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We propose that innovative originality is a valuable organizational resource, and that owing to 

limited investor attention and skepticism of complexity, greater innovative originality may be 

undervalued. We find that firms’ innovative originality strongly predicts higher, more persistent, 

and less volatile profitability; and higher abnormal stock returns—findings that are robust to 

extensive controls. The return predictive power of innovative originality is stronger for firms with 

higher valuation uncertainty, lower investor attention, and greater sensitivity of future profitability 

to innovative originality. This evidence suggests that innovative originality acts as a ‘competitive 

moat,’ and is undervalued by the market. 
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To finance innovative activities effectively, investors need to value them. This is hard to do, as it 

requires going beyond routine application of standardized procedures and metrics. Valuing 

innovation requires understanding how the economic fundamentals of a firm or its industry are 

changing, and forecasting how a firm will navigate the long road from concept to implementation 

to actual profits. These considerations suggest that the market may be inefficient in valuing 

innovation, and that we can gain insight into the nature of such misvaluation by considering the 

informational demands placed upon investors, and the constraints on investors’ cognitive 

processing power.1   

Extensive psychological evidence shows that individuals pay less attention to, and place less 

weight upon, complex and hard-to-process information. A type of information that is especially 

hard to evaluate is the originality of an innovation, which involves many dimensions of uncertainty 

that typically require extensive knowledge and expertise to evaluate. We therefore suggest that 

investors tend to neglect/underweight the information contained in proxies for innovative 

originality.  

Neglect could take the form of not even being aware of the firm’s innovative originality, or of 

being aware of but not processing this information to make good use of it due to signal jamming. 

Hence stock prices would underweight innovative originality, which may contain favorable 

information about future profitability; and innovative originality is a positive predictor of future 

abnormal stock returns. To formalize this intuition and to motivate empirical analyses, we test the 

implications of a model of limited attention (see the Internet Appendix, Section D) about the 

direction and strength of the return predictive power of innovative originality. In the model, 

                                                      
1 Some studies suggest that investors may overdiscount the cash flow prospects of R&D-intensive firms owing to high 
technical uncertainty associated with innovations, leading to underpricing (see, e.g., Hall 1993; Lev and Sougiannis 
1996; Aboody and Lev 1998; Chan, Lakonishok, and Sougiannis 2001; Lev, Sarath, and Sougiannis 2005). 



 
 

2 
 

innovative originality predicts high subsequent abnormal returns if it is positively associated with 

a firm’s future profitability and a fraction of investors neglects innovative originality.2  

Furthermore, the model predicts that this return predictive power is strengthened by valuation 

uncertainty, the fraction of inattentive investors, and the sensitivity of future profitability to 

innovative originality. Intuitively, the smaller the fraction of attentive investors, the less influence 

they have on the current price and hence the larger mispricing owing to neglect of innovative 

originality. In addition, when prior uncertainty about the stock value (without any conditioning on 

innovative originality) is higher, heavier weight should optimally be placed on innovative 

originality by investors in forming posterior beliefs about value. So neglect of innovative 

originality causes greater mispricing. Similarly, the more sensitive a firm’s future profitability is 

to innovative originality, the greater the mispricing induced by neglect of the signal. 

Empirically, motivated by a popular view of innovation as recombinant search, we measure 

innovative originality by the breadth of knowledge used to innovate. Under this view, innovation 

comes from combining technological components in novel manners or reconfiguring existing 

combinations.3 The discovery of the double helix structure of DNA by Francis Crick and James 

Watson illustrates the recombinant view. It was Crick’s knowledge of X-ray crystallography that 

helped Watson understand the famous X-ray diffraction image of DNA (known as “Photo 51” 

discovered by Rosalind Franklin), which is crucial to their successful modeling of the double helix 

structure of DNA.4 Since patents are widely used to measure innovation, we proxy a firm’s 

innovative originality by the average range of knowledge built upon by its recently granted patents. 

                                                      
2 As discussed in Section 3, models of ambiguity aversion provide a reinforcing argument for a positive innovative 
originality-return relation. 
3 See, e.g., Schumpeter (1934), Basalla (1988), Henderson and Clark (1990), Weitzman (1998), Ahuja and Katila 
(2001), and Singh and Fleming (2010). 
4 https://en.wikipedia.org/wiki/Francis_Crick#Crick1990, https://en.wikipedia.org/wiki/Photo_51, and 
https://www.youtube.com/watch?v=d7ET4bbkTm0 (36:03 to 36:47). 

https://en.wikipedia.org/wiki/Francis_Crick%23Crick1990
https://www.youtube.com/watch?v=d7ET4bbkTm0
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Intuitively, a patent that draws knowledge from a wide range of technology is more original 

because it tends to deviate from current technology trajectories to a greater extent (e.g., Balsmeier, 

Fleming, and Manso 2017). Innovative originality may also reflect the capability of a firm’s 

managers and scientists to combine different technologies in an original way to create a sustainable 

competitive advantage.    

To capture the range of knowledge built upon, we use the number of unique technological 

classes of patents cited by a firm’s patents. If a firm’s patents cite previous patents belonging to a 

wide set of technologies, its originality score will be high. Motivated by the view of innovation as 

recombinant search, the innovation/corporate finance literature has measured the originality of a 

patent by one minus the Herfindahl index of patents cited by the focal patent across different 

technological classes. 5  However, to better capture the cross-sectional variation in knowledge 

breadth that motivates this measure, we focus on the average number of unique technological 

classes of patents cited by a firm’s recently granted patents (more details are provided in Section 

1).    

In particular, the range of knowledge captured by the number of unique technological classes 

may matter more in driving innovative originality than the distribution of patents cited among 

different classes captured by the Herfindahl index. When a patent cites only one patent from a 

certain class, knowledge from that class can still play a crucial role in making this focal patent 

original. Consider the case of Affymetrix, a pioneer of the development of DNA microarray 

techniques (see the Appendix). Knowledge about semiconductors, electricity, and optics is crucial 

for its innovative methods. However, the number of patents cited in these classes by Affymetrix’s 

                                                      
5 See, e.g., Trajtenberg, Henderson, and Jaffe (1997), Hall, Jaffe, and Trajtenberg (2001), Lerner, Sorensen, and 
Strömberg (2011), and Custodio, Ferreira, and Matos (2013). 
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major patents is quite small.6 The importance of these few patents cited is better captured by the 

number of unique technological classes than by one minus the Herfindahl index. 

A literature in strategy argues that firms with more technologically diversified patents perform 

better in internal integration and cross-fertilization of knowledge and expertise. The organizational 

capability to create more novel technologies based on combinative and collaborative activities is 

a competitive advantage (sometimes called a competitive moat) that other firms have difficulty in 

replicating or matching, and helps firms deal with rapid technological change. In addition, when a 

firm is more experienced in integrating various knowledge sources, it is better at identifying and 

exploiting future innovation opportunities.7  

Therefore, high innovative originality firms may generally outperform their competitors 

persistently due to the market power provided by original innovations. Consistent with this 

intuition, we find that high innovative originality firms have substantially and significantly higher 

future profitability up to five years (see the Internet Appendix, Section E). Furthermore, these 

firms have more persistent and stable future profitability. We also find that the influence of 

innovative originality on these aspects of future profitability is much stronger than that of 

innovative efficiency (Hirshleifer, Hsu, and Li 2013) and works (at least in part) through its effect 

on gross margin.   

Greenwald et al. (2004) argue that value investors seldom place much weight on a firm’s 

growth prospects in forming valuations as such prospects are only reliable within a protected 

franchise that offers sustainable competitive advantage. They argue that such advantage comes in 

                                                      
6 For example, Patent 6,965,020, which protects Affymetrix’s major product line, GeneChip®, only cites one patent 
from each of the ‘semiconductor’ (Class 250) and ‘optics’ (Class 356) classes. It cites 30 patents from 19 unique 
classes (both primary and secondary) in total. 
7 See, e.g., Levin et al. (1987), Henderson and Cockburn (1994), Gupta and Govindarajan (2000), Martin and Salomon 
(2003), Subramaniam and Youndt (2005), Singh (2008), Makri, Hitt, and Lane (2010), Gomez-Mejia et al. (2011), 
and Berry (2014). 
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only a few forms (patents being one of the few), and that, perhaps for competitive reasons, firms 

tend to remain quiet about their ‘moats.’ This makes it hard for investors to differentiate companies 

that have genuine franchises from those that do not. This argument suggests that investors with 

limited attention—even value investors who are performing fundamental analysis—may tend to 

undervalue competitive moats. 

To test the prediction on the return predictive power of innovative originality, we perform 

portfolio sorts and Fama-MacBeth (1973) cross-sectional regressions. The results are supportive. 

For portfolio analysis, the average portfolio returns increase monotonically with innovative 

originality, and the return spread between the high and low innovative originality portfolios is 

economically substantial. The pattern is robust to industry- and characteristic-adjustment (by size, 

book-to-market, and momentum) and recently developed risk benchmarks and mispricing factor 

models.8 Furthermore, the innovative originality effect remains substantial and significant even 

after controlling for the patents- or citations-based innovative Efficient-Minus-Inefficient (EMI) 

factor that reflects commonality in mispricing associated with innovative efficiency (IE). 

The theory predicts that innovative originality -induced mispricing should be more severe 

among harder-to-value firms. Consistent with this, independent double sorts show that the monthly 

value-weighted alphas for the high-minus-low innovative originality portfolio among firms with 

high valuation uncertainty (VU) index range from 0.82% (t = 2.38) to 1.08% (t = 3.10), depending 

on the factor model. The monthly industry- and characteristic-adjusted returns for this spread 

portfolio are also very large: 0.99% (t = 3.66) and 1.17% (t = 3.84), respectively. Furthermore, 

                                                      
8 These models include the q-factor model (Hou, Xue, and Zhang 2015), the mispricing factor model (Stambaugh and 
Yuan 2017), the Fama and French three-factor model augmented with the momentum (UMD) factor as in Carhart 
(1997) (henceforth, the Carhart model), and the Carhart model augmented with one of the following factors: the 
Investment-Minus-Consumption (IMC) factor (Papanikolaou 2011), the liquidity (LIQ) factor (Pastor and Stambaugh 
2003), the Undervalued-Minus-Overvalued (UMO) factor (Hirshleifer and Jiang 2010), the Robust-Minus-Weak 
(RMW) factor, and the Conservative-Minus-Aggressive (CMA) factor (Fama and French 2015). 
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these results are mainly driven by the undervaluation of high innovative originality firms. In 

contrast, these returns are tiny and insignificant for low VU firms. Since R&D is a crucial input 

for generating innovation and to the extent that firms that invest heavily in R&D are also harder to 

value due to the uncertain nature of R&D investment, we expect the innovative originality effect 

to be stronger among high R&D firms. This is confirmed in the data. We also confirm that this 

innovative originality effect is stronger among firms with less investor attention (ATT) or higher 

sensitivity (Sen) of future profitability to innovative originality, as implied by the theory.   

High innovative originality firms on average are larger. Other things equal, we expect large 

firms to receive greater investor attention, which tends to reduce misvaluation. However, large 

firms are also generally more complex, making them harder to value (e.g., Cohen and Lou 2012). 

It is not clear whether this additional attention outweighs complexity to make the valuation of the 

innovative originality of large firms more accurate. In fact, the return predictive power of 

innovative originality exists in both small and big firms and does not have a significant interaction 

with size.  

To assess the robustness of the return predictive power of innovative originality, we perform 

Fama-MacBeth regressions that control for industry effects and different sets of well-known return 

predictors, including sales diversity and innovation-related variables such as IE, patents, and R&D. 

The innovative originality effect remains statistically significant, irrespective of the control 

variables used. Similar to the double sorts, we also perform Fama-MacBeth regressions in 

subsamples split by VU, ATT, and Sen. The same sharp contrast in the innovative originality effect 

exists across these subsamples.  

Although the evidence is consistent with the limited attention theory, we do not completely 

rule out potential risk-based explanations (see further discussion in Section 3.5). Previous research 
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on valuation of innovation focuses on innovative input, output, and efficiency.9 However, this 

literature does not examine the role of innovative originality. Our paper is also closely related to 

the literature on how limited attention and processing power affect security prices.10  

 

1. The Data, the Innovative Originality Measure, and Summary Statistics 

1.1 The data and the innovative originality measure 

Our sample consists of firms in the intersection of Compustat, CRSP (Center for Research in 

Security Prices), and the NBER patent database. We obtain accounting data from Compustat and 

stock returns data from CRSP. All domestic common shares trading on NYSE, AMEX, and 

NASDAQ with accounting and returns data available are included except financial firms, which 

have four-digit standard industrial classification (SIC) codes between 6000 and 6999 (finance, 

insurance, and real estate sectors), and utility firms (SIC codes beginning with 49). Following 

Fama and French (1993), we exclude closed-end funds, trusts, American Depository Receipts, 

Real Estate Investment Trusts, units of beneficial interest, and firms with negative book value of 

equity. To mitigate backfilling bias, we require firms to be listed on Compustat for two years 

before including them in our sample. For some of our tests, we also obtain analyst earnings forecast 

data from the Institutional Brokers Estimate System (IBES), and institutional ownership data from 

the Thomson Reuters Institutional Holdings (13F) database.  

                                                      
9  See, e.g., Griliches (1990), Lerner (1994), Lev and Sougiannis (1996), Deng, Lev, and Narin (1999), Chan, 
Lakonishok, and Sougiannis (2001), Eberhart, Maxwell, and Siddique (2004), Lanjouw and Schankerman (2004), Gu 
(2005), Lev, Sarath, and Sougiannis (2005), Hsu (2009), Li (2011), Cohen, Diether, and Malloy (2013), and 
Hirshleifer, Hsu, and Li (2013). 
10 Theoretical models imply that owing to limited attention, market prices will place insufficient weight on signals 
with low salience or that are hard to process (e.g., Hirshleifer and Teoh 2003; Peng and Xiong 2006; Hirshleifer, Lim, 
and Teoh 2011). Empirical studies provide supporting evidence (e.g., Klibanoff, Lamont, and Wizman 1998; 
Huberman and Regev 2001; Barber and Odean 2008; Cohen and Frazzini 2008; DellaVigna and Pollet 2009; 
Hirshleifer, Lim, and Teoh 2009; Hou, Peng, and Xiong 2009; Da, Engelberg, and Gao 2011; Da and Warachka 2011; 
Cohen and Lou 2012; Li and Yu 2012; Da, Gurun, and Warachka 2014). 
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Patent-related data are mainly from the updated NBER patent database originally developed 

by Hall, Jaffe, and Trajtenberg (2001). The database contains detailed information on all U.S. 

patents granted by the U.S. Patent and Trademark Office (USPTO) between January 1976 and 

December 2006: patent application and grant dates, primary three-digit technology classes, all 

citations received by each granted patent, assignee’s Compustat-matched identifier, and other 

details. Only patents granted by the USPTO by the end of 2006 are included in the database. In 

addition, we collect the information on each patent’s secondary three-digit technology classes from 

the Harvard Business School U.S. patent inventor database (Li et al. 2014). As a result, our 

combined dataset contains each patent’s primary and secondary technology classes that are 

important for our analysis. 

As mentioned earlier, we proxy a firm’s innovative originality (InnOrig) by the range of 

knowledge its innovations draw upon, specifically, the average number of unique technological 

classes of patents cited by its recently granted patents. Until November 2000, the USPTO did not 

disclose a patent application until it was approved. The gap between application and approval is 

on average two years. Failed patent applications were also not disclosed. Subsequent to the 

American Inventors Protection Act, which became effective on November 30, 2000, the USPTO 

began publishing patent applications 18 months after the filing date, even if the patents had not yet 

been granted. In contrast, the patent granting decision is published every Tuesday by the USPTO 

and is immediately available to the public. Therefore, we use recently granted patents instead of 

filed patent applications to measure a firm’s InnOrig to ensure that investors can observe this 

originality measure at the time of portfolio formation and avoid look-ahead bias in our sample 

(1976-2006).  
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Specifically, we first compute a patent’s originality score as the number of unique 

technological classes (both primary and secondary classes) assigned to the patents cited by the 

focal patent. We then proxy a firm’s InnOrig in each year with the average originality score of all 

patents granted to the firm over the previous five years. A case example of innovative originality 

of Incyte in 1996 is provided in Section B of the Internet Appendix.11 Averaging across patents 

helps reduce the influence of extreme values and the correlation between the InnOrig measure and 

firm size. Furthermore, we choose a five-year rolling window since not all firms have patents 

granted every year.12 As a result, the firm-level InnOrig measure is available from 1980 to 2006. 

