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Abstract
Purpose Circulating tumor DNA (ctDNA) testing has become a promising tool to guide first-line (1L) targeted treatment for 
advanced non-small cell lung cancer (aNSCLC). This study aims to estimate the clinical validity (CV) and clinical utility 
(CU) of ctDNA-based next-generation sequencing (NGS) for oncogenic driver mutations to inform 1L treatment decisions 
in aNSCLC through a systematic literature review and meta-analysis.
Methods A systematic literature search was conducted in PubMed/MEDLINE and Embase to identify randomized control 
trials or observational studies reporting CV/CU on ctDNA testing in patients with aNSCLC. Meta-analyses were performed 
using bivariate random-effects models to estimate pooled sensitivity and specificity. Progression-free/overall survival (PFS/
OS) was summarized for CU studies.
Results A total of 20 studies were identified: 17 CV only, 2 CU only, and 1 both, and 13 studies were included for the meta-
analysis on multi-gene detection. The overall sensitivity and specificity for ctDNA detection of any mutation were 0.69 
(95% CI 0.63–0.74) and 0.99 (95% CI 0.97–1.00), respectively. However, sensitivity varied greatly by driver gene, ranging 
from 0.29 (95% CI 0.13–0.53) for ROS1 to 0.77 (95% CI 0.63–0.86) for KRAS. Two studies that compared PFS with ctDNA 
versus tissue-based testing followed by 1L targeted therapy found no significant differences. One study reported OS curves 
on ctDNA-matched and tissue-matched therapies but no hazard ratios were provided.
Conclusions ctDNA testing demonstrated an overall acceptable diagnostic accuracy in patients with aNSCLC, however, 
sensitivity varied greatly by driver mutation. Further research is needed, especially for uncommon driver mutations, to better 
understand the CU of ctDNA testing in guiding targeted treatments for aNSCLC.

Key Points 

ctDNA testing demonstrated an overall acceptable 
diagnostic accuracy in patients with aNSCLC, however, 
sensitivity varied greatly by driver mutation.

Further research is needed on ctDNA testing, especially 
for uncommon driver mutations, to better understand 
its clinical utility in guiding targeted treatments for 
aNSCLC.
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1 Introduction

Non-small cell lung cancer (NSCLC) accounts for an 
estimated 85% of lung cancer cases, with adenocarcinoma, 
squamous cell carcinoma, and large cell carcinoma 
being the most common histological subtypes [1]. The 
estimated 5-year survival is only about 6% in patients 
with advanced-stage disease [2, 3]. In the past decade, 
more than 20 targeted therapies have been approved for 
the treatment of advanced NSCLC (aNSCLC) in patients 
who harbor EGFR, BRAF, MET, RET, NTRK, KRAS, ALK, 
or ROS1 alterations [4]. Targeted treatment according 
to the presence of oncogenic driver mutations has been 
associated with improved survival outcomes [4–6], and 
current National Comprehensive Cancer Network (NCCN) 
guidelines specifically recommend that all patients with 
aNSCLC should get broad genomic profiling with next-
generation sequencing (NGS), given its more optimal 
use of sample availability, reduced procedure time, and 
favorable testing costs compared with single-gene tests 
[7–9].

In recent years, there has been an increase in the use of 
circulating tumor DNA (ctDNA) from blood samples as an 
alternative to tissue biopsy (TB) for identifying oncogenic 
driver mutations to inform first-line (1L) aNSCLC therapy 
[10]. Advantages of ctDNA testing include the avoidance 
of an invasive procedure and possible complications, 
the ability to identify driver mutations for patients with 
limited tissue availability for comprehensive NGS, and 
shorter turnaround time allowing for faster initiation of 
1L therapy [11]. Furthermore, solid tumors often exhibit 
intratumoral heterogeneity, which means a single TB may 
not fully capture this heterogeneity, as it only represents 
a small sample from one location within the tumor. In 
these cases, ctDNA may provide a more comprehensive 
representation of the tumor’s genetic landscape. Several 
ctDNA-based NGS tests have been developed and 
approved for NSCLC, including  Guardant360® CDx and 
 FoundationOne®Liquid CDx [12, 13].

