencing studies in patients 
with rare disease. In the absence of clear functional data, these genetic variants are anno-
tated as variants of unknown significance (VUSs). One method to distinguish between 
pathogenic and benign variants is to identify common patterns of differential DNAme 
from patients with known pathogenic mutations in the same gene, a methylation signa-
ture [9, 10, 36]. The presence of a DNAme signature suggests that common epigenetic 
marks are associated with pathogenic mutations in specific genes. However, directly 
linking observed DNAme change to the epigenetic mechanisms contributing to disease 
remains an open challenge.
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Despite the known diversity in scale of differential DNA methylation features, no exist-
ing methods are designed to identify regions of differential methylation (DMRs) across 
the full range of scale from genome-wide methylation data. Instead, existing methods 
are designed to identify DMRs on the scale of single genes or enhancers, which provides 
important but incomplete information towards understanding the full epigenetic archi-
tecture. This leaves a gap in using DNA methylation to understand the dynamics of co-
regulated genes and regions in a broader epigenetic context.

Here we describe a method, DMRscaler, that accurately identifies regions of differen-
tial methylation that can span several basepairs up to those existing at much larger scales 
spanning many megabases of sequence across the global DNA methylation landscape. 
We demonstrate the dynamic range of our differential methylation caller by simulat-
ing DMRs varying in size from 100 bp to 1 Mb and testing its performance relative to 
existing methods. Additionally, we use real methylation data to test for sex differences 
in DNA methylation where DMRscaler, at its highest level calls the X-chromosome as a 
single differentially methylated feature while still calling small, gene-level DMRs on the 
autosomes. Finally, we show that pathogenic mutations in chromatin modifier genes are 
associated with differential methylation of large and highly conserved gene-clusters such 
as the HOX and PCDH gene clusters. By bridging the local and the global, DMRscaler 
can provide a broadened view of differential DNA methylation structure.

Implementation

The primary motivation for DMRscaler is to enable robust and accurate identification of 
regions of differential methylation that may exist at dramatically different scales. In DNA 
methylation data, DNA methylation is measured as the proportion of cytosines methyl-
ated at a given CpG site in the genome across all cells in a sample. This proportion is 
the β (beta) value of that site, with β = 0 being completely unmethylated and β = 1 being 
completely methylated. The distribution of β values for all CpGs across the genome fol-
lows a bimodal distribution (Additional file 1: Figure S1). DMRscaler takes as input a set 
of CpG probes with their chromosome, genomic position, and pre-computed p-value for 
individual CpG level significance, and individual CpG level p-value cutoff threshold for 
the desired Type I error control level. Estimation of the p-value cutoff for desired Type 
I error control should be done at the level of individual CpG level to avoid identifying 
DMRs that represent correlated blocks of CpGs that are not associated with the condi-
tion of interest. One method for estimation of this cutoff value, implemented with the 
DMRscaler package, is to repeat the individual CpG level significance testing with per-
mutations of the case and control labels and compare the distributions of CpG signifi-
cance values from these random permutations against the true case–control partition, 
however other methods could also be used. By working on an input of p-values, DMR-
scaler gives the user the flexibility to choose the statistical test that is most appropriate 
for their experimental design.

To identify regions that are characterized by differentially methylated CpGs (i.e. dif-
ferentially methylated regions or DMRs), DMRscaler uses a sliding window scheme 
(Fig. 1A,B). Windows are defined by a count of adjacent CpGs rather than by the span 
of the genomic region. The use of a count of adjacent CpGs for window definition 
makes DMRscaler agnostic to CpG density. This allows DMRscaler to scan regions 
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with low CpG coverage, such as heterochromatin, that might be missed using a dis-
tance parameter between CpGs. Future iterations of the method may allow specifica-
tion of fixed genomic interval widths for defining DMRs. However, a limitation here 
is that it is subject to the choice of methylation sites included on the currency DNA 
methylation chips.

Region-wide significance is taken to be the probability of obtaining within a win-
dow the set of CpG ranks or a set of more extreme ranks by random chance, given 
as a prior that the most significant CpG in the window has already been drawn. The 
null hypothesis then is that the ranks of the CpGs within a window are equally or less 
extreme than would be expected by a random draw from the complete set of CpG 
ranks given as a prior that the most significant CpG in the window has been drawn. 
The product of a sequence of hypergeometric tests is used to determine the region-
wide significance of each window as described by the function

Fig. 1  Outline of DMRscaler method. A Flowchart of decision tree for DMRscaler. Starts with specification of a 
window size vector that lists the window sizes to use for identifying DMRs in each layer, and the coordinates 
of CpG probes with precomputed p-values for each CpG. Additionally Type I error control should be done 
using these precomputed p-values by setting a p-value cutoff value to ensure that identified DMRs have the 
expected Type I error rate with respect to their association with the condition of interest. Window significance 
is determined using Eq. (1). Adjacent significant windows are merged forming the Next_Layer. For the first 
iteration, the returned Layer_1 is set to this Next_Layer, for subsequent iterations the returned Layer_i is set 
to the result of integration of Next_Layer with Prev_Layer. Integration of layers is described in 1C. Prev_Layer is 
updated to Layer_i before proceeding to iteration i + 1. After the largest window size layer is generated, a list 
is returned of the results from each iteration of the algorithm. B Graphical description of algorithm. At the top 
shows representation of CpGs ordered by position and associated with a significance value. Windows are laid 
over the ordered CpGs and selected if the window score is significant. Adjacent windows are then merged. If 
a Prev_layer has been assigned, then integration occurs. C Integration procedure. For each Next_Layer DMR, 
all overlapping Prev_Layer DMRs are identified. A subtraction set is generated by individually subtracting each 
overlapping Prev_Layer DMR from the Next_Layer DMR. Subtraction involves removing overlapping CpGs 
from the Next_Layer. If all elements of the subtraction set are significant when rescored with the window 
scoring function, then the Prev_Layer and Next_Layer regions are merged in the Integrated_Layer, otherwise 
the Prev_Layer DMRs are used in the Integrated_Layer. This procedure ensures that the broader Next_Layer 
DMRs are only included if no single Prev_Layer DMR was responsible for the significance of the region 
identified in the Next_Layer 
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where CpGs in the window, after excluding the most significant overlapping CpG from 
the window, are ordered from least to most significant going from i = 1 to i = m . Vari-
ables are defined as follows:

The hypergeometric cumulative distribution function, hyperCDF , is set up to return 
the likelihood of obtaining ki or more successes in ni draws from a population of size 
Ni where there are Ki success cases total. At each step from i = 1 to i = m , the function 
determines the probability of having ki or more CpGs of rank Ki or higher from ni ran-
dom draws in a population of Ni CpGs. The variables update at each step to account for 
how the likelihood has changed given the information contained in the previous step. 
The updates to the variables make the result of each hypergeometric test independent. 
The product of these independent tests then gives the region-wide significance value 
that effectively represents the probability of associating CpGs with the ranks observed, 
or ranks more extreme, by random chance in a window of the given size. This in effect 
then defines DMRs as regions that have a statistically significant association by adja-
cency of individually significant, by FDR or FWER control, CpGs. It should be noted 
that this procedure means that while region significance is linked to individual CpG level 
significance, these two metrics of significance are distinct. For example, if a region’s most 
significant individual level CpG significance value is p = 0.01, but the region wide signifi-
cance value is p = 1e − 12, then the region is almost certainly consisting of CpGs that are 
truly associated by adjacency (e.g. regulated in some respect as a unit relative to the set 
of all measured CpGs), however the determination of whether the differential methyla-
tion of this region is truly associated with the biological condition of interest should be 
based on individual CpG level significance.

Since there are nearly as many windows that can be tested for significance as there are 
CpGs included in the dataset, multiple testing must be accounted for to avoid excessive 
Type I errors. To do this, DMRscaler gives options to use Bonferroni correction proce-
dure to control the family-wise error rate, or the Benjamini-Yekutieli procedure [37] to 
control the false discovery rate. With either of these the user supplies a region-wide sig-
nificance threshold below which regions are considered significant. Both procedures are 

(1)pregion =

m

i=1

hyperCDF (ki, ni,Ni,Ki)

m = total # CpGs in the window

ki = # of CpGs in window with rank greater than or equal to Ki

ni =

{

m if i = 1
ki−1 − 1 otherwise

Ni =

{

total # of CpGs in dataset if i = 1
Ki−1 − 1 otherwise

Ki = rank of ith CpG
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implemented so that the number of tests performed is equal to the number of measured 
probes below the user specified individual level CpG p-value cutoff. We observed con-
servative FDR control in simulations varying both the individual CpG level FDR thresh-
old and the region-wide significance threshold (Additional file 1: Fig. S2).

