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Executive Summary

Many applications, including connected and autonomous vehicles, would benefit from navigation technologies reliably
achieving sub-meter position accuracy with high reliability on moving platforms. Commercial on-vehicle implementation of
Earth-referenced positioning at submeter accuracy with 99% probability would require widely and reliably available differential
corrections; however, such corrections delivered on a nationwide or global scale via satellite systems will incur latency between
their time-of-applicability and their time-of-reception at the vehicle.

Phase 1 of this project presented a differential correction computation methodology designed to be robust to latency and
studied position accuracy as a function of differential correction latency for stationary receivers [1]–[3]. The study showed that
submeter accuracy at 95% probability was achievable when a sufficient number and diversity of satellites were available.

This report summarizes the conclusions of the Phase 2 of the work performed by University of California, Riverside (UCR).
There were two main goals for this effort. For moving platforms, Phase 2 investigates:

1) the feasibility of achieving meter-level positioning accuracy on at least 95% of epochs using Global Navigation Satellite
System (DGNSS) based state estimation; and,

2) the sensitivity of that positioning accuracy to communication latency.
The study uses the utilizes the local based station design presented in [1].

The study presents and experimentally analyzes two state estimation approaches suitable for moving platforms. The Position,
Velocity, Acceleration (PVA) approach uses DGNSS data only within a Kalman filter framework. The Inertial Navigation System
(INS) approach uses DGNSS and inertial measurement data within an extended Kalman filter implementation. Section VII
shows that both approaches have performance exceeding the SAE J2945 specification (1.5 meter horizontal accuracy and 3.0
meter vertical accuracy at 68%) with PVA achieving 1m horizontal at 90% and 2 m vertical accuracy at 95% while the INS
approach using a consumer-grade IMU achieves 1m horizontal at 98% and 2 m vertical accuracy at 95%.

Section VIII presents an analysis of position estimation accuracy, for moving platforms, as a function of communication
latency, which shows that, using the DGNSS correction computation approach presented in [1], position estimation accuracy
is robust to correction latency exceeding 500 seconds.

The results herein used a local base station approach. National or global implementations would be more efficient using
networks of base stations working collaboratively to estimate parameters usable by user receivers to reconstruct corrections.
Such methods are the focus of Phase 3 of this study.

This study focuses on single frequency, single constellation results. The availability of multiple constellations and multiple
frequencies per constellations will facilitate compensation of ionospheric error, accommodation of outliers, and accommodation
of multipath, while still having a set of satellites with appropriate geometry to reliably achieve the performance specification.
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I. INTRODUCTION

Over the last several decades, Global Navigation Satellite
Systems (GNSS) [4]–[7] have become dominant for personal
and vehicular position determination for routing applications.
For such applications, standard GNSS accuracy of about 10
m has typically been sufficient.

A new generation of applications (e.g., autonomous vehi-
cles, connected vehicles, and driver’s assistance [8]–[11] ) are
placing much stricter position accuracy and reliability speci-
fications on navigation systems than was previously required.
Specifically stated specifications (e.g., SAE J2945 [12]) re-
quire horizontal and vertical position accuracy of 1.5 m and
3 m with 68% probability, respectively. The FHWA, state
DOTs, and auto manufacturers are investigating connected and
autonomous highway vehicle applications which will benefit
from real-time, Earth Centered Earth Fixed (ECEF) position
estimates accurate to sub-meter level at 95% probability. Pi-
lot projects are ongoing in at least three locations [9]–[11].
The objectives of these projects include improving roadway
network safety and throughput, while decreasing emissions
impact.

Commonly cited differential GNSS (DGNSS) position ac-
curacy levels are 1-3 meters [13]. The lower end of this range
approaches the desired sub-meter specification, if this accu-
racy can be achieved with sufficient reliability and if it is not
sensitive to DGNSS correction communication latencies. This
report presents local DGNSS correction and platform state
estimation algorithms, with experimental results that exceed
the specification stated in the previous paragraph.

Navigation systems achieving these accuracy and reliability
specifications have not yet been demonstrated. For a national
scale of implementation, topics of interest include: communi-
cation physical layers, network design for real-time applica-
tions, position error sensitivity to communication latency, and
estimation algorithms to achieve the accuracy specification.

This report studies the achievable accuracy of alternative
estimation algorithms and the position estimation accuracy as
a function of communication latency. Section II contains a
literature review. Section III presents notation and background
related to the measurement and models. Section IV discusses
the differential correction latency compensation approach and
double difference measurements. Section V presents the state
estimation methods that are used herein. Because the platform
is moving, a state vector must be defined that includes posi-
tion, for each approach. Section VI discusses the experimental
data that will be used for this study. Section VII presents the
position estimation results when the communication latency is
zero. Section VIII presents the position estimation results as
a function of communication latency. Section IX studies the
effect of outliers on the state estimation results.

II. RELATED WORK

Position determination by standard GNSS positioning [14]–
[16] as well as DGNSS [17]–[19] are both very well researched
areas. The extensive literature presents position estimation the-
ory, estimation algorithms, and experimental results that illus-

trate alternative modeling choices and their impact on perfor-
mance and reliability [20]–[22].

A challenge in DGNSS positioning is the sensitivity of
position error to communication latency. In the era of selective
availability (SA) there were many investigations to character-
ize sensitivity to DGNSS correction latency [23]–[27]. Due to
the design of SA, as intended, the correction error and hence
the position error grew rapidly over tens of seconds. Until
recently, the literature lacked studies of real-time positioning
performance as a function of correction latency in the post-
SA era. For stationary platforms, this issue was studied in [2].
This report presents an analysis of positioning accuracy as a
function of communication latency for moving platforms.

In DGNSS the dominant error source is the multipath. The
literature provides several methods to address the issue. In
[28], the authors introduced a narrow correlator tracking loops
that provided a 20-50% reduction in multipath error effects
for the L1 pseudorange measurement. In [29], [30], multi-
path error modeling is addressed using dual frequency car-
rier phase measurements in a GNSS antenna array system.
A choke ring antenna [31] is another option. None of these
technologies have yet arrived in commercial products at a price
point suitable for automobile applications. Alternatively, many
implementations augment one (or more) multipath state per
satellite to the state vector. Use of Doppler improves position-
ing performance by estimating the velocity [32]–[35]. A less
well understood benefit of the Doppler measurement is that it
enhances the degree-of-observability of the multipath states.
This topic with a simple example is discussed in [1], [2].