However, the diagnostic accuracy of ctDNA testing 
remains unclear due to variations in technologies and use 
scenarios [14, 15]. With the broadened adoption of ctDNA-
based NGS tests in NSCLC, a better understanding of their 
clinical validity (CV) and clinical utility (CU) is needed. 
Clinical validity usually describes the diagnostic accuracy 
of genetic tests and is generally measured by sensitivity, 
specificity, positive predictive value (PPV), and negative 
predictive value (NPV) [16, 17]. Without proper validation 
of test performance, accurate identification of mutations 
may be compromised, leading to delays in suitable clinical 
decisions. Previous systematic literature reviews have 
examined the CV of ctDNA testing in aNSCLC patients 

but findings have been inconsistent due to varied review 
focus and inclusion criteria [18–26]. Most of the previous 
systematic literature reviews and/or meta-analyses [18, 19, 
22, 23, 25, 26] did not specify sequencing technologies, 
which could potentially explain the observed heterogeneity 
in findings and limit their clinical implications in relation 
to the currently more recommended NGS tests.

Clinical utility refers to the risks or benefits from test use 
and in our study is measured as progression-free or overall 
survival (PFS/OS), considering the therapeutic effectiveness 
outcomes are the most relevant and commonly reported 
measure in CU studies and that the focus of our review is 
1L targeted treatment informed by ctDNA testing [27–29]. 
CU evidence directly answers if a test is useful in improving 
patient health outcomes—it is an essential element in value 
evaluation and affects the acceptance of a test from all 
parties (patients, healthcare providers, and payers). To our 
knowledge, no study has systematically reviewed the CU 
of ctDNA testing for a comprehensive set of biomarkers to 
inform 1L treatment decisions in aNSCLC.

Given the rapidly evolving field of ctDNA testing 
technologies and the limitations of previous review studies, 
an updated synthesis of CV and CU evidence is warranted. 
The objective of the current study was to estimate the 
CV and CU of ctDNA-based NGS for oncogenic driver 
mutations to inform 1L treatment decisions in aNSCLC by 
means of a systematic literature review and meta-analysis of 
currently available evidence.

2  Materials and Methods

2.1  Systematic Literature Review

2.1.1  Eligibility Criteria

The study inclusion criteria were defined in terms of the 
population, interventions, comparisons, outcomes, and study 
design (PICOS) to guide the identification and selection of 
relevant studies. Population: adult patients with aNSCLC 
(at least 80% with stage III or IV, thereby making the 
assumption that reported results based on the total study 
population are still applicable to the stage III or IV NSCLC 
target population of interest), with a subset of treatment-
naïve patients for CV studies and all being treatment-naïve 
for CU studies; interventions: ctDNA-based NGS especially 
for the detection of clinically relevant driver mutations (i.e., 
EGFR, BRAF, MET, RET, NTRK, KRAS, ALK, ROS1), and 
when outcome of interest is CU at least 80% of population 
receiving matched targeted treatment by driver mutation 
according to current NCCN guidelines [7]; comparators 
for CU studies: ctDNA testing versus TB; outcomes in 
CV studies: sensitivity, specificity, PPV, NPV or any other 
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measures that allow for the calculation of true positive (TP), 
false positive (FP), false negative (FN), and true negative 
(TN) rates; outcomes in CU studies: PFS or OS; study 
design: cohort studies or randomized clinical trials. Studies 
were excluded if the study population excluded patients 
with any of the eight clinically relevant driver mutations; 
published in a non-English language; published before 2012 
[1 year before the first Food and Drug Administration (FDA) 
approval of liquid biopsy test]; and were review articles or 
conference proceedings.

2.1.2  Study Identification

Relevant studies published between January 2012 and July 
2023 were identified by searching MEDLINE and Embase 
databases with predefined search strategies (Supplementary 
File, Table S2) through the Embase platform. Furthermore, 
the official websites of three commonly used ctDNA 
tests  (Guardant360® CDx,  InvisionFirst®-Lung, and 
 FoundationOne® Liquid CDx) as well as reference lists of 
included studies and previous systematic literature reviews 
[18–26] were searched for additional potentially eligible 
studies.

2.1.3  Study Selection

Two reviewers (C.C. and M.D.) screened the identified 
abstracts using an open-source, active learning software/
platform, ASReview, following recommended approaches 
for automated screening [30–34]. Studies identified as 
eligible during abstract screening were subsequently 
screened at a full-text stage by the same two reviewers 
according to the eligibility criteria to determine the final 
set of included studies. Following reconciliation between 
the two investigators, a third reviewer (J.J.) was included 
to reach a consensus for any remaining discrepancies. The 
process of study identification and selection was summarized 
with a Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) flow diagram.

