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S U M M A R Y
Seismic anisotropy is a powerful tool to constrain mantle deformation, but its existence
in the deep upper mantle and topmost lower mantle is still uncertain. Recent results from
higher mode Rayleigh waves have, however, revealed the presence of 1 per cent azimuthal
anisotropy between 300 and 800 km depth, and changes in azimuthal anisotropy across the
mantle transition zone boundaries. This has important consequences for our understanding
of mantle convection patterns and deformation of deep mantle material. Here, we propose a
Bayesian method to model depth variations in azimuthal anisotropy and to obtain quantitative
uncertainties on the fast seismic direction and anisotropy amplitude from phase velocity
dispersion maps. We applied this new method to existing global fundamental and higher mode
Rayleigh wave phase velocity maps to assess the likelihood of azimuthal anisotropy in the
deep upper mantle and to determine whether previously detected changes in anisotropy at the
transition zone boundaries are robustly constrained by those data. Our results confirm that
deep upper-mantle azimuthal anisotropy is favoured and well constrained by the higher mode
data employed. The fast seismic directions are in agreement with our previously published
model. The data favour a model characterized, on average, by changes in azimuthal anisotropy
at the top and bottom of the transition zone. However, this change in fast axes is not a global
feature as there are regions of the model where the azimuthal anisotropy direction is unlikely
to change across depths in the deep upper mantle. We were, however, unable to detect any clear
pattern or connection with surface tectonics. Future studies will be needed to further improve
the lateral resolution of this type of model at transition zone depths.

Key words: Inverse theory; Probability distributions; Seismic anisotropy; Seismic tomogra-
phy; Statistical seismology; Surface waves and free oscillations.

1 I N T RO D U C T I O N

The directional and polarization dependence of seismic wave veloc-
ity, or seismic anisotropy, is a powerful tool to investigate mantle de-
formation and geodynamics (Montagner 1994; Karato 1998; Becker
et al. 2003; Long 2013). The lattice-preferred orientation (LPO) of
the crystallographic axes of elastically anisotropic material is gen-
erally assumed to be the cause of the seismic anisotropy detected in
Earth’s mantle, though it could alternatively be caused by the shape-
preferred orientation (SPO) of isotropic structures with contrasting
elastic properties such as cracks, layered structures, melt tubules,
or lenses (Kendall & Silver 1996; Montagner 1994). In the man-
tle lithosphere, “frozen-in” seismic anisotropy is often attributed
to olivine LPO related to past tectonic processes (Karato 1989;
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Nicolas & Christensen 1987; Silver 1996). In the asthenosphere,
olivine LPO associated with present-day mantle deformation is of-
ten invoked to explain observations of seismic anisotropy because
the fast seismic direction generally aligns with the absolute plate
motion (Nishimura & Forsyth 1988; Smith et al. 2004; Debayle et al.
2005; Marone & Romanowicz 2007; Beghein et al. 2014), and the
preferred alignment of olivine can be used to determine the direction
of mantle flow (Becker et al. 2003). In the lowermost mantle, both
SPO through horizontal layering or aligned inclusions (Kendall &
Silver 1996) and LPO of the post-perovskite phase (Oganov 2005)
have been proposed to explain observations of anisotropy.

Most tomographic models of seismic anisotropy are obtained
by regularized inversion of seismic data such as surface waves,
free oscillations, and/or long-period body waves, and they all pro-
vide ample evidence for the presence of seismic anisotropy in the
uppermost 250 km of the mantle. Radial anisotropy, which quan-
tifies differences in seismic wave velocity between the vertical
and horizontal directions, is required in the uppermost mantle to

C© The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society. 603
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simultaneously explain Love and Rayleigh wave dispersion data.
It is included in the top 220 km of the 1-D Preliminary Reference
Earth Model (PREM) of Dziewonski & Anderson (1981), and in
several 3-D radially anisotropic global models of the uppermost
mantle models (see Chang et al. 2014,for a recent review). Az-
imuthal anisotropy, that is, the dependence of seismic wave veloc-
ities with the azimuth of propagation, is also present in the up-
permost mantle at the global scale (Montagner & Tanimoto 1991;
Trampert & Woodhouse 2003; Debayle et al. 2005; Ekström 2011;
Debayle & Ricard 2013; Yuan & Beghein 2013; Becker et al. 2014;
Yuan & Beghein 2014; Schaeffer et al. 2016). Most global models
of azimuthal anisotropy display common features at these depths,
such as the alignment of the fast axes with the plate motion di-
rection at asthenospheric depths beneath ocean basins and with the
palaeospreading directions in the oceanic lithosphere. The 1-D mod-
els of radial anisotropy generally agree with one another, but there
are discrepancies in models of lateral variations in radial anisotropy
even at shallow depths (Chang et al. 2014).

The D′′ layer is also known to be radially anisotropic: at the re-
gional scale, radial anisotropy has been observed with shear wave
splitting measurements (Kendall & Silver 1996), and azimuthal
anisotropy has been detected with S and Sdiff waveform model-
ing (Maupin et al. 2005). A few global tomographic models sug-
gest D′′ radial anisotropy is present at the global scale as well,
though the effect of the crustal correction (Panning et al. 2010), of
prior scaling relationships between elastic parameters (Beghein &
Trampert 2004a,b; Beghein et al. 2006; Beghein 2010), and trade-
offs between isotropic and anisotropic structures (Kustowski et al.
2008; Chang et al. 2014) cast doubt on the global nature of radial
anisotropy at these depths. To date, there is no global azimuthal
anisotropy model of the lowermost mantle.

For years, the lack of evidence for seismic anisotropy below
∼250 km depth was interpreted as the result of deformation by
diffusion creep (Karato et al. 1995). Evidence for radial anisotropy
in the deep upper mantle and uppermost lower mantle has, however,
been accumulating over the past two decades. The first global model
displaying radial anisotropy in the deep upper mantle was the 1-D
model of Montagner & Kennett (1996), which was followed by
multiple 1-D and 3-D global radial anisotropy models (Beghein
& Trampert 2004b; Panning & Romanowicz 2004; Beghein et al.
2006; Panning & Romanowicz 2006; Kustowski et al. 2008; Visser
et al. 2008a; Panning et al. 2010; Romanowicz & Lekić 2011;
Auer et al. 2014; Chang et al. 2014; French & Romanowicz 2014;
Moulik & Ekström 2014). Shear wave splitting studies have also
suggested the presence of radial anisotropy near subduction zone in
the mantle transition zone (MTZ) and top of the lower mantle (Fouch
& Fischer 1996; Wookey & Barruol 2002; Chen & Brudzinski
2003; Foley & Long 2011; Lynner 2015; Nowacki et al. 2015).
Azimuthal anisotropy may additionally be present at these depths.
It has been shown to be compatible with higher mode Love waves
(Trampert & van Heijst 2002) and coupled free oscillation data
(Beghein et al. 2008; Hu et al. 2012). A study combining data from
surface waves and shear wave splitting beneath North America also
suggested that azimuthal anisotropy is needed at greater depths than
commonly assumed (Marone & Romanowicz 2007), and similar
conclusions were drawn by Kosarian et al. (2011) for California. At
the global scale, while early 3-D models did not show any significant
azimuthal anisotropy below 250 km depth (Montagner & Tanimoto
1991; Debayle et al. 2005), more recent studies present about 1
per cent anisotropy in the deep upper mantle at least down to 400 km
(Debayle & Ricard 2013; Yuan & Beghein 2013, 2014; Schaeffer
et al. 2016), and possibly even deeper down to the bottom of the

MTZ and top of the lower mantle (Yuan & Beghein 2013, 2014).
There are still large discrepancies among models, but the increasing
evidence for seismic anisotropy in the deep upper mantle challenges
our understanding of mantle deformation (Fig. 1).