In order to define DMRs that can vary dramatically in scale within the same analysis, 
we implemented the sliding window procedure iteratively increasing the size of the win-
dows used to identify DMRs at each step of the iteration. The set of DMRs called at each 
step of the iteration is defined as a layer of the procedure, with layers named by the size 
of windows used for calling DMRs within that layer and indexed by the iteration step 
number. For example, if windows of 4 adjacent CpGs are used first to call DMRs, then 
layer_1 (or layer1) and the 4_adjacent_CpG_layer are synonymous. An important step to 
accurately identify the scale of DMRs and avoid overinflation of DMR size is the inclu-
sion of a step to integrate the results across these layers (Fig.  1B, C). This integration 
procedure works as the method iterates from one layer to the next by testing whether a 
tentatively significant window called at the current layer remains statistically significant 
after the removal of CpGs from each overlapping DMR from the previous layer individu-
ally. For example, if a given window at the current layer has 100 CpGs and is considered 
tentatively significant, and there are 2 overlapping DMR from the previous layer with 
20 CpGs and 30 CpGs, the DMR at the current layer is only retained if the 80 CpGs left 
after removal of the 20 CpG DMR from the first overlapping previous layer DMR are still 
considered significant as a region AND the 70 CpGs left after the removal of the 30 CpG 
DMR from the second overlapping previous layer DMR are still considered significant as 
a region. Otherwise, if either of these remaining 80 CpGs or 70 CpGs are not significant, 
then the current layer does not consider the 100 CpGs to be a DMR and instead the 
current layer is set to include the 20 CpG and 30 CpG DMRs from the previous layer, 
thereby propagating these DMRs from the previous layer.

It should be noted that no additional multiple testing correction is carried out to 
account for the number of layers used for identifying DMRs. As each layer is depend-
ent on the same base layer of individual CpGs for estimation of significance, tests across 
layers are not independent and so our intuition is that it is reasonable to perform FDR 
or FWER correction only within layers. More rigorous statistical accounting for the 
dependency structure of this layer integration procedure is a challenge we have left as a 
future direction of study.

Here will elaborate on this procedure a little more formally. To begin, the smallest win-
dow size is used as a parameter to identify DMRs and build layer1 of the output. As 
a note, the term ’layer’ is used to describe the resulting set of DMRs constructed with 
a given window size parameter to suggest the relation of the results of each iteration 
of the algorithm. The construction of each successive layer either expands, adds, or 
retains DMRs from the previous layer, and so there is a hierarchical relation between 
DMRs across layers. DMRs in lower layers will always map to some DMR in upper lay-
ers, ensuring that layeri will always be a subset of layeri+1. To define the next layer, the 
following steps are repeated for windows of the next largest size: overlaying windows, 
identifying windows significantly enriched in differentially methylated CpGs, and merg-
ing significant windows (Fig. 1A, B). From the second layer onward, an additional step to 
integrate the results from the previous layer is performed. This is achieved by subtracting 
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each previous layer DMR individually from any overlapping tentative DMR in the next 
layer, and retesting all generated reduced DMR sets in the next layer for significance 
(Fig. 1C). If a tentative DMR in the next layer remains significant following the subtrac-
tion of each overlapping previous layer DMR individually, then the tentative next layer 
DMR is retained in the new integrated layer. Otherwise, the overlapping previous layer 
DMRs are retained without change, replacing the tentative next layer DMR in the inte-
grated layer. Additionally, any previous layer DMRs that did not overlap a DMR in the 
next layer are added to the integrated layer. In this way, at each iteration of the algorithm 
DMRs are either added, expanded, or consolidated from the previous layer to the inte-
grated layer but never lost. As the algorithm proceeds, the previous layer is updated to 
the most recent integrated layer before the next step of integration is done with the next 
layer. Through iteratively calling DMRs using windows of increasing size and integrating 
the results, DMRscaler is able to identify DMRs that vary dramatically in terms of scale.

Methods
Cell culture

For Arboleda-Tham Syndrome data, fibroblast cell lines were derived from skin punch 
biopsies performed on the proband and one or both unaffected parents. This project was 
approved by the UCLA Institutional Review Board #11-001087. All individual level-data 
was de-identified prior to analysis. Fibroblast cell culture lines were created through the 
UCLA Pathology Research Portal and fibroblast cell lines were established and grown 
in DMEM (Gibco™), 10% FBS (Heat-inactivated Fetal Bovine Serum, Thermofisher), 1% 
Non-essential Amino Acid (Gibco™) and 1% PenStrep at 37  °C in 5% CO2 incubators. 
Cell lines were tested for mycoplasma on a monthly basis.

DNA methylation studies

For Arboleda-Tham Syndrome methylation studies, DNA was extracted from patient-
derived fibroblast cell lines. The specific mutation for each line is given in Additional 
file 1: Table S1. DNA samples were bisulfite converted and run on the Illumina Methyla-
tionEPIC Array (850 k EPIC array) as previously described [38] at the UCLA Neurosci-
ence Genomics Core to generate idat files. QC on the resulting idat files was done using 
the MINFI package, and probes overlapping SNPs were removed [39]. After QC, 852,671 
of 865,919 measured CpGs remiained, after removal of sex chromosome CpGs, 832,159 
measured CpGs remained. Preprocessing and normalization of individual probes was 
done using background correction [40] and functional normalization [41].

Data sources

Publically available datasets of peripheral blood methylation data for control, Weaver 
Syndrome and Sotos Syndrome patients were downloaded from the Gene Expression 
Omnibus (GEO) resource [42, 43] with accession number GSE74432 [10].

Simulation

To demonstrate how DMRscaler distinguishes itself from other methods, we simulated 
differentially methylated regions (DMRs) ranging in size across several orders of magni-
tude (Fig. 2A).
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DNA methylation measured on the Infinium HumanMethylation450 BeadChip (450 K 
array) from whole blood for 53 controls from GEO (GSE74432) was used as a founda-
tion for the simulation [10]. Real data was used as the foundation in order to capture the 
natural biological and technical variability present in DNA methylation array data. QC 
on the resulting idat files was done using the MINFI package, and probes overlapping 
SNPs were removed [39]. After QC, 468,162 of 485,512 measured CpGs remained, and 
after removal of the sex chromosomes 456,514 measured CpGs remained. Preprocessing 
and normalization of individual probes was done using background correction [40] and 
functional normalization [41].

Regions for artificially introducing DMRs were selected at random across the genome 
but subject to the following constraints. DMRs specified as 0.1–1  kb in size were 

Fig. 2  Simulation of DMRs ranging in size between 1 kb and 1 Mb for comparison of methods. A Graphical 
description of simulation design. First, samples are randomly assigned to one of two groups. Second, 
non-overlapping regions of the genome are randomly selected to be DMRs. Third, over selected DMRs 
one group has the β value of non-masked CpGs inflated or deflated by Δβ. Next all differential methylation 
methods are run and relevant summary statistics are recorded. This procedure is repeated a number of times 
to generate additional data points. B Simulated DMR Widths v Called DMR Widths plotted on log10 scale. 
Pairs are formed between simulated and called DMRs if there is any overlap between the two. C Mapping 
Values plots. The mapping value is calculated for each simulated DMR and is either the inverse of the number 
of simulated DMRs sharing an overlapping called DMR or else it is the number of called DMRs overlapping 
the given simulated DMR, whichever is more extreme. Log values > 0 imply multiple DMRs called per 
simulated DMR. Value < 0 imply multiple simulated DMRs overlap single called DMR. Value = 0 implies one 
DMR called per DMR simulated. The plotted line indicates the cumulative proportion of simulated DMRs up 
to the given mapping value. D Feature level Precision-Recall Curves for each method, see methods for details 
on calculation. E Time for each method to run on the simulated dataset for each parameter set combination



Page 9 of 34Bondhus et al. BMC Bioinformatics          (2022) 23:364 	

required to have at least 3 CpGs represented on the 450 K array (CpGs), those 1–10 kb 
in size were required to have at least 6 CpGs, those 10–100 kb in size were required to 
have at least 9 CpGs, those 0.1–1 Mb in size were required to have at least 12 CpGs. 
Additionally, to avoid miscounting, DMRs were introduced such that they were spaced 
at least 10 CpGs apart from any other introduced DMR. Distribution of CpG counts in 
simulated DMRs against simulated DMR sizes are shown in Additional file 1: Fig. S3.

All 450  k array samples used were from control whole blood DNA, so for each run 
of the simulation samples were pulled at random into one of two groups, Group1 and 
Group2. Each group consisted of 8 samples drawn without replacement from the pool of 
53 samples.

Before artificially introducing the DMRs to the real data matrix, a proportion of CpGs 
within each DMR, excluding the first and last CpGs, specified by the noise parameter 
were randomly masked and kept at their original β values. This was done to model the 
variability of methylation state of neighboring CpGs in real data. Values for the noise 
parameter tested were 0, 0.25 and 0.5, corresponding to 0%, 25%, and 50% of CpGs over-
lapping a simulated DMR being masked. Then, the mean β value of CpGs within each 
DMR was measured for Group1 and Group2. The β values of the group with the greater 
mean β value would have all non-masked CpGs inflated by an amount specified by the 
Δβ parameter. Simulations were run with Δβ values of 0.1, 0.2, and 0.4 to model small, 
modest, and large effect DMRs respectively. If this resulted in any samples having a β 
value greater than 1, the β values for that CpG were divided by the max β value for that 
CpG to bring values back to the range of 0–1.