2.1.4  Data Extraction

Two reviewers (C.C. and M.D.) extracted data on study 
characteristics, test and intervention characteristics, patient 
characteristics, and outcomes for the final list of included 
studies. Data were stored and managed in a Microsoft Excel 
workbook, and included the following. Trial characteristics: 
author name, publication year, country, sample size, 
oncogenic driver mutations of interest, study duration, 
and patient in/exclusion criteria; patient characteristics: 
disease stage, smoking status, race/ethnicity, gender, and 
age; test and intervention characteristics: ctDNA and 
NGS technologies and in addition for CU studies, targeted 

treatment regimen; outcomes in CV studies: overall and 
oncogenic driver mutation-specific sensitivity, specificity, 
TP, FP, FN, TN; and outcomes in CU studies: PFS and/or 
OS.

2.1.5  Quality Assessment

Two authors (C.C. and M.D.) independently assessed the 
quality of included CV studies on the basis of the revised 
Quality Assessment of Diagnostic Accuracy Studies-2 
(QUADAS-2) criteria [35]. Discrepancies were resolved by 
consensus.

2.2  Analysis

Study-specific, sample (mutation)-level TP, FP, FN, and TN 
frequency data for oncogenic driver mutations were used 
to estimate the overall and mutation-specific sensitivity 
and specificity for each study as well as across studies by 
meta-analyses. The overall sensitivity and specificity were 
estimated on the basis of studies that simultaneously tested 
at least four driver mutations. Study-specific sensitivity 
and specificity estimates along with 95% confidence 
intervals (95% CIs) were obtained according to the Wilson 
method using continuity corrected cell counts [36, 37]. 
The bivariate random-effects model proposed by Reitsma 
et  al. (2005) utilizes the standard frequentist approach 
and was used in our study to obtain pooled estimates for 
sensitivity and specificity [38–40]. Meta-analysis results 
were also presented with summary receiver operating 
characteristics (SROC) curves and 95% confidence regions 
for the pooled sensitivity and specificity estimates. In 
addition, as a sensitivity analysis, a Bayesian bivariate 
random-effects meta-analysis was performed to avoid 
normal approximations of the likelihood and to obtain 
predictive distributions of the sensitivity and specificity to 
predict results in a new study. The Bayesian method offers 
unique advantages in managing uncertainty when dealing 
with limited or heterogeneous data and allows for a more 
flexible and informative analysis, providing a range of 
plausible values for sensitivity and specificity rather than 
a single point estimate. This is particularly valuable in 
the context of ctDNA testing, where the performance of 
assays may vary due to multiple factors. Our dual approach 
of using both frequentist and Bayesian methods offers 
complementary insights into the performance of ctDNA 
testing and helps manage the uncertainty inherent in meta-
analyses of diagnostic accuracy studies. Both the frequentist 
and Bayesian approaches used in our study modeled the 
sum and differences of true positive and false positive 
rates as random effects. The Bayesian receiver operating 
characteristics (BSROC) curves and Bayesian area under the 
BSROC curve (BAUC) were reported with 95% CI for the 
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ctDNA detection of any and each driver mutation. An AUC 
of 0.7 or higher is generally considered good accuracy and 
0.6–0.7 is considered sufficient; an AUC below 0.5 indicates 
the test is not useful [41]. There is no standard for good 
sensitivity/specificity of DNA testing. A ctDNA test might 
be considered acceptable for coverage if its performance 
is similar to the FDA-approved  Guardant360® [42]. All 
analyses were conducted using RStudio, version 4.1.2 
(©2009–2022 RStudio, PBC) using packages “mada” and 
“bamdit.” [38, 43] Progression-free/overall survival (PFS/
OS) was summarized for CU studies.

3  Results

3.1  Study Selection

Our initial search generated 1749 potentially relevant 
publications. After screening titles and abstracts, 58 
publications were selected for full-text review. A total of 20 
publications corresponding to 20 studies were selected for 
inclusion (Fig. 1); 17 studies [44–60] reported CV only, 2 
study [61] reported CU only, and 1 study [62, 63] provided 
information on both CV and CU.