Our previously published global azimuthal anisotropy model
(Yuan & Beghein 2013), hereafter referred to as YB13SVani, not
only displayed a non-negligible amount of azimuthal anisotropy (1–
3 per cent) below 250 km depth, but it also revealed changes in the
seismic fast direction at the MTZ boundaries. The interpretation
of these results is non-unique due to the paucity of mineral physics
data on MTZ material anisotropy. Nevertheless, they have important
consequences for our understanding of mantle convection and the
anisotropy of deep upper-mantle material as it could imply changes
in mantle flow direction at the MTZ, changes in volatile content, in
slip system in MTZ material, etc. It is thus essential to determine
which model features are robust.

In this paper, we present a Bayesian forward modeling method to
quantify uncertainties and trade-offs of azimuthal anisotropy model
parameters. Like most tomographic models, YB13SVani was ob-
tained by regularized inversion of seismic data. In this particular
case, the model was derived from fundamental and higher mode
surface wave phase velocity maps. Estimating reliable model un-
certainties from linear inversions is, however, not straightforward
since most inversions yield a posterior model covariance smaller
or equal to the prior covariance by construction (Tarantola 1987).
If there is a large model null space, the posterior covariance can
be strongly underestimated (Trampert 1998), making both the in-
terpretation and the uncertainty assessment of tomographic models
difficult (Beghein & Trampert 2003; Beghein 2010). Model space
search approaches are generally better suited to determine posterior
model uncertainties as they can explore a larger part of the model
space, including the null space, and map the range of models that can
fit the data reasonably well. In some cases, this type of method can
even find solutions to the problem that could not be found with tra-
ditional inverse methods (Beghein & Trampert 2003). In this paper,
we modeled azimuthal anisotropy in the upper mantle and topmost
lower mantle and quantified parameter uncertainties and trade-offs
using the Neighbourhood Algorithm (Sambridge 1999a,b), here-
after referred to as the NA. Among many other applications, this
direct search technique has been used successfully to model inner
core anisotropy (Beghein & Trampert 2003), regional and global
mantle seismic velocities (Beghein et al. 2002; Snoke & Sambridge
2002) and radial anisotropy (Beghein & Trampert 2004a,b; Beghein
et al. 2006; Visser et al. 2008a; Yao et al. 2008; Beghein 2010).
Yao (2015) recently proposed a two-step method using the NA to
model azimuthal anisotropy from fundamental-mode surface waves.
However, as explained in Section 3, the author did not display or
discuss the posterior uncertainties on the fast seismic direction and
the anisotropy amplitude. The method we present here solves the
linear problem that relates azimuthal anisotropy elastic parame-
ters to phase velocities using laterally varying sensitivity kernels
to account for variations in crustal structure, and quantifies model
uncertainties for the azimuthal anisotropy amplitude and the fast
axes directions.

2 P H A S E V E L O C I T Y DATA

2.1 Phase velocity anisotropy

In this study, we employed the same data set as we did to construct
YB13SVani (Yuan & Beghein 2013). It consists in the fundamental
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and first six higher mode anisotropic Rayleigh wave phase velocity
maps determined by Visser et al. (2008b). There were 16 funda-
mental modes between 35 and 175 s, 16 first overtones between
35 and 172 s, 15 second overtones between 35 and 150 s, 11 third
overtones between 35 and 88 s, 8 fourth overtones between 35 and
62 s, 7 fifth overtones between 35 and 56 s, and 6 sixth overtones
between 35 and 51 s. This type of seismic data are ideal to pro-
vide depth constraints on Earth’s internal structure because of their
dispersive properties (Fig. 2). In addition, combining fundamental
and higher mode surface wave data significantly increases the depth
resolution of tomographic models. Contrary to fundamental-mode
surface waves, which can only resolve the top ∼200–300 km of the
mantle, the set of higher modes employed here have sensitivity to
azimuthal anisotropy well into the deep upper mantle and topmost
lower mantle (Fig. 5).

At any given point at Earth’s surface, perturbations dc in surface
wave phase velocity with respect to predictions from a reference
Earth model can be expressed as a function of the azimuth of prop-
agation � as follows (Montagner & Nataf 1986):

dc(T, �) = dc0(T ) + dc1(T )cos(2�) + dc2(T )sin(2�)

+dc3(T )cos(4�) + dc4(T )sin(4�) (1)

where T is the period of the wave. dc0 represents the phase velocity
anomaly averaged over all azimuths and the dci (i = 1, ..., 4) terms
represent the azimuthal dependence of the phase velocity. The 2�

terms can help constrain depth variations in elastic parameters that
relate to the azimuthal anisotropy of vertically polarized shear (SV)
wave, as explained below with eqs (2) and (3), and the 4� terms
can help determine the depth dependence of horizontally polarized
shear (SH) wave azimuthal anisotropy [see Yuan and Beghein (Yuan
& Beghein 2014) for details]. Eq. (1) is valid for fundamental and
higher mode surface waves.

The relation between 2� phase velocity anisotropy and azimuthal
anisotropy at depth is given by the following set of equations
(Montagner & Nataf 1986):

dc1(T ) =
∫

[Gc(r )KG(T, r )+Bc(r )K B(T, r )+Hc(r )K H (T, r )]dr

(2)

dc2(T ) =
∫

[Gs(r )KG(T, r )+Bs(r )K B(T, r )+Hs(r )K H (T, r )]dr

(3)

where elastic parameters Gc(r) and Gs(r) relate to VSV az-
imuthal anisotropy, and Bc(r) and Bs(r) relate to P-wave azimuthal
anisotropy. Hs(r) and Hc(r) do not control body wave azimuthal
anisotropy and only appear in surface waves (Montagner & Nataf
1986) and in normal modes (Beghein et al. 2008). KG(r, T), KB(r, T),
and KH(r, T) are the local partial derivatives, or sensitivity kernels,
for Rayleigh wave at period T and radius r, which can be calculated
for a reference model using normal-mode theory (Takeuchi 1972).
The fast azimuth of propagation � and the anisotropy amplitude G
of vertically polarized shear waves are given by:

� = 1

2
arctan(Gs/Gc) (4)

and

G =
√

G2
s + G2

c (5)

Similar relations exist for Bc, s and Hc, s. Examples of kernels cal-
culated using model PREM (Dziewonski & Anderson 1981) are

shown in Figs 2 and 5, and demonstrate that including higher modes
in the data set significantly increases and extends the sensitivity to
anisotropy into the deep upper mantle.

