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ABSTRACT This study presents a comprehensive investigation of ferroresonance, a dangerous electrical
phenomenon that poses significant financial risks. Using real electrical transmission line parameters,
we simulated synthetic ferroresonance scenarios on a model and analyzed the resulting data using high-order
spectral analysis methods, including theWigner-Villemethod,Welchmethod, frequency-power analysis, and
spectral methods. Our analysis revealed changes in frequency and power before and after ferroresonance,
with third and fourth-order cumulants being calculated.We confirmed the accuracy of the power transmission
line’s base frequency and power before the ferroresonance event and determined the frequency and power
values before and after ferroresonance with frequency-power analysis. Our cumulative analysis results
showed symmetrical results that are consistent with the properties of ferroresonance. Additionally, we found
that the Wigner Ville method’s high-resolution results were significantly more effective than conventional
methods. Our study’s findings provide valuable insights into ferroresonance’s behavior and may inform the
development of more effective prevention and mitigation strategies.

INDEX TERMS Comulant, electric power system, ferroresonance, high order spectral analysis,
Wigner-Ville.

I. INTRODUCTION
The growth of industrialization has facilitated the expansion
and development of electricity transmission systems in coun-
tries [1]. Energy transmission lines play a crucial role in the
transmission of energy from a limited number of power plants
to remote locations [2]. These systems must be efficient,
economical, sustainable, and provide quality energy to justify
investment in energy transmission lines [3]. The majority of
power transmission line malfunctions are caused by faults in
the transmission lines or in components such as line breakers
and switches [4]. The timing and causes of these failures
are important for preventing future incidents [4], [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingli Li .

Voltage drops in the electric power network and electricity
blackouts can lead to issues with devices connected to the
network [7]. These problems can result in power quality
issues in the system or cause significant material losses by
partially or completely damaging the transmission line [8].
Even millisecond-level malfunctions can lead to prolonged
power outages and labour losses [9].

The phenomenon of ferroresonance that can occur in
energy power network systems is featured by overvoltage or
current in the system [10]. These high amplitude voltages
and currents, which are a result of a malfunction in the
power system, can cause destructive and irreparable failures
throughout the system in a short amount of time [11], [12].
Despite being known for many years, the causes and preven-
tion of ferroresonance remain a mystery due to the presence
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of non-linear components in power systems, such as saturated
transformers, linear and nonlinear resistors, and inductive and
capacitive elements [12], [13], [14], [15], [16].

Ferroresonance refers to the occurrence of series resonance
in an electrical circuit, where a non-linear inductance ele-
ment involving a capacitor and a magnetizing inductance
that is saturated are present [12], [7]. This phenomenon can
arise in various electrical systems, including transformers,
circuits, and electric power transmission lines, due to events
such as sudden load failure, interruption of one phase in
a three-phase transmission line, lightning strikes, or trans-
former issues [12], [17], [18]. The resulting waveform is
asymmetrical with high amplitude, leading to destructive
overvoltages throughout the system, which can impact other
phases [12], [19]. Ferroresonance exhibits multiple contin-
uous and steady-state responses under the same network
parameters and can occur during transient situations. To pre-
vent ferroresonance, it is crucial to perform a comprehensive
analysis and consider all potential triggering scenarios [12].

It is also important to predict where, when, and under what
conditions ferroresonance may occur [20], [21].While efforts
are being made to eliminate ferroresonance formation con-
ditions by making smart power systems, it is estimated that
electric power lines will be at a higher risk for ferroresonance
in the future due to increased voltage levels and increased dif-
ferences between line capacitance and transformer magnetic
saturation [17], [19], [21].

The Fourier transform is not suitable for the analysis of
non-stationary signals as it converts the signal into infi-
nite waves that are not localized in time [14], [19], [22].
Therefore, two-dimensional analysis using methods such as
HOSA spectral analysis is more appropriate for investigating
non-stationary signals like ferroresonance [14], [18].

The use of the HOSA method used in this study in the
analysis of the ferroresonance phenomena in Electric Power
systems and the comparison of the superiorities of the meth-
ods for this method are listed below.

• HOSA is a very useful method for performing harmonic
analysis in electrical power systems, but traditional
spectral analysis methods are used more generally. Tra-
ditional methods such as FFT and DFT are used in a
variety of applications such as the analysis of frequency
and power spectrums.

• HOSA analysis is very successful in identifying and
solving harmonic problems in electrical power systems.
This method can also help detect ferroresonance phe-
nomena by determining the ratios and frequencies of
harmonics. In addition, the HOSA analysis also esti-
mates the possible consequences of fluctuations caused
by ferroresonance events.

