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Meteorological extreme events such as El Niño events are expected to affect

tropical forest net primary production (NPP) and woody growth, but there

has been no large-scale empirical validation of this expectation. We collected

a large high–temporal resolution dataset (for 1–13 years depending upon

location) of more than 172 000 stem growth measurements using dendrom-

eter bands from across 14 regions spanning Amazonia, Africa and Borneo
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in order to test how much month-to-month variation in

stand-level woody growth of adult tree stems (NPPstem)

can be explained by seasonal variation and interannual

meteorological anomalies. A key finding is that woody

growth responds differently to meteorological variation

between tropical forests with a dry season (where monthly

rainfall is less than 100 mm), and aseasonal wet forests

lacking a consistent dry season. In seasonal tropical for-

ests, a high degree of variation in woody growth can be

predicted from seasonal variation in temperature,

vapour pressure deficit, in addition to anomalies of soil

water deficit and shortwave radiation. The variation of

aseasonal wet forest woody growth is best predicted by

the anomalies of vapour pressure deficit, water deficit

and shortwave radiation. In total, we predict the total

live woody production of the global tropical forest

biome to be 2.16 Pg C yr21, with an interannual range

1.96–2.26 Pg C yr21 between 1996–2016, and with the

sharpest declines during the strong El Niño events of

1997/8 and 2015/6. There is high geographical variation

in hotspots of El Niño–associated impacts, with weak

impacts in Africa, and strongly negative impacts in parts

of Southeast Asia and extensive regions across central

and eastern Amazonia. Overall, there is high correlation

(r ¼ 20.75) between the annual anomaly of tropical

forest woody growth and the annual mean of the El

Niño 3.4 index, driven mainly by strong correlations

with anomalies of soil water deficit, vapour pressure

deficit and shortwave radiation.

This article is part of the discussion meeting issue ‘The

impact of the 2015/2016 El Niño on the terrestrial tropical

carbon cycle: patterns, mechanisms and implications’.
1. Introduction
Tropical forest productivity is among the highest of terres-

trial ecosystems [1,2], but the amount of carbon allocated

to woody stems (NPPstem) within tropical forests is highly

variable [3–6]. We here define NPPstem as the productivity

of above-ground woody tissue including trunks and

branches, but excluding fine woody material such as

twigs, and woody coarse roots. NPPstem is not the largest

component of carbon allocation, typically accounting for

only 20–30% of NPP and 5–10% of gross primary producti-

vity (GPP) [7], but, because woody material is long-lived,

it is a major determinant of forest biomass and carbon

residence time.

In this paper, we examine the seasonal and interannual

variation of woody growth (NPPstem) across the tropical

forest biome. Meteorological variation is likely to be an

important control on seasonal changes in NPPstem and has

only rarely been tested [8–11], but never so at a pantropical

scale. Examination of NPPstem variation has largely been lim-

ited to coarse temporal variation at interannual or multi-year

time scales. NPPstem is usually estimated by repeat census of

tree diameters coupled with the use of allometric equations to

translate changes into above-ground biomass. However forest

census intervals typically span multiple years, and this

obscures the relation of NPPstem to seasonal meteorological

variation and meteorological extreme events. Dendrometers

enable much higher resolution tracking of tree growth
(typically monthly resolution for manual dendrometers,

daily for automatic dendrometers), but have not previously

been employed in a consistent multi-site and multi-regional

analysis. Here we present and analyse a uniquely extensive

pantropical dataset of tree growth comprising more than

8725 trees. The standardized protocol for measuring NPPstem

from the Global Ecosystem Monitoring network (www.gem.

tropicalforests.ox.ac.uk) is unique for its use of manual dend-

rometers to provide high temporal resolution (approx. one to

three months), enabling examination of seasonal and

interannual variation in NPPstem.

At an individual level, carbon allocation to NPPstem is

thought to be affected by several biological processes, includ-

ing photosynthetic uptake [7], its balance with respiration

[12–14], tradeoffs in carbon allocation between woody

parts, canopies and roots [7,15–17], source versus sink

driven biological cues [18,19], and most especially the

crown exposure to light [20,21]. However when aggregated

to the stand level, many of these individual-level biological

drivers of growth are marginalized. After all, the amount of

light and rainfall a forest receives and uses is not so much a

function of its stand structure, but of seasonality in weather

and its geographical location. Here we do not specifically

address the non-climatic components of spatial variation in

NPPstem, because this is an inherently more complicated

question where the allocation of carbon to NPPstem is depen-

dent upon a number of interacting factors and processes such

as soil fertility, species composition, and carbon use efficiency

[12,20]. In this study, we purposely do not aim to explain the

biological, disturbance related (e.g. catastrophic tree mortality

events), or other spatially varying abiotic controls (e.g. soil

fertility) upon NPPstem, but rather how month-to-month

meteorological variation can explain seasonal changes in

NPPstem.