Following the introduction of artificial DMRs into the dataset, DMRscaler, bum-
phunter [44], comb-p [45] and DMRcate [46] were run on the dataset and the results 
tabulated. DMRscaler was tested using a window_size_vector of c(4, 8, 16, 32, 64) adja-
cent CpGs, locs_pval_cutoff corresponding to the individual level CpG p-value at which 
FDR < 10% is achieved, region_signif_cutoff = 0.01 corresponding to the region level sig-
nificance threshold for calling a region as a DMR after multiple testing correction, and 
region_signif_method = "benjamini-yekutieli" specifying the benjamini-yekutieli proce-
dure as the method for Type I error control. Bumphunter was tested with MaxGap = 1e6 
with loess smoothing enabled. Comb-p was tested with dist = 1e6, step = 5000, 
seed = 1e-3, region-filter-p = 0.1 (Additional file  1: Fig. S4). DMRcate was tested with 
lambda = 1e6, C = 2000. Parameter sets for methods were chosen to facilitate identifica-
tion of larger DMRs for output more comparable to DMRscaler.

To benchmark each method’s performance several metrics were used including pro-
portion of CpGs in DMRs that are differentially methylated, precision, recall, specific-
ity, F1, Matthew’s correlation coefficient (MCC), and the area under the precision recall 
curve (AUCPR). These metrics were recorded for analysis at the feature, basepair, and 
CpG probe level, where feature level assessment treated each simulated DMR as a single 
positive feature, the basepair level treated each basepair overlapping a simulated DMR 
as a positive feature, and the CpG probe level treated each CpG probe overlapping a sim-
ulated DMR as a positive feature. The basepair and CpG level assessments are based on 
direct counts of true and false positives and negatives. The feature level assessment was 
conducted following the framing of the problem for measuring precision and recall for 
time series proposed by Tatbul and colleagues, which is generally appropriate for other 
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forms of range data when identification of individual features is of interest [47]. Each 
simulated DMR was considered as a true feature with true positive (TP) and false nega-
tive (FN) attributes. Each called DMR was considered a called feature with TP and false 
positive (FP) attributes. Called DMRs were ordered by their p-value for all methods. The 
precision-recall curve was generated by measuring precision and recall with stepwise 
inclusion of the next highest scoring or most significant called DMR. At the n-th step 
precision and recall were measured as

where TPCalled_DMRi is the proportion of the i-th called DMR overlapping simulated 
DMR regions, FPCalled_DMRi is the proportion of the i-th called DMR not overlapping 
a simulated DMR region, TPSimulated_DMRj is the proportion of the j-th simulated DMR 
overlapping any of the 1 to n-th Called DMRs, FNSimulated_DMRj is the proportion of the 
j-th simulated DMR overlapping any of the 1 to n-th Called DMRs, n is the number of 
most significant called DMRs used at the n-th step, and m is the total number of simu-
lated DMRs. The feature level measure of precision and recall gives equal weight to each 
simulated DMR so that large simulated DMRs do not dominate the signal.

In addition to precision and recall, several other metrics that were included in a 
recent benchmark of DMR callers by Mallik et  al. [48] were used to assess method 
performance in the simulation. All of these metrics were measured on the set of called 
DMRs that had an adjusted region-wide significance p < 0.01 for each method. Speci-
ficity is a measure of the true negative rate, and is measured as the proportion of true 
negatives as a fraction of total negative features, and is calculated by the equation:

(2)Precision =
TPCalled_DMRs

TPCalled_DMRs + FPCalled_DMRs

(2.1)
TPCalled_DMRs =

n
∑

i=1

TPCalled_DMRi

n

(2.2)
FPCalled_DMRs =

n
∑

i=1

FPCalled_DMRi

n

(3)Recall =
TPSimulated_DMRs

TPSimulated_DMRs + FNSimulated_DMRs

(3.1)
TPSimulated_DMRs =

m
∑

j=1

TPSimulated_DMRj

m

(3.2)
FNSimulated_DMRs =

m
∑

j=1

FNSimulated_DMRj

m
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False Discovery Rate as the inverse of precision gives expected proportion of false 
results and is given by:

F1 is a measure of a test’s accuracy and is given by:

F1 ranges from 0 for worst accuracy to 1 for perfect classification. Finally, the Mat-
thew’s correlation coefficient, which is a measure of correlation between predicted 
and true class labels and is given by:

MCC values at + 1 indicate perfect classification, 0 indicates equivalence with ran-
dom classification, and − 1 indicates perfect misclassification.

Rare disease data analyses

For each real data analysis, DMRscaler, bumphunter, comb-p, and DMRcate were used 
to call DMRs. DMRscaler was tested using a window_size_vector of c(4, 8, 16, 32, 64) 
adjacent CpGs, locs_pval_cutoff corresponding to the individual level CpG p-value at 
which FDR < 10% is achieved, region_signif_cutoff = 0.01 corresponding to the region 
level significance threshold for calling a region as a DMR after multiple testing cor-
rection, and region_signif_method = "benjamini-yekutieli" specifying the benjamini-
yekutieli procedure as the method for Type I error control. DMRcate was tested with 
default parameters, as well as with lambda = 1e6, C = 2000 to capture larger DMRs for 
output more comparable to DMRscaler. Bumphunter was tested with default param-
eters, as well as with MaxGap = 1e6 with loess smoothing enabled.

For the sex analysis, DNA methylation measured on the Infinium HumanMeth-
ylation450 BeadChip (450  K array) from whole blood for 53 controls from GEO 
(GSE74432) with 29 female and 24 male samples was used [10]. QC on the raw idat 
files was done using the MINFI package, and probes overlapping SNPs were removed 
[39]. After QC, 468,162 of 485,512 measured CpGs remained. Preprocessing and 
normalization of individual probes was done using background correction [40] and 
functional normalization [41]. Individual level differential CpG significance between 
female and male samples was measured using the Wilcox test to serve as input for 
DMRscaler and comb-p. Raw output from each method is provided in Additional 
file 2: Table S2.

(4)Specificity =
1− FNSimulated_DMRs

N

(5)
FDR = 1− Precision

(6)F1 = 2 ∗
(Precision ∗ Recall)

Precision+ Recall

(7)MCC =

√

Recall ∗ Specificity ∗ Precision ∗
TNCalledDMRs
NCalledDMRs

√

(1− Recall) ∗ (1− Specificity) ∗ (1− Precision) ∗ (1−
TNCalledDMRs
NCalledDMRs

)
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For Arboleda-Tham Syndrome sample analysis, DNA methylation was measured on 
the Illumina MethylationEPIC Array (850 k EPIC array) with 8 cases and 12 controls. 
QC on the resulting idat files was done using the MINFI package, and probes overlap-
ping SNPs were removed [39]. After QC, 852,671 of 865,919 measured CpGs remained, 
after removal of sex chromosome CpGs 832,159 measured CpGs remained. Preprocess-
ing and normalization of individual probes was done using background correction [40] 
and functional normalization [41]. Individual level differential CpG significance between 
female and male samples was measured using the Wilcox test to serve as input for 
DMRscaler and comb-p. Raw output from each method is provided in Additional file 3: 
Table S3.

For Weaver analysis, DNA methylation measured on the Infinium HumanMethyla-
tion450 BeadChip (450 K array) from whole blood for 8 patients with EZH2 mutations 
and 53 controls from GEO (GSE74432) was used [10]. This data comes from a study that 
found an epigenetic signature specific to Sotos syndrome from NSD1 mutations using 
Weaver syndrome samples as a negative control for their classifier [10]. More recently, 
this data has been used to identify an epigenetic signature specific to Weaver syndrome 
[9]. QC on the raw idat files was done using the MINFI package, and probes overlapping 
SNPs were removed [39]. After QC, 468,162 of 485,512 measured CpGs remained, and 
after removal of the sex chromosomes 456,514 measured CpGs remiained. Preprocess-
ing and normalization of individual probes was done using background correction [40] 
and functional normalization [41]. Individual level differential CpG significance between 
female and male samples was measured using the Wilcox test to serve as input for 
DMRscaler and comb-p. Raw output from each method is provided in Additional file 4: 
Table S4.

For Sotos syndrome analysis, DNA methylation measured on the Infinium Human-
Methylation450 BeadChip (450 K array) from whole blood for 38 patients with NSD1 
mutations and 53 controls from GEO (GSE74432) was used [10]. QC on the raw idat files 
was done using the MINFI package, and probes overlapping SNPs were removed [39]. 
This comes from the same study as the Weaver syndrome data [10]. After QC, 468,162 of 
485,512 measured CpGs remained, and after removal of the sex chromosomes 456,514 
measured CpGs remiained. Preprocessing and normalization of individual probes was 
done using background correction [40] and functional normalization [41]. Individual 
level differential CpG significance between female and male samples was measured 
using the Wilcox test to serve as input for DMRscaler and comb-p. Raw output from 
each method is provided in Additional file 5: Table S5.

Syndrome DMR overlap analysis

To test for overlapping regions of differential methylation between Arboleda-Tham, 
Sotos, and Weaver syndrome, the number of measured CpGs considered for DMR 
detection was downsampled to include only those CpGs measured on both the Infin-
ium HumanMethylation450 BeadChip (450 K array) and the Illumina MethylationEPIC 
Array (850 k EPIC array). This left 425,733 measured CpGs for calling DMRs.

Overlaps between DMRs were counted between syndromes as was the overlap of gene 
sets. Gene set overlaps were considered separately to identify genes that may be com-
monly differentially methylated but identified by non-overlapping regions of the gene, 



Page 13 of 34Bondhus et al. BMC Bioinformatics          (2022) 23:364 	

something the direct DMR overlap measure would miss. Raw output of region level and 
gene level overlaps are provided in Additional file 6: Table S6.