Fundamental-mode Rayleigh waves typically are not expected to
have a strong 4� dependence in comparison to the 2� terms, as
demonstrated by Montagner & Tanimoto (1991) for realistic petro-
logical models. The same may not, however, be true for higher
modes since they are sensitive to deeper structure (Fig. 5), and
indeed Visser et al. (2008b) determined that a 4� dependence sig-
nificantly improved the fit of their Rayleigh wave fundamental and
higher mode phase velocity path-averaged measurements (Visser
et al. 2008b). Nevertheless, because the sensitivity of fundamental
and higher mode Rayleigh waves to SH anisotropy is very small,
here we only used the 2� terms of eq. (1) to build a 3-D model of
SV azimuthal anisotropy in the top 1000 km of the mantle.

2.2 Phase velocity resolution

As explained by Visser et al. (2008b), the lateral resolution of their
phase velocity models generally decreases with increasing over-
tone number because the quality of the path azimuthal coverage
(and thus the number of modes measured reliably) decreases with
the overtone number. Ray coverage was very good everywhere for
the fundamental modes, and in most continental regions and the
northwestern Pacific for the higher modes, but it was poorer for
the third through sixth higher modes in the southeastern Pacific,
southern Indian Ocean and southern Atlantic. Another factor that
affected the lateral resolution of the phase velocity maps was the
choice of the damping made by the authors who opted for main-
taining a constant relative model uncertainty for all modes. This
too resulted in phase velocity maps of decreasing resolution with
increasing overtone number. Visser et al. (2008b) estimated that
the fundamental-mode 2� terms are resolved up to spherical har-
monic degrees 8 and 5 for the higher modes, which corresponds to
a resolving power of about 4500 km near the surface, decreasing to
6500 km near the MTZ. Because the inferences made in this paper
focus on large-scale anisotropy, using data of varying resolution
should not strongly affect our results. Trade-offs between the differ-
ent terms of eq. (1) constitute another source of uncertainty when
constructing anisotropic phase velocity maps from path-averaged
measurements. One cannot completely separate the different terms
because data coverage is imperfect owing to the uneven distribution
of earthquakes and seismic stations over the globe. The resolu-
tion matrices calculated by Visser et al. (2008b) showed that these
trade-offs were minimal and that there was therefore little mapping
of lateral heterogeneities or topography at discontinuities into the
anisotropic terms, though one should of course always keep in mind
that trade-offs are not completely inexistent.

3 M E T H O D

3.1 Parametrization

We divided Earth’s surface into 10◦ × 10◦ cells and the data were
inverted by applying the NA to eqs (2) and (3) at each grid cell.
The reader should note, however, that 10◦ does not correspond to
the lateral resolution of our models since it is directly controlled
by the resolution of the phase velocity maps and is limited to larger
wavelengths in the deep upper mantle than in the shallow mantle, as
discussed in Section 2. It is also important to note that the quantita-
tive uncertainty analysis performed in this study does not account
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Figure 3. Splines functions employed to parametrize Gc(r) and Gs(r).

for uncertainties stemming from the non-uniform ray path coverage,
but is solely focused on the model parameter resolution for a given
set of dispersion curves and estimated data uncertainties. While it
would be interesting to investigate the effect of the non-uniform
coverage, in particular the variations from one mode to another and
one frequency to another, it is beyond the scope of this paper.

At every grid cell we parameterized Gc(r) and Gs(r) vertically
using 12 cubic spline functions Si(r) (i = 1,...,12) of varying depth
spacing (Fig. 3):

Gc(r ) =
12∑

i=1

Gi
c Si (r ) (6)

Gs(r ) =
12∑

i=1

Gi
s Si (r ) (7)

Parameters Bc(r), Bs(r), Hc(r), and Hs(r) are poorly resolved due
to the similarity of their partial derivatives (Fig. 2), and we there-
fore opted to neglect them and invert for Gc, s only. Most previ-
ous authors have either neglected these parameters in surface wave
inversions (Marone & Romanowicz 2007) or assumed to be pro-
portional to Gc, s (Yao 2015). Such assumptions also enable us to
run the NA more efficiently because increasing the number of un-
knowns quickly raises the computation cost of a model space search.
Fig. S1 in the Supporting Information shows that neglecting the P-
wave related parameters does not strongly affect the results for Gc(r)
or Gs(r). Under this assumption, eqs (2) and (3) become:

dc1(T ) =
12∑

i=1

Gi
c Ii (T ) (8)

dc2(T ) =
12∑

i=1

Gi
s Ii (T ) (9)

where

Ii (T ) =
∫

Si (r )KG(T, r ) dr (10)

In this work, we used a parametrization in terms of relative per-
turbations dlnGc, s = Gc, s/L, where L is one of the so-called Love
elastic parameter (Love 1927), which determines the wave speed
of vertically polarized shear waves (VSV = √

L/ρ). Perturbations
are expressed with respect to a local reference model composed of
CRUST2.0 (Bassin et al. 2000) and PREM (Dziewonski & Ander-
son 1981) at each grid cell, as explained in Section 3.2.

It should be noted that the spline functions used in this study differ
slightly from the ones employed to obtain model YB13SVani (Yuan
& Beghein 2013). We therefore cannot fairly compare YB13SVani
with our new model resulting from the NA. Thus, in this paper, in
addition to presenting the results of a model space search approach
(see Section 3.3), we display an updated 3-D model obtained using
the new splines described above together with the same data set and
singular value decomposition (SVD) method as in Yuan & Beghein
(2013). This new model, hereafter referred to as YB17SVaniSVD, is
almost identical and displays the same features as YB13SVani. Fig. 4
shows that the two models are well correlated with one another and
they present similar anisotropy amplitudes. Both models display
peaks and minima in the root mean square (rms) amplitude and
peaks in the gradient of the fast axes at the same depths.

3.2 Effect of the crust

An important aspect of modeling lateral heterogeneities or
anisotropy in the mantle relates to crustal structure. Many first
generation 3-D velocity and anisotropy models were obtained using
sensitivity kernels calculated based on the 1-D reference mantle
model PREM (Dziewonski & Anderson 1981). However, crustal
thickness, velocities and density vary laterally, and neglecting these
variations can bias the model due to the mapping of crustal structure
into the mantle (Boschi & Ekström 2002; Marone & Romanowicz
2007; Kustowski et al. 2007; Bozdaǧ & Trampert 2010).

When inverting surface wave data for mantle velocities or
anisotropy, it is essential to account for the effect of lateral crustal
variations on the sensitivity kernels (Boschi & Ekström 2002;
Marone & Romanowicz 2007) and to either correct the data with an
a priori crustal model (Boschi & Ekström 2002) or invert the data
simultaneously for the Moho depth, crustal structure and mantle
structure (Meier et al. 2007; Visser et al. 2008a; Chang et al. 2014).
It should, however, be noted that in this last case data uncertainties
need to be small to resolve the Moho depth due to trade-offs with
velocities (Lebedev et al. 2013). Similarly, when inverting the az-
imuthally anisotropic part of phase velocity data, one would ideally
be able to correct the data for azimuthal anisotropy in the crust
or invert the data simultaneously for crust and mantle azimuthal
anisotropy. However, to this day there exists no global azimuthal
anisotropy model of the crust that we can use to correct the data
a priori, and because the data used here have little sensitivity to
crustal depths, they are likely not sufficient to resolve azimuthal
anisotropy in the crust (Fig. 5).

