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Abstract
Tree mortality is a key driver of forest community composition and carbon dynamics. Strong winds
associated with severe convective storms are dominant natural drivers of tree mortality in the
Amazon. Why forests vary with respect to their vulnerability to wind events and how the predicted
increase in storm events might affect forest ecosystems within the Amazon are not well understood.
We found that windthrows are common in the Amazon region extending from northwest (Peru,
Colombia, Venezuela, and west Brazil) to central Brazil, with the highest occurrence of windthrows in
the northwest Amazon. More frequent winds, produced by more frequent severe convective systems,
in combination with well-known processes that limit the anchoring of trees in the soil, help to explain
the higher vulnerability of the northwest Amazon forests to winds. Projected increases in the
frequency and intensity of convective storms in the Amazon have the potential to increase
wind-related tree mortality. A forest demographic model calibrated for the northwestern and the
central Amazon showed that northwestern forests are more resilient to increased wind-related tree
mortality than forests in the central Amazon. Our study emphasizes the importance of including
wind-related tree mortality in model simulations for reliable predictions of the future of tropical
forests and their effects on the Earth’ system.

1. Introduction

The productivity (22 PgC year−1, or 35% of global
terrestrial productivity) (Pan et al 2013, Fernandez-
Martinez et al 2014) and aboveground biomass (AGB,
98 PgC, or 25% of terrestrial biomass) (Pan et al 2013,
Malhi et al 2011) of the Amazon (representing 53%
of global tropical forest area; supplementary figure
S1 available at stacks.iop.org/ERL/13/054021/mmedia)
are well quantified, but the mechanisms affecting their
spatial patterns remain uncertain (Stephenson et al

2011, Malhi et al 2015, Negrón-Juárez et al 2015).
Tree mortality is an important component of for-
est dynamics (Kellner and Asner 2009), and affects
ecosystem processes (Frelich 2002, dos Santos et al
2016) as well as spatial patterns of productivity and
biomass (Malhi et al 2015, Stephenson et al 2014,
Negrón-Juárez et al 2015, Johnson et al 2016). For
instance, the less-deforested and rainy northwestern
Amazon (NWA) (no dry season, monthly rainfall
> 100 mm (Sombroek 2001)) has higher productivity
(Aragao et al 2009, Malhi et al 2004) and lower
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Figure 1. Amazon rainfall and windthrows. (a) Mean annual rainfall (MAR) in the Amazon domain (colored area). The blue contour
line represents the areawithout dry season (monthly rainfall>100 mm).Theareas encompassingLandsat images (∼3.4× 104 km2) over
the Iquitos (in the Northwestern Amazon, NWA) and Manaus (in the Central Amazon, CA) regions are also shown. (b)Windthrows
over the Amazon (dashed area shown in figure 1(a)) between 2013 and 2015 represented for dots of different color and sizes described
in the legend. The thin black contour lines are included to better visualize the spatial patterns of windthrows. The thick blue contour
line represents the area without dry season. Inset shows the association between windthrow size and rainfall from TRMM 3B42 V7
3 Hour 0.25◦ × 0.25◦ data (y = 33.32x–2.19, r2 = 0.63, p< 0.001). The dashed lines represent the 95% confidence intervals. (c) Mean
annual number of rainfall events ≥10 mm hr−1 in the Amazon (base period 1998–2016) using TRMM 3B42 data.

biomass (Baker et al 2004, Malhi et al 2006) than the
Central Amazon (CA), which has three months of dry
season (consecutive months with rainfall ≤ 100 mm,
(Sombroek 2001)). The higher tree mortality in NWA
may help explain these patterns (Stephenson and van
Mantgem 2005, Galbraith et al 2013, Malhi et al
2015). Yet, the variation in mortality rates across
the Amazon is not fully explained by factors intrin-
sic to forests (i.e. factors influenced by or resulting
from the ecosystem (Wenger 1984)), such as com-
petition, growth, defense strategies, and soil texture
and nutrients (Malhi et al 2015, Chao et al 2008,
Stephenson et al 2011, Quesada et al 2012, Laurance
et al 1999, Higgins et al 2011). Processes produc-
ing tree mortality are not fully represented in CMIP5
ESMs (Coupled Model Intercomparison Project Phase
5 Earth System Models) (Taylor et al 2012), and
may constitute an important and unassessed source
of uncertainty.