To test whether CpGs identified as belonging to DMRs are enriched between syn-
dromes, that is whether membership of a CpG to a DMR in one syndrome makes it more 
or less likely to also belong to a DMR in another syndrome, we computed the odds ratios 
(OR). The OR was calculated by forming a 2 × 2 contingency table with counts of CpGs 
belonging to DMRs in both syndromes, CpGs belonging to one and not the other, and 
CpGs belonging to DMRs in neither. The raw counts used in the 2 × 2 contingency tables 
are given in Additional file 1: Table S7. Odds ratios for all pairs of syndromes are given in 
Additional file 1: Table S8.

Results
DMRscaler overview

Our goal in developing DMRscaler was to have a method capable of accurately identify-
ing regions that demonstrate differential methylation across the full range of epigenetic 
scale, from small-promoter to whole-chromosome scale features. The major bottleneck 
to this goal is that regions of differential methylation show significant variability in meth-
ylation state between neighboring CpGs. For example, nearly 20% of neighboring CpGs 
between 0.5 and 1.0 kb away have a difference in the proportion of methylation greater 
than 50% (Additional file 1: Figs. S5, S6). When trying to identify DMRs that may span 
larger genomic regions, such as gene clusters, this variability makes the trivial method 
of taking contiguous blocks of significant CpGs as the DMRs ineffective. One approach 
to resolve this issue of high variability is to smooth differential methylation sites based 
on significance across adjacent CpGs or over some specified genomic interval. However, 
the smoothing approach is sensitive to the choice of bandwidth parameter used for the 
smoothing window. Windows that are too small will fail to connect features over larger 
gaps, windows that are too large will result in excessively broad DMRs. Smoothing alone 
is therefore inappropriate when features are expected to vary dramatically in terms of 
scale. To capture potentially noisy features that may vary in size by several orders of 
magnitude, from the basepair to multi-megabase scale, we need a method that is both 
robust to noise and that can accurately determine the feature’s size.

To address these limitations in determining the size of a DMR, DMRscaler uses an 
iterative sliding window over the genome (Fig. 1A, B), represented as a partially-ordered 
set of measured CpGs, and implements an integration step between each iteration of 
the sliding window (Fig. 1C). The windows at each step identify the set of regions that 
are enriched in CpGs with significantly different methylation values between cases and 
controls. By binning CpGs into windows and testing these windows for enrichment in 
significant CpGs Eq. (1), the algorithm is robust to noise caused by variability in methyl-
ation of neighboring CpGs. To address the bias in feature size introduced by preselecting 
a window size parameter, DMRscaler calls significant windows iteratively with a vari-
able increasing size parameter and integrates the result of each iteration with the results 
from the previous iterations. The integration step (Fig. 1C) is used between the previ-
ous (lower) layer, built from smaller windows, and the current (upper) layer to deter-
mine which features in the upper layer are already adequately represented by lower layer 
features and which upper layer features capture a statistically significant association 
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missed by the lower layer features. If an upper layer feature captures a statistically sig-
nificant association missed in the lower layer then that upper layer feature is retained 
and resolved with any overlapping lower layer features, otherwise the overlapping lower 
layer representation is carried through unmodified. For a more detailed description, see 
implementation.

DMRscaler provides a solution to the problem of identifying DMR features across the 
full range of epigenetic feature sizes, whether at the basepair level or across entire chro-
mosomes. The integration of results across iterations of the windowing procedure DMR-
scaler implements is a novel mechanism for defining DMRs that could be generalized to 
other epigenetic features or one dimensional data where discontinuity in components 
defining a feature of interest is expected and where features of interest may exist at dra-
matically different scales.

Comparison of DMRscaler with existing methods

We next benchmarked DMRscaler to three commonly used methods in identification 
of differentially methylated regions: bumphunter [44], comb-p [45], and DMRcate [46] 
(Table 1). One significant difference between these methods is that our method, DMR-
scaler, and comb-p take pre-computed p-values as input while bumphunter and DMR-
cate use a t-test to determine individual level CpG significance. We observed that when 
running with a small sample size (n = 8 per group) there is poor correlation between the 
significance of differential methylation determined by the non-parametric Wilcoxon and 
t-test (Additional file 1: Figure S7). Since one of our goals was to develop a method that 
could detect DMRs in studies that compare rare disease datasets, the flexibility to choose 
the most appropriate statistical test for individual CpG significance based on experimen-
tal design and sample size constraints was desirable. While the t-test is appropriate when 
the sample size is sufficiently large (n > 30) or the sampling distribution is approximately 
normal, differential methylation analysis in small samples breaks these assumptions and 
therefore in our analysis of rare disease datasets the flexibility to use the Wilcoxon test 
was important.

The second difference between the differential methylation callers compared here 
(Table  1) lie in their modeling to identify differentially methylated regions. Briefly, 
bumphunter uses a linear regression model to identify CpG sites that are differentially 

Table 1  Comparison of differential methylation methods

DMRscaler bumphunter comb-p DMRcate

Individual CpG 
significance

NA (takes p-value as 
input)

t-test NA (takes p-value as 
input)

t-test, using M trans-
formed Beta values

DMRs definition Iterative enrichment 
testing for significant 
CpGs within window

Consecutive CpGs 
above significance 
threshold

Groups signifi-
cant CGs if within 
window or window 
interval

Gaussian smoothed 
regions above sig-
nificance threshold

DMR significance Hypergeometric Test Stouffer’s Method Stouffer-Liptak Permutation Test

Parameters control-
ling size (default)

window_size
(4,8,16,32,64 adj 
CpGs)

maxGap (500 bp) dist, step (no default) lambda (1 kb), C (2)
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methylated between case and control conditions. Then to detect DMRs, bumphunter 
identifies stretches of adjacent CpGs that are above a specified significance threshold 
after smoothing. However, the methylation landscape of adjacent CpGs is complex, with 
CpGs with high, intermediate and low β values mixed together making definition of 
large and contiguous regions of differential methylation challenging (Additional file  1: 
Figs. S4, S5). Comb-p uses the Stouffer-Liptak method for p-value correction and then 
groups significant CpGs within a window or window interval defined by the dist and step 
parameters. DMRcate is similar to bumphunter in that it also implements linear mode-
ling (Table 1). DMRcate uses a Guassian smoothing function on M transformed β values 
to identify DMRs in genome-wide data. This provides the user with control of a band-
width parameter, lambda, and control parameter, C, that can be used to identify larger 
regions of differential methylation. However, the behavior of DMRcate at larger band-
width is poorly defined and the size of DMRs returned tends to be sensitive to parameter 
choice. For an in-depth review of methods see [48].

The design of the DMRscaler method has several unique features that allow it to more 
accurately identify larger co-regulated regions. First, it deals with the intrinsic variability 
in methylation distribution across the genome by binning adjacent CpGs into windows 
before assigning significance. Second, DMRscaler integrates the results from layers of 
windows defined with a series of window sizes to consider regions that are dramatically 
different in scale as potential regions of differential methylation. To accommodate a vari-
ety of study designs and constraints, DMRscaler operates on pre-computed p-values for 
individual level CpG significance. While here we use the Wilcox test due to the small 
sample size of our rare disease cohorts, other methods of generating p-values can be 
used, for instance to model the effect of covariates. Together, these features allow for the 
robust detection of differentially methylated regions across a large dynamic range, span-
ning basepair to megabase resolution and allow for detection of novel regions that are 
differentially methylated in rare disease cohorts and between other biological conditions 
such as chromosomal sex.

DMRscaler accurately captures the scale of epigenetic features from basepair (bp) 

to megabase (Mb) size in simulated methylation data

Except where stated otherwise, in the following sections DMRs are assumed to be those 
in the most inclusive top layer, Layer 5, which is built using all lower layers and is meant 
to be the most accurate representation of DMR features.

To benchmark our method against existing methods, we compared DMRscaler to 
bumphunter, comb-p, and DMRcate on several metrics that highlight behavior of calling 
DMRs across a wide range of simulated DMR sizes. These metrics include: the correla-
tion between simulated DMRs and DMRs called by each method across a wide range 
of simulated DMR sizes, the mapping value or the degree to which each method was 
able to represent individual simulated DMRs as single unified features, and the run time 
of each method. Additionally we used standard metrics of evaluation such as precision, 
recall, specificity, F1, Matthew’s correlation coefficient (MCC), and area under the preci-
sion-recall curve (AUCPR) to assess method performance.
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We first simulated DMRs in methylation data from control blood samples (GSE74432) 
[10] ranging in size from 100 bp to 1 Mb (Fig. 2A, see method for details). In our simu-
lation, we modeled the situation observed in real data where neighboring CpGs often 
have distinct methylation states with a noise parameter that represents the proportion 
of CpGs within simulated DMRs, excluding the first and last CpGs, that are left non-
differentially methylated between the randomly selected samples placed in Group1 and 
Group2. In our simulations we tested noise parameter values of 0%, 25% and 50%. The 
Δβ parameter was used to control the magnitude of differential methylation with simu-
lated DMRs, where Δβ is the difference in methylation proportion at non-noise CpGs 
introduced between the samples in Group1 and Group2. Simulations were run with the 
Δβ parameter set to values of 0.1, 0.2, and 0.4 to model small, modest, and large effect 
sizes for differential methylation respectively. Results from simulations run with each 
combination of these parameters are included in Additional file 1: Fig. S8, S9 and S10 
and in Additional file  7: Table  S9. The relative performance and behavior of methods 
was consistent across simulations run with each of these parameter combinations, so for 
space in the main text and figures we display results and report metrics from simulations 
run using noise = 50% and Δβ = 0.2.