We thus used a depth parametrization that averages azimuthal
anisotropy in the crust and uppermost part of the mantle (Fig. 3),
and we accounted for the effect of crustal structure and variations
in Moho depth on the dlnGc, s partial derivatives following Yuan
& Beghein (2013). More specifically, we generated a local 1-D
reference model composed of the PREM mantle to which we super-
imposed crustal model CRUST2.0 (Bassin et al. 2000) at each grid
cell, and calculated the corresponding partial derivatives (Takeuchi
1972). We refer to Yuan & Beghein (2013) for examples of later-
ally varying sensitivity kernels. The approach taken here is slightly
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Figure 4. (a) Correlation coefficient between new model YB17SVaniSVD and model YB13SVani (Yuan & Beghein 2013); (b) root mean square amplitude
and (c) gradient of the fast axes direction of models YB17SVaniSVD and YB13SVani.
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Figure 5. Phase velocity partial derivatives for relative perturbations in ver-
tically polarized shear wave azimuthal anisotropy. These sensitivity kernels
were calculated using model PREM for the fundamental modes and first six
higher modes employed in this study.

different from that of Yao (2015) who used the isotropic part of
the phase velocity maps together with the NA to generate a new
local 1-D mantle model. However, we do not expect this to strongly
influence our results since it was demonstrated that accounting for
lateral variations in mantle structure to calculate the sensitivity ker-
nels does not yield any significant difference in the 3-D azimuthal
anisotropy model (Yuan & Beghein 2013).

3.3 The Neighbourhood Algorithm

Model space search techniques are most often applied to non-
linear problems, which can be highly non-unique and can have
a non-Gaussian cost function with multiple minima. In that case,
the solution obtained by traditional inverse techniques is strongly
dependent on prior assumptions and regularization. Forward mod-
eling methods offer a more robust way to solve non-linear prob-
lems. They are also useful to solve linear problems, since these
do not necessarily have Gaussian model parameter distributions
(Beghein 2010).

The NA (Sambridge 1999a,b) is a guided Monte Carlo search
technique that identifies regions of relatively low and relatively
high misfit, associated with high and low likelihoods, respectively.
For a given parametrization and cost function, if the boundaries
of the model space are wide enough, it allows us to map a larger
part of the model space (within these selected boundaries) than
a damped inversion. In inverse theory, one usually assumes that
the prior information on both model and data covariances follow
a Gaussian, which implies a Gaussian distribution of the posterior
model covariance (Tarantola 1987). Model space searches, how-
ever, enable the user to map the model null space and to obtain
information on the model space approximate topology without hav-
ing to introduce explicit regularization on the model parameters
(e.g. assuming Gaussian prior model distributions) other than the
imposed parametrization and the chosen boundaries of the model
space being explored. One should also keep in mind that because
the imposed range within which we search the parameters is a form
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of prior information, if this range is very small, it is equivalent to
imposing a strong damping. This type of method requires there-
fore a compromise between efficiency of the model space search
and thoroughness of the model space search. In cases like this
one, where linearized perturbation theory lies behind the equation
employed, one also has to be careful to not sample too wide of a
model space which could break the conditions of application of the
theory.

The NA is composed of two stages. During the first stage, the
model space is sampled randomly, and a cost function is calculated
to determine how well each model explains the data. At each iter-
ation, the number of models generated increases in the vicinity of
the best-fitting regions of the model space. The first stage of the NA
differs from many other Monte Carlo techniques in that its objective
is not to locate a single optimal model, but to obtain an overview of
the model space. It therefore keeps track of all the models generated
instead of discarding the worse data-fitting models at each iteration.

The cost function φ(m) employed in this study to drive the sam-
pling is defined as:

φ(m) = 1

N

N∑
i=1

(
di − (Am)i

σi

)2

(11)

where N is the total number of data, mi is the ith component of the
model vector m generated by the NA, di is the ith component of
the data vector d and (Am)i is the ith component of the vector Am
containing the data predictions calculated using eqs (2) or (3) and
the sensitivity kernels projected onto the spline functions. σ i is the
error in the phase velocity maps estimated by Visser et al. (2008b).
Note that eq. (11) assumes that data uncertainties follow Gaussian
distributions. In addition, it is good to remind the reader that these
standard deviations result from global inversions of path-averaged
phase velocity measurements and are therefore, in fact, posterior
errors on the phase velocity dispersion curves that we use here to
build a prior data covariance matrix.

In this work, we solved the problem for dc1 and dc2 separately
at each grid cell, that is, we ran the NA 36 × 18 = 648 times for
dc1 and 648 times for dc2, searching the model space for 12 spline
parameters each time. Each model parameter (dlnGi

c,s for i = 1,
. . . , 12) was allowed to vary uniformly between −0.03 and +0.03
around model YB17SVaniSVD, which resulted from a regularized
inversion as explained in Section 3.1. This range was selected to
allow most parameters to change sign if required by the data. We
tested that running the NA around PREM (for which all dlnGi

c,s are
zero) does not affect the outcome of the model space search provided
convergence is achieved and a broad enough model space search
is performed (Figs S2 and S3, Supporting Information). Running
the model exploration around YB17SVaniSVD was, however, more
computationally efficient because the sampling started from a rea-
sonably good data-fitting model, enabling faster convergence in
cases where the model space topography was approximately Gaus-
sian. Nevertheless, doing so did not prevent the NA to find other
solutions, away from the starting model, because we insured the
model space search was broad and thorough using multiple tests
and settings in the NA algorithm.

In a second stage, a Bayesian appraisal of all the models is per-
formed. Unlike other statistical techniques, such as importance sam-
pling, that draw inferences on the models using only a subset of the
ensemble of models generated, the NA makes use of all the models,
good and bad, generated during the first stage. As pointed out by
Sambridge (1999b), in some cases one can learn from the mod-
els that fit the data poorly as much as from those that fit the data

well. The entire family of models obtained in the first stage is thus
converted into posterior probability density functions (PPDFs) by
associating the relatively low- and high-misfit values to high and
low likelihoods, respectively. These PPDFs can be used to assess
the robustness of the model parameters.

For a PPDF denoted by P(m), where m is a point in the model
space, the posterior mean model for the ith parameter is given by
the following integral performed over the model space (Sambridge
1999b):

< mi > =
∫

mi P(m) dm (12)

The posterior variances of the model parameters can be obtained
from the diagonals of the posterior model covariance matrix given
by:

Ci, j =
∫

mi m j P(m) d(m)− < mi >< m j > (13)

Because the model space, including the null space, was sampled,
the model uncertainties inferred are more accurate than those re-
sulting from regularized inversions. Those result from the local
curvature of the cost function around a model chosen with an ex-
plicit regularization and assuming Gaussian statistics. However, if
the underlying statistics are not Gaussian or if the cost function has
a wide valley (e.g. if the null space is large), error estimates from
regularized inversions underestimate the posterior model variance
(Trampert 1998; Beghein & Trampert 2003; Beghein 2010). An
example of model uncertainties estimated with the NA compared to
those resulting from an inversion by SVD (Menke 2012) is shown in
Fig. S4 in the Supporting Information.