Seasonal differences in NPPstem (or xylogenesis) are likely

to be concentrated towards the transition between the dry to

the wet seasons because xylogenesis is inhibited when cell

turgor is low [18], and trees recovering from extreme drought

stress may improve their hydraulic conductivity by replacing

xylem that have cavitated over the dry season [22]. This pat-

tern may be stronger in highly seasonal forests that

experience annual drought stress, whereas differences in the

temporal allocation of carbon to woody growth may be

non-existent in aseasonal forests where few droughts occur

to impair stem hydraulic conductivity. The extent to which

a seasonal increase in woody stem growth reflects an increase

in overall productivity, or simply a shift in carbon allocation

among roots, wood, the canopy and non-structural carbo-

hydrate storage pools remains uncertain. In lowland

Amazonia, allocation shifts were found to be more important

than overall changes in carbon assimilation in explaining

interannual variability in canopy, wood and fine root

growth rates [16,17].

Here, we use the anomalous drought conditions pro-

duced by El Niño events to examine how much spatial and

temporal variation in NPPstem can be explained by purely

meteorological variation. El Niño events tend to increase

temperatures and atmospheric water vapour deficit (VPD)

across the tropics, and cause strong declines in precipitation

in some regions, most notably Amazonia and insular SE

Asia [23]. These meteorological factors are likely to affect

NPPstem through underlying ecophysiological mechanisms.

We focus on relating temperature, VPD, sunlight, cloudiness

http://www.gem.tropicalforests.ox.ac.uk
http://www.gem.tropicalforests.ox.ac.uk


20° N

10° N

0°

10° S

20° S

50° W 0° 50° E

longitude

la
tit

ud
e

100° E 150° E

3000

2200
1800
1400
1200

500

0

Figure 1. The location of the Global Ecosystem Monitoring sites used in this study, overlaid on a map of mean annual precipitation (mm).
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and precipitation metrics to NPPstem. First, negative precipi-

tation anomalies and soil water deficits are likely to impede

growth by increasing soil-root hydraulic resistance [24] and

reducing stem conductance through cavitation [25]. Precipi-

tation deficits from drought can eventually lead to declines

in NPP ([26]; but see [11]). Relating precipitation to forest

growth can be challenging because monthly precipitation

can be decomposed into numerous metrics with greater eco-

physiological relevance, but here we focus on four aspects: a

one-dimensional Thornthwaite–Mather water balance model

from a high-resolution climate product [27], climatic water

deficit (CWD) which is a simpler proxy for sub annually

varying soil water deficit, the maximum climatic water deficit

(MCWD) which represents that maximum CWD for the pre-

ceding 12-months [28], and lagged differences in monthly

precipitation which can serve as a proxy for the transition

between dry and wet seasons. Second, temperature, even in

the tropics, can control or act as a cue for much of the season-

ality of growth and carbon allocation [29,30], yet reductions

in photosynthesis occur when trees are exposed to tempera-

tures beyond their optimum for photosynthesis [31–33].

A recent comparison of an evergreen and semi-deciduous

forest in Panama found that the community temperature opti-

mum closely mirrored the mean maximum daytime

temperature [33]. Thus, positive temperature anomalies

during drought events may push leaves over their optimum

temperature for photosynthesis, increase respiration costs

[34], and by extension reduce the amount of plant expendable

carbon that can be allocated to NPPstem. Alternatively, higher

temperatures may push forest canopies into or beyond their

optimal temperature range and either leading to an increase

or saturation of GPP [35]. Third, high temperatures with

invariant or reduced atmospheric humidity lead to high

VPD, which can induce stomata to close [36–38] even when

soil moisture is non-limiting [39]. Of course stomatal conduc-

tance does not work independent of leaf energy balance, so

positive VPD anomalies may result in a reduction of leaf con-

ductance which may induce higher leaf surface temperatures

and VPDs, and perhaps further reduce photosynthesis.