DMRscaler was able to accurately call the size of the simulated DMRs (pearson’s 
r = 0.94) relative to bumphunter (pearson’s r = 0.04), comb-p (pearson’s r = 0.69), and 
DMRcate (pearson’s r = 0.85) (Fig.  2B). DMRscaler preserves a strong 1-to-1 relation 
between simulated and called DMRs, with 85% of simulated DMRs accurately called by 
DMRscaler with a 1-to-1 relation, compared with 19% for bumphunter, 44% for comb-p, 
and 69% for DMRcate (Fig. 2C).

To measure performance of our differential methylation caller, we calculate the 
AUCPR for each test. AUCPR combines a measure of precision of features called (ratio 
of true feature called to all features called) and recall (ratio of true features called to total 
number of true features) into a single value, with AUCPR = 0 representing no classifi-
cation and AUCPR = 1 representing perfect classification of all features with no false 
positives. In our simulation, DMRscaler had an AUCPR of 0.79, bumphunter had an 
AUCPR value of 0.11, comb-p had an AUCPR of 0.34, and DMRcate had an AUCPR of 
0.65 (Fig. 2D, see methods for details on AUCPR calculation). The low AUCPR of bum-
phunter is consistent with the low, slightly negative correlation observed between sim-
ulated and called DMR regions (Fig. 2B). This weak correlation is due to the fact that 
bumphunter has a strict requirement that significant differentially methylated CpGs are 
adjacent in order to belong to a common DMR and therefore breaks up simulated DMR 
features into many smaller features. The low AUCPR of comb-p is the result of a low 
recall rate of features that are much smaller than the size set by the dist and step param-
eters. Setting lower values for the dist parameters increases the ability to detect smaller 
DMR features but at the expense of detecting larger DMR features (Additional file 1: Fig-
ure S4), and at very large values for dist the run time becomes prohibitive especially as 
smaller step values are used (Additional file  1: Figure S4). DMRcate had a reasonably 
high AUCPR, however there is a bias in the size of DMRs called based on the choice 
of the bandwidth parameter lambda, and the control parameter C. Specifically, there is 
an excess of false calls of DMRs around 1 Mb and 1 kb (Fig. 2B and Additional file 1: 
Fig. S11) which is related to the choice of bandwidth parameter λ (set to 1 Mb) and the 
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scaling parameter C (ratio of λ/C set to 500) (Additional file 1: Fig. S12). Our data sug-
gests that DMRcate is able to identify larger DMRs but also that called DMR size is sen-
sitive to parameter choice for the lambda and C parameters. This is supported by the 
shape of the precision-recall curve for DMRcate that shows a modest drop in precision 
as recall increases, suggesting DMRcate incurs a steeper false positive penalty compared 
with DMRscaler.

While the Wilcoxon test was used to generate p-values for individual level CpG sig-
nificance for the simulation and real data analysis, we note that the performance and 
behavior of DMRscaler in the simulation was comparable when the T-test was used 
(Additional file  1: Fig. S13). Additionally, while these results focus on the top layer of 
results from DMRscaler, behavior at each lower layer is shown in Additional file 1: Fig. 
S14.

Comparing each method on each combination of Δβ (0.1, 0.2, and 0.4) and noise 
(0%, 25%, and 50%) parameters on metrics of precision, recall, specificity, F1, MCC, 
and AUCPR, DMRscaler consistently outperformed competing methods on each met-
ric, except specificity where bumphunter was consistently the best performing method 
though the difference between methods on specificity was generally small (Table  2, 
Additional file 7: Table S9). These results further demonstrate that DMRscaler performs 
well for accurately calling DMRs across a wide range of feature size.

While DMRscaler performs well compared to other methods at the task of identi-
fying DMRs across a wide range of scales, the method also performs well in terms of 
computational time to the other methods that are time efficient with larger window size 
analogous parameters. On average DMRscaler required 30 s to 1 min to complete a run, 
bumphunter required around 1 to 3 min, and DMRcate only required around 10 s to call 
DMRs. Comb-p, which uses a sliding window mechanism similar to DMRscaler, required 
an hour to complete each run with the given parameter set (Fig. 2E).

The simulation results show that DMRscaler reconstructs the scale of DMR features 
more accurately than other methods across a wide range of DMR feature sizes as meas-
ured by called and simulated DMR size correlation, mapping value, and precision and 
recall. Additionally on other measures of performance including specificity, F1, MCC, 
and AUCPR, DMRscaler consistently performs well compared to other methods on sim-
ulated datasets with DMRs that vary widely in terms of scale.

Differential methylation between 46, XX and 46, XY individuals captures 

chromosome‑wide and gene specific regulatory features in empiric data.

To test our hypothesis in real-world DNA methylation data, we sought to determine 
whether our method could capture both small regions of autosomal differential methyla-
tion as well as chromosome-wide features such as X-chromosome inactivation. There-
fore, our test case is the natural occurrence of X-inactivation in females, where one copy 
of the X-chromosome is largely inactivated by the action of the lncRNA Xist [18, 19]. 
This process of inactivation is correlated with a striking chromosome-wide difference in 
DNA methylation between males and females on the X-chromosome (Fig. 3A, top) as 
compared to the autosomes, e.g. chromosome 2 where the size of differentially methyl-
ated regions span 103 bp to 873 bp (Fig. 3A, bottom, Additional file 2: Table S2). Across 
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all chromosomes, the size of DMRs called by DMRscaler spans 98 bp to 152 Mb, repre-
senting a 1.5 million-fold difference in the scale of DMRs detected by DMRscaler.

With the visual intuition of the scale of differential methylation between sexes from 
Fig. 3A, we next compared the result of differential methylation analysis using DMR-
scaler, bumphunter, comb-p and DMRcate. DMRscaler was the only method that 
consolidated the observed differential methylation into a single DMR that spanned 
98% of the X-chromosome (Table  3, Fig.  3B, Additional file  1: Fig. S15). Even with 
the maxWidth parameter set to 1  Mb, Bumphunter reported 1,162 unique DMRs 
on the X-chromosome with a median width of 531  bp (IQR: 1  bp–1.21  kb) (Addi-
tional file 1: Fig. S16, Additional file 2: Table S2), likely due to a lack of mechanism 

Fig. 3  Differential Methylation Analysis Between XX and XY individuals. A Hilbert Curves of chrX and chr1. 
Hilbert curve is constructed by ordering CpGs by their position along the given chromosome. Red points 
are differentially methylated CpGs with FDR < 0.1. Point size scaled to max significance level (-log10 p-value). 
B Diagonal network plots showing hierarchical relation of DMRs called by DMRscaler in Layers 4, 3, 2, and 1 
(equivalent to 32 16, 8, and 4 Adj. CpG Layers respectively) for X-chromosome. C ChrX:71.4–71.6 Mb. GVIZ 
track stack plot. Top track shows mean β value per group, next track shows Δβ, where Δβ = βfemale−βmale. 
Below the gene model track is the DMR track, highlighting the regions called as a DMR at each result layer 
from DMRscaler (Layers 1, 2, 3, 4, 5 are equivalent to 4, 8, 16, 32, 64 Adj. CpG layers) and from each competing 
method. (D) Chr9:84.302–84.306 Mb. Tracks same as 3C
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for spanning non-differentially methylated CpGs. With a standard parameter set of 
dist = 1  kb, step = 100  bp, comb-p reported 2,390 unique DMRs on the X-chromo-
some with a median width of 2  bp (IQR: 2  bp–963  bp) (Table  3, Additional file  1: 
Fig. S16, Additional file  2: Table  S2). With a wider parameter set of dist = 1  Mb, 
step = 100 kb, comb-p called 19 unique DMRs on the X-chromosome with a median 
width of 3.15 Mb (IQR: 512 kb–8.54 Mb) (Table 3, Additional file 1: Fig. S16, Addi-
tional file  2: Table  S2). DMRcate with default settings reported 1178 unique DMRs 
on the X-chromosome with a median width of 1.09 kb (IQR: 616 bp–1.68 kb). When 
DMRcate was provided with a larger bandwidth parameter (lambda = 1 Mb, C = 2000) 
it improved in consolidating the DMRs, but still reported 15 unique DMRs (median 
width: 3.95 Mb, IQR: 1.00 Mb–17.89 Mb). For complete distributions of called DMR 
sizes see Additional file 1: Fig. S17, Additional file 2: Table S2.

DMRscaler iteratively calls DMR-like regions using windows of increasing size 
while integrating the results of each iteration into the next layer of DMRs. While the 
top-most layer is the primary output of DMRscaler, this procedure produces a nested 
hierarchy of DMRs when considering the list of results across all layers that allows 
for a nuanced view of the differential methylation architecture. In Fig. 3B, a subset of 
this hierarchy within the X-chromosome is shown. Here DMRs called at layer 1 are 
consolidated in the DMRs in layer 2, and then those DMRs in layer 2 are consolidated 
into DMRs in layer 3, consolidation of DMRs in layer 3 into layer 4 results in the 
final consolidation of DMRs into a single feature spanning the entire X-chromosome 
(Fig. 3B).