3.2  Clinical Validity of ctDNA Testing to Identify 
Oncogenic Driver Mutations

3.2.1  Characteristics of Included Studies

The majority of the included CV studies [45–47, 49–51, 
53–60, 62] used a prospective cohort design (83.3%, 15/18), 
and three studies [44, 48, 52] used retrospective medical 
record data. All studies evaluated ctDNA-based NGS 
technologies, with 11 studies [44–46, 48–52, 58, 60, 62] 
evaluating branded ctDNA tests and 7 studies [47, 53–57, 
59] describing the ctDNA technologies without a specific 
brand name (Table 1).  Guardant360® was the most used 
ctDNA technology (33.3%, 6/18). TB was the reference 
standard in all included studies.

In total, seven studies [45, 46, 50, 51, 55, 56, 62] included 
only untreated patients, five studies [44, 47, 48, 53, 58] 
included 24–92% of untreated patients, and in six studies 
[49, 52, 54, 57, 59, 60] the proportion of untreated patients 
was unclear. Among studies reporting patient racial/ethnic 
information [46, 51, 52, 62], most patients were Caucasian 
(Table S3). The type of driver mutations examined differed 
across studies. No study reported CV on all eight clinically 
relevant driver mutations. Most of the studies evaluated 
ctDNA detection of EGFR (77.8%, 14/18) and KRAS 

Records identified from:
Embase (n = 1749)

Records removed before
screening:

Duplicate records removed
(n = 0)
Records marked as ineligible
by automation tools (n = 0)
Records removed for other
reasons (n = 0)

Records screened
(n = 1749)

Records excluded:
By human (n = 880)
By ASReview* (n = 869)

Reports sought for retrieval
(n = 128)

Reports not retrieved
(n = 79)

Reports assessed for eligibility
(n = 49)

Reports excluded:
Population (n = 8)
Study Design (n = 9)
Comparators (n = 5)
Irrelevant technology (n = 13)
Outcome (n = 2)

Records identified from:
1) Websites (n = 1)
2) Studies included in
previous systematic literature
reivews on CV of LB (n = 7)
3) Citation searching (n=1)

Reports assessed for eligibility
(n = 9)

Reports excluded:
Population (n = 1)

Studies included in review
(n = 20)
Reports of included studies
(n = 20)

Identification of studies via databases Identification of studies via other methods
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Reports sought for retrieval
(n = 9)
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Fig. 1  PRISMA flowchart of included studies. *ASReview is an open-source, active-learning software for screening titles and abstracts for 
systematic reviews
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(61.1%, 11/18), and 13 studies reported CV information on 
six or more mutations (Table S4).

Four studies were found to have no risk of bias or 
applicability concerns and nine studies had two or fewer 
items of concern according to the QUADAS-2 instrument 
(Table S16). Eight studies were found to have unclear-risk 
items, indicating potential issues with the reporting of CV 
evidence.

3.2.2  Overall Sensitivity and Specificity for Detection 
of Any Guideline‑Recommended Oncogenic Driver 
Mutation

Overall sensitivity for the detection of any driver mutation 
varied between 0.52 and 0.81 across 13 studies that 
simultaneously detected four or more driver mutations 
(Fig.  2 and Supplementary File Table S4). The overall 
specificity varied between 0.88 and 1, with 11 studies 
reporting a specificity value of 0.90 or higher. There was 
a small degree of between-study heterogeneity regarding 
sensitivity and specificity (I2 = 20%) [64]. The pooled 
sensitivity obtained with meta-analysis using the frequentist 
approach was 0.69 (95% CI 0.63–0.74) and the pooled 
specificity was 0.99 (95% CI 0.97–1.00). Bayesian meta-
analysis generated similar pooled estimates: sensitivity 
= 0.70 (95% CI 0.60–0.79); specificity = 0.99 (95% CI 
0.97–1.00). The SROC curves with both approaches and 
the 95% confidence regions for the pooled sensitivity and 
specificity estimates are in Fig. 3. The BAUC was 0.71 (95% 
CI 0.68–0.73). In general, overall sensitivity was higher 
in studies that used branded ctDNA tests compared with 
studies that did not describe tests with a specific brand name, 
except for the ResBio ctDx_Lung used in the study by Sabari 
et al. Overall specificity was high regardless of the ctDNA 
test used. We did not observe a positive relationship between 
sensitivity/specificity and study quality.