We begin our sample from 1981 as we need to control for the innovative efficiency measures, 

which are not available until 1981. 

Compared to the Herfindahl index-based innovative originality measure proposed in Hall, 

Jaffe, and Trajtenberg (2001), our measure reflects the breadth of knowledge built upon by a firm’s 

innovation more directly. The Herfindahl index (also known as the Herfindahl–Hirschman index, 

or HHI) mainly reflects the distribution of patents cited among different classes conditioning on 

the number of technological classes cited. This difference can be illustrated by a stylized example. 

Assume Patent 1 cites one patent from each of ten different technology classes, while Patent 2 

cites one patent from each of five different classes. Since both patents cite an equal number of 

patents from different classes, they have very similar HHI-based innovative originality measures 

as proposed in Hall et al. (2001): 0.9 for Patent 1, and 0.8 for Patent 2. However, the range of 

knowledge drawn upon by Patent 1 doubles that of Patent 2: 10 versus 5.13 

                                                      
11 Incyte received 12 granted patents in the five-year period 1992-1996. The number of unique technology classes (N) 
of patents cited by these patents ranges from 1 to 6. By averaging N across these 12 patents, we obtain Incyte’s InnOrig 
in 1996, 3.67. 
12 The choice of a five-year window for patent-based proxies is common in the literature (e.g., Deng, Lev, and Narin 
1999; Rothaermel and Deeds 2004; Matolcsy and Wyatt 2008; Pandit, Wasley and Zach 2011). 
13 Section C of the Internet Appendix discusses the results using a modified HHI-based innovative originality measure. 
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Our InnOrig measure is significantly positively correlated with the average number of future 

citations a firm’s patents receive, a measure of innovation novelty in Seru (2014).14 The product 

uniqueness measure of Hoberg and Phillips (2012) suggests a different possible approach to 

measuring innovative originality. However, their measure reflects the difficulty of replicating a 

firm’s current product lines, which are relatively easier to value, while our InnOrig measure is 

based on patents, which is related to innovation that affects future product lines. As a forward-

looking measure, InnOrig therefore captures the ongoing innovation that is susceptible to cognitive 

biases leading to misvaluation. This difference could explain why their product uniqueness 

measure does not predict abnormal returns, while our InnOrig measure does. 

Since InnOrig relies on the list of patents cited by the focal patent, its validity depends upon 

the extent the citation list is complete and relevant. We argue that the tendency of under- or over-

citing is negligible based on the following reasons. First, patent applicants have a “duty of candor 

and good faith” to disclose all prior arts (especially previous publications and patents) that are 

material to patentability of their applications.15 As an application may be rejected by the USPTO 

if the duty of disclosure was violated, applicants have the incentive to cite all relevant patents in 

the filings (Caballero and Jaffe 1993; Roach and Cohen 2013). Even if a patent is granted, its 

validity could still be challenged if its citation list misses prior arts (Allison and Lemley 1998; 

Sampat 2010).  

Second, patent applications are reviewed by patent examiners based on their novelty and non-

obviousness, the two major requirements for patentability. Patent examiners conduct their own 

                                                      
14 The Pearson correlation between the two measures is 0.22. The novelty measure of Seru (2014) utilizes ex-post 
information, as it is based upon subsequent citations received by a firm’s patents. In contrast, our InnOrig measure is 
based on ex-ante information, which is appropriate for tests of return predictability. Seru (2014) does not study whether 
innovation novelty predicts stock returns. 
15 See http://www.uspto.gov/web/offices/pac/mpep/s2001.html.  

http://www.uspto.gov/web/offices/pac/mpep/s2001.html
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search for prior arts to reject applications that do not satisfy novelty and non-obviousness and 

require patent applicants to add any missing relevant citations. In fact, a substantial amount of 

patents cited by granted patents are added upon request of patent examiners: 62% in the sample of 

Sampat (2010) and 41% in the sample of Thompson (2006).  

Third, over-citing prior arts is also inappropriate because the applicants have to describe how 

their applications are different from the cited prior arts to justify the “novelty” of their inventions. 

More importantly, such over-citing behavior does not exist in the data because 57% of self-

citations of published patents, which are most likely to be over-cited by applicants, are in fact 

inserted by patent examiners (Sampat 2010).  

Fourth, even if there exists idiosyncratic errors in citations, they should not systematically bias 

our analyses since we average the originality score of all patents granted to a firm over the last five 

years. 

Another concern of using patent data to measure InnOrig is about how to deal with firms 

without patents granted over the last five years. Although certain firms may intentionally choose 

not to use patents to protect their invention, it is hard to separate them empirically from firms with 

no invention to apply for patents and firms with unsuccessful patent applications, both of which 

should be categorized as low InnOrig firms since only successful patent applications are recorded 

in the NBER patent database. However, the historical success rate for patent applications is around 

50%-60% (see Kortum and Lerner 1998), suggesting that we cannot assume firms with no patents 

granted simply do not use patents to protect their intellectual property. Therefore, we include firms 

with positive R&D expenses but no patents granted over the last five years in our sample and 

assume these firms have the lowest InnOrig. (Excluding these firms generate stronger results in 
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portfolio sorts as discussed later.) We also include firms with no R&D expenses over the last five 

years as a comparison group. 

 

1.2 Summary statistics 

Table 1 reports the pooled summary statistics of the InnOrig measure for firms (with non-zero 

patents granted over the last five years) in typical innovation-driven industries based on the Fama 

and French (1997) 48 industry classifications.16 There is large cross-sectional variation in InnOrig 

within these industries. The 30th percentile is around 4, the 70th percentile is around 8, and the 95th 

percentile ranges from 10 to 18 across these industries. However, the time-series average of the 

cross-section of InnOrig across all firms with nonmissing InnOrig is more even (untabulated). The 

30th, 70th, and 95th percentiles are 4, 6, and 11, respectively. 

Although there is significant within-industry variation in InnOrig, the cross-industry variation 

in InnOrig is quite small. Specifically, the within-industry coefficient of variation (CV) for InnOrig 

ranges from 0.48 for automobiles and trucks to 0.69 for business services, while the cross-industry 

CV is only 0.13 (0.10) based on mean (median) InnOrig. Therefore, to make sure our results are 

not driven by any particular industry, we control for industry effects by adjusting stock returns 

directly instead of the InnOrig measure as detailed later.  

In Table 2 (Panel A), we report average InnOrig and other characteristics (both raw value and 

percentile ranks) that are known to predict stock returns for the InnOrig portfolios formed (at the 

end of June of year t) based on the 30th and 70th percentiles of InnOrig in year t – 1. We also assign 

firms with positive R&D expenses but no patents granted over the last five years to the low InnOrig 

                                                      
16 The variation in InnOrig across the Fama and French 48 industries is larger than that across these typical R&D-
intensive industries. Therefore, we control for industry effects in all the tests. 
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portfolio.17 Intuitively, firms with positive R&D expenses have low innovative originality if they 

do not have any patents granted as explained earlier. Firms with no R&D expenses over the last 

five years are assigned to the “No” group. 

On average, there are 4671 firms in the sample, 2462 of which are in the “No” group. The three 

InnOrig portfolios (Low, Middle, and High) are well diversified, with the average number of firms 

ranging from 409 to 1283. The cross-sectional variation in InnOrig is large, ranging from 3.02 to 

9.78 for the three InnOrig portfolios. The average size (market capitalization at the end of each 

June) of the low, middle, and high InnOrig portfolios is $702 million, $4,334 million, and $2,033 

million, respectively. Furthermore, firms in the three InnOrig portfolios cover 67% of the total 

stock market capitalization. Therefore, it is economically meaningful to study these firms. 

The book-to-market (BTM, the ratio of book equity of fiscal year ending in year t – 1 to market 

equity at the end of year t – 1), momentum (MOM, the previous eleven-month returns with a one-

month gap between the holding period and the current month), and idiosyncratic volatility (IVOL, 

measured at the end of June of year t as the standard deviation of the residuals from regressing 

daily stock returns on the Fama-French three factor returns over the previous 12 months with a 

minimum of 31 trading days) do not vary much across the InnOrig portfolios. There is no clear 

relation between InnOrig and total skewness (SKEW, measured at the end of June of year t using 

daily returns over the previous 12 months with a minimum of 31 trading days).  

Firms with higher InnOrig have higher patents-to-assets (CTA, the number of patents issued 

to a firm in year t – 1 divided by the firm’s total assets at the end of year t – 1), higher citations- 

and patents-based innovative efficiency (CIE and PIE in year t – 1), but lower R&D intensity 

(RDME, R&D expenses in fiscal year ending in year t – 1 divided by market equity at the end of 

                                                      
17 For the low InnOrig portfolio, average InnOrig is based on firms with at least one patent granted over the past five 
years, while the averages of other characteristics reported are based on all firms assigned to the portfolio. 
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year t – 1).18 We also report other characteristics, such as return on assets (ROA, income before 

extraordinary items plus interest expenses in year t – 1 divided by lagged total assets), return on 

equity (ROE, income before extraordinary items plus interest expenses in year t – 1 divided by 

lagged book equity), asset growth (AG, change in total assets in year t – 1 divided by lagged total 

assets), investment intensity (IA, capital expenditure in year t – 1 divided by lagged total assets), 

net stock issues (NS, change in the natural log of the split-adjusted shares outstanding in year t – 

1), institutional ownership (InstOwn, the fraction of firm shares outstanding owned by institutional 

investors in year t – 1), stock illiquidity (ILLIQ, the absolute monthly stock return divided by 

monthly dollar trading volume computed in June of year t as in Amihud 2002), short-term reversal 

(REV, lagged monthly stock return), number of sales segments (NSD, the number of sales 

segments based on Fama-French 48 industry classifications over year t – 5 to year t – 1), and one 

minus the Herfindahl index of segment sales (HHISD, based on Fama-French 48 industry 

classifications over year t – 5 to year t – 1). However, these characteristics do not vary much across 

the InnOrig portfolios except contemporaneous ROA and ROE. The high InnOrig group has the 

second lowest contemporaneous ROA and ROE.  

We report the time series averages of cross-sectional correlations between InnOrig and these 

characteristics in Panel B of Table 2. Consistent with Panel A, InnOrig does not strongly correlate 

with these characteristics. In particular, the Pearson correlations between InnOrig and size, 

citations- and patents-based innovative efficiency, the number of sales segments, and the HHI-

                                                      
18 Citations-based innovative efficiency measure (CIE) in year t – 1 is adjusted patent citations received in year t – 1 
by patents granted to a firm in years t – 2 to t – 6 scaled by the sum of R&D expenses in years t – 4 to t – 8. The 
adjusted citations in year t – 1 to patent k are citations to patent k in year t – 1 divided by the mean citations to patents 
of the same subcategory and grant year group in year t – 1. Patents-based innovative efficiency measure (PIE) in year 
t – 1 is patents granted to a firm in year t – 1 scaled by research and development (R&D) capital in year t – 3, computed 
as the five-year cumulative R&D expenses from year t – 7 to year t – 3 with a 20% annual depreciation. 
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based sales diversity are only –0.01, 0.13, 0.06, –0.03, and –0.03, respectively.  The corresponding 

Spearman rank correlations are also very low. 

Overall, these low correlations suggest that our InnOrig proxy is a firm characteristic that is 

distinct from other well-known return predictors. 

 

1.3 Autocorrelations of innovative originality and mispricing 

Our use of a rolling window to construct InnOrig follows the literature on the return predictive 

ability of R&D and patent-related variables, as mentioned earlier. InnOrig has moderate 

persistence beyond the first lag at the firm level. The cross-sectional average autocorrelations 

between InnOrig in year t and InnOrig in years t – 1, t – 2, t – 3, t – 4, and t – 5 are 0.62, 0.43, 

0.32, 0.23, and 0.08, respectively. Since we focus on InnOrig ranking in portfolio sorts, the average 

autocorrelations between InnOrig tercile ranks in year t and InnOrig tercile ranks in years t – 1, t 

– 2, t – 3, t – 4, t – 5 are 0.52, 0.28, 0.12, –0.02, and –0.18, respectively. Correspondingly, the 

number of migrators within one year is quite low; there are on average 61 (56) firms that move to 

the top (bottom) tercile each year. 

As discussed earlier, high InnOrig firms may outperform their competitors persistently due to 

the market power associated with original innovations. Generally, if a firm constantly adapts its 

innovation strategy by incorporating more diverse technology, then it is likely to rank persistently 

high in InnOrig and is protected against lagging behind. For example, Affymetrix persistently 

ranked high in InnOrig by constantly innovating based upon a wider range of technology than its 

competitors. Correspondingly, Affymetrix outperformed its competitors and was acquired by 

Thermo Fisher Scientific for approximately $1.3 billion in March 2016.  
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On the other hand, if a firm does not adapt to new technology trends or other firms’ shifts in 

innovation strategy, then it is likely to lag behind and experience a drop in its InnOrig rank. An 

example of a firm with large shifts in InnOrig rank is Respironics, a leading manufacturer of 

medical devices used primarily for the treatment of respiratory disorders. When Respironics’ 

InnOrig increased/dropped substantially relative to other firms, its profitability increased/declined 

correspondingly (see Section A of the Internet Appendix for more details). Since the raw value of 

Respironics’ InnOrig did not change that much over time, these changes in Respironics’ InnOrig 

rank may be partly owing to shifts in any given firm’s innovation strategy or shifts in technology 

trends.  

However, for several reasons, persistence in InnOrig rank does not necessarily mean that 

conclusive corrective information about the cash flows of high InnOrig firms will arrive quickly. 

InnOrig is constructed based upon patent information instead of product information. Therefore, 

these patents may not generate cash flows for the firm quickly; the road from patent being granted 

to the patent-protected products generating cash flows could take years, and is subject to technical 

and market uncertainty. Some other examples in the innovation literature also suggest slow 

correction. For example, Lev and Sougiannis (1996) show that five-year accumulated R&D 

expenditures (scaled by market equity) positively predict abnormal stock returns in the subsequent 

year. Chambers et al. (2002) and Ciftci et al. (2011) find that five-year accumulated scaled R&D 

expenditures positively predict abnormal stock returns for up to ten years. 

Furthermore, a firm can be persistently undervalued and have persistently high expected 

returns indefinitely. For example, Hong and Kacperczyk (2009) show that “sin” stocks (sin being 

a persistent trait) tend to be undervalued and have higher expected returns than otherwise-

comparable stocks. 
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2. Innovative Originality and Future Profitability 

In this section, we examine whether InnOrig contains favorable information about a firm’s future 

profitability to verify the key assumption of the limited attention theory and the competitive 

advantage associated with InnOrig. In particular, we conduct annual Fama-MacBeth regressions 

to study the relation between InnOrig and different aspects of future profitability: the persistence 

and the volatility. To explore the channel of this association, we also examine the relation between 

InnOrig and gross margin. 

 

2.1 InnOrig and persistence of future profitability 

To explore the effect of InnOrig on the persistence of future profitability (measured by return on 

equity or return on assets), we examine the interaction between InnOrig and mean reversion of 

profitability. Specifically, following Fama and French (2000), we conduct annual cross-sectional 

regressions of next year’s change in profitability on InnOrig, change in profitability, interaction 

between InnOrig and change in profitability, interaction between IE and change in profitability, 

and other control variables (profitability, market-to-book assets, advertising expenses, capital 

expenditure, R&D, innovative efficiency, and industry effects). We set missing values for InnOrig, 

IE, advertising expenses, and R&D expenses to zero. We also control for a dummy variable that 

equals one for firms with no R&D expenses over the last five years, and the interactions of this 

dummy with all the other control variables.19 To reduce the influence of outliers and facilitate the 

interpretation, we winsorize all variables at the 1% and 99% levels and standardize all independent 

                                                      
19 This dummy variable allows us to include firms with no valid InnOrig measures so that we can take advantage of 
the power of the full cross-section to make the coefficient estimates on the control variables more reliable. If we do 
not include these firms, the results are similar, albeit weaker for some of them, as expected. 
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variables (except the dummies) to zero mean and one standard deviation. For brevity, we omit the 

slopes on the industry dummies, the dummy for firms with no R&D and its interactions with other 

control variables in the tabulation of results. The focus is the slope on the interaction between 

InnOrig and change in profitability. 

We report the results for ROE and ROA in Panels A1 and A2 of Table 3, respectively. In each 

panel, we control for citations-based IE (CIE) on the top and patents-based IE (PIE) at the bottom. 