While the entirety of the X-chromosome can be considered a differentially methyl-
ated feature, it has been well established that there is a small subset of genes on the 
X-chromosome that escape X-inactivation and DNA methylation [49]. The expecta-
tion when comparing methylation between females and males is that X-inactivation 

Table 3  Sex analysis DMR summary table

Method Chromosome X Autosomes

# DMRs Mean 
DMR 
width

Median 
DMR 
width

% total 
width

# DMRs Mean 
DMR 
width

Median 
DMR 
width

% total 
width

DMRscaler

Layer 1: 4 adj CpGs 694 67.91 kb 6.29 kb 30 18 616 bp 398 bp 0.00038%

Layer 2: 8 adj CpGs 246 381.32 kb 114.54 kb 61 19 935 bp 494 bp 0.00062%

Layer 3: 16 adj CpGs 20 7.30 Mb 1.54 Mb 94 21 4.73 kb 587 bp 0.0035%

Layer 4: 32 adj CpGs 2 75.80 Mb 75.80 Mb 98 23 19.59 kb 624 bp 0.016%

Layer 5: 64 adj CpGs 1 152.11 Mb 152.11 Mb 98 22 20.32 kb 606 bp 0.016%

bumphunter

Default: maxGap = 1 kb kb 1258 527 bp 238 bp 0.43 32 67 bp 1 bp 0.000075%

maxGap = 1 Mb 1162 6.76 kb 531 bp 5.1 32 611 bp 1 bp 0.00068%

comb-p

dist = 1 kb, step = 100 bp 2390 567 bp 2 bp 0.87 580 330 bp 292 bp 0.0067%

dist = 1 Mb,step = 100 kb 19 6.13 Mb 3.15 Mb 75 29 140.59 kb 127.23 kb 0.14%

DMRcate

Default:lambda = 1 kb, 
C = 2

1178 1.30 kb 1.09 kb 0.99 826 658 bp 558 bp 0.019%

Lambda = 1 Mb, C = 2000 15 8.53 Mb 3.95 Mb 83.0 197 7.63 kb 676 bp 0.052%
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would result in differential methylation between sexes, with hypermethylation and 
to a lesser extent hypomethylation across the entire X-chromosome in females com-
pared to males [50]. Therefore, we expect regions where the Δβ between the two 
groups is at or near zero would be enriched in regions that escape X-inactivation due 
to a relative lack of differential methylation at these sites. An example of one such 
region is the gap of two DMRs that persists until the integration between layer 3 and 
layer 4 which occurs at chrX: 71,459,274–71,521,494 which corresponds to the gene 
RPS4X (Fig. 3C, S18), which is known to escape X-inactivation [51]. To test whether 
this trend of gaps in DMRs mapping to held more generally across regions escaping 
X-inactivation, we performed an enrichment test for CpGs that overlapped genes 
known to escape X-inactivation and CpGs overlapping gaps in DMRs called at each 
layer of DMRscaler’s output. A consensus of genes known to escape or be silenced in 
X-inactivation reported in a 2015 study by Balaton et al. was used for the enrichment 
test [52]. In layers 1, 2, 3, and 4 which were defined by windows of 4, 8, 16, and 32 
adjacent CpGs respectively, the odds ratio between CpGs overlapping gaps between 
DMRs and CpGs overlapping genes that escape X-inactivation were OR = 7.57 
(95% CI 6.38–8.99; p-value = 1.04e-134 Fisher’s exact test), OR = 7.24 (95% CI 
6.07–8.65; p-value = 5.93e-100 Fisher’s exact test), OR = 51.99 (95% CI 30.38–90.33; 
p-value = 4.34e-77 Fisher’s exact test), and OR = 160.44 (95% CI 25.42–6,396.92; 
p-value = 5.93e-100 Fisher’s exact test) respectively. At layer 5 no enrichment was 
detected, as the whole X-chromosome was consolidated into a single feature. Bum-
phunter similarly displayed substantial enrichment, with odds ratios estimated 
between OR ≈ 10–20, however, as noted earlier, bumphunter could not consolidate 
DMRs on the X-chromosome to identify the whole of the X-chromosome as differ-
entially methylated. Comb-p and DMRcate each observed much smaller associations 
of gaps between DMRs and genes escaping X-inactivation with ORs ≈ 1–3 (Table 4). 

Table 4  Enrichment test for association between genes silenced by X-inactivation and DMRs, and 
genes that escape from X-inactivation and gaps between DMRs. Only CpGs on the X-chromosome 
overlapping genes are used in the enrichment test

Method Odds ratio (95% CI) p-value 
(Fisher’s 
Exact)

DMRscaler

Layer 1: 4 adj CpGs 7.57 (6.38–8.99) 1.04e-134

Layer 2: 8 adj CpGs 7.24 (6.07–8.65) 5.93e-100

Layer 3: 16 adj CpGs 51.99 (30.38–90.33) 4.34e-77

Layer 4: 32 adj CpGs 160.44 (25.42–6,396.92) 6.59e-18

Layer 5: 64 adj CpGs 0 (0–319.59) 1

bumphunter

Default: maxGap = 1 kb 14 (11.18–17.61) 7.00E-185

maxGap = 1 Mb 15 (11.95–18.94) 5.36E-193

comb-p

dist = 1 kb, step = 100 bp 2.07 (1.63–2.62) 5.72E-09

dist = 1 Mb, step = 100 kb 0 (0–Inf ) 1

DMRcate

Default: lambda = 1 kb, C = 2 1.27 (1.03–1.57) 0.023608

Lambda = 1 Mb, C = 2000 0 (0–43.86) 1
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These results demonstrate that while the top layer DMR, which spans the X-chromo-
some, correlates most intuitively with the phenomenon of X-inactivation, the explo-
ration of the hierarchical structure of complex DMRs that is enabled by DMRscaler 
can reveal biologically meaningful features such as patterns of genic escape from 
X-inactivation.

The complex hierarchical relation of DMRs within the X-chromosome contrasts 
with the DMRs of the autosomal chromosomes. DMRs on the autosome show little to 
no branching, which implies that these DMRs are stable at each iteration of the algo-
rithm (Additional file 1: Fig. S15). A genome view of one such DMR at chr9: 84,302,344–
84,304,414 highlights this stability, where a feature identified as a DMR at the first layer 
of the algorithm is stable through each subsequent iteration (Fig. 3D, Additional file 1: 
Fig. S18). The gene TLE1 overlaps this DMR and has previously been identified as an 
autosomal gene that is differentially methylated between males and females [53, 54].

The results of the differential methylation analysis between sexes highlights the utility 
of DMRscaler in identifying differential methylation features that exist at dramatically 
different scales in real data. This ability distinguishes DMRscaler from existing methods 
which either are unable to identify larger DMRs while preserving the stability of smaller 
DMRs, as in DMRcate and comb-p, or tend to fragment larger DMR into many smaller 
features, as in bumphunter. A brief analysis of the hierarchical structure that results from 
DMRscaler’s layer merging mechanism reveals how DMRscaler can capture biologically 
meaningful structure within a DMR, such as escape from X-inactivation. This ability to 
represent DMR structure more completely highlights DMRscaler’s potential value as a 
tool for exploring the interactions between features of epigenetic regulation at different 
scales.

Rare chromatin modifier syndromes contain regions of differential methylation spanning 

gene clusters critical for development

Next we analyzed DNA methylation datasets from several rare diseases of chromatin 
modifier genes to see whether DMRscaler revealed novel DMR features that might oth-
erwise be missed by existing methods. Except where stated otherwise, in the following 
sections DMRs are assumed to be those in the most inclusive top layer, Layer 5, which is 
built using all lower layers and is meant to be the most accurate representation of DMR 
features.

First, we compared the DNA methylation profile from fibroblasts from Arboleda-
Tham syndrome patients to control samples. This analysis consisted of 20 samples, 
with 8 patients and 12 controls (Additional file 1: Table S1). All patients were previously 
reported by Kennedy, et al. [7]. In our analysis, DMRscaler identified 390 unique DMRs 
with a median width of 144.59 kb (IQR: 21.1 kb–481.2 kb), resulting in a total genomic 
coverage of 4.9% (151.35  Mb) (Additional file  1: Table  S10, Fig. S19). Over the HOXB 
gene cluster three unique DMRs were identified. The first and second DMRs overlap 
regions of HOXB2, HOXB3 and HOXB4 and is hypomethylated in Arboleda-Tham Syn-
drome patients relative to controls. The second overlaps part of HOXB5 and HOXB6 
and is also hypomethylated in Arboleda-Tham Syndrome patients. The third spans 
HOXB9 and is hypermethylated in Arboleda-Tham Syndrome patients relative to con-
trols (Fig.  4A,B, Additional file  1: Fig. S20). Bumphunter calls many more DMRs over 
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this region that are highly fragmented, including regions missed by DMRscaler. This is 
likely due to the regions called by bumphunter having substantial variance that the Wil-
cox test used to pre-compute p-values for comb-p and DMRscaler being more conserva-
tive than the t-test used by bumphunter. Comb-p with the large distance parameter of 
1  Mb calls the entire region as differentially methylated. The relatively large coverage 
of the genome by DMRs is driven primarily by multi-megabase scale DMRs identified 

Fig. 4  Differential Methylation Analysis in Arboleda-Tham Syndrome. A Hilbert curve of CpGs from chr17, 
outlined is the region corresponding to Chr17:46.59–46.73 Mb, the HOXB cluster. CpGs with FDR < 0.1 are 
highlighted red. Point size is scaled to maximum significance value. B Chr17:46.59–46.73 Mb. HOXB cluster. 
GVIZ track stack plot. Top track shows mean β value per group, next track shows Δβ, where Δβ = βControl−
βArboleda-Tham. Below the gene model track is the DMR track, highlighting the regions called as a DMR at each 
result layer from DMRscaler and from each competing method. C Chr2:81.5–84.5 Mb. Design same as 4A. D 
Chr2:81.5–84.5 Mb. Tracks same as 4B
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spanning relatively gene sparse regions, which other methods are unable to consolidate, 
with the exception of comb-p using a distance parameter of 1  Mb (e.g. Figure  4C, D, 
Additional file 1: Fig. S20).