• HOSA is optimized to isolate high frequency harmonic
components and is very successful in this field. This
allows HOSA to provide higher resolution and more
accurate results compared to other spectral analysis

methods. In this sense, it gives more precise results than
traditional spectral analysis methods for ferroresonance
data. HOSA is also faster compared to traditional meth-
ods such as FFT and DFT. This results in faster results
when used for large datasets.

• HOSA is more resistant to noise, harmonic distortion
and other power quality issues. This allows HOSA to
provide more accurate results compared to other spectral
analysis methods.

• HOSA does not require that the data to be analyzed is
a continuous time series, in this sense, it is seen from
the analyzes that it gives effective results in the analy-
sis of Ferroresonance data. This offers a more flexible
approach to sampling and recording data, as well as
providing higher resolution, faster processing and better
resilience.

• HOSA analysis is very successful in identifying and
solving harmonic problems in electrical power systems.
This method can also help detect ferroresonance phe-
nomena by determining the ratios and frequencies of
harmonics. In addition, the HOSA analysis also esti-
mates the possible consequences of fluctuations caused
by ferroresonance events.

• Conventional methods mostly use test devices for fer-
roresonance detection, while a separate test device is not
required for HOSA analysis. This provides an advantage
in terms of cost.

In this study, the phenomena of ferroresonance were studied
using HOSA spectral analysis methods.

II. MATHEMATICAL BACKGROUND
High-Order Spectral Analysis (HOSA) methods con-
tain much more information than is transmitted by
auto-correlation and power in a non-stochastic Gauss or
deterministic signal [23]. Includes higher-level spectra, also
known as higher-level moments or cumulants of a signal
with HOSA. In this sense, HOSA contains comprehensive
information for high-order spectral analysis.

A. CUMULANT
Second-order statistics such as R(τ ) correlation and S (ω) =

F {R(τ )} power spectral density is an effective method used
in the analysis of gauss, stationary and linear processes. In the
equations below, the mathematical relations of moments and
deterministic signs are given. Moments provide effective
results in the analysis of deterministic signals, and cumula-
tions in random signals [6], [24].

mX = E (X) (1)

The first-order moment is given in Equation (1) and
second-order correlation function is given in Equation (2).

σ 2
X = E

[
(X − mX )2

]
,m2

X (i) = E {X (n).X (n+ i)} (2)
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The auto correlation function (ACF) is a commonly used
tool for analyzing Gaussian-distributed X (n), stationary, and
nonlinear processes. However, it is not enough to fully char-
acterize non-Gaussian processes. In these cases, higher-order
statistics (HOSA) provide better results. HOSA is obtained
through the use of high-order moments, such as (m3, m4,
. . . .). These high-order moments are expressed as nonlinear
combinations of cumulants, (c1, c2, c3, . . . ). Equation (3)
shows the equation for the third-order moment, and Equation
(4) shows the equation for the fourth-degree moment.

m3
X (i, j) = E {X (n).X (n+ i).X (n+ j)} (3)

m4
X (i, j, k) = E {X (n).X (n+ i).X (n+ j).X (n+ k)} (4)

Cumulating equations for the zero-average process are
given in Equation (5-7).

c2(i) = m(i) (5)

c3(i, j) = m(i, j) (6)

c4(i, j, k) = m4(i, j, k) − m2(i).m2(j, k)

− m2(j).m2(i, k) − m2(k).m2(i, j) (7)

In Equation (8), cross cumulating expression is given for
random processes [6].

CXYZ (m, n) = E {X (i)Y (i+ m)Z (i+ n)} (8)

In this study, the ferroresonance signal (2,1) was evaluated
as the output of an ARMA process (model), and the 3rd and
4th degrees of the process were analysed.

B. WIGNER-VILLE DISTRIBUTION (WVD)
The investigation of time-frequency distributions comprises
the analysis of signals in a two-dimensional time-frequency
plane [25]. The Wigner-Ville Distribution (WVD) approach
provides a comprehensive representation of time-frequency
by characterizing the energy intensity of a signal simul-
taneously at different time and frequency points. Time-
frequency representations can be broadly classified into two
categories: second-order methods and linear approaches.
Second-order methods encompass fundamental signal pro-
cessing analysis, while linear approaches encompass Gabor
transform, Zak transform, and wavelet transform anal-
ysis [25], [26], [27], [28]. The WVD is particularly
well-suited for high-resolution analysis of non-stationary
signals, offering a detailed understanding of the energy
spectrum in terms of the instant power and frequency in
time, as well as the total energy of the signal in the
time-frequency plane [28], [29], [30], [31], [32]. The WVD
of a non-stationary random signal x(t) is represented by
the frequency of time t , f , and lag τ and is defined by
equation (9).