Finally, shortwave radiation is highly correlated with photo-

synthetic assimilation of CO2. El Niño events can reduce

cloudiness in the same regions where it reduces precipitation,

which results in increased shortwave irradiance. A positive

shortwave anomaly could increase photosynthesis in tropical

regions with weak dry seasons, such as northwest Amazonia

and Borneo [30], although prior evidence suggests an

increase in carbon assimilation may not necessarily manifest

in higher NPPstem [5,7,40].

Specifically, we address the following questions:

(1) How much variation in tropical NPPstem can be explained

by meteorological variation?
(2) What meteorological drivers most affect NPPstem during

Niño–associated drought events?

(3) What is the total annual woody production of the tropi-

cal forest biome, how much does it decline during El

Niño events, and which regions contribute most strongly

to these declines?

2. Methods
(a) Scaling from individuals to forest stand
We employed the standard protocols of the Global Ecosystems

Monitoring (GEM) network, described at gem.tropicalforests.

ox.ac.uk. Simply, constructed manual dendrometer bands

were installed on trees and measured at intervals typically ran-

ging from one to three months across 14 geographical regions

encompassing a large rainfall gradient ranging from highly sea-

sonal dry tropical forests to aseasonal wet tropical forests

(figure 1 and electronic supplementary material, figure S1),

encompassing 50 individual plots. In total, 8725 trees were

attached with dendrometers, and more than 187 000 readings

were taken over 65 plot-years of data. The duration of measure-

ment and number of observations varied across plots (table 1).

Dendrometers were installed on a subset of adult trees (greater

than or equal to 10 cm DBH). The sample coverage and size dis-

tribution of trees with dendrometer bands varied across plots,

and rarely matched the corresponding size distribution from

the full plot census of all adult trees. A nonlinear height allome-

try was derived for each site, and used to update tree height

with every dendrometer measurement (detailed in electronic

supplementary material, §1). The biomass was estimated for

each tree using allometric eqn 4 from Chave et al. [42], with

wood density derived from the Global Wood Density Database

[43,44] for each species or regional-genus mean. The mean indi-

vidual growth rate in Mg C was calculated using a dry-biomass

carbon content of 47.8%. This growth rate was multiplied by the

number of individuals (greater than or equal to 10 cm DBH) in

each plot when the number of trees with dendrometers was

greater than 50% of the number of trees in the plot. We also

applied the mean growth rate to all trees in the plot when

30–50% of the trees had dendrometer bands and the median

DBH of trees with dendrometer bands matched the median

DBH of all trees in the plot to within 5%. When measurements

did not meet these criteria, but still had at least 60 individuals

with dendrometer measurements—size, wood density and esti-

mated height were used to construct nonlinear generalized

additive models (GAMs) to predict growth for each date,

which were then used to predict total carbon accumulation for

each tree in the plot that did not have a dendrometer. The

resulting NPPstem observation is the scaled forest-level woody

growth (in carbon units Mg C month21 ha21) estimated by sum-

ming the observed growth rates from trees with dendrometer

bands, and the sum of tree-level growth predictions over trees

in the plot lacking dendrometer bands. The effects of stochastic

tree mortality events are large upon month-to-month changes in

forest biomass. Our goal was to isolate the climatic signal upon
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only live woody tree growth so we removed the demographic

responses of carbon entering the plot from tree recruitment,

and carbon leaving the plot from tree mortality. To do so,

the regression growth models of each date were applied to a

single fixed date census corresponding to each forest plot.

Finally, it is worth noting that the error from scaling the

individual growth to plot-level NPPstem is not propagated

throughout subsequent analyses on the plot-level estimates

of NPPstem.

(b) Deriving meteorological predictors
Temperature and VPD data time series for each site were derived

from a gridded climate product (TerraClimate) [27]. The Terra-

Climate product is a statistically downscaled (approx. 4 km)

merge between the CRU TSv4.01 empirical climate interpolation

[45] and the JRA-55 climate reanalysis product [46]. Meteoro-

logical time series from TerraClimate were compared with

downscaled site-level meteorological predictions from local

automatic weather stations and the ERA-Interim climate reana-

lysis product (detailed in electronic supplementary material,

§2) [47]. The monthly meteorological estimates from Terra-

Climate corresponded well with the downscaled site-level

meteorological records for most sites (electronic supplementary

material, §2 and figures S2 and S3) with the exception of short-

wave radiation at the Borneo sites. Surface level shortwave

radiation over wet tropical forest regions is not well estimated

by most climate reanalysis products, so we calculated the

three-month moving mean cloud fraction using the satellite-

derived NOAA CDR PATMOS-X v. 5.3 cloud properties product

[48] and the 3-month moving surface level shortwave radiation

estimates from the Clouds and the Earth’s Radiant Energy

Budget product [49].