One major contributor of tree mortality in the
Amazon are downbursts (strong descending winds)
associated with severe convective systems as squall
lines (Garstang et al 1998, Negrón-Juárez et al 2017,
Cohen et al 1989). Downbursts create gaps of uprooted
or broken trees, windthrows (Mitchell 2013). Previ-
ous studies focused over Brazil used Landsat imagery
to identify windthrows ranging in size from a single
pixel (30 m× 30 m) to hundreds of hectares (Nel-
son et al 1994, Chambers et al 2013, Espirito-Santo
et al 2010, Negrón-Juárez et al 2011). Our objec-
tives in this study are to use: (i) Landsat images

between 2013 and 2015 to identify the spatial occur-
rence of windthrows (<1 yr old) across the whole
Amazon; (ii) surveys of tree mortality over windthrown
areas to determine tree mortality rates and floristic
composition; and (iii) chronosequences of Landsat
images to compare the occurrence of windthrows
over NWA and CA. Our final objective is to use
these data to inform a modeling experiment of
forest response to increased wind-related tree mor-
tality rates likely to accompany projected increases in
extreme rainfall events in the Amazon (sections 2.6.2
and 14.8.5 in IPCC 2013).

2. Methods

2.1. Research sites and climate
The study areas are the regions of Iquitos (located in
NWA) and Manaus (located in CA) (figure 1(a)). In
Iquitos MAR (mean annual rainfall) is ∼3000 mm,
MAT (mean annual temperature) is 25.9 ◦C, and
June through August are the months with the lowest
precipitation (∼183±10 mm month−1, figure S2(a)).
In Manaus, the MAR and MAT are 2300 mm and
26.2 ◦C, respectively, and the region experiences three
consecutive months of dry season (June through
August, ∼65± 10 mm month−1, figure S2(b)). The
research sites in Iquitos and Manaus (described in
sections 2.2 and 2.5) are lowland old-growth forests
with trees ∼30–40 m tall where windthrows have
occurred.
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2.2. Landsat imagery and windthrows
To determine the spatial distribution of recent
windthrows ≥ 25 ha across the Amazon (figure
1(a)) 229 Landsat 8 images (L8, each covering
∼3.4× 104 km2, 30 m× 30 m of pixel resolution) with
low cloud cover (<20%) between 2013 and 2015 were
used. Windthrows were identified by their distinctive
fan-shape diverging from a central area with radi-
ant corridors separated by standing forest (Nelson
et al 1994) and spectral characteristics (Negrón-Juárez
et al 2010). To assess the severity of windthrows,
spectral mixture analysis (SMA) (Adams et al 1995,
Shimabukuro and Smith 1991) was applied to bands
2–7 in L8 scenes. SMA quantifies the per pixel fraction
of endmemberswhichsums tomatch the fullpixel spec-
trum of the image (Adams et al 1995). Image-derived
endmembers of photosynthetic (green) vegetation
(GV), non-photosynthetic vegetation (NPV), and
shade were used. The fractions of GV and NPV were
then normalized without shade (Adams and Gillespie
2006) as GV/(GV+NPV) and NPV/(GV+NPV). The
normalized NPV images were used to calculate the total
area of the selected windthrows (supplementary text
S1). With this data we produced a windthrown area
weighted 2D Kernel Density Estimate (KDE) with the
SAGA geospatial analysis library (www.saga-gis.org)
using a quartic kernel with a 100 km radius, resampled
to a 1 km resolution. The KDE is plotted as a contour
plot showing the probability that a windthrow greater
than one hectare will occur within each 1 km2 pixel
(figure 1(b)).