3.2.3  Sensitivity and Specificity by Oncogenic Driver 
Mutation

An overview of meta-analysis results of sensitivity and 
specificity by oncogenic driver mutation is presented 
in Table  2. Corresponding SROCs and study-specific 
estimates are provided in Supplementary File, Tables 
S6–S12 and Figs. S2–S22. Sensitivity and specificity 
for detecting EGFR with ctDNA were reported in 14 
studies [46, 47, 49–58, 60, 62]. Study-specific sensitivity 
estimates varied between 0.56 and 0.83, and specificity 
estimates varied between 0.68 and 1 (Fig. S2). The 
pooled sensitivity and specificity as estimated with the 
meta-analysis were 0.68 and 0.98, respectively, with a 
BAUC of 0.71 (95% CI 0.68–0.73). Pooled sensitivity for 
the other driver mutations was generally less than 0.70 Ta
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(except 0.77 for KRAS), but specificity was close to 1. 
The pooled sensitivity for each driver mutation detection 
was generally higher for branded ctDNA tests compared 
with tests that were not described with a specific brand 
name; overall pooled specificity was still high regardless 
of ctDNA tests used. We also conducted an analysis of 

sensitivity and specificity of ctDNA testing for detecting 
different mutation classes, including SNVs, indels, and 
fusions. We found that only SNVs are associated with an 
acceptable BAUC of 0.72 (95% CI 0.70–0.74), while the 
other mutation classes demonstrated a BAUC of around 
0.52 (Tables S13–S15, Figs. S23–S31).

Fig. 2  Forest plot of sensitivity and specificity of ctDNA testing for multi-gene detection from bivariate random-effects meta-analyses (n = 13). 
Sensitivity and specificity of single studies were based on frequentist estimations. I2 = 20% based on the frequentist approach

(a) SROC (frequen�st approach): (b) SROC (Bayesian approach):

Fig. 3  Summary receiver operating characteristics (SROC) plots 
based on frequentist and Bayesian bivariate random-effects meta-
analyses (n = 13): a each triangle identifies the true positive rate 
versus the false positive rate (1 − specificity) of each study (observed 
data); the black circle represents the summary estimate, and the 
solid contour shows the 95% confidence region around the summary 
estimate; the dotted contour indicates the 95% prediction region 

(the region within which a new study will lie); b the panel shows 
the Bayesian summary receiver operating characteristics (SROC) 
curve; each blue circle indicates the true positive rate versus the false 
positive rate (1 − specificity) of each study, and different sizes are 
used for different sample sizes; the central line corresponds to the 
posterior median and the upper and lower curves correspond to the 
quantiles of 2.5% and 97.5%, respectively
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3.3  Clinical Utility of ctDNA Testing to Inform 1L 
Treatment in Patients with aNSCLC

Three studies evaluated the CU of ctDNA testing to 
inform 1L targeted therapy [61–63]. Madison et  al. 
compared PFS among patients on matched 1L therapies 
following comprehensive genomic profiling of ctDNA 
 (FoundationOne®Liquid or FoundationACT ®) and TB 
 (FoundationOne®CDx or  FoundationOne®) using data 
from the Flatiron Health-Foundation Medicine Clinico-
Genomic Database [61]. Median PFS in the ctDNA group 
(n = 33) was 13.8 (95% CI 8.9–NA) months and 10.6 (95% 
CI 8.7–13.6) months in the TB group (n = 229). The hazard 
ratio of ctDNA versus TB regarding PFS was 0.68 (95% 
CI 0.36–1.26) – not statistically significant. OS was only 
reported according to matched or unmatched 1L treatment 
but not specifically for TB and ctDNA. Palmero et  al. 
reported PFS for 41 patients treated with 1L targeted therapy 
informed by ctDNA or TB testing  (Guardant360®) (median, 
8.6; 95% CI 7.6–11.6 months) [62]. According to the 
reported Kaplan–Meier (KM) curves, PFS was comparable 
between these two groups. Jee et al. reported OS for ctDNA-
matched (median OS of 39 months) and tissue-matched 
treatment-naïve patients (29 months), however, they did not 
provide a relative treatment effect estimate independent of 
whether driver mutations were detected with ctDNA to infer 
the clinical utility of ctDNA relative to TB testing [63].