(c) Estimating the effects of meteorological drivers
upon NPPstem

We calculated the long-term monthly means (m) of monthly diur-

nal min/mean/max values for air temperature (2 m height),

VPD and shortwave radiation. We also calculated precipitation

metrics of water deficit (CWD and MCWD), and a metric of

the wet–dry season transition (detailed in electronic supplemen-

tary material, §2). The monthly anomalies of each meteorological

variable were calculated, and divided by their location-specific

interannual monthly standard deviation. The resulting anomaly

terms are expressed in units of standard deviation (s) from

their long-term monthly mean. It is important to note that both

the m and s terms vary by month and the corresponding forest

plot’s location. For example, a 18C increase above the mean

temperature in the month of August would be less than one

unit s at the Kenya site in the (highly seasonal) Bolivian

Amazon, whereas it would be more than three units s across

all of the (relatively aseasonal) Borneo sites. Therefore, both the

m and s terms have an inherent spatial context.

We fit generalized linear mixed models (GLMMs) and

GAMs to examine how NPPstem is affected by seasonal meteor-

ological variables and their corresponding anomalies. Several of

the meteorological covariates used in the model comparison

process were highly correlated, so we restricted the inclusion

of terms with pairwise correlations to be less than 0.6 (electronic

supplementary material, figure S4) for the final models. GLMMs

and GAMs for nonlinear effects were examined with the MGCV

and rstanarm packages for R [50,51]. We found that most non-

linear terms could be sufficiently represented by piecewise

linear terms by separation of the monthly anomaly term into a

positive or negative anomaly (e.g. see the dry and wet anomaly

terms in figure 2). The exception to this is the shortwave

anomaly term in the seasonal forest model, which most
improved model performance with the usage of a penalized

spline function (figure 2e). The intercept of each observation

was allowed to vary by the corresponding plot (i.e. a random

intercept model). Some amount of stem shrinkage was apparent

in the dendrometer band data in the dry season, but it is not

straightforward to determine the amount of dendrometer

band movement from negative change due to stem desiccation

and positive change due to growth. Thus we opted to allow

the stand-level estimates of woody NPP to be less than 0. In

these negative instances, carbon is not actually lost from the

plot but the stems shrink due to desiccation in the dry season.

The posterior predictions of NPPstem were best modelled by a

shifted Gamma distribution (to account for negative NPPstem)

with a log link function. The final GLMMs were fit within a

Bayesian framework using the rstanarm package for R [51].

Regularizing priors centred over 0 with a standard deviation

of 1 were used in the model in an effort to reduce overfitting.

The final models presented here were selected by comparing

and joining the monthly mean and anomaly terms of each

meteorological variable. The median R2 from the posterior pre-

dictive distribution was calculated for each site with and

without the random intercept term (table 1 and electronic sup-

plementary material, tables S1 and S2). We found that no

single model could predict NPPstem well across all sites: a

model that performed well over seasonal sites had no predictive

ability over aseasonal wet forest sites that lack a discernible

dry season (by convention, when rainfall is less than

100 mm month21). Therefore, we split the data by a precipi-

tation seasonality metric (S) where higher values indicate

greater seasonality of precipitation [41] (table 1). We developed

and tested separate candidate models for seasonal sites

(S . 0.05) with a distinct dry season (electronic supplementary

material, table S1), and aseasonal wet forest sites (S , 0.05)

with no consistent dry season (electronic supplementary

material, table S2).
(d) Scaling to the pantropics
Our final aim was to use the wealth of GEM NPPstem obser-

vations to develop predictions of total wood production

across the tropics and its interannual variability. The final two

seasonal and aseasonal statistical models were used with the

TerraClimate product and the CERES shortwave radiation pro-

duct to generate spatially, time-varying predictions at 0.58
spatial resolution across grid cells with at least 50 km2 of tropi-

cal forest (detailed in electronic supplementary material, §3).