Articles [1], [2] presented a differential correction compu-
tation algorithm that was demonstrated in experiments to be
robust to communication latency exceeding 500 s; however,
the analysis of positioning accuracy and latency sensitivity
therein was limited to stationary data. This report extends that
analysis to moving platforms. Two state estimation approaches
are presented for the moving platform, one using DGNSS
only and one combining DGNSS and IMU data. This report
also demonstrates that, on the moving platform, meter level
horizontal position accuracy is achieved for 98% of the sam-
ples with two meter vertical accuracy achieved on 97% of the
samples. This level of performance exceeds the requirements
of SAE specification J2945.

III. BACKGROUND AND PROBLEM STATEMENT

This section introduces notation and GNSS measurement
models. For additional information on GNSS, see [14]–[16],
[20], [21].

A. GNSS Background

GNSS receivers provide three measurements: pseudorange,
Doppler, and carrier phase. At present, these signals are avail-
able to civilians only on the L1 frequency. In the near-term,
low-cost consumer receivers are expected to provide addi-
tional measurements from multiple constellations and at mul-
tiple frequencies (i.e., L1, L2, and L5 for GPS). The methods

Copyright c©2018, University of California, Riverside. All Rights reserved. p. 3
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discussed herein generalize to multiple frequencies and con-
stellations with only minimal algorithmic changes. Additional
frequencies and multiple constellations will further enhance
performance. For example, measurements at multiple frequen-
cies will improve estimation of ionospheric delay. Multiple
constellations and multiple frequencies will greatly increase
the number of measurements allowing attenuation of multipath
and outlier effects. This study focuses on L1 pseudorange and
Doppler measurements for the GPS constellation.

B. Notation

To clearly distinguish between models and computations,
this article will use two different symbols. The symbol =̇ indi-
cates that the equation is a model. Models are used to analyze,
understand, and physically interpret measurements, often with
the goal of designing algorithms to estimate quantities that
are of interest (e.g., position). The symbol = indicates that an
equation represents an actual algorithmic calculation.

When it is necessary to represent both the actual and com-
puted versions of a variable, x will represent the actual value
while x̂ will represent the computed value. For example, ps

represents the actual position of satellite s while p̂s repre-
sents the position of satellite s computed from the available
ephemeris data.

C. GNSS Measurement Models

The pseudorange measurement model is

ρ
s
r =̇ R(pr, ps)+ ctr− cts + Is +T s +Ms

r +η
s
r , (1)

where the range between the receiver location pr and the
satellite location ps is

R(pr, ps) = |pr− ps|. (2)

The symbol ctr represents the receiver clock bias, cts is the
satellite clock bias after ephemeris corrections, Is is iono-
spheric error, T s is tropospheric error, Ms

r is multipath error,
and ηs

r ∼N (0,Rs
p) is white random noise affecting the pseu-

dorange measurement. Ephemeris error is accounted for later.
The Doppler Ds

r measurement model is

λDs
r =̇ hs · (vr− vs)+ cbr− cbs + ε

s
r (3)

where the line-of-sight vector from satellite s to receiver r is

hs =
pr− ps

|pr− ps|
. (4)

The symbols vr and vs represent the receiver and satellite
antennae velocity vectors, cbr and cbs are the receiver and
satellite clock drift rates, and εs

r ∼N (0,Rs
d) is white random

measurement noise affecting the Doppler measurement.

D. GNSS Measurement Errors

The pseudorange measurement has 7 types of errors, (see
[36], and Sections 1.2-1.3 of [13]). They can be classified into
two categories:
• Common-mode errors (ephemeris, satellite clock bias, iono-

sphere, troposphere) are common to all receivers in the
same vicinity.

• Noncommon-mode errors (receiver clock bias, multipath,
receiver noise) are different for each receiver.

Differential GNSS processing methods are defined to reduce
the effects of common-mode errors [17]–[19] on the position
estimates.

E. Problem Statement

This report presents position estimation algorithms appli-
cable to moving receivers using either GNSS or GNSS and
inertial measurements. It also analyzes the extent to which
these algorithms achieve the position accuracy and reliability
specifications currently envisioned for driver assistance, con-
nected vehicle, and autonomous vehicle applications [12]. Of
particular interest is the sensitivity of the positioning accuracy
to latency in the communication of GNSS differential correc-
tions to the roving vehicle.

IV. DIFFERENTIAL GNSS CORRECTION

Section IV-A and IV-B discuss DGNSS techniques and de-
lineate various issues that must be addressed to achieve sub-
meter positioning accuracy. The DGNSS correction compu-
tation approach, originally presented in [1], was designed to
accommodate communication latency. It is reviewed in Section
IV-C and will be used for all results herein, along with double-
differencing as discused in Section IV-D.

A. DGNSS Correction Approaches

All DGNSS approaches use at least one base station with
a high quality receiver and antenna located at a mechanically
stable and known location pb. Due to the antenna location
being stationary and known, the DGNSS approach can es-
timate corrections for roving receivers, enabling significant
enhancement in rover position estimation accuracy, assuming
that the corrections can be communicated to the rovers in a
time-effective manner.

DGNSS can be implemented on local, regional, or global
scales. Local DGNSS approaches are the easiest to understand
and are currently planned to be used for the Department of
Transportation pilot projects described in [9]–[11].

The standard local approach is described in detail in Sec-
tion IV-B. Regional and global approaches utilize a network
of GNSS receivers. The measurements from throughout the
network are combined to estimate correction information that
is broadcast to users, such that each user can reconstruct a local
correction [37], [38]. For commercial DGNSS applications on
a global scale, network DGNSS methods are likely to be the
most feasible for a few reasons. First, the number of base
stations is significantly reduced relative to local approaches
implemented worldwide. Second, a single entity responsible
for the network of base stations can implement measures to
ensure and verify integrity. Third, commercial entities utilizing
the corrections (e.g., car manufacturers) could interact with a
single standard (e.g., data format and communication physical
layer) globally rather than numerous local standards.

The collection of data from remote base receivers, com-
putation and verification of corrections, and communication
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of corrections to users result in latency ` between the time-
of-applicability t0 and the time that it is actually used t0 + `.
Robustness to communication latency is critical.

A primary goal of this study is to evaluate the sensitivity
of positioning accuracy to communication latency. For the
purpose of this study, it is sufficient to utilize local corrections.
The local approach used in this paper, described in Section
IV-C, is a variant of the RTCM standard [17].