4  Discussion

Our meta-analyses showed that ctDNA testing 
demonstrated acceptable sensitivity and high specificity 
for detecting any guideline-recommended oncogenic 
driver mutation. However, the sensitivity of ctDNA testing 
varied widely by driver mutation. Pooled sensitivity 
estimates indicated acceptable performance for KRAS, 
but estimates were less than 70% for the other driver 
mutations. Specificity of ctDNA testing was high for all 
mutations. Evidence regarding the CU of ctDNA testing 

relative to TB was limited. According to a single study, 
there was no difference in PFS between ctDNA and TB 
tests followed by 1L targeted therapy.

To our knowledge, this is the first systematic literature 
review and meta-analysis specifically focused on the 
diagnostic performance of ctDNA testing for multi-gene 
detection with NGS in patients with aNSCLC to inform 
1L targeted therapy. In contrast to previous systematic 
literature reviews/meta-analyses on ctDNA detection 
of EGFR or KRAS, [18, 22, 23, 25, 26] we assessed the 
diagnostic accuracy of ctDNA for detecting multiple 
driver mutations simultaneously rather than focusing 
on single mutation, thereby providing more relevant 
information for routine clinical practice where ctDNA-
based NGS is rapidly being adopted. Meta-analysis 
of diagnostic accuracy can be performed on the basis 
of results reported at the patient level, or the sample 
(mutation) level. Previous meta-analyses mostly reported 
ctDNA performance at the patient level [18, 22, 23] or 
did not specify the data level [19, 20]. We used sample-
level data to facilitate diagnostic performance by driver 
mutation as well as mutation class, which allows for a 
more detailed assessment of the CV of ctDNA testing and 
more mutation-specific information.

In our systematic review, we included any study 
evaluating ctDNA testing for which the study population 
included at least 80% patients with aNSCLC and any 
proportion of treatment-naïve patients, which did not strictly 
align with our target patient population of interest— patients 
with aNSCLC initiating 1L treatment. The reason to cast 
a wider net was to ensure we did not miss any study that 
reported relevant subgroup results. In the actual meta-
analyses of CV, we only included data for patients with 
aNSCLC. Some of these studies included both treatment-
naïve and treatment-experienced patients, however, we 
do not have reason to believe that this has (externally) 
biased the estimates of diagnostic accuracy focused on the 
presence of driver mutation for the 1L target population. If 
we excluded studies comprising not only treatment-naïve 
patients, the evidence base would have been limited.

Table 2.  Results from frequentist bivariate random-effects meta-analyses of ctDNA testing for single-gene detection

Studies with 0 positive cases (based on the reference standard—tissue biopsy) were excluded from analyses.

No. of studies No. of samples Sensitivity (95% CI) Specificity (95% CI)

EGFR 14 2047 0.68 (0.62, 0.74) 0.98 (0.95, 0.99)
KRAS 11 1067 0.77 (0.63, 0.86) 0.96 (0.90, 0.98)
BRAF 8 920 0.60 (0.39, 0.77) 0.99 (0.99, 1.00)
ALK 6 889 0.59 (0.45, 0.73) 0.99 (0.98, 1.00)
ROS1 4 631 0.29 (0.13, 0.53) 0.99 (0.97, 1.00)
MET 5 927 0.47 (0.33, 0.62) 0.98 (0.97, 0.99)
RET 3 478 0.38 (0.21, 0.58) 0.99 (0.97, 1.00)
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The available evidence base regarding the CV and CU 
of ctDNA was limited. The CV studies had small sample 
sizes, which made it challenging to reliably estimate 
sensitivity for rare driver mutations. Regarding the 
risk of bias, we did not identify any concerns for only 
four studies. Although we did not observe a difference 
in overall diagnostic performance between higher and 
lower quality studies, the limited evidence base makes 
interpretation of this observation difficult. Similarly, 
the limited number of studies did not make it feasible 
to reliably evaluate potential drivers of between-study 
differences in ctDNA testing performance either. We 
observed a difference in test performance between branded 
and non-branded ctDNA tests. The overall sensitivity was 
higher for branded ctDNA tests, such as  Guardant360® 
CDx (the most common in individual studies), compared 
with non-branded tests. This difference could be attributed 
to the fact that branded ctDNA tests have undergone 
extensive validation and regulatory approval processes, 
ensuring their reliability and performance. In contrast, 
non-branded ctDNA tests are often developed in-house 
by individual laboratories or research institutions and may 
lack the same level of validation and standardization as 
their branded counterparts. Additionally, only ten studies 
reported the time interval between ctDNA and tissue 
testing, with the number of days varying significantly 
among these studies (ranging from ≤ 1 day to a median of 
207 days). The prolonged interval between testing could 
potentially expose patients to the emergence of new driver 
mutations, which may influence false-positive rates.