The time series of meteorological variables for producing predic-

tions in the gridded TerraClimate product were truncated at the

ranges from the meteorological conditions estimated across the

GEM sites NPPstem data used in the model fitting process.

Anomaly terms were calculated in the same way as for the climate

time series used for model fitting, where each individual grid

cell’s anomaly was calculated from a long-term climate record

in units of standard deviation. Because the GLMMs were con-

structed in a Bayesian framework, they are inherently

generative in the sense that they can be used to generate a predic-

tive distribution of outcomes, conditional upon the observed data

used to fit the models. We extracted 1000 draws from the predic-

tive posterior distribution to propagate the uncertainty of

meteorologically driven impacts upon predicted NPPstem, and

projected onto a 0.58 grid, corresponding with the CRU TSv

.4.01 product [45]. The 1996–2016 predictions were deseasona-

lized and linearly detrended to calculate the temporally moving

mean anomaly of interannual predicted NPPstem. The magnitude

of the predictions were scaled downward to correspond with the

near current (2016) existing amount of forest cover as determined

by the Global Forest Cover product v1.4 [52]. Because we used a

fixed canopy cover through time, earlier in time estimates of
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predicted NPPstem are slightly negatively biased due to the

decline in tropical forest cover over the prediction period

(1996–2016). The median of the detrended predictions was pro-

jected spatially over two strong El Niño events to show the
spatial distribution of meteorologically produced anomalies in

predicted NPPstem. We compared the detrended and deseasona-

lized predictions of the annual mean of tropical forest predicted

NPPstem with the El Niño 3.4 Index [53].
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3. Results
(a) Quantifying the individual meteorological

components of drought that affect observed NPPstem
Overall, in the seasonal tropical forests the seasonal

(monthly) means of vapour pressure deficit (VPDmeanm),

temperature (Tmeanm) and shortwave radiation (SWmeanm)

structured the seasonal variation of NPPstem (figure 2a,g).

The interannual anomalies of the water deficit anomalies

(Wet and Dry anoms) and the three-month shortwave

anomaly (SWs) best explained the interannual variation of

NPPstem (figure 2a,c,e and electronic supplementary material,

table S1). In the aseasonal wet forests, by contrast, none of the

mean seasonal (monthly) varying meteorological terms could

predict any seasonal variation in NPPstem (electronic sup-

plementary material, table S2). Variation in NPPstem was

better explained, with the three-month VPDmean anomaly,

and to a lesser extent the water deficit anomaly and the

shortwave anomaly being the most influential factors

(figure 2a,b,f,h and electronic supplementary material, table

S2). Other terms such as CWDm, CWDs, MCWDm, MCWDs

and the three-month Tmeans were useful as individual predic-

tors, yet their effect size was reduced when combined with

the other terms in the final models (electronic supplementary

material, tables S1 and S2).

(b) Overall explanatory power of the meteorologically
driven model

Our meteorologically driven final statistical models explained

approximately 52% (35% excluding random effects) and 41%

(20% excluding random effects) of observed NPPstem seasonal

variation for tropical seasonal forests and aseasonal wet for-

ests, respectively. The range in the amount of variation

explained (R2) was large across sites (table 1), but the predic-

tive distribution of the models generally covered the

observed range of NPPstem (figure 2). The R2 of aseasonal

wet forest sites improved the most when allowing random

effects (i.e. variation in plot-specific mean values of NPPstem)

which is due to the general lack of seasonal variation in

NPPstem. Despite the improved performance, the plot-specific

intercept (random effect) acts as a categorical variable that

cannot be applied for upscaling the model across the tropics

so we present conditional model predictions without random

effects (figure 2c–h). A higher degree of predictive ability

was found for sites with strongly pronounced dry seasons

(e.g. the Kenya plots in Bolivia and the Santarém region

plots in eastern Amazonia; figure 3a,c) while the R2 was poor-

est for the more aseasonal sites (e.g. in Borneo) where there

was less seasonal variation in woody growth to explain

(e.g. MLA, SAF; table 1 and figure 3f,g; electronic supplemen-

tary material, figure S5). Despite this apparent increase in

explained variation with increasing precipitation seasonality,

this may be because the aseasonal wet forest model was

estimated using far fewer observations (N ¼ 110) than the

seasonal forest model (N ¼ 674).