The slopes on the interaction between InnOrig and change in profitability are significantly positive 

at the 1%, 5% or 10% level. The magnitude is substantial, regardless which type of IE we control 

for. For example, in the top row of Panel A1, the slope on InnOrigt*ΔROEt is 1.97% (t = 3.49). 

Since the slope on ΔROEt is –13.57%, this implies that a one standard deviation increase in InnOrig 

slows down the mean reversion of ROE by 14.52% relative to a firm with zero InnOrig and zero 

CIE. These results indicate that firms with high InnOrig exhibit significantly slower mean 

reversion, which is consistent with the intuition that high InnOrig allows firms to maintain 

competitive advantage and sustainable profitability.  

In contrast, the effect of IE on the mean reversion of profitability is unclear. For example, in 

the top row of Panel A1, the slope on CIEt*ΔROEt is –0.92% (t = –1.69); on the other hand, in the 

bottom row of the same panel, the slope on PIEt*ΔROEt is 1.62% (t = 2.49). Combined with the 

insignificant slopes on IE and significant slopes on InnOrig (see the Internet Appendix, Section E) 

when we regress the level of future ROA/ROE on InnOrig and IE, these results illustrate the 

distinctiveness between IE and InnOrig in determining firms’ fundamentals. 

 

2.2 Innovative originality and volatility of future profitability 
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In addition, if high InnOrig allows a firm to maintain sustainable profitability, we expect that high 

InnOrig is associated with less volatile future profitability. Therefore, following Kothari, Laguerre, 

and Leone (2002), we conduct annual cross-sectional regressions of volatility of profitability over 

the next five years on InnOrig, the volatility of profitability over the past five years, and other 

control variables.20 The methodology of treating missing variables is the same as above. Similarly, 

for brevity, we omit the slopes on the industry dummies, the dummy for firms with no R&D and 

its interactions with other control variables. The focus is the slope on InnOrig. 

We report the results for ROE and ROA in Panels B1 and B2 of Table 3, respectively. In each 

panel, we control for citations-based IE (CIE) on the top and patents-based IE (PIE) at the bottom. 

The slope on InnOrig is always significantly negative at the 1% level and substantial. For example, 

in the top row of Panel B1, the slope on InnOrig is –2.79% (t = –4.62). This implies that a one 

standard deviation increase in InnOrig reduces the volatility of next five years’ ROE by 11.37% 

(relative to the average volatility of ROE over next five years at 24.53%) controlling for citations-

based IE and other variables. Similarly, in the top row of Panel B2, the slope on InnOrig is –0.68% 

(t = –7.19). This implies that a one standard deviation increase in InnOrig reduces the volatility of 

next five years’ ROA by 10.37% (relative to the average volatility of ROA over next five years at 

6.56%) controlling for citations-based IE and other variables. The magnitude of these effects 

controlling for patents-based IE is almost identical as indicated by the very similar slopes on 

InnOrig in the bottom rows of Panels B1 and B2. 

In contrast, the effect of IE on volatility of future profitability is often tiny and positive. For 

example, the slope on citations-based IE in Panel B1 is only 0.65% (t = 1.22). These results confirm 

                                                      
20 Using a five-year window allows us to estimate the volatility more accurately. On the other hand, this also imposes 
stronger restriction on the data, which requires a firm to have at least 10-year data in order to be included in these 
regressions. Therefore, the results are subject to survivorship bias to some extent. However, when we use a three-year 
window to estimate volatility, the results are similar. 
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that the relations between InnOrig or IE and firm’s fundamentals differ substantially. This 

evidence is consistent with the idea that more original innovation is a means by which firms can 

build moats that protect firms from competition, resulting in higher, more persistent, and more 

stable subsequent profitability. 

 

2.3 Innovative originality and future gross margin 

As discussed earlier, highly original innovation may help create unique and superior products, 

which allow firms to charge a price premium and maintain sustainable competitive advantage. 

Therefore, in this subsection, we examine the relation between InnOrig and future gross margin 

(GM), measured by sales minus cost of goods sold, scaled by sales. To reduce the noise in this 

measure, we set GM to 1 (or –1) if it exceeds 1 (or –1) following the literature (see, e.g. Kothari, 

et. al. 2002). We find that InnOrig is associated with significantly higher persistence and lower 

volatility of future gross margins. 

Specifically, to illustrate the effect of InnOrig on the persistence in GM, we conduct annual 

Fama-MacBeth regressions of next year’s gross margin on InnOrig, gross margin in current year 

and over the past four years, interaction of InnOrig with current GM and GM over the past four 

years, and other controls. Similar to Table 3, we set missing values for InnOrig, IE, advertising 

expenses, and R&D expenses to zero. We also control for a dummy variable that equals one for 

firms with no R&D expenses over the last five years, and the interactions of this dummy with all 

the other control variables. For brevity, in the tabulation of results we omit the slopes on these 

terms, GM over the past four years and their interaction with InnOrig, and the industry dummies. 

To reduce the influence of outliers and facilitate the interpretation, we winsorize all variables at 



 
 

21 
 

the 1% and 99% levels and standardize all independent variables (except the dummies) to zero 

mean and one standard deviation.  

The focus is the slope on the interaction between InnOrig and GM. As shown in Panel A of 

Table 4, the slope on InnOrigt*GMt is significantly positive at the 5% level, regardless which type 

of IE we control for. The magnitude is also substantial. For example, in the top row of Panel A, 

the slope on InnOrigt*GMt is 0.71%. Since the slope on GMt is 23.90%, this implies that a one 

standard deviation increase in InnOrig increases the persistence in GM by 3% relative to a firm 

with zero InnOrig.21 These results are consistent with the intuition that high InnOrig allows firms 

to maintain competitive advantage and sustainable high gross margin. 

We also examine the effect of InnOrig on volatility of future GM. The model specification is 

the same as in Panel B of Table 3. In Panel B of Table 4, we show that high InnOrig also reduces 

volatility of future GM significantly. The slope on InnOrig is always significantly negative at the 

1% level and substantial. For example, in the top row of Panel B, the slope on InnOrig is –0.28% 

(t = –3.42). This implies that a one standard deviation increase in InnOrig reduces the volatility of 

next five years’ GM by 5.53% (relative to the average volatility of GM over next five years at 

5.06%) controlling for citations-based IE and other variables. In contrast, the slope on CIE and 

PIE are significantly positive. 

Overall, these results suggest that high InnOrig firms are able to achieve higher, more 

persistent, and less volatile profitability (at least in part) through the effect of InnOrig on gross 

margin. 

                                                      
21 Although the slope on InnOrigt itself is negative, –0.16 (t = –1.37), the gross effect of InnOrig on GMt+1 is equal to 
(–0.16 + 0.71*GMt), which is positive as long as (standardized) GMt > 0.23, which applies to about 40% of the sample 
firms. We note that not all original innovations enhance gross margin or product price: some firms’ original inventions 
are used to improve operational efficiency (such as enhancing turnover or reducing SG&A) that will enhance ROA 
and ROE but not gross margin or product price. 
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3. Return Predictive Power of Innovative Originality 

We next test whether InnOrig predicts returns. Limited attention predicts that as long as a positive 

fraction of investors neglect favorable information in InnOrig, higher InnOrig is associated with 

greater subsequent abnormal returns. A similar implication follows from skepticism of complexity 

and models of ambiguity aversion.22  

After evaluating this prediction in the full sample, we then test the other three implications 

regarding the strength of the return predictive power of InnOrig (see Propositions 2 through 4 in 

Section D of the Internet Appendix). The limited attention hypothesis predicts that the InnOrig 

effect should increase with valuation uncertainty, the fraction of inattentive investors, and the 

sensitivity of future profitability to InnOrig. Intuitively, when the prior uncertainty about the value 

of the stock (without any conditioning on InnOrig) is higher, heavier weight should optimally be 

placed on InnOrig by investors in forming posterior beliefs about value. So neglect of InnOrig 

causes greater mispricing among these firms. Similarly, the larger the fraction of inattentive 

investors, the more influence they have on the current price and hence the larger mispricing owing 

to neglect of InnOrig.  

In addition, the more sensitive a firm’s future profitability is to InnOrig (or the more favorable 

information contained in InnOrig about a firm), the more that neglect of InnOrig causes market 

                                                      
22 Such models (see, e.g., Dow and Werlang 1992; Chen and Epstein 2002; Cao, Wang, and Zhang 2005; and Bossaerts 
et al. 2010) imply that when investors perceive higher uncertainty about an investment opportunity, they view it more 
skeptically. For example, in Cao et al. (2005), conglomeration causes a price discount owing to the difficulty of 
evaluating complex firms. This is potentially consistent with psychological evidence showing that observers tend to 
interpret signals with lower processing fluency with greater skepticism, and view the subject matter of such signals as 
riskier (e.g., Alter and Oppenheimer 2006; Song and Schwarz 2008, 2009, 2010). More original innovations tend to 
deviate more from current technology trajectories, and hence involve greater uncertainty and complexity. This makes 
them harder to evaluate, inducing skepticism. We therefore argue that high InnOrig leads to investor pessimism about 
firm value. This generates the same empirical prediction that high InnOrig is associated with undervaluation, and 
hence is a positive predictor of future abnormal returns.  
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value to deviate from true fundamental value. In particular, the limited attention argument requires 

InnOrig to be an important predictor of firms’ future profitability, as we verify in Tables 3 and 4. 

Ignoring/underreacting to this important signal in valuation will lead to mispricing, especially for 

firms whose future profitability is more sensitive to InnOrig. So the cash flow channel predicts a 

stronger ability of InnOrig to predict returns among firms with high sensitivity.  

To test these hypotheses, we conduct portfolio sorts first to illustrate the abnormal returns and 

then Fama-MacBeth regressions to illustrate the robustness of the effect to other return predictors. 

 

3.1 Portfolio sorts 

3.1.1 Single sort 

At the end of June of year t from 1982 to 2007, we sort firms with non-missing InnOrig into 

three InnOrig portfolios (Low, Middle, and High) based on the 30th and 70th percentiles of InnOrig 

in year t – 1. We also assign firms with no patents granted but with positive R&D spending over 

the last five years into the low InnOrig portfolio.23 As an alternative for comparison, we also assign 

firms with no R&D expenses and patents over the last five years in the “No” group. To examine 

the InnOrig-return relation, we form a hedge portfolio that takes a long position in the high InnOrig 

portfolio and a short position in the low InnOrig portfolio. Since the USPTO fully discloses patents 

granted in the weekly Official Gazette of the United States Patent and Trademark Office, the 

InnOrig measure in year t – 1 is publicly observable at the end of year t – 1. We allow a six-month 

lag in forming the InnOrig portfolios only to make the results comparable to previous studies. 

                                                      
23 The results are even stronger if we completely exclude firms with no patents granted. For example, the mean excess 
return and Carhart four-factor alpha for the high-minus-low InnOrig portfolio are 0.32% and 0.37% per month, 
respectively, and are significant at the 1% level. 
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We hold these portfolios over the next twelve months (July of year t to June of year t + 1) and 

compute their value-weighted monthly returns to make sure the results are not driven by small 

firms. In Panel A of Table 5, we report average monthly returns in excess of one-month Treasury 

bill rate (excess returns) as well as industry- and characteristic-adjusted returns for these portfolios 

to make sure that the InnOrig effect is not driven by industry effects or well-known firm 

characteristics. The industry-adjusted returns are based on the difference between individual firms’ 

returns and the returns of firms in the same industry (based on Fama and French 48 industry 

classifications). Following Daniel et al. (1997) (DGTW) and Wermers (2004), we compute 

characteristic-adjusted returns based on the difference between individual firms’ returns and the 

DGTW benchmark portfolio returns (which are formed from 5-by-5-by-5 independent triple sorts 

on size, book-to-market, and momentum).  

In Panel B, to examine the relation between InnOrig and abnormal returns, we perform time-

series regressions of the portfolios’ excess returns on the Fama-French three factors (the market 

factor–MKT, the size factor–SMB, and the value factor–HML) and the momentum (UMD) factor 

as in Carhart (1997) (henceforth, the Carhart 4F model). We also report alphas from other factor 

models for robustness check. In particular, we augment the Carhart model with the Investment-

Minus-Consumption (IMC) factor, the liquidity (LIQ) factor, the citations-based innovative 

Efficient-Minus-Inefficient (EMI1) factor, the patents-based EMI (EMI2) factor, the Robust-

Minus-Weak (RMW) factor and the Conservative-Minus-Aggressive (CMA) factor, or the 

Undervalued-Minus-Overvalued (UMO) factor, respectively.24 We also report alphas from the q-

factor model of Hou, Xue, and Zhang (HXZ 2015) and the mispricing factor model of Stambaugh 

and Yuan (2017). Controlling for these additional factors helps ensure that the InnOrig effect is 

                                                      
24 Following Fama and French (2015), the RMW and CMA factors are from 2 × 2 × 2 × 2 sorts on size, book-to-
market, operating profitability, and investment. 
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not driven by the investment-specific technology risk, the liquidity effect, the innovative efficiency 

effect, the profitability effect, the investment effect, or existing mispricing factors. 

As mentioned in the introduction, the excess returns, industry- and characteristic-adjusted 

returns, and alphas from different factor models generally increase monotonically with InnOrig 

from low to high, implying a positive InnOrig-return relation. Furthermore, the InnOrig effect is 

economically and statistically significant. The monthly alphas of the hedge portfolio range from 

0.20% to 0.35% and are generally significant. Consistent with the idea that firms with no R&D 

investment are the least innovative firms, the alphas of the “No” group are negative and slightly 

larger in magnitude than those of the low InnOrig group. 

To further examine whether the undervaluation of high InnOrig firms is driven by investors 

not recognizing the implication of high InnOrig on firms’ fundamentals, we find that future 

abnormal returns mostly come from future earnings announcement windows. Specifically, the 

three-day cumulative abnormal return (CAR relative to the Carhart model) around future earnings 

announcement is 0.18% for the high InnOrig portfolio, which is 25.33% of its quarterly Carhart 

alpha.  

Although InnOrig is associated with high profitability over the next five years, we find no 

significant return predictability beyond the first post-sorting year (see Figure 1 for the alphas of 

the InnOrig spread portfolio over the five post-sorting years from different factor models). For 

brevity, we only plot the alphas from the Carhart model, the Carhart plus RMW and CMA model, 

the q-factor model, and the mispricing four-factor model in Figure 1. Therefore, the data seem to 

suggest that the market fully corrects the undervaluation in the first year after portfolio formation. 

This is consistent with the argument of Chambers, Jennings, and Thompson (2002) that 

mispricing-based return predictability should be corrected in a short period while risk-based return 
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predictability should persist for a long period.  

Overall, these results suggest that high InnOrig firms are undervalued relative to low InnOrig 

firms, and the InnOrig effect is incremental to industry effects, well-known characteristics, 

standard and recently developed risk and mispricing factors, as well as the IE effect in Hirshleifer, 

Hsu, and Li (2013). It is also noteworthy that these results are not driven by very small firms as 

shown in Table 2. Furthermore, we construct value-weighted portfolios (which put more weight 

on larger firms) and rebalance them only once a year. Therefore, these abnormal returns are likely 

to survive typical transaction costs.  

High InnOrig firms on average are larger. Other things equal, we expect large firms to receive 

greater investor attention, which tends to reduce misvaluation. However, as mentioned earlier, 

large firms are also generally more complex, making them harder to value (e.g., Cohen and Lou 

2012). It is not clear whether this additional attention outweighs complexity to result in more 

accurate valuation of the innovative originality of large firms. In fact, the return predictive power 

of InnOrig exists in both small and big firms and does not vary much across size subsamples 

(untabulated).  

We also examine how the returns of the hedge portfolio vary over time. Figure 2 plots the 

returns on a per annum basis from July of 1982 to June of 2008. The hedge portfolio’s returns are 

negative only in eight out of the 27 years. This portfolio has a monthly market beta (from CAPM) 

of –0.13 (estimated from CAPM), and the correlation between the hedge portfolio’s returns and 

the market excess returns is –0.53 (–0.25) on an annual (monthly) basis. As discussed earlier, the 

returns of the high-minus-low InnOrig (hedge) portfolio is not fully explained by existing factor 

models. The correlations between the monthly returns of the hedge portfolio and those factor 

returns range from –0.42 with the size (SMB) factor to 0.44 with the RMW factor. In particular, 
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the correlations with the citations- and patents-based IE factors, the momentum factor, the CMA 

factor, the IMC factor, and the LIQ factor are small, ranging from –0.10 to 0.25. The correlation 

with the market factor is negative (–0.25), suggesting that investing in this portfolio can provide 

hedge against market downturns. 