Chronosequences of Landsat imagery were used
to calculate the return frequency of windthrows
in Iquitos and compared with frequencies from
our previous study over Manaus (Chambers et al
2013). Landsat 5 Thematic Mapper images (L5)
were obtained from the United States Geological
Survey (http://glovis.usgs.gov), and atmospherically
corrected and converted to reflectance using the Atmo-
spheric CORrection Now (ACORN) software (ImSpec
LLC, Boulder, CO). The Carlotto (Carlotto 1999)
technique, which corrects for haze and smoke con-
tamination, was applied over the scenes as needed.
All anthropogenic areas, water bodies, clouds and
theirs shadows were masked out. We used ten L5
images for five intervals (pairs) for Iquitos (Landsat
scene P006R063, 1988–1985, 1991–1989, 1999–1995,
2002–2001, 2009–2005) each on approximately the
same day of the year. Paired images were intercal-
ibrated (old image, e.g. 1985, with respect to new
image, e.g. 1988) band by band by regressing the
encoded radiances using temporally invariant targets
(Negrón-Juárez et al 2011), and the normalized (with-
out shade) NPV was calculated. Changes in NPV for
each period (ΔNPV, a quantitative measure of the
changes in dead biomass associated with disturbance
(Negrón-Juárez et al 2011)) were calculated (normal-
ized NPVnewimage–normalized NPVoldimage).

TheΔNPV was also used to determine the location
of plots (∼3 ha and divided in 100 subplots of 0.03 ha)
for conducting forest inventories over windthrown for-
est (covering a gradient of disturbance severity) and
adjacent undisturbed forests. For each plot, we mea-
sured tree diameters for all trees ≥ 10 cm in DBH
(diameter at the breast height = 1.3 m above ground
or above buttress) and measured trees were identified.
We studied two windthrows in the Iquitos region (All-
pahuayo, in the Allpahuayo-Mishana National Reserve
and Nauta, in the Nauta Research Station, managed by
National University of the Peruvian Amazon-UNAP)
(Rifai et al 2016) and three windthrows in Manaus
in research stations managed by the Brazil’s National
Institute for Amazonian Research-INPA (Tumbira,
ZF2 and ZF5) (Magnabosco Marra et al 2014, Magna-
bosco Marra 2016). The windthrow in Allpahuayo
extended 50 ha and occurred in 1992. Nauta (300 ha)
occurred in 2009, Tumbira (75 ha) occurred in 1987,
ZF5 (900 ha) occurred in 1996 and ZF2 (250 ha)
occurred in 2005. Supplementary table S1 describes
the plots and table S2 the common species in Iqui-
tos. Based on all forest inventory plots we present
the twenty most common genera observed in Iqui-
tos and Manaus. The relative density of species was
calculated as 100 times the number of individuals of
a given species divided by the total number of indi-
viduals of all species, and similar for frequency and
dominance (Curtis and McIntosh 1950).

2.3. Tropical Rainfall Measuring Mission data
Data from the 3 Hour Multi-satellite Precipitation
Analysis (3B42) of Tropical Rainfall Measuring Mis-
sion (TRMM) (Huffman et al 2007) version 7 for
the period 1998 to 2016 was used to determine areas
with heavy rainfall as well as the association between
heavy rainfall and windthrows (text S2).