(c) Predicted tropical forest NPPstem and its response
to El Niño events

Overall, our pantropical scaling predicts that the mean total

annual above-ground woody production of the tropical
forest biome is 2.16 Pg C yr21, and this varied interannually

in the range 1.96–2.26 Pg C (i.e. 12%) between years 1996

and 2016. Global minima occur during El Niño events, with

Amazonia and insular Southeast Asia being the most

impacted (figures 4 and 5). The spatial anomalies of predicted

NPPstem are not consistent across El Niño events (figure 4).

For example different parts of Amazonia were most strongly

affected by the El Niño events in 1997/1998 and 2015/2016.

Conversely the pronounced negative impact seems spatially

consistent across eastern Borneo, whereas equatorial Africa

may have been moderately negatively affected by the 1997/

1998 El Niño but less so during the 2015/2016 event (with

an important caveat that climatological products for this

data-poor region are particularly unreliable).

The detrended long-term anomaly in predicted NPPstem is

highly correlated with the moving annual average of the El

Niño 3.4 Index (r ¼ 20.7; figure 5). Hence interannual vari-

ation of the total woody growth of the tropical forest biome

can be at least partially predicted from the El Niño 3.4

Index. The interannual anomaly of predicted NPPstem is

most highly correlated with the annual anomalies of VPD

(r ¼ 20.59), but also correlates with water deficit

(r ¼ 20.51), temperature (r ¼ 20.49) and shortwave radi-

ation (r ¼ 20.38). This finding is consistent with inversion

modelling results that show that the carbon cycle of the ter-

restrial tropics is strongly correlated with tropical land

surface temperatures; however, our analysis suggests

that the local mechanistic drivers are more linked to water

deficits, VPD and shortwave radiation than to temperature

(figure 2a,b).
4. Discussion
(a) How much variation in tropical NPPstem can be

explained by meteorological variation?
Using our statistical models, as much as 55% of monthly

woody growth can be predicted for seasonal tropical forests,

and 45% for aseasonal wet forests. This amount of explained

variation on high temporal resolution changes in NPPstem

is not so dissimilar from the variation in forest biomass

changes explained over much longer periods of time by con-

siderably more sophisticated forest simulation models (e.g.

[54,55]). However, the GLMMs presented here should not

be viewed as authoritative, but rather as an initial attempt

to understand and separate the effect of the long-term

mean of month-to-month meteorological seasonality from

interannual meteorological variation upon tropical forest

woody growth. These statistical models are simplistic rep-

resentations of complex biological responses. Tropical

forests have to mitigate several forms of ecophysiological

stress from meteorological variation and in many cases the

underlying ecophysiological mechanisms of tropical forests

response to drought are still not well understood [56]. So it

is noteworthy that the models presented here do have predic-

tive ability across all sites, and that this predictive ability is

greater across the vast majority of tropical forest regions

with rainfall seasonality (Figures 1–3 and table 1).

There are many opportunities to improve the model. The

data used to fit the model are imbalanced across sites

(table 1), with notable data limitations for the aseasonal wet

tropics. By extension the uncertainty and poorer predictive
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performance in the aseasonal wet forest regions is probably

due to data deficiency, which will in many cases improve

over time. The meteorological variables used in this study

are often highly correlated, which precludes the incorpor-

ation of all relevant variables into a linear predictor because

standard statistical methods cannot identify effects that are

highly collinear. The environmental drivers used to model

here also fail to capture temporal directionality. For example,

the water deficit anomaly makes no distinction whether a soil

is on a trend towards drying or wetting. The representation of

temperature in the model also makes no distinction between

short temporal pulses, versus longer sustained warming

trends where acclimation may be more likely to occur.

Next, nonlinear relationships are ubiquitous in plant ecophy-

siology. Stomatal conductance [37,38,57], photosynthesis [58],

plant tissue respiration [34], hydraulic impairment [25] and

soil water conductance [59] are best described by strongly

nonlinear relationships with their corresponding environ-

mental drivers. Yet here we attempt to model an emergent
property of tropical forests (stand-level NPPstem) with two

GLMMs, which are more effective at capturing the mean

field relationships than they are at predicting the extremes.

We acknowledge that modelling NPPstem from a linear set

of meteorological predictors may be biologically unrealistic

and limiting. Future attempts to model the impact of environ-

mental extremes on NPPstem may be much improved by

joining mathematical models of plant ecophysiological com-

ponents into a more process-based statistical hybrid model.