The average monthly return of the hedge portfolio is 0.29%, which is substantially higher than 

that of SMB (0.07%), IMC (–0.15%), and CMA (0.15%) in absolute value, and is comparable to 

that of the value (HML) factor (0.37%), and the RMW factor (0.34%). Furthermore, the high-

minus-low InnOrig portfolio offers an ex post annual Sharpe ratio of 0.50, which is higher than 

that of SMB (0.08), HML (0.34), CMA (0.33), IMC (–0.13), the market factor (0.47), the size 

factor in the mispricing factor model (0.39), and is comparable to that of the investment factor in 

the q-factor model (0.57), RMW (0.57), and LIQ (0.58). Since the high level of the equity premium 

is a well-known puzzle for rational asset pricing theory (Mehra and Prescott 1985), the high ex 

post Sharpe ratio associated with the high-minus-low InnOrig portfolio is also puzzling from this 

perspective.  

 

3.1.2 Double sorts 

We next test the implications on the interaction of the InnOrig effect with proxies of valuation 

uncertainty (VU), investor attention, and the sensitivity of future profitability to InnOrig via 

independent double sorts.  

For VU, we use two proxies.25 One is an index that combines age and opacity. Age is a popular 

measure of valuation uncertainty (see, e.g., Kumar 2009). 26 However, age alone may not be 

                                                      
25 In Table 10, we also report the InnOrig-return relation within R&D intensity subsamples. Since R&D is hard to 
value by its uncertain nature, R&D intensity is another alternative proxy of VU. The results reported later provide 
further support for this conditional prediction.  
26 Kumar (2009) also uses turnover and idiosyncratic volatility (IVOL) as additional proxies for valuation uncertainty. 
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sufficient in fully capturing VU. For example, a young firm with very transparent financial reports 

may not necessarily involve more valuation uncertainty than an old and established firm with very 

opaque reports. Opacity is a popular measure of transparency of a firm’s financial reports (see, 

e.g., Hutton, Marcus, and Tehranian 2009). Therefore, we combine both age and opacity to fully 

capture VU. Specifically, age is defined as the number of years listed on Compustat with non-

missing price data. Opacity is defined as the three-year moving sum of the absolute value of 

discretionary accruals, a proxy of earnings management. Younger firms or more opaque firms have 

higher valuation uncertainty. To construct the VU index, we first standardize all firms’ age and 

opacity measure in each year to zero mean and one standard deviation. The VU index for each 

firm-year observation is then computed as standardized opacity minus standardized age. By 

construction, the higher the index, the higher VU is. The second proxy of VU is analyst forecast 

dispersion (scaled by the absolute value of mean forecast). 

We measure investor attention (ATT) by the inverse of transient institutional investors’ 

ownership. Following Bushee (1998, 2001), we categorize all institutional investors (including 

hedge funds and mutual funds) into three groups: transient, dedicated, and quasi-indexer. Transient 

institutional investors trade stocks based on momentum and short-term strategies. As argued in 

Bushee (1998), they do not pay much attention to firms’ fundamentals.27 Thus we use the fraction 

of transient institutional investors as a proxy for the fraction of inattentive investors (f u in our 

model). 

Lastly, we measure the sensitivity (Sen) of future profitability to InnOrig by an industry-level 

                                                      
However, turnover has also been used as a proxy of investor attention in some studies (e.g., Gervais, Kaniel, and 
Mingelgrin 2001; Hou, Peng, and Xiong 2009). Since firms with lower turnover can be interpreted as having lower 
investor attention or lower valuation uncertainty, the overall prediction is unclear. We do not use IVOL to proxy VU 
as it is highly negatively correlated with firm size and is often interpreted as a proxy of short-sale constraints.  
27 On the other hand, dedicated institutional investors take a long-term perspective and are thus more active in 
corporate governance and value creation.  
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sensitivity of past ROE to lagged InnOrig.28 Specifically, we measure Sen by the slope on InnOrig 

from annual industry-level Fama-MacBeth regression of firms’ past ROE on lagged InnOrig and 

a set of control variables (ROE, change in ROE, market-to-book assets, advertising expenses 

scaled by book equity, capital expenditure scaled by book equity, R&D scaled by book equity, and 

citations-based IE). This sensitivity measure is observable to investors before portfolio formation 

since it is estimated based on prior information. 

To ensure that these proxies serve their purpose of capturing different aspects of the three 

distinct conditional predictions from the model, we examine the correlations among these proxies 

first. In untabulated results, we find that the correlations among these proxies are very low, ranging 

from –0.02 to 0.04. In addition, their correlations with size are also very low, ranging from –0.15 

to 0.06.  

To perform these conditional tests, at the end of June of year t, we conduct 3 by 3 double sorts 

on InnOrig and each of those conditioning variables listed. As the number of analyst forecast is 

sparse before 1983, the portfolio sorts for VU based on analyst dispersion start in June of 1984. 

The three InnOrig portfolios are formed as in the single sort. The conditioning variables are 

measured in year t – 1. To compare the InnOrig effect across the subgroups, we also form a high-

minus-low InnOrig (hedge) portfolio in each subgroup. We hold these portfolios over the next 

twelve months (July of year t to June of year t + 1). All portfolios are value-weighted. Similar to 

Table 5, we calculate the average monthly excess returns, industry- and characteristic-adjusted 

returns, and alphas estimated from different factor models.  

The results in Table 6 support the predictions. For brevity, we only tabulate the alphas from 

the Carhart model, the Carhart plus RMW and CMA model, the q-factor model, and the mispricing 

                                                      
28 To reduce estimation error, measuring Sen at the firm level would require a long time-series of each sample firm, 
which would severely limit sample size. We therefore estimate Sen at the industry level. 
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four-factor model. The hedge portfolio’s returns and alphas are substantial and significant in the 

high VU group (firms with VU in the top tercile), but small and often insignificant in the low VU 

group (firms with VU in the bottom tercile). For example, in Panel A1 of Table 6, among high VU 

index firms, the monthly average excess returns as well as industry- and characteristic-adjusted 

returns of the hedge portfolio are 1.10%, 0.99%, and 1.17%, respectively, and are significant at 

the 1% level. The monthly alphas from different factor models range from 0.82% (the q-factor 

model) to 1.08% (controlling for the Carhart four factors plus LIQ) and are significant at the 1% 

level. In contrast, among low VU index firms, these returns and alphas are small and insignificant, 

ranging from 0.07% to 0.19%. Similarly, in Panel A2, the alphas of the InnOrig hedge portfolio 

range from 0.47% (the Carhart four factors plus RMW and CMA factors) to 0.69% (the Carhart 

four factors) and are generally significant at the 5% level among high VU firms (based on high 

analyst forecast dispersion), but these alphas are smaller and generally insignificant among low 

VU firms.29 

Similarly, the InnOrig effect is also much stronger among firms with lower investor attention 

or higher sensitivity of future profitability to InnOrig (see Panels B and C). Specifically, the 

monthly alphas from different factor models for the hedge portfolio range from 0.42% (controlling 

for the Carhart four factors plus EMI1) to 0.58% (controlling for the Carhart four factors) and are 

significant at the 1% level among low attention firms. These alphas range from 0.51% (the q-factor 

model) to 0.81% (controlling for the Carhart four factors plus LIQ) and are significant at the 1% 

level among high sensitivity firms. But they are small and insignificant among firms with high 

attention or low sensitivity.  

                                                      
29 The results are even stronger when we restrict the sample to firms with at least five analyst forecasts. The alphas of 
the hedge portfolio among the high dispersion group range from 0.50% to 0.76%, all significant at the 5% or 1% level. 
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We also verify that these contrasts are not due to the difference in the InnOrig measure spreads. 

The spread in InnOrig does not vary much across these subsamples and is very similar to that in 

the single sort as shown in Table 2. Furthermore, similar to the unconditional return predictive 

power of InnOrig, the significant InnOrig effect among high VU, low attention, high sensitivity 

firms is not driven by very small firms either. The average size of the low, middle, and high 

InnOrig portfolios range from $316 to $895 million in the high VU index group, $782 million to 

$2.31 billion in the high analyst forecast dispersion group, $1.11 to $3.12 billion in the low 

attention group, and $759 million to $4.44 billion in the high sensitivity group (untabulated).  

The high VU, low attention, and high sensitivity firms also constitute a significant portion of 

the CRSP universe. When we measure VU by combining age with opacity, the high VU subsample 

weighs 5.3% of total CRSP universe. The high VU subsample based on analyst forecast dispersion 

weighs 8.1% of the CRSP universe.30 The low ATT (high sensitivity) subsample constitutes 28.3% 

(21.7%) of total CRSP universe. Therefore, the subsamples with the strongest InnOrig-return 

relation account for a significant fraction of the overall market, especially the low-ATT and high-

Sen subsamples. 

Overall, independent double sorts provide fairly strong evidence supporting the model 

predictions on the conditional return predictive power of InnOrig.  

 

3.2 Fama-MacBeth regressions 

3.2.1 Full-sample Fama-MacBeth regressions 

We next examine the ability of InnOrig to predict the cross section of returns using monthly Fama-

MacBeth regressions. This analysis allows us to control more extensively for other characteristics 

                                                      
30 The high VU subsample based on R&D intensity (see Table 10) weighs 11.1% of the CRSP universe. 
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that can predict returns, to verify whether the positive InnOrig-return relation as measured in 

portfolio sorts is driven by other known return predictors.  

As in Fama and French (1992), we allow for a minimum six-month lag between the 

accounting-related control variables and stock returns to ensure that the accounting variables are 

fully observable to investors. Specifically, for each month from July of year t to June of year t + 

1, we regress monthly returns of individual stocks on the natural log of one plus InnOrig of year t 

– 1, different sets of control variables, and industry fixed effects based on Fama and French 48 

industry classifications.  

Table 7 shows the time-series average slopes (in percentage) and corresponding Newey-West 

heteroscedasticity-robust and autocorrelation-adjusted t-statistics (in parentheses) from the 

monthly cross-sectional regressions for different model specifications. We winsorize all 

independent variables at the 1% and 99% levels to reduce the impact of outliers, and then 

standardize all independent variables (except dummies) to zero mean and one standard deviation 

to facilitate the comparison of economic effects of all variables. We set InnOrig to zero for firms 

without InnOrig, and include a dummy that equals one for firms with no patent and no R&D over 

the past five years and the interaction of this dummy with the other control variables in the 

regressions. For brevity, we omit the slopes on these terms and the industry dummies in the 

tabulations.  

Model 1 is a univariate regression of future returns on InnOrig. The slope on InnOrig is 0.15% 

(t = 2.91). Model 2 controls for institutional ownership (InstOwn), stock illiquidity (ILLIQ), short-

term return reversal (REV), BTM, size, momentum (MOM), and industry dummies based on Fama 

and French 48 industry classifications. InnOrig and BTM are measured in year t – 1. ILLIQ and 

REV are the previous month’s stock illiquidity and stock return, respectively. Size is the natural 
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log of market capitalization at the end of June of year t; BTM is also in the log form. The slope on 

InnOrig is statistically significant: 0.15% (t = 5.34). The slopes on the other variables are consistent 

with previous studies. Although the slopes on momentum are insignificant, they are positive. 

Furthermore, in unreported results, we find significantly positive slope on momentum if we only 

control for size and book-to-market. 

In Model 3, we control for additional return predictors related to innovation (CIE or PIE, CTA, 

and RDME), investment (AG and IA), financing (NS), profitability (ROA), idiosyncratic volatility 

(IVOL), and total skewness (SKEW) measured in year t – 1.31 IVOL is included as Pastor and 

Veronesi (2009) and Garleanu, Panageas, and Yu (2012) propose that new technologies are 

associated with idiosyncratic risk, and SKEW is included as Kapadia (2006) argues that investors 

prefer high-tech stocks for their positive skewness. CIE (PIE) is the natural log of one plus the 

citations-based (patents-based) IE measure following Hirshleifer, Hsu, and Li (2013). Missing CIE 

and PIE are set to zero. CTA is the natural log of one plus patents granted in year t – 1 divided by 

total assets in year t – 1. RDME is the natural log of one plus R&D-to-market equity in year t – 1. 

We use the log transformation for those innovation variables to mitigate their skewness following 

Lerner (1994) and Aghion, Van Reenen, and Zingales (2013). 

The InnOrig slopes remain statistically significant: 0.10% (t = 3.58) controlling for CIE, and 

0.12% (t = 4.42) controlling for PIE. The slopes on the control variables are generally consistent 

with previous studies. The slope on IVOL is significantly positive, which is consistent with Bali, 

Cakici, and Whitelaw (2011). Moreover, the InnOrig slopes remain similar when we use other 

                                                      
31 On the capital investment effect, see, e.g., Lyandres, Sun, and Zhang (2008) and Polk and Sapienza (2009). On the 
asset growth effect, see, e.g., Cooper, Gulen, and Schill (2008). On the net stock issues effect, see, e.g., Ikenberry, 
Lakonishok, and Vermaelen (1995), Daniel and Titman (2006), Fama and French (2008), and Pontiff and Woodgate 
(2008). On the profitability effect, see, e.g., Fama and French (2006), and Hou, Xue, and Zhang (2015). On the 
idiosyncratic volatility and skewness effects, see, e.g., Ang et al. (2006), Harvey and Siddique, (2000), Kapadia 
(2006), Boyer, Mitton, and Vorkink (2009), and Bali, Cakici, and Whitelaw (2011). 
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proxies of skewness such as systematic skewness (Harvey and Siddique 2000), idiosyncratic 

skewness (Bali, Cakici, and Whitelaw 2011), and expected idiosyncratic skewness (Boyer, Mitton, 

and Vorkink 2009) in unreported results.32  

Lastly, we also control for sales diversity measured by two proxies: the first is the number of 

sales segments (NSD) defined by Fama-French 48 industries over the previous five years (year t – 

5 to year t – 1). The second is one minus the Herfindahl index of segment sales (HHISD, based on 

Fama-French 48 industry classifications) over year t – 5 to year t – 1. We use the segment sales 

data from Compustat segment files following Cohen and Lou (2012) among others. Since the two 

proxies are very highly correlated, we only report the results from controlling for NSD. However, 

the results (unreported) from controlling for HHISD are almost the same. As shown in Model 4, 

the slopes on InnOrig remain almost the same in magnitude with statistical significance. Therefore, 

the InnOrig effect is robust to controlling for sales diversity in product markets.  

Overall, the results above indicate that the predictive power of InnOrig is distinct from, and 

robust to the inclusion of, other commonly known return predictors, innovation-related variables, 

industry effects, and sales diversity. Although the magnitudes of the InnOrig slopes are modest, 

we mainly rely on Fama-MacBeth regressions to illustrate the statistical significance of the InnOrig 

effect and portfolio sorts to identify the economic magnitude of abnormal returns following Fama 

and French (2006).33  

 

3.2.2 Subsample Fama-MacBeth regressions 

                                                      
32 Idiosyncratic skewness (ISKEW) is measured at the end of June of year t as the skewness of residuals from 
regressing daily stock returns on daily market factor returns and squared market factor returns. Systematic skewness 
is the slope on the squared market factor returns from the regression for ISKEW. Expected idiosyncratic skewness is 
measured in the previous month. 
33 As pointed out in Fama and French (2006), “cross-section return regressions can identify variables that help describe 
average stock returns, but the economic significance of the average slopes is not always easy to judge. Moreover, the 
average slopes from the return regressions cannot tell us whether the regressions are well-specified.” 
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We also perform Fama-MacBeth regressions in subsamples split by these conditioning variables 

as in the double sorts. We use the same method and model specifications as in the test of the 

unconditional InnOrig effect above. For brevity, we only report the slopes estimated from Model 

3 in Table 8 since the slope on sales diversity is small and insignificant (see Table 7). For each 

panel, we report results from controlling for CIE (PIE) on the left (right).  

The results show a sharp contrast in the InnOrig effect across the subsamples even after we 

control for many well-known return predictors and industry effects. Specifically, controlling for 

citations-based IE and others (Model 3A), the slopes on InnOrig are 0.21%, 0.15%, 0.16%, 0.23% 

among high VU index, high VU (based on analyst forecast dispersion), low attention, and high 

sensitivity firms, respectively, and are generally significant at the 1% or 5% level. In contrast, their 

counterparts are only 0.01%, 0.07%, 0.00%, and 0.05% among low VU index, low dispersion, 

high attention, and low sensitivity firms, respectively, and are insignificant. These sharp contrasts 

remain the same if we control for patent-based IE (Model 3B). 