Despite the limitations of the available evidence base, 
the CV findings from our study can have important clinical 
implications for the role of ctDNA testing in NSCLC. 
Our results support current guidelines that recommend 
ctDNA testing as a complementary approach rather than a 
replacement for TB to inform 1L therapy, unless there is 
insufficient tissue for NGS or risks of biopsy are excessive 
[7, 65]. This is particularly relevant for specific driver 
mutations such as EGFR and KRAS, which had much higher 
detection rates than ROS1 or ALK. This could indicate the 
potential benefits of ctDNA testing in clinical practice to 
help guide the selection of appropriate 1L targeted therapies, 
particularly for patients with more common driver mutations 
such as EGFR and KRAS. For example, detecting EGFR 
mutations through ctDNA testing can prompt the use of 
EGFR tyrosine kinase inhibitors (TKIs: erlotinib, gefitinib, 
afatinib, dacomitinib, osimertinib) as 1L treatment, which 
have been shown to improve outcomes in patients with 
EGFR-mutant NSCLC. However, the potential drawbacks 
of low sensitivity (increased risk of false-negative results) in 
ctDNA tests in the less common driver mutations could lead 
to missed opportunities for timely and appropriate targeted 
therapy.

While multiple factors have been implicated in the 
sensitivity of ctDNA, including tumor burden and 
the presence of osseous metastases [66], molecular 
heterogeneity has been relatively unexplored as a predictor 
of sensitivity for ctDNA. In particular, molecular fusions 
such as ALK and ROS1 may be less detectable via ctDNA 
given the number of potential fusion partners, which makes 
development of a sensitive ctDNA assay challenging [67, 
68]. For example, in a patient who has never smoked where 
risks of biopsy may be high or the initial biopsy may not 
have sufficient tissue, a negative ctDNA test may not be 
sufficient to rule out the presence of a ROS1 fusion, which 
has profound implications for clinical decision-making 
around repeat biopsies at time of diagnosis and in the future. 
Another potential factor that may influence the diagnostic 
accuracy of ctDNA tests compared with tissue biopsies is the 
availability of DNA enrichment techniques. However, solid 
tumors often exhibit intratumoral heterogeneity, and a single 
tumor biopsy may not fully capture this heterogeneity, as it 
only represents a small sample from one location within the 
tumor. In these cases, ctDNA testing may be able to provide 
a more comprehensive representation of the tumor’s genetic 
landscape.

In addition to informing 1L therapy, ctDNA findings 
before initiating treatment will also help with the 
interpretation of ctDNA to monitor disease progression and 
tumor burden. For example, the absence of a mutation at 
follow-up that was detected upfront is indicative of effective 
treatment [69]. Ongoing presence of a particular mutation 
after initiation of therapy (even in the absence of a targetable 
mutation) may reflect a higher underlying tumor burden and 
an independent risk factor for survival [70].

There are only two studies that have evaluated the impact 
of the CU of ctDNA in terms of PFS in 1L patients with 
aNSCLC, and no studies evaluating OS. This is a key area 
of future study, as baseline ctDNA may rarely pick up a 
mutation that would not be detected with tissue biopsy 
and influence treatment decisions, ultimately impacting 
OS. Additionally, we only included PFS and OS in our 
assessment of CU of ctDNA, and future studies may also 
want to examine other CU measures such as turn-around 
time of test results, time to initiation of therapy, number of 
patients matched to targeted therapy, or treatment decision 
impacts.

5  Conclusions

On the basis of the currently available evidence, ctDNA 
testing in patients with aNSCLC has an overall acceptable 
diagnostic accuracy for detecting any guideline-recommended 
oncogenic driver mutation when using TB as the reference 
standard. However, the sensitivity of ctDNA testing varies 
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greatly depending on the specific oncogenic driver mutation. 
At the time of this review, there were limited studies on 
less common driver mutations, and this is an essential 
area of future research. Given the current detection rates, 
ctDNA cannot be recommended as a replacement for TB, 
considering the actionable driver mutations of interest, unless 
there is insufficient tissue for TB or risks associated with the 
procedure. As the technologies around ctDNA testing and 
NGS analysis continue to evolve, we anticipate new studies 
will become available at a rapid pace, necessitating timely 
updates to this systematic review and meta-analysis.
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