(b) What meteorological drivers most affect NPPstem

during El Niño – associated drought events?
We can only make cautiously qualified statements about the

most important meteorological drivers affecting growth

because this question is hindered by both uncertainty in the

true meteorological conditions, and by insufficient data at

both ends of the extremes of a meteorological variable (e.g.

where observations are needed during both anomalously
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wet and anomalously dry conditions). The effects of VPD are

consistent and large across both the seasonal and aseasonal

wet tropics, but in different ways. In the seasonal forest

model, the effect of VPD only has explanatory power in the

seasonal component, while the interannual anomaly does

not appear to be important. Conversely in the aseasonal

wet tropics, VPD has no effect upon the seasonal component

(as variation is low in the aseasonal tropics; electronic sup-

plementary material, figure S6), but has a large effect in the

interannual anomaly term (figure 2b,h). The impediment of

VPD upon NPPstem is consistent with stomatal conductance

models where VPD incurs a nonlinear stomatal limitation

which restricts CO2 assimilation rates [36,38]. The inability

of the seasonal forest model to isolate a consistent VPD

anomaly effect could be due to the fact that the monthly

range of VPD is far larger in seasonal forest sites (electronic

supplementary material, figure S6), and that the dry season

anomalies would have to be very large in absolute units of

kPa to significantly further impact stomatal conductance,

because the VPD reduction on stomata closure may have lar-

gely already been exerted (a visual diagram is shown in

electronic supplementary material, figure S7).

Both the seasonal forest and aseasonal wet forest models

indicate that the effect of VPD (either seasonal or anomaly) is

especially compounded with anomalies in shortwave radi-

ation. Although the effect of a shortwave anomaly effect

seems important across tropical forests, it appears to reduce

NPPstem far more in seasonal forests than it does for aseasonal

wet forests. Some caution is warranted with respect to rank-

ing of the effects of the VPD, water deficit and shortwave

anomalies because these are correlated, and their relative

importance could change with prediction error from the

gridded climate products. Also despite not presenting an

effect of temperature anomalies, the long-term increase in

air temperature is increasing VPD and may also be pushing

tree communities above their normal acclimated optimum

temperatures for photosynthesis [31–33]. In combination,

an El Niño event that reduces rainfall and increases VPD,

temperature and shortwave radiation will probably work in

conjunction to limit transpiration, increase leaf temperatures,

and by extension reduce photosynthesis [33]. It is noteworthy

that there is little evidence that positive shortwave anomalies
increase NPPstem, as would perhaps been expected in aseaso-

nal forests [60,61].

The effect of soil water deficit is negative upon woody

growth, but this effect is less identifiable in the aseasonal

wet tropics where soil water deficit seldom deviates from

zero. CWD and MCWD have been highly effective metrics

of water deficit in previous studies [11,62], but here we

found TerraClimate’s water deficit estimates to offer greater

predictive ability than (M)CWD. The Thornthwaite–Mather

water balance model used to produce the water deficit esti-

mates in the TerraClimate product may be more effective

than our calculation of (M)CWD because its calculation of

water deficit includes information on soil water holding

capacity and infiltration, and calculates a runoff term. How-

ever, all metrics of water deficit are probably hindered by

both uncertainty in rainfall estimates, and the current state of

high uncertainty around how tropical forest vary their rates

of evapotranspiration both seasonally and interannually [63].

(c) How much do El Niño events suppress tropical
woody growth and what can this tell us about how
tropical forests are likely to respond to climate
change?

The pantropical model predicts pronounced declines in

global tropical forest NPPstem over two strong El Niño

events (8.3% in 1997/1998, and 9% in 2015/2016). The

impacts were largest in the Americas (figure 5) highlighting

the importance of Amazonia in dominating the global

signal because it accounts for around half of total tropical

forest area and is adjacent to the eastern Pacific warm

anomaly during El Niño events. Insular Southeast Asia also

has a substantial influence on the global anomaly, but

Africa appears to have a negligible role as El Niño signals

are weaker and less consistent there. The meteorological tele-

connections caused by El Niño events are not spatially

consistent across events [64]. Similar to other findings that

have correlated tropical air temperatures and El Niño indices

to atmospheric CO2 growth rates [65,66], we have demon-

strated that the variability of total woody production of the

tropics can be well-predicted from the ENSO 3.4 index. We
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should note that our study period does not include a major

stratospheric aerosol volcanic eruption, the last major one of

which being that of Mt. Pinatubo in 1991, and some models

suggest that such eruptions alter vegetation productivity

through increasing diffuse light [67] (not tested as meteoro-

logical predictor in our analysis) which could weaken the

correlation with ENSO. While NPPstem is not necessarily a

good proxy for overall GPP or net ecosystem exchange, as

there are likely to be concurrent shifts in plant respiration

and carbon allocation [7], a depression in NPPstem still prob-

ably indicates ecophysiological stress imposed upon the

ecosystem [11].