Taken together, consistent with our hypotheses, both portfolio sorts and Fama-MacBeth 

regressions provide support for a more pronounced InnOrig-return relation among firms with 

higher valuation uncertainty, lower investor attention, and higher sensitivity of future profitability 

to InnOrig. 

 

3.3 Innovative originality versus innovative efficiency 

In previous tests, we showed that the InnOrig effect is distinct from the IE effects by controlling 

for the citations- or patents-based EMI factor in the portfolio sorts and the two types of IE in the 

Fama-MacBeth regressions. In this subsection, we further examine the incremental return 

predictive power of InnOrig by conducting Fama-MacBeth regressions within IE subsamples 
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(Table 9) for both types of IE.  

A strong incremental InnOrig effect remains and is significantly stronger among low IE firms 

for both types of IE measures. On ex ante grounds, it is not clear why the InnOrig effect is stronger 

among low IE firms. One possibility is that there is a tradeoff between being innovatively efficient 

(which may require being tough about cancelling projects that are not producing output quickly) 

and original (which may require high tolerance for failure and providing a lot of slack for highly 

speculative projects in the hope that they may someday pay off). The low IE category, in 

combination with high InnOrig, may be especially good at identifying the high originality that the 

market underweights. 

 

3.4 Innovative originality and R&D intensity 

Since R&D is a crucial input for generating innovation and firms that invest heavily in R&D 

are also harder to value due to the uncertain nature of R&D investment, we hypothesize that the 

InnOrig-return relation is stronger among higher R&D firms. To test this hypothesis, we use the 

same method as in Table 8, and obtain supporting evidence in the Fama-MacBeth subsample 

regressions within subsamples split on R&D expenses scaled by total assets. Specifically, Table 

10 shows that the slope on InnOrig among high R&D firms is positive and significant. The 

magnitude is also much larger than that among low R&D firms. For example, when we control for 

CIE, the slopes on InnOrig are 0.14% (t = 2.01) and 0.05% (t = 1.07) among high and low R&D 

firms, respectively. 

 

3.5 Potential alternative explanations 

Although overall the evidence above is consistent with limited attention, we do not rule out 
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potential risk-based explanations. To address the possibility that InnOrig captures information 

asymmetry, we examine whether our InnOrig measure correlates with proxies for information 

asymmetry such as analyst coverage, analyst forecast dispersion, opacity of financial statements, 

and presence of bond rating. The correlations are very low.  

In addition, since financing constraint is particularly important for R&D firms (e.g., Hall 1992, 

2005, 2009; Himmelberg and Petersen 1994; Hall and Lerner 2010; Li 2011), one may wonder if 

our results are driven by financing constraints risk. However, we find that the InnOrig effect exists 

in both small and big firms and does not have a significant interaction with size. Since size is 

inversely associated with financing constraints (e.g., Gertler and Gilchrist 1994; Campello and 

Chen 2010), this evidence suggests that constraints risk cannot explain the InnOrig effect. 

Furthermore, as discussed earlier, the correlation between our InnOrig measure and size is very 

low. 

To address the possibility that the InnOrig effect captures investment-specific technological 

change risk, as discussed earlier, we control for IMC in computing risk-adjusted returns and 

examine the loading of the InnOrig hedge portfolio’s returns on IMC.34 The alphas are robust to 

controlling for IMC, and the loading on IMC is small and insignificant regardless whether we use 

IMC alone or combine IMC with the market factor or the Carhart model. For example, the loading 

(untabulated) of the InnOrig hedge portfolio on IMC is –0.10 (t = –0.79) in the Carhart model 

augmented with the IMC factor. Furthermore, to capture technology-related risk we construct a 

portfolio that is long on firms in high-tech industries and is short on firms in the other industries. 

The correlation between this mimicking portfolio’s returns and the returns of the InnOrig hedge 

                                                      
34  Greenwood, Hercowitz, and Krusell (1997) suggest that investment-specific technological changes explain 
aggregate economic growth; later, Kogan and Papanikolaou (2014) and Papanikolaou (2011) propose investment-
specific technological changes as a systematic risk priced in stock markets. We thank Papanikolaou for providing the 
IMC factor returns. 
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portfolio is also very low and insignificant. In addition, the correlation between the InnOrig hedge 

portfolio’s return and the aggregate technology shock of Hsu (2009) is insignificant and negative.  

Obsolescence is another particular kind of risk that stems from technological change (e.g., 

Greenwood and Jovanovic 1999; Hobijn and Jovanovic 2001; Laitner and Stolyarov 2003). 

Intuitively it would seem that high InnOrig firms might be less susceptible to obsolescence risk, 

as high InnOrig firms, by building upon advances in multiple fields will tend to have at least some 

investment in the winning technology (e.g., Garcia-Vega 2006; Gomez-Mejia et al. 2011) rather 

than having an all-or-nothing bet. So if anything, based on obsolescence risk we might expect a 

negative InnOrig-return relation rather than the positive one that we find. 

As mentioned earlier, ambiguity aversion may also predict undervaluation of InnOrig. 

However, the ambiguity aversion hypothesis does not require InnOrig to predict future profitability 

in order to generate mispricing. Even if InnOrig does not predict profitability, ambiguity aversion 

predicts over-discounting/undervaluing firms with higher InnOrig or more complex innovation. 

Lastly, one may wonder why firms would choose high InnOrig if doing so leads to 

undervaluation. However, undervaluation need not be costly unless the firm needs to issue 

underpriced securities. So for a firm with enough cash to fund its investments, the benefits can 

easily exceed the costs (if any) associated with undervaluation. Indeed, we find that high InnOrig 

firms have higher future profitability and more novel innovations, which is potentially consistent 

with high benefits. In consequence, managers who care about long-term value, not just short-term 

stock prices, may have an incentive (at least up to a point) to increase InnOrig. This is similar to 

the point that firm managers may rationally invest in R&D even if this comes at the cost of 

temporary discount in stock price (Chan, Lakonishok, and Sougiannis 2001). 
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4. Conclusion 

Based upon the psychology of limited attention in which, under empirically realistic conditions, 

firms with greater innovative originality (measured by the average range of knowledge drawn upon 

by a firm’s patents) will be undervalued by the market if InnOrig is a favorable indicator of future 

fundamentals that is neglected by some investors. More original innovations allow a firm to charge 

customers a price premium and provide a sustainable competitive advantage. In addition, the 

greater complexity associated with higher InnOrig makes it harder to cognitively process this 

signal, and research in psychology suggests that lower processing fluency results in more skeptical 

appraisal. We further hypothesize that the effect of InnOrig upon misvaluation will be stronger 

among firms with greater valuation uncertainty, lower investor attention, and stronger InnOrig 

predictive ability for fundamentals. 

Our tests support these hypotheses. Firms with higher InnOrig have more persistent, and less 

volatile future profitability as well as gross margin. These findings are consistent with the intuition 

that InnOrig creates sustainable competitive advantages as it reflects the capability of a firm’s 

managers and scientists in effectively combining technologies from various knowledge domains 

to innovate in ways that are hard for its competitors to match.  

We further find that high InnOrig firms on average experience higher subsequent abnormal 

stock returns, especially among firms with higher valuation uncertainty, lower investor attention, 

and stronger sensitivity of future profitability to InnOrig. These findings are robust to industry 

adjustment, characteristics adjustment, risk-adjustment methods, recently developed mispricing 

factors, and the inclusion of extensive controls including innovative efficiency and investment-

specific technology risk. These results suggest that underreaction to the association between 

innovative originality and a firm’s operating performance and/or the inherent skepticism toward 
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complex information found in psychological studies of cognitive fluency may explain the return 

predictability of InnOrig. The high Sharpe ratio of the high-minus-low InnOrig portfolio also 

suggests that this relation is not entirely explained by rational pricing. Moreover, the stronger 

InnOrig predictive ability among firms with greater sensitivity of future profitability to InnOrig 

supports the limited attention explanation over an explanation based on skepticism of complexity. 

Overall, our evidence is consistent with the predictions from a model of limited attention. 

Although we do not rule out risk-based explanations, the most plausible interpretation of the 

evidence is that the market underweights the information contained in innovative originality. Our 

evidence also suggests that innovative originality can be a useful input for firm valuation.  
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Appendix. Affymetrix and its competitors 

In this appendix, we discuss an exemplar of recombining distant knowledge components to 

make important technological breakthrough – DNA microarray – which greatly facilitates 

scientists’ investigation of mutations in genes.  

Mutations denote permanent alterations in the DNA sequence that makes up a gene. Human 

genome contains more than 30,000 genes, and at any given moment, some genes are expressed 

(turned on), and others are silenced (turned off). Analyzing the mutations of such a large number 

of genes to detect mutations was a time-consuming work before the introduction of DNA 

microarray. In 1991, Dr. Stephen Fodor, a biochemist, and his colleagues applied the 

photolithography technology used in the semiconductor industry for manufacturing computer 

microchips to build the first DNA microarray, i.e., a chip that is designed and manufactured to 

examine whether the DNA contains mutations in genes.1 The surface of each DNA microarray 

contains a large number of orderly arranged spots, each contains a DNA strand for a particular 

gene expression. By placing both the DNA strands from the subject and the control sample in each 

spot within one chip, investigators are able to identify the corresponding gene mutation by the 

binding of these DNA strands in the spot. This breakthrough technology in gene expression 

analysis was covered by Science.2  

Dr. Fodor founded Affymetrix in 1992, which had been a leading company in DNA microarray 

since then. A large portion of Affymetrix’s patents are based on semiconductor- or electronics-

related technologies, which indicates that Affymetrix drew knowledge from widely different areas 

to innovate in a novel way. Figures A1 and A2 plot the InnOrig measure and the number of granted 

                                                      
1 See http://www.the-scientist.com/?articles.view/articleNo/16657/title/The-DNA-Microarray/  
2 S.P. Fodor et al., "Light-directed, spatially addressable parallel chemical synthesis," Science, 251:767–73, 1991. 

http://www.the-scientist.com/?articles.view/articleNo/16657/title/The-DNA-Microarray/
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patents each year for Affymetrix and its two direct competitors: Incyte and Lynx Therapeutics.3 

Affymetrix’ InnOrig increased from 8 in 1996 (its IPO year) to 21 in 2006, and it is persistently 

ranked in the top tercile (“High InnOrig” group). In contrast, the two competitors’ InnOrig only 

ranges between 3 and 5, and they are persistently ranked in the bottom tercile (“Low InnOrig” 

group). These patterns reflect the change in Affymetrix’s innovative strategy by combining more 

diverse technologies in its innovation. In addition, the higher InnOrig of Affymetrix cannot be 

simply attributed to the size of its patent portfolios because Incyte’s annual number of granted 

patents is quite close to Affymetrix’s until 2002 (see Figure A2).  

Consistent with a positive economic link between InnOrig and firms’ operating performance, 

Figures A3 and A4 show that the market capitalization and profitability (ROA) of Incyte started 

to underperform Affymetrix since 1998/1999, roughly the same time when Affymetrix’s InnOrig 

started to surge. These results exemplify the intuition that innovative originality offers a firm with 

sustainable competitive advantage (“moat”) that allows it to charge a price premium and obtain 

significantly higher profitability and higher stock returns than its competitors. 

We then further examine how Affymetrix’s patents differ from its competitors’ in four 

respects. First, we examine the number of unique technology classes (both primary and secondary) 

of all patents cited by the patents granted to these three firms in the whole sample period. 

Affymetrix cited a total of 213 unique classes, while its competitors, Incyte and Lynx Therapeutics, 

only cited a total of 119 and 30 classes, respectively. Figures A5-A7 illustrate the distribution of 

these cited patents across different technology classes. They present a much more diverse 

distribution for Affymetrix.  

                                                      
3  These two competitors are identified from Affymetrix’s 10-K. Other competitors that are subsidiaries of 
conglomerates or operate in foreign countries are not considered.   
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Second, we check whether these three companies have drawn knowledge from semiconductor 

devices in particular by focusing on the four technology classes listed in Appendix 1 of Hall et al. 

(2001): 257, 326, 438, and 505. Affymetrix cited three of these, Incyte cited two, while Lynx only 

cited one. 4  These observations, again, support Affymetrix’s leading position in embedding 

semiconductor knowledge in creating biomedical products in a novel way. 

Third, we investigate the patents contributing to the major product line of Affymetrix, 

GeneChip®, since its IPO. US Patent 6307042, one of the key patents protecting GeneChip®, cites 

patents from 12 unique technology classes. More importantly, two of these have never been cited 

by Incyte or Lynx Therapeutics: Class 125—Stone working, and Class 451—Abrading. 

Lastly, we report the number of patents in electronics and optics (Classes 335-361) cited by 

these three firms in the whole sample period. Table A1 shows that Affymetrix cited more patents 

from these classes than its competitors. 

Affymetrix was acquired by Thermo Fisher Scientific Inc. (NYSE:TMO) for approximately 

$1.3 billion in March 2016. 

                                                      
4 Class 505—Superconductor technology: apparatus, material, process—has been cited by Affymetrix. Class 257—
Active solid-state devices (e.g., transistors, solid-state diodes) —has been cited by Affymetrix and Incyte, and Class 
438—Semiconductor device manufacturing: process—has been cited by Affymetrix and Incyte. 
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Table A1. The Distribution of Patents Cited across Technology Classes 335 to 361 

In this table, we presents the number of patents from technology classes 335 to 361 cited by the patents of 
Affymetrix, Incyte, and Lynx Therapeutics in the whole sample period, 1976-2006. 
 

Class Class description Affymetrix Incyte Lynx 
Therapeutics 

335 Electricity: magnetically operated switches, magnets, and 
electromagnets 

1 
  

336 Inductor devices 1 
  

338 Electrical resistors 1 
  

340 Communications: electrical 1 
  

341 Coded data generation or conversion 1 
  

345 Computer graphics processing and selective visual display 
systems 

1 
  

346 Recorders 1 2 
 

347 Incremental printing of symbolic information 1 1 
 

348 Television 1 1 1 
349 Liquid crystal cells, elements and systems 1 

  

351 Optics: eye examining, vision testing and correcting 1 2 
 

353 Optics: image projectors 1 
  

355 Photocopying 4 
  

356 Optics: measuring and testing 7 2 1 
358 Facsimile and static presentation processing 1 1 

 

359 Optical: systems and elements 1 1 
 

360 Dynamic magnetic information storage or retrieval 1 
  

361 Electricity: electrical systems and devices 1 
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Table 1 
Innovative originality of selected industries 
 
This table reports the pooled mean, median, standard deviation (Stdev), coefficient of variation (CV), 1st 
percentile (P1), 5th percentile (P5), 30th percentile (P30), 70th percentile (P70), 95th percentile (P95), and 99th 
percentile (P99) of the innovative originality (InnOrig) measure for firms in selected industries based on Fama-
French 48 industry classifications. We also report CV across industries at the bottom. The sample is from 1981 
to 2006 and excludes financial and utility firms. To compute a firm’s InnOrig, we first measure an individual 
patent’s citation diversity as the number of three-digit technology classes (both primary and secondary classes) 
covered by patents cited by the focal patent (i.e., the “reference list” of the focal patent). The technology classes 
are assigned by the US Patent and Trademark Office (USPTO). We then measure a firm’s InnOrig in year t by 
the average of citation diversity across all patents granted to the firm over the past five years (year t – 4 to t).  
 