Weaver syndrome (MIM# 277590), is a rare overgrowth disorder that is caused by de 
novo mutations in EZH2, a histone methyltransferase. Comparing Weaver syndrome 
patient samples to controls, DMRscaler identified 226 unique DMRs with a median 
width of 8.88  kb (IQR: 1.92  kb–30.04  kb). These regions comprised a total of 0.40% 
(12.34 Mb) of the genome (Additional file 1: Table S11, Figure S21).

Over the HOXA gene cluster, DMRscaler identified three distinct DMRs associated 
with Weaver Syndrome. The first spans HOXA1-HOXA2 and is modestly hypermethyl-
ated in Weaver syndrome, the second covers HOX5 and the last two exons of HOX6 and 
is hypomethylated in Weaver syndrome cases relative to controls. The third DMR covers 
the first exon of HOXA10, as well as HOXA11, and HOXA13. This third DMR is gener-
ally weakly hypermethylated in Weaver Syndrome, with a small but significant region of 
hypomethylation just upstream of HOXA11. The other methods all report DMRs over-
lapping these clusters, however they are either fragmented or overly broad (Fig. 5A, B, 
Additional file 1: Fig. S22).

Finally, we also analyzed Sotos Syndrome (MIM# 117550), an overgrowth syndrome 
caused by truncating and missense mutation in the nuclear receptor binding SET 
domain protein 1 (NSD1) gene [55]. Analysis with DMRscaler identified 1776 unique 
DMRs with a median width of 555.13 kb (IQR: 156 kb–1.40 Mb), covering 71% of the 
genome (2.17  Gb), a similar degree of coverage was seen with DMRcate where 282 
DMRs spanned 77% of the genome (Additional file 1: Table S12, Fig. S23). We identi-
fied three unique DMRs at the 32 Adj CpG layer that span gene clusters of protocad-
herins. These DMRs caused by mutations in NSD1 cover the neighboring Protocadherin 
(PCDH) gene cluster PCDHA, PCDHB, and PCDHGB (Fig. 5D, E, S22), which encode 
large transmembrane proteins that are critical for a diverse range of processes rang-
ing from cell-signaling to dendritic arborization [56]. One DMR spans the first exons 
of PCDHA1-PCDHA12, another spans from PCDHB2 to PCDHB19P, and the third 
covers the first exons of PCDHGA3-PCDHGA12 and PCDHB1-PCDHGC5. All of the 
DMRs covering these PCDH clusters are hypermethylated in Sotos Syndrome relative to 
controls, though it is notable that the β values of CpGs across these clusters are highly 
variable reflecting an example of the neighboring CpG heterogeneity described earlier 
(Fig.  5D, Additional file  1: Figs. S22, S4, S5). Notably, only DMRcate with parameters 
λ = 1 Mb, and C = 2000 was also able to call a DMR over this region, however it lacks a 
mechanism to see the interior structure that shows that each of these three clusters is 
seperated by regions of non-differentially methylated CpGs that is captured by DMR-
scaler’s hierarchical output.

These results in rare chromatin modifier syndromes highlight DMRscaler’s utility in 
identifying patterns of differential methylation that exist over broader genomic features 
such as gene clusters.

Analysis of overlapping regions of differential methylation

Following analysis of each syndrome individually, we asked whether there was evidence 
of shared regions differentially methylated between Arboleda-Tham, Sotos, and Weaver 



Page 26 of 34Bondhus et al. BMC Bioinformatics          (2022) 23:364 

syndrome. Between Arboleda-Tham and Sotos syndrome, we identified 652 regions 
with overlapping DMRs (77.3% of total DMRs for Arboleda-Tham, 4.7% of total DMRs 
for Sotos), and 458 genes overlapped by some DMR in both syndromes (11.4% of genes 

Fig. 5  Differential Methylation Analysis in Weaver (A,B,C) and Sotos Syndrome (D,E,F). A Hilbert curve of 
CpGs from chr7, outlined is the region corresponding to Chr7:27.1–27.3 Mb, the HOXA cluster. CpGs with 
FDR < 0.1 are highlighted red. Point size is scaled to maximum significance value. B Chr7:27.1–27.3 Mb. 
HOXA cluster. GVIZ track stack plot. Top track shows mean β value per group, next track shows Δβ, where 
Δβ = βControl−βWeaver. Below the gene model track is the DMR track, highlighting the regions called as a DMR 
at each result layer from DMRscaler and from each competing method. C Chr5:140.1–140.8 Mb over the PCDH 
clusters. Design same as 4A. D.Chr5:140.1–140.8 Mb over the PCDH clusters. Tracks same as 4B. except that 
Δβ = βControl−βSotos
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overlapping a DMR in Arboleda-Tham syndrome, 3.1% of genes overlapping a DMR 
in Sotos syndrome). Between Arboleda-Tham and Weaver syndrome, we identified 48 
regions with overlapping DMRs (1.3% of total DMRs for Arboleda-Tham syndrome, 
14.1% of total DMRs for Weaver syndrome), and 39 genes overlapped by some DMR in 
both syndromes (13.2% of genes overlapping a DMR in Arbolelda-Tham syndrome, 5.6% 
of genes overlapping a DMR in Weaver syndrome). Between the two growth disorders, 
Sotos and Weaver syndrome, we identified 414 regions (0.7% of total DMRs for Sotos, 
91.0% of total DMRs for Weaver) and 282 genes overlapped by some DMR in both syn-
dromes (5.9% of genes overlapping a DMR in Sotos, 93.1% of genes overlapping a DMR 
in Weaver) (Additional file 6: Table S6).

To test the significance of the overlap we tested the odds ratio (OR) of overlap between 
each pair of syndromes. To simplify the analysis and make the measure of the odds ratio 
closer in form to the DMRscaler method, we only used counts of measured CpGs (See 
methods for details). Essentially, the odds ratio tests whether there is enrichment of 
CpGs that are in DMRs in one syndrome in the set of CpGs found in DMRs in the other 
syndrome being compared. OR with a confidence interval (CI) overlapping 1 suggests no 
enrichment, closer to 0 or further from 1 indicates greater enrichment. The raw overlap 
counts used to calculate the OR are in (Additional file 1: Table S7) and the odds ratios are 
reported in (Additional file 1: Table S8). The highest odds ratio was between Sotos and 
Weaver with OR = 17.16 (95% CI 12.27–23.99, p = 1.9e-32 Fisher’s exact test) in Layer 1. 
The OR between Sotos and Weaver drops to OR = 1.55 (95% CI 1.47–1.64, p = 4.6e−56 
Fisher’s exact test) in Layer 5, which is likely due to the extensive genomic coverage by 
DMR features in Sotos syndrome at Layer 5. The next highest odds ratio was between 
Arboleda-Tham and Weaver in Layer 1 with OR = 9.94 (95% CI 5.83–16.94, p = 4.7e-10 
Fisher’s exact test) which gains in significance but drops in magnitude at Layer 5 with 
OR = 3.00 (95% CI 2.71–3.31, p = 3.1e-77 Fisher’s exact test). The OR between Arbo-
leda-Tham and Sotos is relativately small at Layer 1 with OR = 1.72 (95% CI 1.43–2.06, 
p = 5.6e−8 Fisher’s exact test) and drops to non-significance at Layer 5 (Additional file 1: 
Table S8). These results show how DMRs of each of the three syndromes analyzed here 
are enriched in CpGs in DMRs in each of the other syndromes tested here at the lower 
layers output by DMRscaler, where differential CpG density is required to be higher, and 
in particular the strong enrichment between the two overgrowth disorders offers evi-
dence for common epigenetic effects in these disorder and potentially common contrib-
uting factors.