W (t, f ) =

∫
+∞

−∞

x
(
t +

τ

2

)
+ x

(
t −

τ

2

)
e−iωf τdτ (9)

The distribution in the WWD is quadratic, so the
implementation of WVD is limited by the presence of
interference terms. These can be defined in equation
(10), considering the basic mono-components m(t) and
n(t) [30], [33], [34], [35], [36].

C. PSD WELCH METHODS
Welch’s method is a widely used technique for estimating
power spectral density of a signal. This method is based on
periodogram analysis, which involves dividing the time series
into overlapping sections to obtain an improved periodogram
for each section. TheWelch method then computes the power
spectral density by averaging these improved periodograms.
Non-rectangular windows are used to overlap and decrease
the weight of samples at the end of the sections, which
reduces the variance relative to a single periodogram esti-
mate. The i’th improved periodogram is given by Equation
(10) [6], [37], [38].

(i)

P3

xx
(f ) =

TS
K .M

∣∣∣∣∣∣∣∣
∧

M−1∑
n=0

xi(n)w(n).e−j2π fn

∣∣∣∣∣∣∣∣
2

(10)

The normalized frequency variable and the K normalized
constant are defined in equation 10, wherew(n) represents the
windowing function. The calculation of power spectral den-
sity estimation is performed using equation 12, with the value
of K constant given in equation 11, as described by [6], [39],
and [40].

K =
1
M

M−1∑
n=0

w2(n) (11)

3

P
W

xx (f ) =

∧

1
L

L−1∑
i=0

3(i)

P
xx
(f ) (12)

III. FERRORESONANCE MODELING AND DATA
ACQUISITION SYSTEM
Ferroresonance is a non-linear phenomenon that results in
sudden voltage or current spikes, and it is commonly observed
in long electric transmission lines [6], [41]. This chaotic
behavior is a unique characteristic of the system. In this study,
data collection was performed on the 380kV electrical energy
grid in the Oymapinar-Seydisehir model in Turkey, as shown
in Figure 1. The system designwasmodeled usingMATLAB-
Simulink
and actual transmission line parameters listed in
Table 1 were incorporated. A schematic diagram of the power
transmission line is also presented in Figure 1.

Figure 1 illustrates the schematic model of the Seydisehir-
Oymapinar power transmission line, which is designed for the
transmission of energy from the power generation source to
the end-user. The model utilizes a symbolic representation to
depict the various components of the transmission line. It is
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FIGURE 1. Schematic diagram of oymapinar-seydisehir electric power network in Turkey.

TABLE 1. Parameters of seyitomer-isiklar electric power network.

FIGURE 2. Time Voltage diagram on electric power line (including
ferroresonance region.

noteworthy that this graphical representation was produced
using Matlab Simulink, as reported previously in references
4 and 10, and is not featured in this article. Table 1 furnishes
the electrical parameters of the power transmission line,
encompassing its length and the symbolic representation of
its interruption and switching points. Figure 2 illustrates the
time-amplitude diagram resulting from the ferroresonance
scenario implemented on the model.

Ferroresonance is a phenomenon that can cause exces-
sive voltage fluctuations following a fault in power
systems. A modeling approach has been developed to
study ferroresonance and the resulting voltage fluctua-
tions, as illustrated in Figure 2. Upon closer examina-
tion, the graph in Figure 2 exhibits classical ferroreso-
nance behavior, which is characterized by ferromagnetic
properties.

However, in this study, researchers have undertaken a
detailed investigation of signal-based analysis techniques for
the detection of ferroresonance.

FIGURE 3. Third-order cumulant and contour analysis of ferroresonance
phenomena.

FIGURE 4. Fourth degree cumulant analysis of ferroresonance data.

IV. FEATURE EXTRACTION AND FERRORESONANCE
ANALYSIS OF THE POWER NETWORK DATA
The phenomenon of ferroresonance in electrical power sys-
tems is a complex issue that can result in significant increases
in voltage. In this particular study, real model parameters with
a nominal voltage of 380 kV were employed to investigate
the formation of ferroresonance and the resulting overvolt-
ages that can exceed 1 MV. The analysis involved the use
of two visualization techniques, namely a three-dimensional
Cumulative analysis and a Contour plot, which are presented
in Figures 3a and 3b, respectively.

The results reveal a clear observation of the highest voltage
value due to ferroresonance in the graph. Specifically, the
cumulant value of 4 × 1017 amplitude represents the peak
value of the ferroresonance overvoltage.