 

 
 
 
  

 
 

Industry Mean Median Stdev CV P1 P5 P30 P70 P95 P99
Medical equipment 7.38 6.04 4.91 0.67 1 2.38 4.47 8.35 17.40 25.67
Pharmaceutical products 6.59 5.50 4.41 0.67 1 2.00 4.33 7.00 14.50 23.27
Chemicals 6.53 5.80 3.83 0.59 1 2.59 4.61 7.25 13.40 23.00
Machinery 5.95 5.12 3.38 0.57 1 2.00 4.00 6.93 13.00 16.67
Electrical equipment 5.78 5.00 3.92 0.68 1 2.00 3.71 6.50 12.00 19.25
Automobiles and trucks 5.10 4.92 2.45 0.48 1 2.00 3.83 5.75 10.00 13.26
Business services 7.88 6.60 5.43 0.69 1 2.00 5.00 8.83 17.50 27.00
Computers 6.26 5.50 3.75 0.60 1 2.00 4.08 7.25 13.00 20.00
Electronic equipment 5.92 5.00 3.82 0.65 1 2.00 4.00 6.50 13.00 21.00
Measuring and control equipment 6.25 5.33 3.82 0.61 1 2.00 4.00 7.26 13.50 20.33
Coefficient of variation (CV) 0.13 0.10
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Table 2 
Summary statistics and correlations 

 
At the end of June of year t from 1982 to 2007, we sort firms with non-missing innovative originality (InnOrig) measure into three groups (Low, 
Middle, High) based on the 30th and 70th percentiles of the InnOrig measure in year t – 1. In addition, we assign firms with missing InnOrig (i.e., no 
patents) but positive R&D over any of the last five years into the “Low” group and firms with neither R&D investment nor patents into the “No” group. 
InnOrig is defined in Table 1. Panel A reports the time-series mean of cross-sectional average characteristics (both raw value and percentile ranks) of 
firms in each InnOrig group. The number of firms is the number of firms in each group averaged over years. Size is market capitalization (in millions) 
at the end of June of year t. Book-to-market (BTM) is the ratio of book equity of fiscal year ending in year t – 1 to market capitalization at the end of 
year t – 1. Momentum (MOM) is the previous eleven-month returns (with a one-month gap between the holding period and the current month). IVOL 
is computed at the end of June of year t as the standard deviation of the residuals from regressing daily stock returns on the Fama-French three factor 
returns over the previous 12 months (with a minimum of 31 trading days). Skewness (TSKEW) is computed at the end of June of year t using daily 
returns over the previous 12 months (with a minimum of 31 trading days). RDME is R&D expenses in fiscal year ending in year t – 1 divided by market 
capitalization at the end of year t – 1. CTA is the number of patents issued to a firm in year t – 1 divided by the firm’s total assets at the end of year t – 
1. Citations-based innovative efficiency measure (CIE) in year t – 1 is adjusted patent citations received in year t – 1 by patents granted to a firm in 
years t – 2 to t – 6 scaled by the sum of R&D expenses in years t – 4 to t – 8. The adjusted citations in year t to patent k are citations to patent k in year 
t divided by the mean citations to patents of the same subcategory and grant year group in year t. Patents-based innovative efficiency measure (PIE) in 
year t – 1 is patents granted to a firm in year t – 1 scaled by research and development (R&D) capital in year t – 3. R&D capital is computed as the 
five-year cumulative R&D expenses with a 20% annual depreciation. ROA (return on assets) is defined as income before extraordinary items plus 
interest expenses in year t – 1 divided by lagged total assets. ROE (return on equity) is defined as income before extraordinary items plus interest 
expenses in year t – 1 scaled by lagged book equity (common equity plus deferred tax). Asset growth (AG) is the change in total assets in year t – 1 
divided by lagged total assets. IA is capital expenditure in year t – 1 divided by lagged total assets. Net stock issues (NS) is the change in the natural 
log of the split-adjusted shares outstanding in year t – 1. Split-adjusted shares outstanding is Compustat shares outstanding times the Compustat 
adjustment factor. Institutional ownership (InstOwn) denotes the fraction of firm shares outstanding owned by institutional investors in year t – 1. 
Short-term reversal (REV) is monthly returns in the prior month. Stock illiquidity (ILLIQ) is defined as absolute stock return in June of year t divided 
by dollar trading volume in June of year t (the raw value is multiplied by 1,000,000). Number of segments (NSD) is the number of different sales 
segments defined by Fama-French 48 industries over the previous five years (year t – 5 to year t – 1). HHI-based sales diversity (HHISD) is one minus 
the Herfindahl index of sales across the number of segments. We winsorize all variables at the 1% and 99% levels except the number of firms, InnOrig, 
NSD, and HHISD. Panel B reports the times-series average of cross-sectional correlations between InnOrig and the other characteristics. 
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Panel A. Summary statistics

No Low Middle High All No Low Middle High 
Number of firms 2426 1283 550 409 4671
Innovative originality (InnOrig) 3.02 5.37 9.78 5.97 15 50 85
Size ($mn) 718 702 4334 2033 1311 46 45 66 59
Book-to-market (BTM) 0.90 0.68 0.70 0.64 0.78 55 45 46 44
Momentum (MOM) 0.11 0.13 0.15 0.15 0.12 49 48 53 52
Idiosyncratic volatility (IVOL) 0.04 0.04 0.03 0.03 0.04 49 56 38 45
Skewness (SKEW) 0.61 0.64 0.39 0.47 0.58 50 52 44 47
R&D/Market equity (RDME) 0.10% 6.76% 6.03% 5.90% 3.60% 27 69 67 66
Patents/Assets (CTA) 0.00% 0.84% 2.84% 3.45% 0.98% 38 48 75 72
Citations-based innovative efficiency (CIE) 0.00 0.18 0.68 0.81 0.42 26 36 67 66
Patents-based innovative efficiency (PIE) 0.00 0.07 0.25 0.28 0.15 28 37 67 65
Return on assets (ROA) 4.66% -2.84% 3.05% 0.29% 1.54% 52 45 52 49
Return on equity (ROE) 7.95% -4.17% 5.56% 1.10% 2.96% 54 43 52 47
Asset growth (AG) 0.18 0.18 0.14 0.16 0.17 51 48 49 49
Capex/Assets (IA) 0.10 0.07 0.07 0.07 0.08 53 45 49 49
Net stock issuance (NS) 0.06 0.07 0.04 0.05 0.06 48 52 48 51
Institutional ownership (InstOwn) 0.31 0.29 0.45 0.40 0.33 47 45 63 57
Short-term return reversal (REV) 0.57% 0.53% 0.65% 0.67% 0.56% 50 49 50 50
Illiquidity (ILLIQ) 0.68 0.49 0.15 0.18 0.53 52 53 36 42
Number of sales segments (NSD) 1.34 1.34 1.69 1.47 1.39 48 48 56 51
HHI Sales diversity (HHISD) 0.08 0.08 0.16 0.12 0.09 48 48 57 51

Raw value Percentile ranks
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Panel B. Correlations
Pearson corrlations Spearman rank correlations

Innovative Originality Innovative Originality
Size ($mn) -0.01 0.05
Book-to-market (BTM) -0.07 -0.08
Momentum (MOM) 0.00 0.01
Idiosyncratic volatility (IVOL) 0.04 -0.01
Skewness (SKEW) 0.01 -0.01
R&D/Market equity (RDME) 0.01 0.05
Patents/Assets (CTA) 0.09 0.11
Citations-based innovative efficiency (CIE) 0.13 0.15
Patents-based innovative efficiency (PIE) 0.06 0.09
Return on assets (ROA) -0.06 -0.02
Return on equity (ROE) -0.06 -0.03
Asset growth (AG) 0.03 0.02
Capex/Assets (IA) 0.04 0.05
Net stock issuance (NS) 0.04 0.04
Institutional ownership (InstOwn) -0.03 0.03
Short-term return reversal (REV) 0.00 0.00
Illiquidity (ILLIQ) -0.01 -0.05
Number of sales segments (NSD) -0.03 0.00
HHI Sales diversity (HHISD) -0.03 0.00
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Table 3  
Innovative originality and future profitability 

 
This table reports the average slopes (in %) and their Newey-West (1987) autocorrelation-adjusted 
heteroscedasticity-robust t-statistics in parentheses from annual Fama and MacBeth (1973) cross-sectional 
regressions. In Panel A, we regress future change in profitability on InnOrig and other control variables. In Panel 
B, we regress standard deviation of profitability in year t + 1 to t + 5 on InnOrig and other controls. Profitability 
is measured by return on equity (ROE) in Panels A1 and B1, and by return on assets (ROA) in Panels A2 and B2. 
∆ROEt (∆ROAt) is the change in ROE (ROA) between year t and year t – 1. R&D is R&D expenditure divided by 
assets. Capex is capital expenditure divided by assets. MTB is market-to-book assets. Adv is advertising expense 
divided by assets. All the other control variables are defined as in Table 2. We also control for industry dummies 
based on the Fama and French (1997) 48 industries. We set missing values for InnOrig, IE, advertising expenses, 
and R&D expenses to zero. In addition, we control for a dummy, which equals one for firms with no R&D 
investment over the past five years and 0 otherwise, and its interactions with all the other control variables. We 
omit the slopes on the 48 industry dummies, the slopes on the missing dummy, and its interactions with other 
control variables for brevity. We winsorize all variables at the 1% and 99% levels and standardize all independent 
variables (except the dummies) to zero mean and one standard deviation. Financial and utility firms are excluded. 
R-square (Firms) is the time-series average of the R-squares (number of firms) from the annual cross-sectional 
regressions. The sample is from 1981 to 2006. 
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Panel A1. InnOrig and mean reversion of future ROE
Dependent InnOrigt ΔROEt InnOrigt *ΔROEt CIEt *ΔROEt ROE ADVt R&Dt Capext CIEt MTBt Intercept R2 Firms
ΔROEt+1 2.18 -13.57 1.97 -0.92 -19.43 0.72 -7.04 0.75 0.13 0.77 -2.79 0.19 3047

(7.43) (-13.81) (3.49) (-1.69) (-5.66) (2.42) (-4.86) (1.49) (0.47) (0.97) (-2.67)
Dependent InnOrigt ΔROEt InnOrigt *ΔROEt PIEt *ΔROEt ROE ADVt R&Dt Capext PIEt MTBt Intercept R2 Firms
ΔROEt+1 2.27 -13.69 1.34 1.62 -19.32 0.69 -7.04 0.75 -0.20 0.83 -2.83 0.19 3047

(7.63) (-13.63) (2.08) (2.49) (-5.61) (2.37) (-4.84) (1.49) (-0.71) (1.04) (-2.67)

Panel A2. InnOrig and mean reversion of future ROA
Dependent InnOrigt ΔROAt InnOrigt *ΔROAt CIEt *ΔROAt ROA ADVt R&Dt Capext CIEt MTBt Intercept R2 Firms
ΔROAt+1 0.49 -3.04 0.22 -0.17 -4.92 0.28 -1.40 0.11 0.05 0.48 -0.05 0.21 3049

(7.11) (-7.63) (2.10) (-1.75) (-6.26) (2.85) (-3.88) (0.68) (1.05) (2.33) (-0.16)
Dependent InnOrigt ΔROAt InnOrigt *ΔROAt PIEt *ΔROAt ROA ADVt R&Dt Capext PIEt MTBt Intercept R2 Firms
ΔROAt+1 0.53 -3.06 0.16 -0.04 -4.91 0.27 -1.41 0.12 -0.11 0.49 -0.06 0.21 3049

(7.33) (-7.63) (1.72) (-0.71) (-6.26) (2.67) (-3.88) (0.71) (-1.47) (2.32) (-0.18)

Panel B1. InnOrig and volatility of future ROE
Dependent InnOrigt CIEt ADVt R&Dt Capext MTBt ROE_VOLt-4,t Intercept R2 Firms
ROE_VOLt+1,t+5 -2.79 0.65 0.39 15.12 -0.99 -0.29 12.56 25.11 0.12 1745

(-4.62) (1.22) (1.06) (6.31) (-1.30) (-0.34) (11.16) (10.70)
Dependent InnOrigt PIEt ADVt R&Dt Capext MTBt ROE_VOLt-4,t Intercept R2 Firms
ROE_VOLt+1,t+5 -2.79 0.87 0.38 15.11 -0.99 -0.31 12.58 25.11 0.12 1745

(-4.52) (1.44) (1.01) (6.31) (-1.33) (-0.36) (11.15) (10.86)

Panel B2. InnOrig and volatility of future ROA
Dependent InnOrigt CIEt ADVt R&Dt Capext MTBt ROA_VOLt-4,t Intercept R2 Firms
ROA_VOLt+1,t+5 -0.68 0.12 -0.08 2.76 -0.32 0.08 3.09 6.07 0.32 1745

(-7.19) (1.96) (-1.34) (5.93) (-2.57) (0.52) (12.03) (15.35)
Dependent InnOrigt PIEt ADVt R&Dt Capext MTBt ROA_VOLt-4,t Intercept R2 Firms
ROA_VOLt+1,t+5 -0.68 0.17 -0.08 2.76 -0.33 0.08 3.09 6.06 0.32 1745

(-6.80) (2.34) (-1.34) (5.92) (-2.63) (0.52) (12.07) (15.31)
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Table 4  
Innovative originality and future gross margin 

 
This table reports the average slopes (in %) and their Newey-West (1987) autocorrelation-adjusted heteroscedasticity-robust t-statistics in parentheses 
from annual Fama and MacBeth (1973) cross-sectional regressions. In Panel A, we regress future gross margin (GM) on InnOrig and other control 
variables. Slopes on four lagged GMs and interaction of InnOrig with the four lagged GMs are omitted for brevity. In Panel B, we regress standard 
deviation of GM in year t + 1 to t + 5 on InnOrig and other controls. GM is measured by (Sales-Cost of goods sold)/Sales. If GM exceeds 1, it is set to 
1. If GM is lower than – 1, it is set to – 1. R&D is R&D expenditure divided by assets. Capex is capital expenditure divided by assets. MTB is market-
to-book assets. Adv is advertising expense divided by assets. All the other control variables are defined as in Table 2. We also control for industry 
dummies based on the Fama and French (1997) 48 industries. We set missing values for InnOrig, IE, advertising expenses, and R&D expenses to zero. 
In addition, we control for a dummy, which equals one for firms with no R&D investment over the past five years and 0 otherwise, and its interactions 
with all the other control variables. We omit the slopes on the 48 industry dummies, the slopes on the missing dummy, and its interactions with other 
control variables for brevity. We winsorize all control variables at the 1% and 99% levels and standardize all independent variables to zero mean and 
one standard deviation. Financial and utility firms are excluded. R-square (Firms) is the time-series average of the R-squares (number of firms) from 
the annual cross-sectional regressions. The sample is from 1981 to 2006. 

 

 
 

Panel A. InnOrig and persistence of gross margin (GM)
Dependent InnOrigt GMt InnOrigt *GMt CIEt ADVt R&Dt Capext MTBt Intercept R2 Firms
GMt+1 -0.16 23.90 0.71 0.06 0.46 -0.29 0.06 0.81 29.19 0.70 2374

(-1.37) (16.41) (1.97) (2.78) (10.39) (-1.44) (0.43) (3.34) (51.85)
Dependent InnOrigt GMt InnOrigt *GMt PIEt ADVt R&Dt Capext MTBt Intercept R2 Firms
GMt+1 -0.11 23.91 0.72 -0.01 0.46 -0.29 0.06 0.82 29.22 0.70 2374

(-0.98) (16.40) (1.99) (-0.16) (10.12) (-1.41) (0.47) (3.33) (51.76)
Panel B. InnOrig and volatility of future gross margin (GM)
Dependent InnOrigt CIEt ADVt R&Dt Capext MTBt GM_VOLt-4,t Intercept R2 Firms
GM_VOLt+1,t+5 -0.28 0.14 -0.28 1.85 -0.17 0.23 3.14 3.63 0.29 1735

(-3.42) (2.12) (-7.17) (4.56) (-1.81) (1.87) (8.98) (17.88)
Dependent InnOrigt PIEt ADVt R&Dt Capext MTBt GM_VOLt-4,t Intercept R2 Firms
GM_VOLt+1,t+5 -0.27 0.17 -0.29 1.85 -0.18 0.23 3.14 3.62 0.29 1735

(-3.46) (4.56) (-7.37) (4.56) (-1.89) (1.84) (8.87) (18.03)
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Table 5 
Return predictive power of innovative originality – Single-sorted portfolio analysis 
 
At the end of June of year t from 1982 to 2007, we form portfolios based on innovative originality (InnOrig) in year t – 1 as in Table 2. We also 
construct a high-minus-low (High–Low) portfolio by holding a long (short) position in the high (low) InnOrig portfolio. We then hold these portfolios 
over the next twelve months (July of year t to June of year t + 1). In Panel A, we report their average monthly returns in excess of one-month Treasury 
bill rate (Exret) as well as their average monthly industry- and characteristic-adjusted returns. The portfolio industry-adjusted returns (Ind-adjret) are 
based on the difference between individual firms’ returns and the returns of firms in the same industry (based on Fama-French 48 industry 
classifications). Following Daniel, Grinblatt, Titman, and Wermers (DGTW 1997) and Wermers (2004), the portfolio characteristic-adjusted returns 
(Char-adjret) are based on the difference between individual firms’ returns and the DGTW benchmark portfolio returns. In Panels B and C, we report 
the alphas and R2 from the regression of the time-series of portfolio excess returns on various factor models: the Fama-French three factors (the market 
factor–MKT, the size factor–SMB, and the value factor–HML) plus the momentum (UMD) factor (4F) model, 4F plus the investment-minus-
consumption (IMC) factor (Papanikolaou 2011), the liquidity (LIQ) factor (Pastor and Stambaugh 2003), the citations- or patents-based innovative 
efficient-minus-inefficient (EMI1 or EMI2) factor as in Hirshleifer, Hsu, and Li (2013), the robust-minus-weak (RMW) factor and the conservative-
minus-aggressive (CMA) factor as in Fama and French (2015), or the undervalued-minus-overvalued (UMO) factor of Hirshleifer and Jiang (2010). 
We also report the alpha from the investment-based factor model (q-factor model) of Hou, Xue, and Zhang (HXZ 2015) and the mispricing factor 
model of Stambaugh and Yuan (2017). All returns and alphas are value-weighted and expressed in percentage. The t-statistics are reported in 
parentheses. R-square is adjusted. 
 