For the approach herein, the correction convergence time
at the rover is zero seconds, once the base station message
is received. For alternative approaches, such as those based
on precise point positioning [13], [39], [40], the convergence
time is non-zero, so the results of this study would not be
applicable.

B. Standard Local DGNSS Corrections

This section discusses a local base station algorithm [1]
that is essentially compatible with the RCTM standard [17].
The local base station position pb is assumed to be known to
centimeter accuracy, so that its error is neglected herein.

At time t the base station algorithm computes

c̃s(t) = ρ
s
b(t)−R(pb, p̂s(t))− ct̂b(t)+ ct̂s(t) (5)

where ρs
b is the base pseudorange measurement. The computed

range from the known base location pb to the satellite location
p̂s computed using the ephemeris data is R(pb, p̂s) = |pb− p̂s|.
The satellite clock bias ct̂s is also computed from ephemeris
data. The symbol ct̂b(t) represents an estimate of the base
receiver clock bias. The estimated base receiver clock bias is
only removed to reduce the magnitude of the correction and
will not affect the positioning error.

The model for c̃s(t) is

c̃s(t) =̇ Is(t)+T s(t)+Es(t)− cδ ts(t)

+ cδ tb +Ms
b(t)+η

s
b(t) (6)

where Es = R(pb, ps)−R(pb, p̂s) is satellite ephemeris error,
cδ ts = cts−ct̂s is residual satellite clock bias and cδ tb = ctb−
ct̂b is residual receiver clock bias. Note that all of the terms
on the right-hand side of eqn. (6) are unknown. The goal is
that the broadcast correction to the rover should allow accurate
prediction of the common mode error

Is(t)+T s(t)+Es(t)− cδ ts(t),

while being minimally influenced by the base station non-
common mode error

Ms
b(t)+η

s
b(t).

Eqn. (6) shows that c̃s(t) contains both common and non-
common mode errors; therefore, additional processing is de-
sirable.

C. Approach to Decrease Mulipath and Latency Effects

Each noncommon-mode error source is correlated over only
a few minutes whereas the common-mode error sources are
correlated over several hours. Due to this frequency separation,
various forms of low-pass filtering should attenuate the affects
of the noncommon-mode errors.

Before filtering, it is useful to consider the ionospheric de-
lay. When the rate of change of the ionospheric delay is high,
a low-pass filtered correction would lag the present value of
c̃s(t). The ionospheric delay has trends that are largely pre-
dictable using GNSS satellite data available at each base and
rover. Therefore, the predictable portion of these terms is re-
moved prior to filtering and added back into the filtered results.

Let Îs represents the ionosphere delay computed using GNSS
satellite data. Subtracting this predicted ionospheric delay pro-
duces the new computed variable

d̃s(t) = c̃s(t)− Îs(t). (7)

The model for d̃s(t) is

d̃s(t) =̇ δ Is(t)+T s(t)+Es(t)− cδ ts(t)

+ Ms
b(t)+η

s
b(t) (8)

where δ Is(t)=̇Is(t)− Îs(t). The first line of eqn. (8) contains
the desired signal for the corrections. These signals have very
small changes in rate over long periods of time (i.e., many min-
utes). The second line of eqn. (8) contains the noncommon-
mode errors. These errors change rapidly and are zero mean
over several minutes. Therefore, to also attain the ability to
predict corrections at future times, the form of low pass filter
that we select is line-fitting.

At time t0, the line at0 +bt0(t− t0) is fit to the data{
d̃(t) for t ∈ [t0−L, t0]

}
.

The parameters [at0 ,bt0 , t0, IODE] are communicated to the
rover, arriving at the rover at some time after t0. The parameter
IODE ensures that the base and rover use the same issue of
ephemeris data. For any time t ≥ t0, the rover computes the
correction as

ĉ(t; t0) = at0 +bt0(t− t0)+ Îs(t). (9)

For position computations, the rover uses the DGNSS com-
pensated pseudorange measurement:

∆ρ
s
r (t; t0) = ρ

s
r (t)− ĉ(t; t0). (10)

The correction latency is l = (t− t0). Assuming perfect can-
cellation of common-mode errors when l = 0 and elimination
of the base multipath and receiver noise from the corrections,
the DGNSS compensated pseudorange model (using ĉ(t; t0) at
time t) is

∆ρ
s
r (t; t0) =̇ R(pr(t), p̂s(t))+ ctrb(t)

+ (ĉ(t; t)− ĉ(t; t0))+Ms
r(t)+η

s
r (t). (11)

The term (ĉ(t; t)− ĉ(t; t0)) accounts for the error in prediction
of the common-mode errors due to communication latency.

Copyright c©2018, University of California, Riverside. All Rights reserved. p. 5
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The remaining base clock error cδ tb affects all satellites iden-
tically and is lumped into the receiver clock error as ctrb =
ctr− cδ tb .

The DGNSS correction in eqn. (9) is designed to be robust
to latency and base station multipath error. Figures showing
the results of example base station calculations are included
in an Appendix of [1]. Latency effects on both correction and
positioning error are analyzed in Section VI.

D. Double-Differenced Measurement Model

DGNSS corrections compensate for the common-mode er-
rors that affect the pseudorange measurement. The receiver
clock biases can be eliminated by double differencing (See
Section 8.8.3 in [20]). In double-differencing, one satellite,
called the pivot satellite, has its differential measurement sub-
tracted from all the others. This operation removes clock bias
errors (i.e., two states from the model) at the cost of one fewer
measurement per epoch and causing the noise on all double-
differenced measurmements per epoch to be correlated.

For correction latency, l = 0, the DGNSS compensated mea-
surement model from eqn. (11) reduces to

∆ρ
s
r =̇ R(pr, p̂s)+ ctrb +Ms

r +η
s
r , (12)

where the time index t has been omitted for simplicity.
For the results herein, the pivot satellite (denoted as sp)

will be the one with the highest elevation angle. The double-
differenced pseudorange measurement ∇∆ρs

r is computed as

∇∆ρ
s = ∆ρ

s
r −∆ρ

sp
r . (13)

The corresponding measurement model is

∇∆ρ
s=̇R(pr, p̂s)−R(pr, p̂sp)+dMs

r +dη
s
r , (14)

where dMs
r = Ms

r −Msp
r and dηs

r = ηs
r − η

sp
r are the time-

correlated multipath and white measurement noise processes.
The single-differenced Doppler measurement is computed

as
λ∆Ds

r = λDs
r +1s

r · v̂s (15)

which uses the ephemeris data to remove the portion of Doppler
due to satellite motion (i.e., 1s

r · v̂s). The line-of-sight vector
from the satellite to the receiver is 1s

r. It is also the case that
∂R
∂ pr

= 1s
r, so that this vector will have a role in Section V-B.