The 1-D marginal distribution of a given model parameter mi

can be obtained by integrating P(m) numerically over all other
parameters (Sambridge 1999b):

M(mi ) =
∫

...

∫
P(m)

d∏
k=1,k �=i

dmk (14)

where d is the total number of model parameters. The shape and
width of these 1-D marginals provide useful information on how
well constrained a given parameter is and whether the model distri-
bution is Gaussian, in which case the mean <mi> coincides with the
peak of the distribution, that is, the most likely value. Information
about parameter trade-offs can be obtained from the diagonal terms
of the posterior covariance matrix, and from the 2-D marginal dis-
tributions, which are calculated by integrating P(m) over all but two
parameters. The 2-D marginal PPDF for the ith and jth parameters
is given by:

M(mi , m j ) =
∫

...

∫
P(m)

d∏
k=1,k �=i,k �= j

dmk (15)

Fig. 6 displays a representative example of 1-D and 2-D marginals.
No trade-off is visible between the spline parameters displayed,
and we checked that this was the case for other pairs of Gc and Gs

parameters at several grid cells. We note that the posterior model pa-
rameter distributions are not necessarily Gaussian. Posterior model
distributions result from the product of the a priori probability den-
sity in the model space and the probability density describing the
result of the measurements (Tarantola 1987):

σM (m) = kρM (m)L(m) (16)

where k is a normalization constant, σM (m) is the PPDF for model
m from which one may calculate the probability for a model to sat-
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Figure 6. Examples of 1-D and 2-D marginal distributions at the grid cell located at −55◦ longitude and −60◦ latitude. The 1-D marginals are represented by
the thick grey curves. The black cross indicates the location of the regularized inversion result around which the model space search was performed. The white
circle is for the peak of the 2-D PPDF.

isfy some characteristic and ρM (m) is the prior model distribution.
L(m) = ρD(g(m)) is the likelihood function that measures how well
a model m explains the data, with ρD representing the (prior) infor-
mation on the data and g(m) is the forward operator that represents

the mathematical model of the physical system under study. When
g(m) is linear (g(m) = Gm) and both the prior on the model pa-
rameters and the measurements are normal distributed, the posterior
model distribution follows a Gaussian as well. However, in the case
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Figure 7. Example of normalized PPDFs for (a) Gc/L, and (b) Gs/L at
−55◦ longitude and −60◦ latitude. L is the Love (1927) elastic coefficient
that controls the speed of vertically polarized shear waves. The solid black
lines represent the mean values of the distributions, the dashed black lines
represent one standard deviation and the solid white line is from model
YB17SVaniSVD at the same location.

presented in this paper, while g(m) is linear and the data are assumed
to be Gaussian-distributed, the prior model parameter density func-
tion is uniform across the model space search range. The posterior
model PPDFs obtained are not necessarily Gaussian and reflect the
state of information we possess on the model parameters.

From the PPDFs of these Gi
c,s spline parameters, we can recon-

struct probability distributions for Gc and Gs as a function of depth
by:

(i) Drawing 10 000 random values for each of the Gi
c,s (i = 1, . . . ,

12) coefficients from their posterior 1-D marginal distributions;
(ii) For each set of Gi

c,s values, calculate the Gc, s(r) profile [eqs 6
for Gc(r) and 7 for Gs(r)], which results in 10 000 Gc, s(r) models.

This yields distributions of dlnGc(r) and dlnGs(r) models drawn
directly from the Gi

c and Gi
s PPDFs at each grid cell. An example

is shown in Fig. 7. We note that the mean models as identified by
the NA do not necessarily coincide with the inversion results, and
that the data generally favour larger amplitudes than obtained from
a regularized inversion. It should also be pointed out that the mean
model does not necessarily correspond to the best-fitting model
since not all PPDFs are Gaussian. This is why it is important to not
discuss the mean model alone, but to account for its uncertainties.
Finally, the reader should note that the existence of discontinuities
in seismic velocities in the local reference models was shown to not
be responsible for changes in Gc and Gs by Yuan & Beghein (2013).

3.4 Error propagation

To evaluate the robustness of the features observed in a tomo-
graphic model such as YB13SVani (Yuan & Beghein 2013) or
YB17SVaniSVD, we ideally need to determine the mean ampli-
tude dlnG and mean fast axis direction � at each depth and grid
cell together with their respective uncertainties. However, the for-

mulation of the linearized forward problem described in Section 2
does not allow us to model dlnG and � directly. Previous attempts
at estimating model uncertainties on azimuthal anisotropy with the
NA (Yao 2015) have focused on the Gc and Gs uncertainties, and
only discussed the azimuthal anisotropy (dlnG and �) model re-
sulting from the most likely or mean Gc and Gs only. Because we
adopted a Bayesian approach in this study, posterior uncertainties
on dlnG and � can, however, be transmitted from the dlnGc and
dlnGs model distributions, as explained below.

One approach consists in calculating dlnG and � distributions by
(1) drawing models from the PPDFs of the individual dlnGc(r) and
dlnGs(r) profiles (Fig. 7), and (2) calculating dlnG(r) and �(r) for
each pair of dlnGc(r) and dlnGs(r) models drawn. This would yield
distributions of dlnG(r) and �(r) models drawn directly from the
dlnGc and dlnGs PPDFs. A similar method was taken by Beghein
& Trampert (2004a) and Visser et al. (2008a) for radial anisotropy.
One can then derive a mean and standard deviation from the re-
constructed PPDFs, though we point out that they might not be
Gaussian. In our case, however, this technique yields a mean model
that has little to do with the model that results from the best-fitting
dlnGc and dlnGs because of the highly non-Gaussian nature of the
resulting dlnG and � PPDFs. The interpretation of the model and
its error bars is thus extremely challenging as demonstrated in Figs
S5–S7 in the Supporting Information.

We opted for another approach instead, involving the propagation
of the errors obtained from the individual dlnGc(r) and dlnGs(r)
PPDFs. This approach assumes the PPDFs are normally distributed,
which is clearly an approximation for some parameters (Figs 6
and 7), but it enables us to avoid possible artefacts such as those
seen in the synthetic examples. Let us take a function f that depends
on parameters x and y that are assumed to be Gaussian with standard
deviations σ x and σ y, respectively. If we further assume that the x
and y variables have no covariance, the variance σ 2

f of function f
depends on the variances σ 2

x and σ 2
y of x and y as follows (Clifford

1973):

σ 2
f =

(
∂ f

∂x

)2

σ 2
x +

(
∂ f

∂y

)2

σ 2
y (17)

Therefore, for f = G = √
G2

s + G2
c , we can determine that :

σ 2
G = G2

s σ
2
Gs

+ G2
cσ

2
Gc

G2
s + G2

c

(18)

And for f = � = 1
2 arctan(Gs/Gc):

σ 2
� = 1

4

G2
cσ

2
Gs

+ G2
s σ

2
Gc

(G2
s + G2

c)2
(19)

Here, we used Gc = Gc, mean and Gs = Gs, mean as determined from
eq. (12) and the variances σ 2

Gc
and σ 2

Gs
result from the off-diagonals

of the posterior covariance matrix (eq. 13). The uncertainty maps
displayed in Section 4 were determined from these error propagation
calculations. We assumed no covariance between Gs and Gc, which
is a reasonable approximation since Visser et al. (2008b) showed
there was little covariance between the dc1 and dc2 terms of eq. (1).