 
 
 
 

InnOrig Exret
Ind-

adjret
Char-
adjret 4F IMC LIQ EMI1 EMI2

RMW 
+ CMA UMO 4F IMC LIQ EMI1 EMI2

RMW 
+ CMA UMO

No 0.61 -0.02 -0.03 -0.13 -0.13 -0.15 -0.06 -0.04 -0.13 -0.12 -0.13 -0.05 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.92
(2.54) (-0.47) (-0.15) (-1.86) (-1.79) (-2.09) (-0.94) (-0.52) (-1.79) (-1.66) (-1.67) (-0.55)

Low 0.51 -0.14 -0.09 -0.11 -0.11 -0.12 -0.05 -0.03 -0.04 -0.07 -0.06 -0.12 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.93
(1.74) (-1.97) (-0.36) (-1.44) (-1.33) (-1.51) (-0.59) (-0.39) (-0.56) (-0.96) (-0.68) (-1.34)

Middle 0.73 0.03 0.07 0.16 0.17 0.17 0.09 0.07 0.17 0.15 0.15 0.09 0.94 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.94
(2.83) (0.76) (0.31) (2.49) (2.48) (2.55) (1.45) (1.08) (2.68) (2.33) (2.41) (1.23)

High 0.80 0.09 0.19 0.24 0.24 0.23 0.20 0.19 0.20 0.23 0.14 0.19 0.91 0.91 0.91 0.91 0.91 0.91 0.90 0.90 0.91
(3.09) (1.86) (0.76) (2.74) (2.71) (2.54) (2.23) (2.12) (2.19) (2.57) (1.59) (2.07)

High-Low 0.29 0.23 0.28 0.35 0.35 0.35 0.25 0.22 0.24 0.30 0.20 0.30 0.21 0.22 0.21 0.27 0.27 0.25 0.21 0.23 0.20
(2.29) (2.51) (2.36) (3.00) (2.87) (2.90) (2.12) (1.79) (1.99) (2.53) (1.67) (2.32)

A. Excess and adjusted returns
4F plus

HXZ
Mis-

pricing

4F plus

HXZ
Mis-

pricing

C. R2 of different factor modelsB. Alphas from different factor models
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Table 6 
Return predictive power of innovative originality – Double-sorted portfolio analysis 

 
At the end of June of each year t, we conduct independent double sorts on innovative originality (InnOrig) and 
proxies of valuation uncertainty (VU), investor attention (ATT), or the sensitivity of future profitability to 
InnOrig. In Panel A1, we proxy VU by a composite index of firm age and opacity of financial reports 
(standardized opacity minus standardized age). In Panel A2, we proxy VU by the analyst forecast dispersion. In 
Panel B, we proxy attention (ATT) by the inverse of the ownership percentage of transient institutional investors. 
In Panel C, we proxy the sensitivity (Sen) by an industry-level sensitivity of past ROE to lagged InnOrig. The 
InnOrig portfolios are formed as in Table 5. The VU, attention, and sensitivity portfolios are based on tercile 
breakpoints. We also construct a high-minus-low InnOrig portfolio in each VU (ATT, and Sen) group and hold 
these portfolios for the next 12 months. For each portfolio, we report average monthly value-weighted excess 
return (Exret), industry-adjusted returns (Ind-adjret), characteristic-adjusted returns (Char-adjret), and alphas and 
R2 from different factor models. The alphas are estimated from the regression of the time-series of portfolio excess 
returns on various factor models including the Fama-French three factors (the market factor–MKT, the size 
factor–SMB, and the value factor–HML) plus the momentum (UMD) factor (4F) and 4F plus the robust-minus-
weak (RMW) factor and the conservative-minus-aggressive (CMA) factor as in Fama and French (2015). We 
also report alphas from the investment-based factor model of Hou, Xue, and Zhang (HXZ 2015) and the 
mispricing factor model of Stambaugh and Yuan (2017). All returns and alphas are in percentage. The t-statistics 
are reported in parentheses. The sample period for returns is from July 1982 to June 2008 except for analyst 
forecast dispersion subsamples, which start from July 1984 due to sparsity of analyst forecast data before 1983. 
R-square is adjusted. 
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Panel A. Return predictive power of InnOrig and valuation uncertainty (VU)
Panel A1. VU based on age and opacity

VU InnOrig Exret
Ind-

adjret
Char-
adjret 4F

4F + 
RMW 

+ CMA HXZ
Mis-

pricing 4F

4F + 
RMW 

+ CMA HXZ
Mis-

pricing
Low Low (L) 0.66 -0.04 0.03 -0.07 -0.19 -0.22 -0.20 0.83 0.85 0.85 0.83

(2.68) (-0.67) (0.13) (-0.61) (-1.72) (-1.95) (-1.67)
Middle 0.74 0.03 0.06 0.13 0.08 0.05 0.03 0.92 0.93 0.93 0.92

(3.06) (0.50) (0.29) (1.66) (1.07) (0.63) (0.39)
High (H) 0.73 0.05 0.12 0.12 -0.08 -0.13 -0.07 0.77 0.80 0.80 0.77

(3.17) (0.79) (0.56) (0.98) (-0.69) (-1.13) (-0.62)
H-L 0.07 0.09 0.09 0.18 0.11 0.09 0.13 0.04 0.05 0.05 0.04

(0.51) (1.02) (0.67) (1.23) (0.74) (0.64) (0.84)
High Low (L) 0.23 -0.45 -0.43 -0.23 0.15 0.08 0.10 0.86 0.88 0.86 0.83

(0.47) (-2.15) (-0.99) (-0.96) (0.61) (0.30) (0.36)
Middle 0.89 0.10 0.22 0.40 0.67 0.49 0.78 0.74 0.75 0.74 0.76

(1.95) (0.44) (0.51) (1.43) (2.28) (1.71) (2.60)
High (H) 1.32 0.54 0.74 0.84 1.00 0.90 1.08 0.72 0.71 0.69 0.72

(2.60) (2.02) (1.52) (2.77) (3.08) (2.68) (3.16)
H-L 1.10 0.99 1.17 1.07 0.85 0.82 0.98 0.04 0.08 0.05 0.04

(3.88) (3.66) (3.84) (3.07) (2.38) (2.38) (2.51)
Panel A2. VU based on analyst forecast dispersion

VU InnOrig Exret
Ind-

adjret
Char-
adjret 4F

4F + 
RMW 

+ CMA HXZ
Mis-

pricing 4F

4F + 
RMW 

+ CMA HXZ
Mis-

pricing
Low Low (L) 0.55 -0.17 -0.03 -0.04 -0.23 -0.23 -0.25 0.74 0.76 0.75 0.75

(2.04) (-1.66) (-0.10) (-0.31) (-1.59) (-1.50) (-1.64)
Middle 0.67 -0.02 0.05 0.15 0.05 0.10 -0.03 0.86 0.86 0.84 0.86

(2.57) (-0.19) (0.19) (1.64) (0.57) (1.03) (-0.28)
High (H) 0.84 0.14 0.15 0.30 0.13 0.16 0.06 0.71 0.73 0.71 0.73

(3.30) (1.50) (0.59) (2.06) (0.90) (1.10) (0.43)
H-L 0.29 0.30 0.18 0.35 0.36 0.39 0.30 0.02 0.02 0.02 0.01

(1.52) (2.48) (0.93) (1.74) (1.71) (1.85) (1.45)
High Low (L) 0.48 -0.05 -0.20 -0.24 0.02 0.02 -0.20 0.77 0.79 0.80 0.76

(1.25) (-0.28) (-0.59) (-1.29) (0.09) (0.09) (-1.08)
Middle 0.90 0.23 0.14 0.15 0.31 0.23 0.23 0.76 0.77 0.78 0.77

(2.32) (1.78) (0.42) (0.79) (1.57) (1.26) (1.15)
High (H) 1.15 0.38 0.53 0.45 0.49 0.50 0.42 0.66 0.68 0.68 0.67

(2.86) (1.89) (1.47) (1.80) (1.87) (1.92) (1.51)
H-L 0.67 0.43 0.73 0.69 0.47 0.48 0.62 0.06 0.11 0.07 0.06

(2.59) (1.97) (2.96) (2.74) (1.78) (1.64) (2.43)

Alphas from factor models R2 of different models

Alphas from factor models R2 of different models
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Panel B. Return predictive power of InnOrig and investor attention (ATT)

ATT InnOrig Exret
Ind-

adjret
Char-
adjret 4F

4F + 
RMW 

+ CMA HXZ
Mis-

pricing 4F

4F + 
RMW 

+ CMA HXZ
Mis-

pricing
Low Low (L) 0.53 -0.13 -0.13 -0.07 0.09 0.09 0.06 0.89 0.89 0.88 0.88

(1.51) (-1.22) (-0.42) (-0.58) (0.69) (0.59) (0.41)
Middle 0.82 0.11 0.07 0.25 0.37 0.35 0.42 0.87 0.88 0.88 0.88

(2.48) (1.33) (0.25) (1.96) (3.17) (2.73) (2.95)
High (H) 1.04 0.29 0.32 0.50 0.55 0.54 0.55 0.86 0.86 0.86 0.87

(3.21) (3.12) (1.01) (3.75) (3.87) (3.74) (3.66)
H-L 0.51 0.43 0.45 0.58 0.46 0.45 0.49 0.08 0.13 0.09 0.06

(3.40) (3.43) (3.05) (3.49) (2.83) (2.45) (2.54)
High Low (L) 0.43 -0.26 -0.11 -0.14 0.17 0.30 0.04 0.85 0.86 0.85 0.77

(1.12) (-1.12) (-0.28) (-0.90) (1.14) (1.86) (0.21)
Middle 0.75 -0.09 -0.06 -0.03 0.14 0.14 -0.20 0.65 0.68 0.66 0.57

(1.99) (-0.34) (-0.15) (-0.10) (0.55) (0.48) (-0.70)
High (H) 0.81 0.00 0.29 0.20 0.40 0.29 0.01 0.71 0.72 0.69 0.64

(2.17) (0.02) (0.79) (0.83) (1.70) (1.03) (0.04)
H-L 0.39 0.26 0.40 0.33 0.23 -0.01 -0.03 0.04 0.05 0.10 0.09

(1.83) (1.42) (1.83) (1.39) (0.93) (-0.05) (-0.13)
Panel C. Return predictive power of InnOrig and industry-level profitability sensitivity (Sen)

Sen InnOrig Exret
Ind-

adjret
Char-
adjret 4F

4F + 
RMW 

+ CMA HXZ
Mis-

pricing 4F

4F + 
RMW 

+ CMA HXZ
Mis-

pricing
Low Low (L) 0.81 -0.09 0.16 0.15 0.32 0.27 0.37 0.80 0.81 0.81 0.81

(2.46) (-0.80) (0.54) (1.03) (2.10) (1.69) (2.58)
Middle 1.03 0.05 0.30 0.39 0.43 0.48 0.45 0.78 0.78 0.79 0.79

(3.55) (0.87) (1.16) (2.53) (2.63) (2.87) (2.66)
High (H) 0.65 0.00 0.03 0.03 0.00 -0.22 0.02 0.69 0.70 0.71 0.70

(2.30) (0.01) (0.10) (0.19) (-0.02) (-1.32) (0.11)
H-L -0.16 0.10 -0.13 -0.12 -0.32 -0.49 -0.36 0.16 0.19 0.21 0.17

(-0.74) (0.65) (-0.63) (-0.60) (-1.59) (-2.33) (-1.75)
High Low (L) 0.29 -0.21 -0.36 -0.21 -0.21 -0.17 -0.12 0.81 0.80 0.80 0.80

(0.97) (-2.21) (-1.31) (-1.49) (-1.48) (-1.10) (-0.76)
Middle 0.61 0.12 0.03 0.24 0.23 0.24 0.22 0.84 0.84 0.83 0.81

(2.03) (2.02) (0.12) (1.68) (1.72) (1.51) (1.20)
High (H) 0.89 0.22 0.30 0.54 0.43 0.34 0.58 0.73 0.73 0.69 0.70

(2.93) (2.02) (1.11) (3.07) (2.39) (1.56) (2.71)
H-L 0.59 0.43 0.65 0.75 0.64 0.51 0.70 0.08 0.08 0.07 0.05

(2.92) (2.81) (3.23) (3.31) (2.75) (2.13) (2.78)

Alphas from factor models R2 of different models

Alphas from factor models R2 of different models
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Table 7 
Return predictive power of innovative originality – Fama-MacBeth regressions (full sample) 

 
This table reports the average slopes (in %) and their Newey-West (1987) autocorrelation-adjusted heteroscedasticity-robust t-statistics in parentheses 
from monthly Fama and MacBeth (1973) cross-sectional regressions. For each month from July of year t to June of year t + 1, we regress monthly 
returns of individual stocks on the natural log of one plus InnOrig of year t – 1, different sets of control variables, and industry fixed effects except 
Model 1, which is a simple regression. We set missing values for InnOrig, PIE, CIE and R&D expenses to zero, and control for a dummy variable 
(missing), which equals 1 for firms with no R&D investment and patent for the past five years and 0 otherwise, and its interactions with all the control 
variables in the multiple regressions. We omit the intercept, the slopes on the 48 industry dummies, and the slopes on the missing dummy and its 
interactions with all other control variables for brevity. All variables are defined as in Table 2. Size is the log of market capitalization at the end of June 
of year t. Book-to-market is also in the natural log form. Intuitional ownership and BTM are measured in year t – 1. ILLIQ and REV are the previous 
month’s stock illiquidity and stock return, respectively. In Model 3, we control for additional return predictors related to innovation (CIE for Model 
3A or PIE for Model 3B, CTA, and RDME), investment (AG and IA), net stock issues (NS), return-on-assets (ROA), idiosyncratic volatility (IVOL), 
and total skewness (TSKEW) measured in year t – 1. CIE (PIE) is the natural log of one plus the citations- (patents-) based innovative efficiency 
measure following Hirshleifer, Hsu, and Li (2013). CTA is the natural log of one plus patents granted in year t – 1 divided by total assets in year t – 1. 
RDME is the natural log of one plus R&D-to-market equity in year t – 1. In Model 4, we further control for sales diversity measured by the number of 
segments (NSD) as defined in Table 2. All independent variables are normalized to zero mean and one standard deviation after winsorization at the 1% 
and 99% levels. The return data are from July of 1982 to June of 2008. R-square (number of firms) is the time-series average of the R-squares (number 
of firms) from the monthly cross-sectional regressions.  
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Innovative originality (InnOrig) 0.15 (2.91) 0.15 (5.34) 0.10 (3.58) 0.12 (4.42) 0.09 (3.53) 0.12 (4.34)
Size -0.24 (-1.88) -0.13 (-1.50) -0.12 (-1.45) -0.11 (-1.24) -0.11 (-1.21)
Book-to-market (BTM) 0.43 (5.41) 0.20 (2.75) 0.20 (2.75) 0.21 (2.96) 0.21 (2.94)
Momentum (MOM) 0.09 (1.00) 0.01 (0.09) 0.01 (0.09) 0.00 (0.05) 0.00 (0.05)
Institutional ownership (InstOwn) 0.09 (1.55) 0.09 (2.05) 0.09 (2.12) 0.08 (1.90) 0.09 (1.98)
Illiquidity (ILLIQ) 0.49 (6.47) 0.37 (3.74) 0.37 (3.74) 0.37 (3.71) 0.37 (3.71)
Short-term return reversal (REV) -1.03 (-9.77) -1.12 (-10.71) -1.12 (-10.71) -1.11 (-10.50) -1.11 (-10.50)
Asset growth (AG) -0.22 (-4.60) -0.22 (-4.50) -0.22 (-4.68) -0.22 (-4.58)
Capex/Assets (IA) -0.05 (-1.15) -0.06 (-1.15) -0.05 (-1.05) -0.05 (-1.05)
Patents/Assets (CTA) 0.01 (0.28) 0.03 (0.75) 0.01 (0.23) 0.03 (0.68)
R&D/Market equity (RDME) 0.21 (2.98) 0.21 (2.99) 0.21 (3.06) 0.21 (3.08)
Net stock issuance (NS) -0.09 (-2.00) -0.09 (-2.00) -0.09 (-1.98) -0.09 (-1.99)
Return on assets (ROA) 0.10 (1.71) 0.10 (1.73) 0.08 (1.37) 0.08 (1.39)
Idiosyncratic volatility (IVOL) 0.31 (2.04) 0.31 (2.02) 0.31 (2.00) 0.31 (1.99)
Skewness (SKEW) -0.10 (-2.72) -0.10 (-2.69) -0.10 (-2.78) -0.10 (-2.75)
Citations-based IE (CIE) 0.06 (3.41) 0.06 (3.49)
Patents-based IE (PIE) -0.01 (-0.55) -0.01 (-0.46)
Number of sales segments (NSD) -0.03 (-1.18) -0.03 (-1.07)
R2 0.00 0.07 0.10 0.10 0.10 0.10
Number of firms 4693 3789 3093 3093 3073 3073

Model 4BModel 1 Model 2 Model 3A Model 3B Model 4A
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Table 8 
Return predictive power of innovative originality – Fama-MacBeth regressions (subsamples) 

 
This table reports the average slopes (in %) and their Newey-West (1987) autocorrelation-adjusted heteroscedasticity-robust t-statistics in parentheses 
from monthly Fama and MacBeth (1973) cross-sectional regressions as in Model 3 of Table 7 within subsamples split by valuation uncertainty (VU), 
investor attention (ATT), and the sensitivity of future profitability to innovative originality (InnOrig) in Panels A, B, and C, respectively. The proxies 
of VU, ATT, and sensitivity are defined as in Table 6. The Low (High) subsample refers to the bottom (top) 30%. All variables are defined as in Tables 
2 and 7. 