Our analysis is driven by growth responses to seasonal

variation and interannual anomalies, whereas growth

responses to short-term variation in VPD and temperature

may not be the same as long-term growth responses to secu-

lar shifts in these meteorological variables. It is possible that

ecosystems acclimate to longer-term shifts (either through

within-individual acclimation within limits, or on longer

timescales through turnover in community dominance).

Our analysis also does not consider changes in demography,

so shifts in either recruitment or mortality could either act to

counterbalance or exacerbate the magnitude of our predic-

tions. For example, Qie et al. [68] did not find an impact

upon woody productivity over a network of Borneo plots

during the 1997/1998 El Niño, but did find marked increases

in mortality. The discrepancy between these two different

approaches to estimating the effect of El Niño upon live

tree woody productivity over Borneo is not surprising

because temporally punctuated depressions of growth are

difficult to quantify with multi-year census intervals, our

methodological approach removes the contribution of recruit-

ment to NPPstem, and because the effect of the 1997/1998 El
Niño may have been spatially heterogeneous over Borneo

(figure 4). Finally additional environmental variables come

into play, in particular the secular increase in atmospheric

CO2, which may boost productivity and increase water use

efficiency. Nevertheless, our analysis does highlight the

potentially important role of increasing temperatures and

VPD. Changes in atmospheric water demand may be more

important than changes in seasonal water supply in driving

ecosystem water stress in the aseasonal wet tropics, and

deserve more analytical attention. It is worth noting that

the peak temperatures and VPDs experienced during the

2015/2016 El Niño were higher than for the 1997/1998 El

Niño (electronic supplementary material, figure S8), because

of the long-term warming trend between these events. The

baseline upon which each anomaly sits is consistently shift-

ing towards a hotter, higher VPD atmosphere, pushing

ecosystems into new climate space.

Moving forward, the predictions here need to be chal-

lenged so we encourage collection and development of

similar seasonally monitored dendrometer band datasets

that can be applied to the same stem-to-stand scaling tech-

niques used here. It should also be possible to draw on a

wide set of dendrometer data collected by unconnected

studies (some in the grey literature) to improve the span of

the dataset. Because these predictions deal with a specific

component of ecosystem carbon, few empirical measures

are available to test our model predictions. Ecosystem

models still struggle to simulate realistic ecophysiological

impacts from drought [69], while they also have vastly differ-

ent approaches to carbon allocation that may produce

unrealistic predictions [3,70–72]. Earth System Models typi-

cally represent the entirety of the tropical forest biome with

a very few plant functional types. Our analysis highlights a
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key difference between seasonal and aseasonal wet forests in

the underlying meteorological drivers that suppress woody

growth during drought events. This message is consistent

with Guan et al. [73], who highlighted different phenological

and photosynthetic responses between tropical forests

receiving more or less than 2000 mm yr21 in precipitation,

suggesting an important functional ecotone in the tropical

forest biomes. The ‘empirical upscaling’ spatio-temporal pro-

ducts developed from applying ensembles of machine

learning models to global FluxNet data [74] have served as

a benchmark of sorts to ecosystem models in recent years.

However comparison to our NPPstem predictions may not

be straightforward because NPPstem is a poor proxy for

both GPP and total NPP in the wet tropics [3,7,16], and

there are very few eddy covariance time series in the tropics

outside of Brazil. Thus we reiterate the need for more collec-

tion of seasonally monitored tropical forest NPPstem data,

because the causal attribution of what drives variability in

carbon allocation is still an emerging science. A logical next

step is also to expand this analysis to other components of

NPP and respiration, and thereby to total NPP and carbon

balance. This will be the focus of our forthcoming analyses.

Data accessibility. Stand-level NPPstem used in this study will be
uploaded as electronic supplementary material. Code, processed
GEM data and predictive products are available at: git@gitlab.
com:sw-rifai/El_Nino_StemNPP.git
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