2.4. Power law exponent for event size distribution
data
A power law function was used to determine the gap
size frequency across the Iquitos landscape (Di Vit-
torio et al 2014, Fisher et al 2008). The power law
exponent (y = cx−𝛼) was obtained using an Ordinary
Least Squares technique (OLS) (Milojevic 2010) and a
Maximum Likelihood Estimator (MLE) (Clauset et al
2009). We performed these estimates on two data
cases: (1) the remotely sensed data only (windthrow
from Landsat), and (2) the remotely sensed data
plus inventory plots data (Landsat+plot). These data
was multiplied by the total analyzed forested area
across thefive IquitosLandsat scene-pairs (31 900 km2)
described in section2.2.Treemortality data from Land-
sat included windthrows with more than eight dead
trees based on the average mortality rate as function
of gap size (figure S3) as well as data from eight-tree
events from single-pixel disturbances (Negrón-Juárez
et al 2011). Plot data include mortality of single trees
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(Chao et al 2008). The OLS method used log-binned
data with the starting bin center at event of eight trees
in size, while the MLE method used the data directly.
An extensive description of the power law fit method
used is described in Di Vittorio et al (2014). To directly
compare this average mortality event-size distribution
with those in Manaus (Chambers et al 2013) (that
uses the same method) we aggregated the distribu-
tion into the same set of discrete event-size bins which
were defined in logarithm with base 10 for Manaus,
plus one extra bin to cover the larger clusters detected
in Iquitos. Probability distribution-function of event
size and dead trees is presented. Further details are
presented in text S3.

2.5. Comparison of Iquitos and Manaus wind-
related tree mortality
The Nauta windthrow (November 2, 2009) in Iqui-
tos was compared with the previously studied ZF2
windthrow in Manaus (Negrón-Juárez et al 2010). For
the Nauta windthrow, L5 scenes (Path 006/Raw063)
from June 27, 2008, and December 07, 2009 were used
to calculated ΔNPV. The ΔNPV image was used to
randomly select thirty disturbed pixels covering the
whole gradient of disturbance. Each pixel was located
using a handheld GPS (60CSx GPS, Garmin Ltd.) and
a plot of 20 m× 20 m was installed. The number of
live and dead trees with DBH ≥10 cm was recorded
in the surveys. The survey was done 10 months after
the occurrence of the windthrow. Dead trees were
identified by the direction of fall similar to the pre-
dominant direction of the windthrows, presence of
leaves, preserved trunk bark, and fresh fiber charac-
terizing snapping. An ANCOVA analysis (using SAS
9.2, SAS Institute Inc., North Carolina, USA) was used
to compare the association between tree mortality and
ΔNPV in Iquitos and Manaus. The associated down-
burst velocities for theNautawindthrowwereestimated
as 19–31 m s−1 (68–112 km h−1) (figure S4).

2.6. Simulation of forest and windthrows dynamics
We used the ZELIG-TROP model (Holm et al 2014)
to simulate forest and tree mortality interactions due
to increased windthrow events. ZELIG-TROP is an
individual-based demographic gap model with trees
of varying size and structure, as well as a dynamic
vegetation model in that regeneration, growth, and
mortality rates all dynamically vary as a function of
climate, stand density, canopy openness, and com-
petition for resources. The data used to parameterize
the species traits and demographic attributes (such as
maximum DBH, age, growth-rate scaling coefficient,
stress tolerances, and recruitment rates) was obtained
from our inventory plots, RAINFOR data (Lopez-
Gonzalez et al 2011, date of extraction 16/04/2015),
and Holm et al (2014) for Manaus. We used the allo-
metric equation from Chambers et al (2001) based
on DBH to estimate AGB in ZELIG-TROP. Average
monthly precipitation and temperature required for

the environmental driving parameters in ZELIG-
TROP were from data collected at UNAP, Iquitos, Peru
(3.46◦S, 73.17◦W), from 1988–2011. ZELIG-TROP
wasparameterized andvalidatedpreviously forManaus
(Holm et al 2014), and here the model was param-
eterized for tree species typical of Iquitos (see table
S2).

We simulated 50 spatially explicit plots, each at
the patch-dynamic scale of 400 m2 (totaling two
hectares). The simulations started from bare ground
(as typical for successional-based gap models), thus
simulating dynamic and stochastic individual tree-
recruitment, growth, and mortality within competing
environmental conditions for Manaus and Iquitos.
Model simulations were run for 400 yr until the forest
reached a mature steady state (compared to field data in
table 1), and all results are averaged over the final 50 yr
of simulation. The tree mortality rate (% stems yr−1)
was simulated to be 2.1% for Iquitos (i.e. control),
which is very close to observed values (i.e. ∼2.3%)
(Chao et al 2008). The control simulations agreed with
observed values of forest attributes (table 1) and pre-
dictors of tree mortality (text S4 and figure S5) from a
previous tree pulling study (Ribeiro et al 2016).