This vector is time varyint, due to the motion of the satellite
and receiver antenna, but the subscript k is dropped to simplify
the notation.

Based on eqn. (3) the single-difference Doppler model is

λ∆Ds
r =̇ 1s

r · vr + cbr + ε
s
r , (16)

where the satellite velocity error term (1s
r · v̂s−1s

r · vs) is neg-
ligible and has been dropped.

Performing the difference between satellites yields the double-
differenced Doppler measurement is computed as

λ∇∆Ds = λ∆Ds
r−λ∆Dsp

r , (17)

which yields the measurement model

λ∇∆Ds =̇ (1s
r−1sp

r ) · vr +dε
s
r . (18)

where dεs
r = εs

r −ε
sp
r is the white Doppler measurement noise

that is correlated between satellites.
Define the vector of two measurements per satellite at epoch

k as:
zs

k = hs(xk)+ γ
s
k , (19)

where (dropping the subscript k from the time varying function
hs

k)

zs
k =

[
∇∆ρs

k
∇∆Ds

k

]
and hs(x) =

[
R(p, p̂s

k)−R(p, p̂sp
k )

(1s
r−1sp

r ) · v

]
where receiver antenna position p and velocity v will be sub-
vectors of the state vector x. The noise vector γs

k ∼N (0,Rz)
with

Rz =

[
Rs

p +Rsp
p 0

0 Rs
d +Rsp

d

]
.

The vector of measurements at epoch k corresponding to the
model in eqn. (19) concatenates the measurements per satellite:
zk = [z1

k , . . . , zm
k ]
> where h(x) = [h1(x), . . . , hm(x)]>.

V. POSITION ESTIMATION ON A MOVING PLATFORM

This section presents the position estimation algorithms that
will be used for performance analysis herein.

A. Time Propagation Models

Two approaches to temporal propagation of the state are
considered. The position, velocity, and acceleration (PVA) ap-
proach of Section V-A1 only uses GNSS measurements, while
the INS approach of Section V-A2 also incorporates inertial
measurements.

1) PVA Time Propagation Model: The PVA rover state is

x = [p>,v>,a>,Mr]
> ∈ IRns , (20)

where ns = 9+m. The symbols p, v, a ∈ IR3 represent the
position, velocity and acceleration vectors. The analysis herein
augments the standard PVA state vector [1], [20], [41] with a
vector of multipath states Mr ∈ Rm.

The discrete-time state is assumed to propagate as

xk
.
= Ψxk−1 +Γωk−1, (21)

where xk = x(tk), tk = kT , where T is the time between mea-
surement epochs, ωk ∼ N (0, Qd) and the matrices of the
discrete-time state-space model are:

Ψ =

[
ψv 0
0 ψM

]
, Γ =

[
Γv 0
0 ΓM

]
, and Qd =

[
Qdv 0
0 QdM

]
.

The PVA model assumes that the acceleration vector is con-
stant for all t ∈ [tk−1, tk] (i.e., over each measurement epoch)
and that its value is accurately modeled as a first-order discrete-
time Markov process between measurement epochs. The pa-
rameters of the acceleration Markov process are assumed to
be time-invariant.

The trade-off in the PVA approach is that there is no optimal
set of model parameters uniformly applicable over all epochs.
Nevertheless, the designed must choose a set of model pa-
rameters at design time. For epochs over which the selected
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model is accurate, the PVA approach will perform well, per-
haps even optimally. Over other epochs, the performance may
deteriorate. Herein, the model parameters of the PVA and
multipath states are tuned for a moving platform with moderate
acceleartion correlated over a few seconds. The details of the
model and its parameters are discussed in [1].

The PVA state estimate is time-propagated as

x̂−k = Ψx̂+k−1, (22)

where the superscript ‘–’ and ‘+’ denote the values just before
and after incorporating the GNSS measurements at time k. The
error state covariance matrix is propagated as

P−k = ΨP+
k−1Ψ

>+ΓQdΓ
>. (23)

The index k counts over GNSS measurement times tk = kT .
GNSS receivers allow the user to select T over a wide range
from 0.02 seconds to infinity. The tradeoff is that the validity
of the PVA model improves for smaller T , but the assumption
of GNSS white measurment noise becomes more valid as T
increases. In this article, T = 1 second.

2) INS Time Propagation Model: The INS rover state is

x = [p>,v>,q>,b>a ,b
>
g ,Mr]

> ∈ IRns . (24)

where ns = 16+m and m is the number of GNSS satellites
available. The symbols p, v, ba, bg ∈ IR3 represent the position,
velocity, accelerometer bias and gyro bias vectors, while q ∈
IR4 is the attitude quaternion, and Mr ∈ IRm is the multipath
bias state vector with one element per satellite.

The kinematic model for the continuous-time propagation
of the vehicle state is:

ẋ(t) .
= f (x(t),u(t)) (25)

where the specific form of the function f can be found in
many references, e.g., [20]. The vector u ∈ IR6 denotes the
IMU sensor measurements: specific force vector and angular
rate vector.

The IMU measurements occur in discrete-time with sam-
ple period τ � T . The IMU discrete-time measurements are
modeled as

ũ(τk,i)
.
= u(τk,i)+bu(τk,i)+ωu(τk,i) (26)

where ωu(τk,i) ∼ N (0,Q) and the sensor bias vector bu =
[b>a , b>g ] is modeled as a first-order Markov process. Let τk,i =
tk + iτ where i = 0, . . . , fs T , tk = kT are the GNSS measure-
ment times, and fs =

1
τ
. Over any interval [tk−1, tk], when the

context is clear, this notation will be simplified to τi. In this
notation, xk,i means x(τk,i), which may be simplified to xi.

Time propagation of the INS state estimate is the numeric
integral of

˙̂x(t) = f (x̂(t), û(t)) (27)

in discrete-time, which is denoted as

x̂i = φ(x̂i−1, ûi−1) (28)

where ûi = ũi− b̂u and

φ(xi−1,ui−1) = xi−1 +
∫

τi

τi−1

f (x(τ),u(τ))dτ.