4 R E S U LT S A N D D I S C U S S I O N

4.1 Goodness of fit

Fig. 8 compares some of the azimuthally anisotropic phase velocity
maps measured by Visser et al. (2008b) with predictions from the
model resulting from our regularized inversion (YB17SVaniSVD)
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Table 1. Average χ2 misfit for the model obtained by regularized inversion and for the mean NA model.

Model n = 0–6 n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

YB17SVaniSVD 0.04 0.02 0.023 0.04 0.07 0.04 0.07 0.07
Mean NA model 0.17 0.56 0.18 0.20 0.19 0.14 0.24 0.33

Table 2. Average variance reduction for the model obtained by regularized inversion and for the mean NA model.

Model n = 0–6 n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

YB17SVaniSVD 0.94 0.95 0.93 0.89 0.80 0.77 0.66 0.45
Mean NA model 0.79 0.88 0.68 0.71 0.67 0.50 0.40 0.20

and from the mean NA model, that is, the model corresponding to the
mean of the Gc(r) and Gs(r) distributions. We see that both models
can generally reproduce the data well and that the discrepancies
are mostly in the amplitudes and less so in the fast axes directions.
This figure also shows that an NA inversion for G only can yield a
model that fits the data as well as a model obtained by regularized
inversion for parameters B, G, and H.

Following Yuan & Beghein (2014), we calculated an average χ 2

misfit by averaging the χ 2 from the Gc model (χ 2
c ) and from the Gs

model (χ 2
s ) over all grid cells:

χ 2
c,s = 1

N

N∑
i=1

(
di − (Am)i

σi

)2

(20)

χ 2 = 1

Nc

Nc∑
i=1

(
χ 2

c,i + χ 2
s,i

)
(21)

where N is the total number of data, di is the ith component of the
data vector d, σ i is the ith component of the vector containing data
errors and (Am)i is the ith component of the data prediction vector
Am calculated using eqs (8) and (9). Nc is the total number of grid
cells. Table 1 gives the average χ 2 misfit for each model, and con-
firms that the two models can explain the data within uncertainties.

Table 2 compares the average variance reduction for the two
models, using the following definition of the variance reduction:

VR = 1 −
∑N

i=1 (di − (Am)i )
2

∑N
i=1 d2

i

(22)

It shows that model YB17SVaniSVD explains 94 per cent of the
data, and the mean NA model explains 79 per cent of the data.
We attribute the better data fit of YB17SVaniSVD compared to
the mean NA model to the fact that the mean NA model does not
correspond exactly to one of the best data-fitting models due to the
non-Gaussian nature of the posterior model 1-D distributions. We
note that the low χ 2 values do not mean the model overfits the data,
as shown by the values calculated for the variance reduction. The
low χ 2 is due, instead, to the large data uncertainties.

One more point of importance when discussing data fit regards
the depth extent of the anisotropy. Our Bayesian approach was
applied to the parameter estimation problem but not to explore
the model selection problem. A transdimensional method (Bodin
et al. 2012) would have been able to determine the optimum depth
parametrization in addition to the model parameter distribution at
each depths, but with the NA employed here we had to fix the depth
parametrization a priori, which can cause bias in the model. It is
thus important to test whether the data require anisotropy to depths
as great as the transition zone or whether they could be explained
equivalently well with anisotropy restricted to the upper 410 km of
the mantle for instance. Yuan & Beghein (2013) demonstrated using

statistical F-tests that the fit to the Rayleigh wave data employed
was significantly improved by allowing azimuthal anisotropy below
410 km depth, which is what guided or choice of spline functions
(Fig. 3). We performed identical tests for this study and forced the
anisotropy to exist only in the upper 400 km of the mantle at a
few locations where our model displays strong MTZ anisotropy.
The F-tests performed on the mean Gc and Gs determined that
including anisotropy below 400 km depth significantly decreases
the data misfit.

4.2 Global averages

Some of the most interesting features detected in YB13SVani
(Yuan & Beghein 2013) were the changes in the average azimuthal
anisotropy fast directions associated with amplitude minima at
about 220 km depth, and near the MTZ boundaries. While the in-
terpretation of these results is non-unique because too few mineral
physics data are available on the anisotropy of MTZ material, these
results provide new constraints on deep upper-mantle circulation,
and the observed changes in anisotropy at the MTZ boundaries could
be the signature of changes in mantle flow direction. To determine
whether our new results confirm these findings, we determined the
vertical gradient of the fast axes (d�/dr) and the relative anisotropy
amplitude (dln G) at each grid cell every 10 km depth with a 20 km
window, after which we calculated their rms as a function of depth,
following Yuan & Beghein (2013) Fig. 9 represents the rms of
dln G and of d�/dr calculated for the mean NA model and for
YB17SVaniSVD.

We see that even though the 1-D average of the mean NA model
presents a few more oscillations below 300 km depth than the model
obtained by regularized inversion, the two models display similar
features. We observe 1.5–2 per cent anisotropy in the top 200 km
and about 1 per cent below, down to at least the bottom of the
MTZ. We also detect amplitude minima between 50 and 100 km,
around 220 km and 250 km, and near the boundaries of the MTZ.
These minima are associated with higher gradients in the fast axes
direction, as observed in YB13SVani.

Note that in Yuan & Beghein (2013), we demonstrated that these
changes in anisotropy are not artefacts due to the presence of dis-
continuities in seismic velocities in the local reference models, and
that they were stable with respect to regularization and with respect
to the presence of lateral heterogeneities in the mantle. We also
previously demonstrated (Yuan & Beghein 2013, 2014) that the
model does not depend on the choice of the spline functions, the
position of their peaks, or their spacing. The robustness of these fea-
tures is of course better tested with quantitative model uncertainties,
but these are difficult to display for rms(dlnG) and rms(d�/dr). We
decided to focus on the uncertainties of the 3-D model instead (see
below).
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Figure 9. 1-D average model amplitude (left) and gradient of the fast axis direction (right) calculated from the mean Gs and mean Gc distributions. Model
YB17SVaniSVD is shown by the black curves for comparison.
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Figure 10. Correlation between YB17SVaniSVD and the mean NA model
obtained from the mean Gs(r) and mean Gc(r) distributions.

4.3 3-D models

In this section, we discuss the 3-D models obtained with the NA and
compare them with YB17SVaniSVD. Fig. 10 shows the correlation
coefficient between the two models as a function of depth. It was

calculated after expansion of each model map in generalized spher-
ical harmonics up to degree 20, following Yuan & Beghein (2014).
At all depths, the correlation is well above the 95 per cent signif-
icance level as calculated by Becker et al. (2007), demonstrating
that the two models are overall consistent with one another.