To study how increases in windthrows may affect
community composition, the current background
mortality (M) in Iquitos (∼2%) and Manaus (∼1%)
was near doubled (2M) (table 1), assuming that all
increase in mortality is associated with windthrows. A
justifiable value of increased mortality associated with
windthrows is not currently possible since model pre-
dictions of future climate do not include windthrows as
a form of disturbance. To increase mortality to 2M the
model randomly selected trees≥10 cm DBH to die and
are removed fromthe forest onan annual basis. Control
simulations were denoted as Iquitos M and Manaus M,
and doubled-mortality simulation as Iquitos 2M and
Manaus 2M.

Sixty eight species belonging to 46 genera were
used in the Iquitos simulations (table S2). For Man-
aus simulation, 90 species belonging of 51 genera
were used (Holm et al 2014). Eighteen genera (fig-
ure S6) were found common in both Amazon regions.
These 18 common genera accounted for 75% and 47%
of the total basal area (BA) in Iquitos and Manaus,
respectively. These overlapping genera were used to
compare shifts in community composition between
the M and 2M simulations in these regions (figure S6
(a) and (b)). Using the 18 common genera allowed
for a stricter and standardized basis for comparing
compositional shifts and alleviate biases that would
manifest when including genera that are only present in
one region and not the other.

A non-metric multidimensional scaling (NMDS)
ordination analysis (Shepard 1962, Kruskal 1964a,
1964b, Faith et al 1987) on genera abundance classi-
fied by BA (m2 ha−1) was used to analyze the plot data
and model results. We used this technique to reduce
the multidimensionality of our studied communities
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Table 1. Model results for Iquitos. Control outputs over Iquitos (± standard deviation) compared against field data and disturbance model
outputs. The tree mortality rate for Iquitos is the exponential mortality (2.3%) (Chao et al 2008)∗, which can be considered the true annual
mortality since both differ only by about 0.02% (Sheil et al 1995). Since ZELIG-TROP is an individual-based model that prognoses mortality
mechanistically, mortality is reported as individual level annual mortality. ANPP = aboveground net primary production.

Iquitos field data ZELIG-TROP iquitos
M

ZELIG-TROP iquitos
2M

% Change due to
disturbance

Aboveground biomass (AGB, Mg ha−1) 247 (±77)∗ 249 (±40.2) 175 (±23.8) −29.62

Stem density (trees ha−1) 597 (±68) 623 (±185) 654 (±205) 4.98

ANPP (MgC ha−1 yr−1) 9.06 (±0.7)∗ 9.5 (±2.6) 8.8 (±2.7) −7.37

Leaf area Index (LAI) 5.5 (±0.2)∗ 5.4 (±0.7) 4.9 (±0.5) −9.26

Mortality Rate (% yr−1) 2.3 (±0.31)∗ 2.1 (±0.08) 3.9 (±0.04) 85.71

Table 2. Binned mortality event size distribution and stem mortality in Iquitos. The binned probabilistic distribution functions (PDFs)
provide the fraction of total mortality in each event class. Text S3 provide further details about the production of this table.

Minimum

event PDF

Maximum

event PDF

Average event

PDF

Trees per event Normalized #

of events (#

events

ha−1 yr−1)

Area return

frequency

(ha yr−1)

Normalized #

of dead trees (#

trees ha−1 yr−1)

Percentage of

annual tree

mortality (%)