Many algorithms are available for the numeric integration [42].
The state vector error propagation model between two IMU

time samples can be written as:

δxi
.
= Φiδxi−1 + γiωi (29)

where δxi = xi− x̂i, ωi∼N (0,Qd), and Φi =
δφ

δx |xi−1,ũi−1 is the
discrete-time INS error state transition matrix. The derivations
are contained in [20].

Due to τ � T , eqn. (28) is iterated many (i.e. fs T ) times
between consecutive GNSS measurements. The iterated ap-
plication of eqn. (28) starts for i = 0 with x̂(τk−1,0) = x̂+k−1,
which is the state estimate after incorporating the GNSS mea-
surements at epoch k−1. The iterated application of eqn. (28)
is denoted as

x̂−k = φk(x̂+k−1,Uk−1) (30)

where Uk−1 = {ũ(τi) for τi ∈ [tk−1, tk]} denotes the set of IMU
measurements over the GNSS epoch. The result of the iterated
numeric integration by (28) is the prior x̂−k for the extended
Kalman filter measurement update at tk.

The INS error covariance matrix is propagated as

P−k = ΦkP+
k−1Φk +Qdk (31)

where the derivation and detailed discussion of Qdk and Φk
are beyond the scope of this article, but can be found in [43].

B. Measurement Update Model

For both the PVA and INS approaches, the prior state at time
tk will be corrected using the double-differenced pseudorange
and Doppler measurements as defined in Section IV-D.

The model for the measurement vector zs
k = [∇∆ρs

k , λ∇∆Ds
k]
>

for satellite s at tk is

zs
k
.
= hs(xk)+ns

k, (32)

where ns
k ∼N (0,Rz) with hs(xk) and Rz as defined in eqn.

(19). Note that the cross-satellite correlation introduced by the
double-difference operation has been ignored.

Based on eqn. (32), the measurement residual is computed
as

dzs
k = zs

k−hs(x̂−k ). (33)

Employing the first-order Taylor series expansion, the linearized
measurement model is:

dzs
k
.
= Hs

kδxk +ns
k. (34)

The following two subsections define the structure of Hs
k based

on the definitions of the state vector for the PVA and INS
approaches.

Accumulating all satellite measurements dzs
k into vector dzk

yields:
dzk

.
= Hkδxk +nk (35)

where dzk ∈R2m, Hdk is a matrix with 2m rows, and m+1 is
the total number of available satellites.
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1) PVA Measurement Matrix: For the PVA state vector as
defined in eqn. (20), the measurement matrix is

Hs
k =

[
(1s

r−1sp
r ) 03 03 es

03 (1s
r−1sp

r ) 03 0m

]
, (36)

with es ∈ R1×m being sth row of the identity matrix and 0 j
being the zero vector in R1× j.

2) INS Measurement Matrix: For the INS state vector as
defined in eqn. (24), the error state vector is

δx = [δ p>,δv>,ε,δb>a ,δb>g ,δMr]
> ∈ IRne . (37)

where ne = 15+m. Note that ne = ns−1. This is because the
quaternion q∈ IR4 is a unit vector that only has three degrees-
of-freedom. Therefore, the attitude error ε ∈ IR3.

The INS measurement matrix is

Hs
k =

[
(1s

r−1sp
r ) 03 09 es

03 (1s
r−1sp

r ) 09 0m

]
. (38)

C. State Estimation

For the PVA model, state estimation is performed using the
linear Kalman filter (KF) [20], [41]. The differential correc-
tions are designed to remove common-mode errors, receiver
clock errors are accommodated by double differencing, and
multipath is modeled as a state. Details of the KF design and
parameter choices are presented in the appendices of [1].

For the INS approach, state estimation is implemented by
an extended Kalman filter [20].

VI. EXPERIMENTAL DATA

This section discusses the data and related topics that will
be used to generate the experimental results. The experiments
analyze the effect of latency on the correction and position
accuracy, and the extent to which of different estimation algo-
rithms are able to achieve the one-meter accuracy specification.

A. Data Acquisition

During data acquisition, the hardware is mounted on a sedan
that is driven repeatedly along a multi-block section of an
urban street (Columbia Ave. near the intersection with Iowa
Avenue in Riverside, CA) with low buildings and trees adja-
cent to the street. The section of street has two stop lights. The
trajectory involves two U-turns, one at each end. Therefore, the
trajectory involves acceleration and turn rates typical for urban
trajectories, which may exceed the variation predicted by the
PVA model parameters for short time durations, followed by
other trajectory sections where the near constant velocity travel
in a lane yields conservative motion relative to that predicted
by the PVA model. Selected signals related to the experiment
are included as graphs in Appendix A.

The experimental data were saved and post-processed so
that multiple algorithms can be compared using identical data.
All state estimation results are produced using only pseudo-
range and Doppler data. Phase measurements were not used
for state estimation.

Raw pseudorange base station data was obtained from a
high-quality receiver near Center for Environmental Research

and Technology (CE-CERT) institute in Riverside using the
RTCM standard [17] and the NTRIP protocol. The UCR base
station had a baseline separation of 2.6 km. The DGNSS cor-
rection parameters [at0 ,bt0 , t0, IODE] are computed and stored
(using L = 500). This value of L was selected to be about
four times the expected base pseudorange multipath correla-
tion time. The DGNSS corrections c(t; t− `) will be used at
time t to study the impact of the latency `.

This on-vehicle experimental hardware includes two GNSS
receivers and one IMU. One receiver is a single frequency u-
blox M8T (consumer grade) and the other is dual frequency
NOVATEL OEMV2 (survey grade). Both receivers are con-
nected to the same Antcomm ANN-MS-0-005 antenna. The
M8T single-frequency receiver provides GNSS data for state
estimation for both the PVA and INS approaches. The INS im-
plementation also used inertial measurement data. The IMU on
the vehicle was an NV-IMU 1000, which is a navigation-grade
sensor. Before using the data for analysis, it will be processed
(see Appendix B) to produce IMU data characteristic of a
consumer-grade IMU.

The experiment lasted 1800 seconds. During the first 500
seconds, the base station is accumulating its L = 500 second
buffer. Therefore, the data available for performance analysis
is 1300 s.

The OEMV2 receiver provided more accurate (two frequency
code and carrier) data for (smoothed) estimation of a ground
truth trajectory enables analysis of the state estimation accu-
racy on a moving platform.