Figs 11–14 are maps that represent model YB17SVaniSVD and
the NA results at different depths. In Figs 11 and 12, both the mean
NA model and the fast axes standard deviation are displayed. The
fast axes standard deviation was estimated at each grid cell with
eq. (19). Figs 13 and 14 focus on the anisotropy amplitude and
its standard deviation (eq. 18). The two models show very simi-
lar fast axes directions at most depths and comparable amplitudes.
They are also consistent with previous studies in the top 200 km
(Nishimura & Forsyth 1989; Montagner & Tanimoto 1991; De-
bayle et al. 2005). Differences in model amplitudes are generally
within the model uncertainties [e.g. differences in the anisotropy
pattern in the western Pacific at 100 km between YB17SVaniSVD
and DR2013 (Debayle & Ricard 2013) or SL2016svA (Schaeffer
et al. 2016)]. We note, however, that the large amplitudes seen in
the Debayle & Ricard (2013) model in the uppermost mantle are
difficult to reconcile with our results, even accounting for the pos-
terior model variance, except near the South American subduction
zone and at the Eurasia–Africa boundary. Similarly, we note that
Schaeffer et al. (2016) published SL2016svAr (not represented in
Fig. 1 for clarity), which is a rougher model than SL2016svA. It
was built with the same data set and data fit as SL2016svA, but a
different parametrization resulting in larger amplitudes and higher
resolution in well-sampled areas.

The strongest model amplitudes (of at least 2–3 per cent
anisotropy) in the top 150 km of our model are well resolved and
can be found in the youngest parts of the Pacific plate, at the Africa–
Eurasia plate boundary, and around the South American subduction
zone. Lower amplitudes are seen in the western Pacific at these
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60 mm/yr SVD NA mean Fast direction
uncertainty2%

100km

250km

200km

Figure 11. Model YB17SVaniSVD (black bars) obtained by regularized
inversion and mean mantle model (red bars) obtained using the NA for
the uppermost mantle. The standard deviation on the fast axes direction as
obtained from the NA is shown in light blue. The anisotropy amplitude is
proportional to the length of the red and black bars. Model NNR-NUVEL
1A is represented by the darker blue arrows. Plate boundaries are shown by
thin black lines, and continents are delimited by thin grey lines.

depths. These low amplitudes were first detected by Nishimura &
Forsyth (1989) who related them to changes in the horizontal di-
rection of anisotropic fabric with depth rather than being due to
a decrease of in situ anisotropy. In Yuan & Beghein (2014), we
showed, however, that the lower SV anisotropy amplitude in the
western Pacific is close to the average amplitudes of other oceanic
plates and is therefore not anomalously low with respect to other
plates. We also note that while seismic anisotropy amplitudes are
anomalously high in the shallow mantle in the middle of the Pacific

450km

350km

650km

550km

60 mm/yr SVD NA mean Fast direction
uncertainty2%

Figure 12. Model YB17SVaniSVD (black bars) obtained by regularized
inversion and mean mantle model (red bars) obtained using the NA for the
deep upper mantle. See Fig. 11 for more details.

plate, it is one of the places where the amplitude is the weakest at
greater depths, suggesting a relatively shallow origin for this sig-
nal, such as asthenospheric mantle flow. This was previously sug-
gested for radial anisotropy models (Ekström & Dziewonski 1998;
Gaboret et al. 2003). We also find a relatively strong signal of
about 3 per cent anisotropy at 100 km depth near the India–Eurasia
convergence zone and in the Indonesian subduction region. Am-
plitude uncertainties are closer to the mean model amplitudes at
greater depths, except in a few locations between 200 and 350 km
such as the Western part of the Pacific where subduction occurs,
near the Arabian plate, and India. Below 350 km depth, a stronger,
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Figure 13. (a)–(d) Amplitude of model YB17SVaniSVD, (e)–(h) of the mean mantle model obtained using the NA for the uppermost mantle and (i)–(l) mean
model amplitude standard deviation. Plate boundaries are shown by black lines, and continents are delimited by thin white lines.
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Figure 14. (a)–(d) Amplitude of model YB17SVaniSVD, (e)–(h) of the mean mantle model obtained using the NA for the deep upper mantle and (i)–(l) mean
model amplitude standard deviation. Plate boundaries are shown by black lines, and continents are delimited by thin white lines.
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Figure 15. Fast seismic direction in locations where the uncertainty is lower than 45◦. The colour background represents isotropic velocity model SEMUCB
(French & Romanowicz 2014).

well-resolved signal appears in the northwestern part of the Pacific
and Asia.

Strong discrepancies were found between model YB13SVani
(Yuan & Beghein 2013) and the uppermost mantle model of Marone
& Romanowicz (2007) under North America. We had attributed this
disagreement to differences in the horizontal resolution of the mod-
els (Yuan & Beghein 2013). Here, we see that the uncertainties in
the fast axes directions at 100 km are strong beneath this region,
which would reconcile the differences between the models. Uncer-
tainties on the fast axes are also slightly stronger toward the western
part of the Pacific. As we go deeper, more regions display larger
standard deviations in the fast axes direction, but a few features
appear well constrained. For instance, the fast seismic direction is
close to the present-day plate motion, which was calculated with
model NNR-NUVEL 1A (DeMets et al. 1994), beneath the young
and mid-Pacific plate down to about 150 km depth (Fig. 11), though
model YB17SVaniSVD appears to reflect the plate motion slightly
better than the mean NA model (see, for instance, in the younger
parts of the Pacific plate). This is attributed to the fact that the
mean model is not necessarily the best-fitting model due to the non-
Gaussian topology of the model space, as explained above. We do
not expect other reference frames to yield a better alignment with
the anisotropy since our new models are very similar to YB13SVani,
which had been tested against other plate motion models (Yuan &
Beghein 2013). In Fig. S8 in the Supporting Information, we ad-
ditionally compared our models with the more recent plate motion
model of Becker et al. (2015), which was not published at the time
of the Yuan & Beghein (2013) study, and which optimizes the match
between absolute plate motions and spreading orientations. We did
not find strong differences between the match of our models with

the Becker et al. (2015) Absolute Plate Motion (APM) model and
with NNR-NUVEL 1A. Interestingly, the alignment of the fast seis-
mic direction and present-day plate motion appears to continue to
depths as great as 350 km (Fig. 12) in a few locations such as the
eastern Indian Ocean and central Africa, though whether this is the
manifestation of deep upper-mantle physical processes or artefacts
in the model needs to be investigated more thoroughly.