These fidings demonstrate the potential danger associated
with ferroresonance in electrical power systems, and under-
score the importance of understanding and mitigating this
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FIGURE 5. Wigner-Ville analysis for before ferroresonance.

FIGURE 6. Wigner-Ville analysis for ferroresonance region.

phenomenon to ensure the safety and reliability of power
systems.

The fourth-order cumulant analysis graph is depicted in
Figure 4, where ‘n’ denotes the number of data. In practical
settings, cumulant analysis is often conducted using a finite
number of data points, and the resulting estimates are asymp-
totically unbiased.

Figure 5 displays the results of the wavelet-based
windowed differentiation (WWD) analysis for the pre-
ferroresonance interval. In this analysis, all ferroresonance
data at 50 Hz is examined over a certain time period. Upon
onset of ferroresonance, the intensity of the signal appears to
increase. Prior to ferroresonance, the fundamental frequency
of the system is 50 Hz, as depicted by the dominant spectral
component. The yellow region in the figure corresponds to the
ferroresonance region, which is also evident as a bifurcation
in other analyses.

Figure 6 presents the outcomes of the wavelet-based time-
frequency analysis performed in the ferroresonance region,
where a well-defined peak featuring high amplitudes is
observed at 50 Hz, 100 Hz, and 150 Hz. These frequency
values can be identified as the fundamental frequency and
its associated harmonics. The manifestation of destructive
effects, along with their respective frequency components,
can be observed in the ferroresonance region as a result
of the underlying phenomenon. Moreover, the frequency is
determined to attain a peak value of 650 Hz.

Figure 7 shows a simpler and more uniform distribu-
tion in the ferroresonance region following the occurrence

FIGURE 7. Wigner-Ville analysis for after ferroresonance.

FIGURE 8. Unit impulse response of ferroresonance phenomena.

FIGURE 9. Spectrogram graphics of ferroresonance phenomenon.

of ferroresonance, as compared to the wavelet variance
distribution (WV Distribution). Nonetheless, high ampli-
tudes are observed at frequencies ranging from 50 Hz
to approximately 100 Hz, with decreasing amplitude and
density as the frequency increases. This distribution can
be represented as a time-frequency distribution exhibit-
ing the characteristics before and after the ferroresonance
event.

The analysis of the ferroresonance signal in this model is
demonstrated as the unit impulse response, which represents
the output of a rigidity process, as shown in Figure 8.
The impulse analysis of the ferroresonance phenomenon
depicted in Figure 8 corresponds to the time-amplitude
diagram presented in Figure 2. The collapse or damp-
ing of the phenomenon is demonstrated by zooming in on
Figure 8.
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FIGURE 10. Spectrogram Analysis of ferroresonance phenomena.

In Figure 9, the Spectrogram graph of the ferroresonance
phenomena is presented. The basic frequency of the system,
50Hz, is clearly visible on the graph. At around 1500 sample
numbers, there is a transition in the frequency from 250Hz to
a lower frequency, as the graph breaks down (the moment of
ferroresonance) and continues to decrease. The detection of
ferroresonance phenomena can be observed as this transition
occurs.

Unlike Figure 9, another Spectrogram graph with different
window and resolution is presented in Figure 10. In this
representation, low-amplitude frequency values of 50 Hz are
seen prior to ferroresonance, whereas high-amplitude values
are seen during ferroresonance.

Additionally, it can be observed that the frequency val-
ues lose their coherence with the mains frequency and
exhibit scattering both during and after ferroresonance.
Please note that while the time axis has been zoomed in
on the data, it does not reflect the actual time duration of
the data.

Figure 11 shows a power graph of around 3.4×109 at 50Hz
base frequency value before ferroresonance.

Figure 10 presents a spectrogram that delineates the
alterations in frequency before and after the onset of ferrores-
onance, whereas Figure 12 exhibits a power graph with a
fundamental frequency of 50 Hz and an approximate value of
3.4 × 109 prior to the occurrence of ferroresonance, thereby
enabling precise identification of the moment at which fer-
roresonance transpires.

The analysis presented in Figure 12 indicates that dur-
ing the occurrence of ferroresonance, the frequency-power
diagram exhibits a highly variable structure with a
lower amplitude level. There is a sharp decline in
the power amplitude, followed by a slight increase up
to 400 Hz.

Figure 13 illustrates the before/after-ferroresonance graph,
which exhibits variable frequency fluctuation ranging
between 0 and 650 Hz. This implies that the dampening
effect of the ferroresonance phenomenon persists even after
its occurrence. It can be inferred that the network operates
in an insecure manner with frequency fluctuations after the
event of ferroresonance.

FIGURE 11. Frequency-Power analysis for before ferroresonance.