0.6875406 0.7559586 0.7321610 1 11.17362 0.09 11.174 34.1
0.1435392 0.1290837 0.1349253 2 2.05911 0.49 4.118 12.6
0.1054770 0.0804218 0.0894581 4 1.36523 0.73 5.461 16.7
0.0383210 0.0234811 0.0283769 8 0.43306 2.31 3.465 10.6
0.0143309 0.0071449 0.0093377 16 0.14250 7.02 2.280 7.0
0.0074081 0.0029711 0.0042158 33 0.06433 15.54 2.123 6.5
0.0023191 0.0007123 0.0011184 84 0.01706 58.59 1.434 4.4
0.0007295 0.0001717 0.0002982 210 0.00455 219.71 0.956 2.9
0.0002850 0.0000492 0.0000961 637 0.00146 681.54 0.935 2.9
0.0000421 0.0000047 0.0000108 2900 0.00016 6054.60 0.479 1.5
0.0000070 0.0000004 0.0000013 16788 0.00002 48805.20 0.344 1.0

into a two dimensional-ordination space and assess
possible differences in genera composition. The NMDS
from 124 inventory plots distributed in Iquitos and
Manaus (supplementary table S1) was compared
against simulations. For M and 2M simulations, the
NMDS analysis was based on 20 plots per region.
Stress scores (that represents the difference between
the reduced and the complete multidimensional
space)< 0.3 indicates a good representation of data
in the reduced dimensions.

3. Results

Between 2013 and 2015, the areas of the Amazon
basin without dry season (figure 1(a)) were most
affected by windthrows (figure 1(b)). These areas,
which include northwestern Peru, southern Colom-
bia, southern Venezuela, and the central and western
regions of the Brazilian Amazon, also experience more
frequent and intense hourly rainfall rate events (figure
1(c)). A positive association was found between hourly
rainfall rates and windthrows (inset in figure 1(b)).

The Iquitos power law exponents range from−2.26
to−2.55, with a mean value of −2.44 (figure S7) which
are outside the range of the Manaus exponent (−2.71
and −2.97) (Chambers et al 2013, Di Vittorio et al
2014). These power law exponents do not change sub-
stantially between methods (OLS and MLE) or data
used (Landsat and Landsat+ plot data) (figure S7) and
show that windthrows are more frequent in Iquitos. In

Iquitos 37% of annual tree mortality associated with
windthrows occurred in gaps formed from the death
of eight or more trees (bins ≥ 8 trees) (table 2). This
proportion is more than double the rate previously
estimated for CA (17%) (Chambers et al 2013).

The downburst speeds that produced the Nauta
windthrow (figure 2(a)) were less intense (estimated
as 68–112 km h−1, figure S4) than over the ZF2
forest (estimated as 93–147 km h−1) (Negrón-Juárez
et al 2010) that was expected since slower moving
system (12 m s−1 in Nauta (figure S4) vs 19 m s−1 in
ZF2 (Negrón-Juárez et al 2010)) produce lower down-
burst velocities (Garstang et al 1998). A strong linear
relationship (p< 0.001 and r2 = 0.8; figure 2(b)) was
found between observed tree mortality and ΔNPV in
Nauta andZF2.TheANCOVAanalysis showed that the
slopes (112± 6.0 (SE) and 99± 5.6 for Nauta and
ZF2) were not statistically different (F = 2.38, p = 0.12),
even for the unforced through origin case (F = 0.16,
p = 0.69). Despite the fact that downburst speeds were
lower during the Nauta windthrow than the ZF2
windthrow, the tree mortality per area associated with
these storms was similar suggesting that trees in Iquitos
had a higher sensitivity to winds.

The control simulations predicted the community
composition in both regions accurately (figure S6(a)
and figure S6(b) compared to figure 3(a) and (b)), with
an exception of the lower dominance of Eschweilera
(Lecythidaceae) in Manaus. The control simulations
also reproduced the differences in genera composition
observed between Manaus and Iquitos (figure 3(c)),
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Figure 2. Comparison of windthrows in Iquitos and Manaus. (a) Forests near Iquitos (4.40◦S, 73.65◦W, white box) and near Manaus
(2.58◦S, 60.25◦W) detected before and after windthrows and where the tree mortality ground surveys were performed (shown in
dashed white boxes). All images are from Landsat 5, except for the image from October 28, 2009, which is from Landsat 7. Band
composition in RGB were bands 5, 4, and 3. Features in white are clouds, in green are forests and in red the windthrows. (b) The
association between observed mortality (M) per damaged pixel (ΔNPV) in Iquitos and Manaus regions. The linear regression for
Iquitos is M = 99.86×ΔNPV, n = 30, r2 = 0.76 and for Manaus is M = 111.39×ΔNPV, n = 30, r2 = 0.75.