 

 
 

Panel A. Valuation uncertainty (VU) subsamples

Slope t -stat Slope t -stat Slope t -stat Slope t -stat Slope t -stat Slope t -stat Slope t -stat Slope t -stat
Innovative originality 0.01 (0.25) 0.21 (2.74) 0.04 (0.78) 0.24 (3.24) 0.07 (1.34) 0.15 (1.95) 0.08 (1.49) 0.16 (2.06)
Size -0.12 (-1.05) -0.41 (-2.53) -0.11 (-0.95) -0.41 (-2.52) -0.04 (-0.38) -0.07 (-0.57) -0.03 (-0.34) -0.08 (-0.64)
Book-to-market 0.10 (1.20) 0.19 (1.62) 0.09 (1.06) 0.20 (1.74) 0.18 (1.81) 0.08 (0.77) 0.18 (1.87) 0.07 (0.69)
Momentum 0.08 (0.59) -0.01 (-0.05) 0.08 (0.61) -0.02 (-0.12) 0.15 (1.32) 0.06 (0.49) 0.15 (1.28) 0.06 (0.47)
Institutional ownership -0.03 (-0.45) 0.22 (1.89) -0.03 (-0.39) 0.22 (1.93) 0.10 (1.56) 0.04 (0.45) 0.09 (1.49) 0.03 (0.40)
Illiquidity -0.08 (-0.83) 0.35 (1.76) -0.08 (-0.84) 0.35 (1.76) -0.42 (-0.77) 0.14 (0.52) -0.46 (-0.82) 0.14 (0.55)
Short-term return reversal -0.54 (-7.03) -1.15 (-6.53) -0.54 (-6.96) -1.16 (-6.51) -0.80 (-7.19) -0.82 (-7.68) -0.80 (-7.14) -0.83 (-7.67)
Asset growth -0.12 (-1.92) -0.31 (-3.37) -0.12 (-1.83) -0.30 (-3.26) -0.07 (-0.93) -0.06 (-0.65) -0.07 (-0.93) -0.05 (-0.55)
Capex/Assets -0.08 (-1.16) 0.20 (2.78) -0.08 (-1.13) 0.21 (2.79) -0.09 (-1.12) 0.02 (0.26) -0.10 (-1.18) 0.04 (0.44)
Patents/Assets -0.01 (-0.12) 0.13 (1.53) 0.01 (0.19) 0.16 (1.60) 0.07 (1.00) 0.09 (1.30) 0.11 (1.49) 0.11 (1.39)
R&D/Market equity 0.06 (1.50) 0.28 (1.99) 0.07 (1.71) 0.28 (2.01) 0.28 (2.14) 0.37 (3.62) 0.27 (2.12) 0.37 (3.67)
Net stock issuance -0.07 (-1.28) -0.05 (-0.38) -0.07 (-1.26) -0.06 (-0.49) -0.12 (-1.49) 0.00 (0.01) -0.11 (-1.43) 0.00 (-0.01)
Return on assets 0.03 (0.47) 0.26 (2.52) 0.02 (0.34) 0.26 (2.48) 0.30 (3.07) 0.10 (1.31) 0.30 (3.11) 0.10 (1.31)
Idiosyncratic volatility 0.18 (1.41) 0.35 (1.80) 0.18 (1.40) 0.34 (1.77) 0.10 (0.50) 0.01 (0.04) 0.10 (0.51) -0.01 (-0.05)
Skewness -0.10 (-1.64) -0.19 (-2.32) -0.10 (-1.68) -0.19 (-2.28) -0.12 (-2.09) -0.15 (-2.09) -0.11 (-1.95) -0.15 (-2.11)
Citations-based IE 0.10 (1.97) 0.06 (1.02) 0.02 (0.48) 0.00 (0.01)
Patents-based IE 0.02 (0.65) -0.04 (-0.46) -0.03 (-0.89) -0.06 (-0.85)
R2 0.20 0.16 0.20 0.16 0.25 0.26 0.25 0.26
Number of firms 770 736 770 736 517 497 517 497

Model 3A Model 3B
A1. VU based on age and opacity A2. VU based on analyst forecast dispersion

Model 3A Model 3B
Low VU High VU Low VU High VULow VU High VU Low VU High VU
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Panel B. Investor attention (ATT) subsamples  Panel C. Profitability sensitivity (Sen) subsamples

Slope t -stat Slope t -stat Slope t -stat Slope t -stat Slope t -stat Slope t -stat Slope t -stat Slope t -stat
Innovative originality 0.00 (-0.06) 0.16 (2.91) 0.03 (0.58) 0.17 (3.15) 0.05 (0.69) 0.23 (3.22) 0.05 (0.61) 0.24 (3.41)
Size -0.26 (-3.24) -0.12 (-1.34) -0.26 (-3.28) -0.13 (-1.35) 0.01 (0.10) -0.16 (-1.24) -0.01 (-0.08) -0.15 (-1.15)
Book-to-market 0.33 (4.19) -0.04 (-0.51) 0.32 (4.13) -0.05 (-0.67) 0.15 (1.43) 0.04 (0.36) 0.15 (1.44) 0.04 (0.35)
Momentum 0.07 (0.75) 0.31 (2.95) 0.07 (0.73) 0.31 (2.93) 0.14 (0.85) 0.51 (3.50) 0.14 (0.86) 0.51 (3.54)
Institutional ownership 0.05 (1.02) -0.08 (-1.55) 0.05 (1.15) -0.08 (-1.54) 0.03 (0.51) 0.03 (0.33) 0.04 (0.72) 0.02 (0.21)
Illiquidity 0.14 (1.45) -0.10 (-0.98) 0.14 (1.43) -0.10 (-0.98) -0.03 (-0.06) 0.23 (0.45) -0.05 (-0.09) 0.25 (0.48)
Short-term return reversal -1.04 (-8.98) -0.58 (-7.38) -1.03 (-8.89) -0.58 (-7.40) -0.81 (-7.55) -0.60 (-5.45) -0.82 (-7.58) -0.61 (-5.43)
Asset growth -0.12 (-1.79) -0.10 (-1.50) -0.13 (-1.87) -0.09 (-1.43) -0.27 (-2.05) -0.15 (-1.25) -0.25 (-1.89) -0.15 (-1.20)
Capex/Assets -0.09 (-1.14) -0.05 (-0.64) -0.09 (-1.06) -0.06 (-0.77) 0.16 (1.51) 0.02 (0.17) 0.15 (1.45) 0.01 (0.11)
Patents/Assets 0.10 (1.43) 0.09 (1.14) 0.13 (1.53) 0.08 (0.92) 0.14 (0.66) -0.25 (-1.36) 0.14 (0.56) -0.28 (-1.39)
R&D/Market equity 0.35 (2.57) 0.16 (2.22) 0.35 (2.60) 0.16 (2.21) 0.08 (0.57) 0.17 (1.30) 0.07 (0.47) 0.18 (1.38)
Net stock issuance -0.22 (-3.26) -0.15 (-3.23) -0.22 (-3.16) -0.15 (-3.36) -0.19 (-1.95) -0.26 (-2.74) -0.19 (-1.89) -0.25 (-2.64)
Return on assets 0.22 (3.23) -0.02 (-0.28) 0.23 (3.29) -0.02 (-0.25) 0.30 (1.68) 0.20 (1.07) 0.29 (1.61) 0.19 (1.01)
Idiosyncratic volatility -0.01 (-0.06) -0.13 (-0.94) -0.01 (-0.08) -0.14 (-0.96) 0.29 (1.02) -0.17 (-0.60) 0.26 (0.92) -0.18 (-0.64)
Skewness 0.00 (0.02) -0.13 (-2.90) 0.00 (0.02) -0.12 (-2.85) -0.04 (-0.51) -0.12 (-1.37) -0.04 (-0.54) -0.12 (-1.40)
Citations-based IE 0.12 (1.93) 0.01 (0.30) -0.08 (-1.54) 0.00 (-0.02)
Patents-based IE 0.02 (0.27) 0.01 (0.17) -0.09 (-0.96) 0.01 (0.11)
R2 0.26 0.30 0.26 0.30 0.30 0.28 0.30 0.28
Number of firms 902 914 902 914 814 972 814 972

Model 3A Model 3B
Low Sen High Sen Low Sen High Sen

Model 3A Model 3B
High ATT Low ATT High ATT Low ATT
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Table 9 
Return predictive power of innovative originality versus innovative efficiency – Fama-MacBeth regressions (subsamples) 

 
This table reports the average slopes (in %) and their Newey-West (1987) autocorrelation-adjusted heteroscedasticity-robust t-statistics in parentheses 
from monthly Fama and MacBeth (1973) cross-sectional regressions as in Model 3 of Table 7 within subsamples split by citations-based (patents-
based) innovative efficiency measure. The Low (High) IE subsample refers to the bottom (top) 30%. All variables are defined as in Tables 2 and 7. 
 

 
 
 
 
 
 
 
 

Slope t -stat Slope t -stat Slope t -stat Slope t -stat
Innovative originality 0.10 (2.72) -0.02 (-0.44) 0.17 (4.14) -0.01 (-0.13)
Size -0.28 (-2.33) -0.11 (-0.90) -0.26 (-2.65) -0.08 (-0.80)
Book-to-market 0.30 (3.81) 0.18 (2.19) 0.27 (3.53) 0.15 (1.80)
Momentum -0.07 (-0.59) 0.07 (0.73) -0.06 (-0.63) 0.03 (0.41)
Institutional ownership 0.22 (3.44) 0.05 (0.79) 0.17 (2.97) 0.06 (1.07)
Illiquidity 0.28 (3.27) 0.13 (1.28) 0.33 (3.78) -0.11 (-1.39)
Short-term return reversal -1.16 (-10.17) -0.79 (-9.70) -1.14 (-10.18) -0.90 (-10.22)
Asset growth -0.27 (-3.36) -0.11 (-1.66) -0.29 (-4.08) -0.09 (-1.29)
Capex/Assets 0.02 (0.36) -0.06 (-0.97) -0.04 (-0.74) -0.01 (-0.17)
Patents/Assets -0.03 (-0.64) 0.05 (0.66) 0.00 (0.00) 0.07 (0.83)
R&D/Market equity 0.14 (1.58) 0.23 (2.49) 0.14 (1.86) 0.25 (2.49)
Net stock issuance -0.03 (-0.45) -0.12 (-1.83) -0.08 (-1.26) -0.16 (-2.53)
Return on assets 0.06 (0.66) 0.22 (2.69) 0.10 (1.24) 0.09 (1.06)
Idiosyncratic volatility 0.34 (2.10) 0.29 (1.96) 0.36 (2.38) 0.22 (1.59)
Skewness -0.12 (-2.26) -0.03 (-0.57) -0.12 (-2.22) -0.10 (-2.49)
R2 0.17 0.21 0.15 0.20
Number of firms 586 381 725 415

Citations-based IE Patents-based IE
Low IE High IE Low IE High IE
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Table 10 
Return predictive power of innovative originality and R&D intensity – Fama-MacBeth regressions (subsamples) 

 
This table reports the average slopes (in %) and their Newey-West (1987) autocorrelation-adjusted heteroscedasticity-robust t-statistics in parentheses 
from monthly Fama and MacBeth (1973) cross-sectional regressions as in Model 3 of Table 7 within subsamples split by R&D intensity. R&D intensity 
is defined as R&D expenses scaled by total assets. The Low (High) R&D subsample refers to the bottom (top) 30%. All variables are defined as in 
Tables 2 and 7. 
 

 
 
 
 
 
 

Slope t -stat Slope t -stat Slope t -stat Slope t -stat
Innovative originality 0.05 (1.07) 0.14 (2.01) 0.13 (1.64) 0.18 (2.66)
Size 0.07 (0.80) -0.34 (-2.65) 0.08 (0.90) -0.34 (-2.65)
Book-to-market 0.29 (4.70) 0.19 (1.73) 0.29 (4.76) 0.18 (1.72)
Momentum 0.20 (2.52) -0.10 (-0.76) 0.20 (2.51) -0.10 (-0.76)
Institutional ownership 0.01 (0.20) 0.18 (1.87) 0.01 (0.21) 0.20 (2.04)
Illiquidity 0.27 (3.41) 0.53 (4.14) 0.27 (3.38) 0.53 (4.13)
Short-term return reversal -0.82 (-10.30) -1.33 (-10.43) -0.83 (-10.33) -1.33 (-10.44)
Asset growth -0.27 (-4.33) -0.25 (-2.85) -0.27 (-4.26) -0.24 (-2.72)
Capex/Assets 0.00 (0.01) 0.02 (0.27) 0.00 (0.00) 0.02 (0.24)
Patents/Assets 0.02 (0.42) 0.02 (0.25) 0.12 (1.81) 0.06 (0.59)
Net stock issuance -0.08 (-1.84) -0.02 (-0.17) -0.08 (-1.82) -0.01 (-0.16)
Return on assets 0.15 (2.29) 0.26 (2.57) 0.14 (2.19) 0.26 (2.56)
Idiosyncratic volatility 0.17 (1.43) 0.07 (0.50) 0.17 (1.39) 0.07 (0.48)
Skewness -0.07 (-1.90) -0.07 (-0.90) -0.07 (-1.89) -0.07 (-1.03)
Citations-based IE 0.10 (2.08) 0.12 (1.72)
Patents-based IE -0.13 (-2.36) -0.02 (-0.24)
R2 0.16 0.15 0.16 0.15
Number of firms 717 438 717 438

Model 3A Model 3B
Low R&D High R&D Low R&D High R&D
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Figure 1. Monthly Average Alphas of InnOrig Spread Portfolio over the Five Post-Sorting Years  
 

Figure 1 plots the value-weighted monthly average alphas for the high-minus-low innovative originality portfolio (as formed in Table 5) over the five 
post-sorting years. All the factor models used are described in Table 5. 
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Figure 2. High-minus-Low Innovative Originality Portfolio Returns  
 

Figure 2 plots the value-weighted return on the high-minus-low innovative originality portfolio (as formed in Table 5) on a per annum basis from July 
of 1982 to June of 2008. There are only six months in 1982 and 2008. 
 

 
 

 
 

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008