FIGURE 12. Frequency-Power analysis for ferroresonance region.

FIGURE 13. Frequency-Power analysis for after ferroresonance.

The frequency-power relationship of the entire system is
depicted in Figure 14. The graph illustrates the variations
in frequency-power before, during, and after the occurrence
of ferroresonance. During the pre-ferroresonance phase, the
electrical network exhibits a 50Hz fundamental frequency
with an amplitude value of 2.3 × 109. However, during the
ferroresonance event, the current level decreases, leading to
high frequencies and low amplitude powers. After the fer-
roresonance, the system experiences a collapse, resulting in
sustained low amplitude powers at high frequencies.

V. DISSCUSSION
The analysis of ferroresonance events using signal processing
techniques, such as Wavelet, FFT, and DFT, can provide
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FIGURE 14. Frequency-Power analysis of the system (all).

valuable insights into the frequency components present in
the signal [4], [42]. These techniques enable the conversion
of the time-domain signal into its frequency-domain rep-
resentation, which is useful for identifying the frequency
components responsible for the ferroresonance.

Spectrum analysis is another technique that can be used
to identify frequency components in the signal. It provides
a graphical representation of the signal in the frequency
domain, enabling the identification of the frequency compo-
nents present in the signal [4], [42].

Wigner Ville analysis is a time-frequency analysis tech-
nique that can provide more detailed insights into the
frequency components present in the signal. It provides a
time-frequency representation of the signal, which enables
the identification of frequency components that may vary
over time. This can be particularly useful for analyzing
non-stationary signals, such as those seen in ferroresonance
events [10], [43].

High-resolution spectral analysis is another technique that
can provide more precise identification of closely spaced
frequency components. This technique enables identification
of frequency components that may be difficult to discern with
FFT or DFT analysis [44], [45].

In determining the ferroresonance condition, the contri-
butions of Wigner Ville and high-resolution analysis lie in
their ability to provide more detailed and precise information
regarding the frequency components present in the signal.
This can enable more accurate identification of the ferrores-
onance condition and a better understanding of its behaviour.

Compared to FFT and DFT analysis, Wigner Ville analysis
provides a more precise time-frequency representation of the
signal, allowing for the identification of frequency compo-
nents that vary over time. This technique can also identify
frequency components that are closely spaced together, which
may be difficult to differentiate with FFT or DFT analy-
sis alone. Additionally, Wigner Ville analysis can provide
information on the time evolution of frequency components,
which can be useful in understanding the dynamics of the
ferroresonance event [46].

Overall, the use of signal processing techniques such as
Wavelet, FFT, DFT, spectrum analysis,Wigner Ville analysis,

and high-resolution spectral analysis can provide valuable
insights into the ferroresonance event. The choice of which
technique to use may depend on the specific characteristics
of the signal being analyzed and the information required
for the analysis. However, Wigner Ville analysis can provide
a more detailed and precise time-frequency representation
of the signal, making it a valuable technique for analyzing
ferroresonance events [47], [48].

It should be noted that the advantages of Wigner Ville
analysis are its ability to provide a high-resolution time-
frequency representation of the signal, with the ability to
distinguish between closely spaced frequency components,
and its ability to capture time-frequency localization of
the signal. Moreover, Wigner Ville analysis provides a
representation of the signal that is not limited by the
uncertainty principle, as in FFT or DFT analysis. There-
fore, Wigner Ville analysis can provide a more com-
plete and accurate understanding of the ferroresonance
event.

VI. CONCLUSION
This study has investigated the phenomena of ferroresonance
using High-Order Spectral Analysis (HOSA) methods. The
results demonstrate that HOSA can provide a comprehensive
analysis of the nonlinear aspects of ferroresonance in electri-
cal systems. The study has shown that the use of higher-order
moments and cumulants in HOSA can offer better results in
analyzing non-Gaussian and non-stationary processes, which
are difficult to analyze using traditional methods. Addition-
ally, theWigner-Ville Distribution (WVD) approach has been
employed in this study to provide a detailed understanding of
the energy spectrum in terms of instant power and frequency
in time, as well as the total energy of the signal in the
time-frequency plane. The findings of this study contribute
to a better understanding of the causes and prevention of
ferroresonance in electrical power transmission lines, which
is important for maintaining the efficiency, reliability, and
safety of power systems.

In future research concerning the analysis of ferroreso-
nance using automated algorithms for detecting and classi-
fying ferroresonance events using Wigner-Ville and HOSA
techniques could be developed, incorporating machine learn-
ing algorithms to train models on large datasets of fer-
roresonance signals and accurately predict its occurrence in
real-time.
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