One region of overlap between Sotos and Weaver syndrome was a region overlapping 
INS, and INS-IGF2 proximal to IGF2. This region stood out as a region implicated in 
another growth disorder, Beckwith-Wiedemann syndrome (BWS) [57]. The DMR called 
for Sotos syndrome is just upstream of IGF2 and overlaps INS and INS-IGF2, with sites of 
moderate effect hypomethylation (Δβ > 0.2) (Additional file 1: Fig. S24A). The DMR called 
for Weaver syndrome overlaps the IGF2 gene and is composed of sites with a small effect 
size (Δβ ~ 0.05), with hypermethylation over a region of the IGF2 gene body and hypo-
methylation further upstream overlapping the INS and INS-IGF2 genes. Upstream of 
IGF2 overlapping INS and INS-IGF2 the pattern of hypomethylation in Sotos and Weaver 
syndrome was consistent (Additional file 1: Fig. S24B, Additional file 6: Table S6).
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Across all three syndromes there were 49 genes overlapping some DMR called by 
DMRscaler. Among these were PCDHGA1, PCDHGA2, PCDHGA3, PCDHGA8, PCD-
HGA10, PCDHGB7, PCDHGA11, PCDHGA12, and PCDHGC3 of the PCDHG cluster 
genes, previously discussed in context of Sotos syndrome alone. These genes are worth 
noting as they are involved in neural development. The PCDHG cluster is broadly hyper-
methylated in Sotos, as noted earlier (Fig. 5C, D). In Arboleda-Tham syndrome, there is 
a small DMR intergenic to most of the PCDHG genes in this cluster and positioned at 
the 5′ end of PCDHGC3. In Weaver syndrome there is a DMR with minor hypometh-
ylation at the stretching from the same 5′ end of PCDHGC3 Arboleda-Tham that spans 
through to the shared 3′ end of PCDHG genes. Few of the other methods evaluated are 
able to identify this region of the PCDHG gene cluster in either Arboleda-Tham syn-
drome or Weaver syndrome (Additional file 1: Fig. S25).

The overlapping DMRs and the genes with overlapping DMRs between Arboleda-
Tham, Sotos, and Weaver syndrome reveal a number of shared regions of differential 
methylation and shared genes with patterns of differential methylation. CpGs in DMRs 
in any one syndrome are enriched in CpGs in DMRs of either of the other syndromes 
across all three pairs of syndromes, Arboleda-Tham:Sotos, Arboleda-Tham:Weaver, 
Sotos:Weaver, as measured by the odds ratio. However, these data are derived from dif-
ferent cell types (fibroblast vs blood) and exhibit cell-type specific changes in addition 
to those caused by the genetic mutation. Together these results suggest that while each 
syndrome has a distinct profile of differential methylation, there is also significant over-
lap in regions mirroring shared phenotypic features.

Discussion
The key development of our new method, DMRScaler, is a substantial improvement over 
existing methods in the ability to accurately identify the size of DMRs across the full 
range of epigenetic scale.

Differential methylation analysis between sexes performed with DMRscaler showed 
our algorithm could handle the full range of DMR features present in simulated and 
real-world samples. Looking at the DMRs between XX and XY individuals, DMRscaler 
was able to identify a small DMR 2.1 kb in length overlapping the autosomal gene TLE1 
that had previously been identified as differentially methylated between the sexes [53], 
while also consolidating the differential methylation of the X-chromosome into a single 
DMR 152.13 Mb in length, spanning 98% of the total length of the chromosome.

Additionally, DMRscaler provides the means for a hierarchical definition of a DMR 
that is built through the iterative procedure of merging layers built from increasing 
window sizes. A deeper analysis of the DMR spanning the X-chromosome showed that 
gaps in DMRs at lower layers that were consolidated in the upper layers were signifi-
cantly enriched in genes known to escape X-inactivation, such as RPS4X [51, 52], which 
is concordant with data showing that regions escaping X-inactivation should have a 
similar epigenetic landscape between sexes [52]. These enrichment results show how 
DMRscaler, in addition to providing an intuitive representation of DMRs, also provides 
a mechanism for a hierarchical definition of DMRs that can be used to investigate the 
structure of the methylation landscape across larger epigenomic features. Together these 
behaviors of intuitive scaling and defining a hierarchical map of DMR features allow 
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DMRscaler to be used to achieve greater flexibility and more meaningful interpretation 
of results in analyses of differential methylation than existing methods.

Finally, given our primary interest in leveraging this method for the smaller sample 
sizes in rare-disease studies, we tested DMRscaler on datasets from patients with rare 
chromatin modifier syndromes. Specimens that harbor known pathogenic mutations in 
chromatin modifier genes often display regional changes to epigenetic features, such as 
DNA methylation state [9, 10]. Our study also explored three syndromes that are caused 
by pathogenic mutations in genes that directly control histone modifications.

Arboleda-Tham Sydrome (MIM# 616268), also known as KAT6A syndrome, is a 
genetic syndrome caused by mutations in the Lysine (K) acetyltransferase KAT6A char-
acterized by global developmental delay, intellectual disability, speech delay or absence 
and phenotypes of variable expressivity such as congenital heart defects and gastrointes-
tinal anomalies [7, 58]. KAT6A acetylates histones K3K9, H3K14, and H3K23 [59–61], 
but the genomic regions affected in Arboleda-Tham syndrome have not been compre-
hensively studied. Previously, deletion of KAT6A in model organisms has identified the 
HOX genes, including the HOXB cluster, as regulatory targets of KAT6A [60, 62]. Three 
DMRs identified here were identified by DMRscaler spanning multiple genes of the 
HOXB cluster (Fig. 3), which encompass 2 genes (HOXB3, HOXB4) found in a KAT6A 
knockout mouse model to have shifted domains of expression resulting in homeotic 
transformation of the axial skeleton [60]. The ability to highlight the extent of differential 
methylation beyond a single gene provides further context into the epigenetic change 
that occurs in Arboleda-Tham syndrome.

One limitation of our study is that cases are generally younger in age than the control 
groups. Previous studies have identified global hypomethylation as associated with aging 
[63, 64]. For regions that are largely hypermethylated in Arboleda-Tham Syndrome 
patients relative to controls, we cannot exclude this as a potential confounding factor in 
our analysis.

Weaver syndrome and Sotos syndrome are rare overgrowth syndromes that can be 
difficult to distinguish without sequencing. They are caused by mutations in EZH2 [65, 
66] and NSD1 gene [55], respectively. Despite their common clinical phenotype of over-
growth, the regions of the genome that are identified as differentially methylated largely 
diverge between these two syndromes suggest distinct pathways to a common and com-
plex phenotype. For Weaver Syndrome, DMRscaler identified differential methylation 
over the HOXA cluster genes in Weaver syndrome relative to controls. Genome-wide 
mapping of EZH2 binding domains shows EZH2 binds the HOXA cluster [67] and EZH2 
overexpression in mantle cell lymphoma has been associated with hypermethylation 
over the HOXA cluster [68]. The key improvement is that rather than highlighting indi-
vidual genes [9] as differentially methylated, DMRscaler is able to demonstrate the mod-
ular nature of the genetic regulation by highlighting the non-random spatial relation of 
these features as a pair of DMRs spanning several genes each.

Additionally, DMRscaler identified a novel finding in the neighboring PCDHA, 
PCDHB, and PCDHG clusters as broadly hypermethylated between Sotos syndrome 
patients relative to controls. The protocadherin family genes are critical in cell–cell 
adhesion and involved in the complex patterning of neural circuitry [56]. These same 
genes in the PCDHGA/B cluster were also identified as hypermethylated in Down 
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syndrome human cortex relative to control cortex tissue [69]. From these results we can 
hypothesize that misregulation of the PCDH clusters in brain development may contrib-
ute to the neurodevelopmental phenotype of Sotos syndrome.

Notably, we observed that between the two overgrowth syndromes, Sotos and Weaver 
syndrome, the IGFR2 region including the INS and INS-IGFR2 genes was similarly dif-
ferentially methylated. Loss of normal imprinting regulation of IGFR2 has been impli-
cated in another overgrowth syndrome, Beckwith-Wiedemann Syndrome (BWS) [57]. 
Whether this common difference in DNA methylation proximal to the IGFR2 locus rep-
resents an epigenetic contributor to the overgrowth phenotype or is a consequence of 
the overgrowth phenotype is worth further investigation.

The majority of real-world methylation data is in the form of reduced representation 
platforms that query CpGs in sites that are likely to play a role in gene regulation, such as 
known enhancers and transcriptional start sites. While the distance between the sites are 
variable on an array, our sex chromsome results demonstrate the ability of our method 
to call established DMRs that vary dramatically in size on this reduced representation 
platform. Whole genome bisulfite sequencing (WGBS) offers an alternative to array 
based technologies for querying DNA methylation that offers more complete coverage 
of the genome. While WGBS is technically and analytically challenging and remains pro-
hibitively expensive for routine use, DMRscaler is platform agnostic and time efficient 
on array based data, and so should be readily portable to analysis of WGBS data. Due 
to the wider availability of array based DNA methylation datasets, particularly for rare 
disease cohorts, we decided to test DMRscaler on array data and have left validation on 
WGBS data as a future direction.

Conclusion
Here we have shown that DMRscaler is flexible yet robust in describing the scale of 
DMR features from the local scale of individual promoters and CpG sites, to the DMR 
features that represent chromosome level differences in methylation. All of the analyses 
described were run using a shared parameter set for DMRscaler, which highlights the 
utility to researchers who seek to explore these higher order epigenetic features while 
also describing the local changes with known biological implication, such as changes 
in methylation overlapping the promoter of a gene. Importantly, DMRscaler serves as a 
proof of principle. The idea that important epigenetic features exist beyond the scale of a 
single gene is not new, however, existing methods for DNA methylation analysis do not 
capture this knowledge. Here DMRscaler proves that it is possible to computationally 
capture this intuition, and in doing so reveal novel biological insights.
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