B. Ground Truth Trajectory

Ground truth trajectory estimation was performed in post-
processing using a Maximum a Posteriori smoothing algo-
rithm [44]. It used the two-frequency pseudorange and integer-
resolved, carrier phase GNSS data from the OEMV2 and NV-
IMU 1000 to achieve centimeter accuracy. This ground truth
trajectory and OEMV2 data are only used to assess the accu-
racy of the state estimation results from the consumer-grade
receiver and IMU.

C. Position Estimation Scenarios

The following subsections report positioning accuracy for
two estimation scenarios, see Section V:

1) PVA will use only the M8T GNSS data with a Linear KF
to estimate the state defined in eqn. (20) using double-
difference pseudorange and Doppler measurements.

2) INS (Consumer-grade IMU) uses the M8T GNSS and
IMU data (corrupted to have performance similar to
the ADIS16360, see Section VI-E and Appendix A).
The IMU data is integrated through an INS to produce
the state vector defined in eqn. (24). The INS error
state, defined in eqn. (37), is estimated with an EKF
using double-difference pseudorange and Doppler mea-
surements.

Each algorithm processes the set of GNSS measurements (k =
1, . . . ,Nd) as if they were occurring in real-time (i.e., incre-
mentally) to estimate the state vector at each time k, using
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correction ĉ(k;k− l) from eqn. (9) for a given value of the
latency l. The symbol p̂a

k,l denotes the position estimated for
time k for scenario a ∈ {1,2} for corrections with lag `.

The norm of horizontal position error at time k for scenario
a and latency ` is

ea
hk,l

=

∥∥∥∥[1 0 0
0 1 0

](
prk − p̂a

k,l
)∥∥∥∥ (39)

where prk is the post-processed (i.e., smoothed) ground truth
position. This error is calculated using the posterior state esti-
mate. The vertical position error ea

vk,l
is defined similarly using

only the third (i.e., down) position component. This equation
assumes that all position vectors are represented in the North-
East-Down navigation frame.

D. Outlier Accommodation

Outlier detection is implemented by applying a Neyman
Pearson (NP) test [45] to each element of the measurement
residual vector dzk. Residuals are only used in the (E)KF
if they pass the test |dzs

k| ≤ γo σ s
k where zs

k ∼ N(0,σ s
k ). The

symbol σ s
z is the residual standard deviation as computed

within the (E)KF algorithm and γo is a user defined threshold.
Unless otherwise stated, γo = 1. Performance in the presence
of outliers as a function of γ will be considered in Section IX.

E. Consumer-Grade IMU Measurements

One of the main purposes of this study is to show posi-
tioning performance using consumer-grade sensors. The IMU
sensor that has been used in this experiment (NV-IMU 1000)
is much better than consumer-grade.

To analyze navigation performance for a consumer-grade
IMU the NV-IMU 1000 data is corrupted with additive stochas-
tic errors corresponding to the specification of the ADIS16360
IMU from Analog Device. The stochastic error generation
methodology is described in Appendix B.

VII. POSITIONING ACCURACY WITHOUT LATENCY

Fig. 1 shows histograms of ea
hk,l

as defined in eqn. (39) for
latency l = 0 for each scenario summarized in Section VI-C.
Both plots are generated using Nd = 1300 epochs error data.

Table Ia and Ib summarize various measures of positioning
accuracy (for latency l = 0) for horizontal (eh) and vertical (ev)
error, respectively. Column 1 shows the scenario number a.
Column 2 displays the mean position error. Column 3 contains
the standard deviation of the position error. Column 4 shows
the maximum value of the position error. Columns 5 and 6
report the percentage of samples that have a positioning error
less than the accuracy specified in the column header. Results
shown in the statistics were computed over Nd = 1300 seconds.

Both the histogram and the table shows that both the PVA
and the INS performance exceed the SAE standard [12]. As ex-
pected, the INS, which has more information, performs better
than the PVA approach. The PVA approach (i.e., Scenario 1)
achieves meter-level horizontal position accuracy at 90%. The
INS approach using the consumer grade IMU (i.e., Scenario 2)
achieves meter-level accuracy at 98% and two-meter accuracy
at 100%.

Fig. 1: Histogram of horizontal position error en
hk,l

defined in eqn. (39) with
l = 0 for PVA approach (Top) and INS with consumer-grade IMU (Bottom).

The INS performance herein is similar to that reported in
[1] for a stationary receiver, which is as it should be, because
the purpose of the INS to remove the effects of motion on
the performance by using the IMU data. Due to the small
eigenvalues of the INS error model, the IMU sensor errors
slowly accumulate. This accumulation is independent of ve-
hicle motion. The EKF estimates and corrects the INS error
state using the double-difference GNSS measurements.

VIII. EXPERIMENTAL RESULTS: LATENCY EFFECTS

This section analyzes the effect of DGNSS communication
latency on positioning error.

A. Correction Sensitivity to Latency

The correction error at epoch k due to communication la-
tency l, as defined in eqn. (11), is

ec(k, l) = |ĉ(k;k)− ĉ(k;k− l)|, (40)

where ĉ(k;k) is the correction with no latency and ĉ(k;k− l)
is the correction with latency of l epochs. Both corrections
are computed using eqn. (9). Statistics related to ec(k, l) are
computed by averaging over k = 1, . . . ,Nd .

Fig. 2a shows the mean plus and minus the standard de-
viation of ec(k, l) versus l for three satellites. For each fixed
value of l and each satellite, the mean and standard deviation
of ec(k, l) are computed from experimental data by averaging
over Nd epochs. Fig. 2a shows that the correction error ec(k, l)
remains less than one meter for more than `= 500secs.

B. Position Estimation: Sensitivity to Latency

The experiment is repeated for each scenario a ∈ {1,2}
and each latency l ∈ {0, . . . ,800} seconds. Each experiment
produces a position sequence p̂a

k,l for k = 1, . . . ,Nd .
For each of the two scenarios, Fig. 2b illustrates the effect

of the DGNSS correction latency l on the GNSS position
accuracy as measured by ea

hk,l
defined in eqn. (39). For each
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TABLE I: Positioning Performance without communication latency (e.g., l = 0).

(a) Horizontal Error Statistics.

Scenario Mean Std. Dev Max Prob.

ea
hk,0

< 1m ea
hk,0

< 2m

1. PVA 0.46 0.34 1.7 90 100
2. CG-INS 0.40 0.18 1.1 98 100

(b) Vertical Error Statistics.