as indicated by the distances between genera similarity
derived from the NMDS ordination (i.e. separation of
red and blue points in figure 3(d)). Iquitos 2M resulted
in a significant, yet smaller decrease in biomass com-
pared to the biomass decrease in Manaus 2M (29.6%;
two sample t test, t(99 1.97) = 186.20, p< 0.001 vs.
41.9%; two sample t test, t(99 1.97) = 108.98, p< 0.001,
respectively).

Iquitos 2M did not lead to a significant shift in
genera composition with respect to Iquitos M (fig-
ure 3(d)) (Wilcoxon rank sum, Z = 0.33, p = 0.74, and
also seen in a cluster analysis in figure S8(a)). In con-
trast, Manaus 2M had significant shifts in the genera
composition with respect Manaus M (Wilcoxon rank
sum, Z = 2.28, p = 0.02, figure S8(b)). Furthermore,
Manaus 2M had community similarities to Iquitos
M (figure 3(d) and figure S8(c)) but differences exist
(Wilcoxon rank sum, Z = 1.03, p = 0.3). Text 5 sum-
marize model changes in AGB, NPP, BA and diversity
index associated with doubling the mortality rate. In
both Iquitos 2M and Manaus 2M the model predicted
that emergent trees had the largest decrease in basal
area (after weightingby abundance) (figure S6(c)). This
decrease was stronger in Manaus 2M (19%) compared
to Iquitos 2M (14%).

4. Discussion

We found that windthrows are spatially more common
in NWA (north of the Ecuadorian Amazon, north-
east of Peru, and northwest of Brazil) (figure 1(b))
consistent with and expanding on previous studies
focused on Brazil (Nelson et al 1994, Espirito-Santo
et al 2014, Espirito-Santo et al 2010).

Our inventory plots vary in important attributes
(e.g. biomass, size-distribution of trees, tree height,

stem density and community mean wood density
(Quesada et al 2012, Feldpausch et al 2011, Mitchard
et al2014,Baker et al2004)) that characterize the typical
gradient across the Amazon driven by climatic, edaphic
and ecological aspects (Quesada et al 2012). Thus, our
inventory plots in Iquitos and Manaus may be consid-
ered representatives of NWA and CA respectively.

The power law analysis (figure S7) suggests that
windthrows occur more frequently in NWA than in
CA (table 1 in Chambers et al 2013) across all size
classes. NWA and CA have distinctive community
composition, which partially can be related to tree-
mortality patterns, as discussed in previous studies
(Chao et al 2008, ter Steege et al 2006, ter Steege
et al 2013, Magnabosco Marra 2016). We found that
NWA is more vulnerable to wind-related tree mor-
tality that may be related to a number of factors
including tree stem density, tree size, species compo-
sition, wood density, soil type, root architecture, and
topographic exposure (Boose et al 2004, Vandermeer
et al 2000, Chao et al 2008, de Toledo et al 2011,
Magnabosco Marra 2016, Ribeiro et al 2016). The
similarities in tree density (supplementary table S1)
and tree size-distribution (supplementary figure S9) in
NWAandCAsuggest that these structural attributes are
unlikely to be major contributors of the observed dif-
ferences in tree mortality, in agreement with previous
studies (Chao et al 2008).