A question that arises from Fig. 9 is whether the changes in
azimuthal anisotropy at the MTZ boundaries are global or appear
only at a few locations. If they occur globally, they might be caused
purely by the effect of pressure on MTZ material anisotropy. If they
occur only in a few regions, compositional effects might come into
play. To try to answer this question, one can make a simple visual
comparison of the model maps at different depths. It is, however,
important to keep in mind when comparing maps that not all grid
cells have well-resolved fast directions and that the phase velocity
maps may have been affected by small trade-offs between isotropic
and anisotropic anomalies. We thus took advantage of the fact that
the forward modeling method used here yielded quantitative pos-
terior model uncertainties and plotted the anisotropy only at loca-
tions where the fast direction was best resolved. This is displayed
in Fig. 15 for depths of 350, 450, 600, and 700 km. They repre-
sent the fast direction at grid cells where the error on � was less
than 45◦. This is a subjective cut-off value, but looking at smaller
cut-off values (e.g. 35◦) did not change our conclusions. Visual in-
spection of these maps shows that there is little variations of the
fast seismic direction across depths in the general area where the
Pacific plate subducts underneath the North American plate and un-
der the Philippine plate. The same is also true, for instance, around
the South American subduction zone, between the Arabian and
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Figure 16. Difference between mean fast axis �m across the 410 and 670 discontinuities. (a) and (b) represent the difference between the fast direction at
350 and 450 km depth, and (c) and (d) is the difference between fast directions at 600 and 700 km. (a) and (c) were determined at every grid cell we used to
parametrize Earth’s surface. (b) and (d) were obtained by filtering (a) and (c) up to spherical harmonic degree 5. Plate boundaries are shown by black lines,
and continents are delimited by white lines.

Eurasian plates, in the Southeastern Pacific, and where the Indian,
African and Indo-Australian plates meet.

Another way of looking at this is by calculating the difference
between the fast direction at depths above and below the MTZ
boundaries. This is what is represented in Fig. 16. It shows the
difference between the mean fast directions at 350 and 450 km and
between depths of 600 and 700 km at all grid cells and for spherical
harmonic degrees 1–5, which is the estimated lateral resolution for
azimuthal anisotropy at these depths (see Section 2). While one
might be tempted to conclude from Fig. 15 that subduction zones
are characterized by the same fast direction across the MTZ, there
is no clear pattern relating to surface tectonics visible in Fig. 16.
Nevertheless, from the degree 5 maps, one can conclude that regions
such as Africa, Asia and the northwestern Pacific are characterized
by similar azimuthal anisotropy above, below and inside the MTZ.
Thus, even though the lateral resolution of the higher modes and
posterior model uncertainties do not allow us to determine with high
precision where the fast axes do and do not change at MTZ depths,
our results suggest that the change in fast direction across the MTZ
boundaries is not likely to occur globally and is thus not solely due
to pressure effects.

5 C O N C LU S I O N S

The goal of this research was to present a new method to model
and obtain quantitative uncertainties on 3-D azimuthal seismic

anisotropy. It was applied to global higher mode surface wave phase
velocity data to assess the likelihood of azimuthal anisotropy in the
deep upper mantle. For this, we employed the Neighbourhood Al-
gorithm developed by Sambridge (1999a,b), a model space search
approach that enables searching a broader part of the model space
than a damped inversion, including the null space. Even though
the linearized formulation of the problem relating phase veloc-
ities to azimuthal anisotropy at depth does not allow us to di-
rectly obtain uncertainties on the anisotropy amplitude and fast
axes direction, we showed that that they can be determined a
posteriori.

The PPDFs of the resulting models yielded a mean model that
was overall consistent (correlation above the 95 per cent significance
level) with models obtained by regularized inversion with the same
data set and parametrization, but with somewhat larger amplitudes.
The posterior model variance was also larger than estimates from
regularized inversions, which is to be expected in the presence of
a large model null space. We confirm our previously published
results showing that azimuthal anisotropy of 1–2 per cent is present
in the MTZ and that, on average, the anisotropy changes across the
MTZ boundaries. This change is therefore required by the higher
mode data utilized, and did not result from inversion artefact or
parameter trade-offs that could have affected our previous model,
YB13SVani. We showed, however, that the anisotropy change across
the MTZ boundaries is likely not a global feature, but further studies
will be required to improve the lateral resolution of the models at
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those depths and determine whether there is any relation between
the change (or lack thereof) of anisotropy across the 410 and 670
discontinuities.
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Panning, M.P., Lekić, V. & Romanowicz, B., 2010. Importance of crustal
corrections in the development of a new global model of radial anisotropy,
J. geophys. Res., 115(B12), B12325, doi:10.1029/2010JB007520.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. Inversion using the NA of the Visser et al. (2008b)
dataset at a grid cell located at −25◦ lat and 305◦ lon. (A) is for
a model space search for dlnGc, dlnBc, and dlnHc using 12 cubic
spline functions for dlnGc. dlnHc and dlnBc were parameterized
each with 6 cubic spline functions. We chose to use a coarser param-
eterization for these other parameters because are poorly resolved
due to the similarity of their partial derivatives. (B) is for a model
space search for dlnGc only using the same 12 splines as in (A).
In each case, the model space search was performed around model
YB17SVaniSVD, indicated by the red cross, allowing for perturba-
tions between −0.03 and 0.03. The spline parameters are displayed
as a function of the number of models generated. We labeled them
as Gi (1 = 1,. . . ,12) instead of dlnGc,i for simplicity.
Figure S2. Synthetic tests comparing NA results when the model
is sampled around the SVD inversion results (case 1) and around
PREM (case 2, zero azimuthal anisotropy). Note that the axes labels
in case 1 and case 2 are different. The model employed to calculate
the synthetic data was model YB17SVaniSVD, denoted by the red
bar.
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Figure S3. NA results using the Visser et al. (2008b) dataset and
searching the model space for G values (neglecting B and H). Case
1 corresponds to searching the mode space around YB17SVaniSVD
(represented by the red line) and case 2 corresponds to searching
around PREM (zero azimuthal anisotropy). Note that the axes labels
in case 1 and case 2 are different.
Figure S4. Comparison of uncertainties calculated using the
standard deviation (dashed blue lines) of the PPDF obtained
from NA and using the covariance matrix of the model ob-
tained by regularized inversion (dashed red line). The solid blue
line corresponds to the mean model. The data point corre-
sponding to this PPDF was located at 175◦ longitude and −85◦

latitude.
Figure S5. Synthetic examples of resampled dlnGc and dlnGs
PPDFs to calculate dlnG and Theta distributions. Each of the six
panels corresponds to different dlnGc and dlnGs distributions, with
different means and variances as indicated in the legends. In each
panel, the black vertical line in the dlnGc and dlnGs indicates the
mean of the dlnGc and dlnGs PPDFs. The black vertical line in the
reconstructed dlnG and � distributions indicates the value of dlnG
and � calculated from the mean of the dlnGc and dlnGs distribu-
tions.

Figure S6. (A) Map of mean fast direction calculated from the
mean Gc and Gs and (B) map of the mean model and its standard
deviation obtained by drawing random samples from the Gc and Gs
PPDFs. Both were calculated at 150 km depth. Plate boundaries are
represented by thin black lines and continents are in grey.
Figure S7. (A) and (B) are PPDFs for dlnGc and dlnGs obtained
from the NA using the Visser et al. (2008b) data and the NA. (C)
and (D) are the reconstructed dlnG and � PPDFs after drawing
random samples from the dlnGc and dlnGs PPDFs.
Figure S8. Comparison between our models (black bars for
YB17SVaniSVD and red bars for the mean NA model) and the
new APM model of Becker et al. (2015) shown in dark blue.
The standard deviation on the fast axes direction as obtained from
the NA is shown in light blue. The anisotropy amplitude is propor-
tional to the length of the red and black bars. The plate boundaries
are shown by thin black lines, and continents are delimited by thin
grey lines.
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