Scenario Mean Std. Dev Max Prob.

ea
vk,0

< 2 ea
vk,0

< 3

1. PVA 0.98 0.70 4.4 95 98.2
2. CG-INS 1.03 0.56 3.2 95 99.7

(a) Correction error defined in eqn. (40) versus latency for two satellites for
Nd = 1000 epochs.

(b) Horizontal position error vs latency for Nd = 500 epochs. GNSS aided
PVA model (Top). GNSS aided INS with consumer-grade IMU (Bottom).

Fig. 2: Error sensitivity to latency `

graph, the black curve shows the mean of ea
hk,l

averaged over
k, for a fixed value of a, versus `. Each point on the graph
is also marked with a one-standard-deviation error bar that
is indicated in blue. From Fig. 2b, the mean and standard-
deviation of the horizontal position error for the PVA approach
are larger than for the INS approach as a function of latency.
Both scenarios in Fig. 2b show that position estimation accu-
racy is insensitive to communication latency in the sense that
it is able to achieve one meter accuracy at the 1-σ level for
latencies exceeding `= 500 secs.

IX. EXPERIMENTAL RESULTS: POSITION ACCURACY IN
THE PRESENCE OF OUTLIERS

This section shows the effects of outliers on positioning
performance. The dataset is the same as described for Section
VI-A, only the duration has been decreased to Nd = 300 sec-
onds to reduce the required computational cost of the Monte
Carlo simulations.

A. Outlier Generation for GNSS Measurement

The environment where the car was driven for this exper-
iment was selected to have a clear sky – only a few large
trees and one or two storied buildings. Therefore the collected
data set should be essentially outlier-free. This was confirmed
by analyzing the KF residuals. The average number of GNSS
measurements per epoch over the entire trajectory was 8.

The fact that the data set is outlier-free allows the effect
of outliers to be analyzed in a sequence of Monte Carlo ex-
periments, by artificially inserting outlier measurements. To
maintain consistency in performance, the same outlier cor-
rupted data is used for all algorithms at each Monte Carlo
run.

For each epoch of each Monte Carlo experiment, computer-
generated outliers are added to two randomly chosen satellites.
The size of each outlier is drawn from a uniform distribution
parameterized by µ . For µ < 1.5, the distribution is U [0,µ +
1.5]. For µ >= 1.5, the distribution is U [µ−1.5,µ+1.5]. Each
Monte Carlo experiment has a fixed value of µ for NM trials.
Each trial lasts for Nd seconds. Each trial of each experiment
uses a different random seed.

For each trial, all three algorithms will all use the same data,
with the same outlier corruption, so that performance can be
compared.

The different Monte Carlo experiments each use a different
value of µ ∈ [0.2,20] to create the performance curves versus
α . Each point on each curve is produced as the average of
horizontal position error over the Nd seconds and NM trials.

B. Outlier Rejection Criteria

For each measurement, the (E)KF computes both the resid-
ual and its covariance: σ2

ii =
√

Rii +hiP−k h>i where hi is the ith

row of H. Per the NP outlier rejection test, a measurement is
only used if the absolute value of the residual is less than γσii;
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(a) Linear PVA Model (b) Nonlinear INS with Consumer-Grade IMU

Fig. 3: Mean horizontal position error and the percentage of selected measurements versus mean outlier magnitude µ ∈ [0,20]. The yellow, green, blue and
black curves show the results for the NP-(E)KF approach with γ =2, 3, 4, and 5, respectively.

otherwise it is ignored. Performance will be evaluated for the
different values: γ = 2, 3, 4, 5. A typical value in applications
is γ = 3.

C. Performance Analysis in the Presence of Outliers

Figs. 3a and 3b show the performance of the GNSS aided
PVA (left) and GNSS aided INS (right) approaches as a func-
tion of the outlier magnitude µ . Each color of curve corre-
sponds to a distinct value of γ for the NP-(E)KF residual
test as defined in the caption. The x-axis is the parameter
µ , which is the mean outlier magnitude for a Monte Carlo
experiment. The y-axis in each top sub-figure is the mean
horizontal position error. The y-axis in each bottom sub-figure
is the percentage of measurements used on average. At each
time instant, the measurement set (pseudorange and Doppler)
contains 9% generated outliers.

For both the PVA and INS approaches, the mean horizontal
position error initially rises as µ increases beyond about 1
m, because small outliers are difficult to discriminate from
measurement noise. As µ continues to increase, the mean
horizontal position error for each curve eventually decreases.
This is because large magnitude outliers are reliably rejected
by the NP test. The magnitude of µ at which this occurs is a
function of the test decision threshold γ . The trade-off is that
smaller values of γ due a better job of rejecting outliers, but
have a higher risk of rejecting valid measurements (i.e. false
alarms). Correct rejection of all outliers occurs for smaller
values of µ as the NP threshold γ decreases.

The INS has both more information (i.e., IMU data) and
a more accurate propagation (though nonlinear) model. The
result is that the GNSS-INS approach yields measurement
residuals and error covariance matrix P−k that are smaller than
the GNSS-PVA approach. Therefore, the NP-EKF tests are
able to detect and remove outliers at significantly smaller val-

ues (i.e., for γ = 5, µ equal to 5.4 for GNSS-INS versus 14.4
for GNSS-PVA).

X. CONCLUSION AND FUTURE WORK

Real-time absolute positioning (i.e., relative to an Earth
frame) is one of the primary requirements of navigation tech-
nology in important commercial applications, e.g. connected
and autonomous vehicles. Data communication latency, in-
terruption, and lost packets are the challenges that all real-
time systems encounter. Reliably achieving submeter position
accuracy in realistic environments on moving platforms is a
main focus of this research project.

The purpose of the studies presented herein was to evaluate
the ability to achieve SAE position accuracy specifications on
moving platforms in natural environments. Section IV dis-
cussed GNSS measurement error characteristics and meth-
ods to accommodate them. That section reviewed a DGNSS
correction algorithm designed to compensate latency, short-
term communication interruption, and lost packets [1], [2].
Section V presented the PVA and INS estimation algorithms
that were studied herein. The PVA and INS approaches both
augmented one multipath state per satellite and used Doppler
measurements along with pseudorange, to enhance the degree-
of-observability as well as positioning performance.