Winds produce tree mortality by uprooting (more
likely associated with soil characteristics) or break-
ing (more likely associated with mechanical failure)
(Rankin-de Merona et al 1990, Korning and Balslev
1994). The soils in the NWA are dominantly Acrisols
with low infiltration rates that limit root growth due
to high soil compaction, while soils in CA are primar-
ily Ferrasols which have physical properties that allow
development of deeper root systems (Hengl et al 2014).
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Figure 3. Regional responses to windthrows. The twenty most common genera observed in forest inventory plots distributed in (a)
Iquitos and (b) Manaus. (c) Non-metric multidimensional scaling (NMDS) ordination diagrams for representing differences in genera
composition among forests in Iquitos and Manaus. (d) NMDS representing modeled genera composition. Control (M, Iquitos at
∼2% tree mortality and Manaus at 1% tree mortality) and increased windthrows (2M: double mortality) treatments.

These soil characteristics correspond with gradients
of root depth across the region (Ichii et al 2007,
Nogueira Lima et al 2012). Furthermore, in NWA
light limitation, abundant rainfall and soil conditions
(Nemani et al 2003, Malhi and Davidson 2009, Malhi
et al 2004, ter Steege et al 2006, Baker et al 2004,
Quesada et al 2012) promote rapid vertical growth
(Stephenson et al 2011) and shallow root systems
(Quesada et al 2012). Frequent extreme rainfall events
in NWA (figure 1(c)) might also result in saturated
soils (Foster 1988) and strong wind loads affecting the
mechanical stability of trees by swaying (Gardiner et al
2016). These characteristics (individually or combined)
limit the anchoring of trees into soil and may make
NWA trees more sensitive to winds (figure 2(b)).
Tree-pulling experiments in Iquitos, similar to those
we have conducted in Manaus (Ribeiro et al 2016),
are needed to test these assumptions.

Ourmodelingresults suggest that community com-
position in Manaus is more vulnerable to an increase

in windthrows with respect to Iquitos, consistent with
previous studies showing that forests with low mor-
tality rates are more sensitive to increases in mortality
rates (Schietti et al 2016, de Toledo et al 2013, John-
son et al 2016). Manaus 2M predicted community
similarities to Iquitos M, but differences exist. These
differences may be related to either individual or
combined effects, such as (i) differences in soil charac-
teristics and nutrients (Quesada et al 2012); (ii) local
effects of disturbances; or (iii) model limitations, as
the model cannot incorporate all complex and diverse
plant physiological processes (Wright 2002), all of
which are challenging data to collect in the tropics.

Our modeling results suggest that the commu-
nity composition in Iquitos did not significantly
change with increases in tree mortality associated with
windthrows. The higher frequency of windthrows in
Iquitos (with respect to Manaus) may have resulted in a
forest that is more resilient (as defined by Holling 1973)
to increases in tree mortality rates from windthrows.
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This resiliency was represented by the overlap of Iqui-
tos M vs. Iquitos 2M points in figure 3(d), as well as
the smaller decrease in biomass in Iquitos 2M. Iquitos
might only see a significant change in community com-
position with a larger increase in mortality or different
drivers of mortality.

Our results shows that Landsat and Landsat+plot
data do not produce changes in the power law expo-
nent suggesting that an important fraction of plot level
tree mortality is produced by winds. However, we
emphasize the need for additional field observations
of different mortality agents for proper region-specific
attributions of cause and effect, as well as vulnera-
bility, resistance, and responses of different species
to those agents. Such observations would improve
understanding of forest dynamics beyond the impor-
tance of general tree mortality in explaining patterns
of biomass and productivity in the Amazon. Our
results directly address the need to incorporate the
effects of wind-related tree mortality on ecosystem pro-
cesses in ESMs to reduce uncertainties of carbon and
climate projections.

5. Conclusions

We found that windthrows are common in the region
extending from the northwest Amazon (northeast-
ern Peru, southern Colombia and Venezuela and
northwest Brazil) to central Brazil, with the highest
occurrence of windthrows found in northwest Ama-
zon. The more frequent extreme winds associated
with more frequent severe convective systems in NWA
may explain the higher tree mortality observed in this
region. The higher frequency of windthrows in NWA
may have resulted in a forest that is more adapted
to these disturbances. Our model results suggest that
increases in theoccurrence ofwindthrowsmayproduce
a shift in composition in CA but not in NWA.
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