The results herein demonstrated that: (1) with suitable al-
gorithmic processing, positioning performance is insensitive
to correction latency up to 500 s; and (2) horizontal position
estimation accuracy is achievable at the submeter level for over
98% of samples using a consumer-grade IMU and for over
90% of samples using the PVA approach. All results herein
used data acquired in an environment with relatively clear sky
(no obstacles). Surfaces the block, obstruct, or corrupt the
GNSS signals will affect the results. The PVA performance
will be trajectory dependent, while the INS approach should
be relatively robust to the nature of the trajectory, assuming
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the measured signals are within the IMU bandwidth and range
specifications.

Topics of additional research interest include extending the
results herein to real-time implementations; and, inclusion of
carrier phase measurements [20], multiple frequencies (L2,
L5), and multiple constellations (e.g., Galileo, BeiDou, QZSS,
IRNSS) [46]–[49]. Also of interest is the use and study of
network differential GNSS.
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APPENDIX

A. Test Trajectory

This section provides graphs of various signals to allow the
reader to understand the nature of the test trajectory. The data
in this section is the ground truth data that is the output of the
post-processed trajectory smoother. See Section VI-B.

During data collection the sensor equipped car was driven
predominantly in the east-west direction. At each end of the
test area, the vehicle took a U-turn. This round trip traverse
was repeated four times. U-turns, traffic signals, and other
traffic necessitated angular rates and accelerations that are
measured by the IMU and incorporated in the INS approach,
but that may violate the assumptions inherent in the PVA
approach.

Fig. 4 shows the horizontal trajectory using a graph of the
east versus north position estimates. The black and red dots are
showing the start and end point. The same trajectory is overlaid
on a Google Earth map in Fig. 5. The red dots indicate the
car position.

Fig. 6 shows the body-frame X and Y axis (i.e. horizontal)
acceleration data. The figure shows that nearly 1-g acceleration
is experienced routinely.

Fig. 4: North east trajectory plot.

Fig. 5: Trajectory overlaid on a Google Earth map. The data is collected on
Columbia Ave. The cross street near the center is Iowa Ave.

Fig. 6: Horizontal body frame acceleration.

Fig. 7 shows the angular rate data. The times at which
the large magnitude yaw angular rate measurements occur
indicates the times at which the U-turns occurred.

Fig. 7: Angular rate plot.
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B. Consumer-Grade IMU Error Model

This section describes the state space model design to gen-
erate noise with characteristics for a consumer-grade IMU.
This model is used to create IMU measurement errors that are
added to the measurements of the navigation-grade IMU to
test the performance for a consumer-grade IMU.

For a consumer grade IMU, the primary noise sources are:
• Angle/velocity random walk, parameterized by the coef-

ficient N;
• Bias instability, parameterized by the coefficient B and

correlation time TB;
• Rate/acceleration random walk, parameterized by the co-

efficient K.
The parameters N, B, K, and TB are either provided by the data
sheet or read from the Allan Variance (AV) plot, depending
what is provided by the manufacturer.

1) Sensor Model: The continuous-time sensor measurement
model is

ũ(t) = (1+ s f )u(t)+ z(t) (41)

where u(t) is the true signal and ũ(t) is the measured signal,
s f is the scale factor error and z(t) represents stochastic errors.
In this study, deterministic errors such as s f are ignored. The
model for z(t) has three terms

z(t) = zN(t)+ zB(t)+ zK(t) (42)

where zN(t), zB(t) and zK(t) are the mutually independent
stochastic errors associated with coefficients N, B, and K,
respectively.

For the results herein, the experimental data was collected
with a navigation-grade sensor (i.e., NV IMU-1000 from Nav
Technology). Our goal was to test navigation results for a
consumer-grade IMU, but we did not have access to such
sensors. To produce data corresponding to a consumer-grade
IMU, the NV IMU-1000 experimental data will serve as u,
which will be corrupted by stochastic error z(t) produce in
simulation to produce ũ corresponding to the performance of
the ADIS16360 consumer-grade sensor, which has the follow-
ing stochastic error specifications N = 0.0037 m/s/

√
s, B =

0.00301 m/ s2, K = 0.00078 m/s/s3/2 and TB = 25s as read
from the Allan standard deviation plot on the data sheet.

2) State Space Model: Because the Power Spectral Densi-
ties (PSD) of z(t) is not an even function of frequency, there
is not a unique state-space model that will produce z(t). Any
state space model is an approximation.

The state-space model used herein is

ẋz(t) = Axz(t)+Bω(t), (43)
z(t) = C xz(t)+η(t). (44)

The state-space matrices are

A =

[
−µB 0

0 0

]
, B =

[
1 0
0 1

]
, C =

[
1 1

]
, (45)

where µB = 1
TB

. The state vector is xz(t) =
[
zB(t), zK(t)

]>
.

The driving noise input ω(t) =
[
ωB(t), ωK(t)

]> and mea-
surement noise η(t) are mutually independent Gaussian white
noise processes. The PSD of ω(t) is

Qz =

[
QB 0
0 QK

]
(46)

where QB = 2B2 ln(2)
π (0.4365)2 TB

and Qk = K2. The PSD of ν(t) is
Qη = N2, respectively.

The IMU measurements occur in discrete-time with a sam-
pling period of T = 0.005 seconds. For this sample period,
using the parameters for the ADIS16360 sensor and the nota-
tion z(k) = z(kT ), the discrete-time consumer grade IMU error
model is

xz(k) = Φxz(k)+ωz(k), (47)
z(k) = C xz(k)+η(k) (48)

where ωzk ∼ N(0,Qzd ) is a random two-dimensional Gaussian
vector and ηk ∼ N(0,Qηd ) is a random Gaussian scalar vari-
able.

The discrete-time state transition matrix Φ and matrix Qzd =
cov(ωz(k)) are computed from A and Qz using the method in
Chapter 4.7 in [20]. The relationship between continuous-time
PSD Qη and discrete-time covariance Qηd = cov(η(k)) is:

Qηd =
QN

T
. (49)

Factoring Qzd = Σω Σ>ω , then samples of the process noise
can be computed as ωz(k) = Σω v(k) where v(k)∼ N(0, I) is a
standard two-dimensional Gaussian random vector. Factoring
Qηd = σ2

ηd
, samples of the measurement noise can be com-

puted as ωz(k) = σηd w(k) where w(k)∼ N(0,1) is a standard
Gaussian random variable. The variables v(k) and w(k) are
easily computed in simulation.

This discrete-time measurement error z(k) is computed us-
ing eqns. (47-48). The consumer-grade IMU measurements are
computed using eqn. (41).
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