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Abstract 

Recent research (e.g., Burns & Krygier, 2015; Chi & Burns, 
2022) demonstrated that people could exhibit a strong bias 
towards the smaller first digits, which is consistent with the 
pattern predicted by Benford’s law. However, this 
psychological phenomenon was predominantly observed when 
generating meaningful numbers for decision-making. We 
investigated explanations rooted in the statistical acquisition of 
distributional information and the impact of anchoring during 
number estimation. Undergraduate students were asked to 
estimate the weight, lifespan and group-size of animals after 
learning different distributions of these variables, supplied with 
an anchored value, either an average or a starting point, for 
reference. The Benford bias reasonably emerged regardless of 
the variable distribution, yet was strongly influenced by the 
anchored information. Notably, showing average values 
significantly suppressed Benford bias. These findings offered 
insights into the cognitive process of number estimation in the 
presence of statistical evidence and anchored information. 

Keywords: Benford’s law, number estimation, anchoring, 
statistical learning 

Introduction 
Decision-making and judgement under uncertainty have 

been investigated traditionally by looking for heuristics and 
biases (Tversky & Kahneman, 1974).  However other 
research has demonstrated that people’s behaviour could 
follow statistical regularities. For example, the numerical 
prediction of everyday events often aligns with accurate prior 
probabilities (e.g., Griffith & Tenenbaum, 2006). Recent 
psychological research (Burns & Krygier, 2015) has found a 
bias that is consistent with a well-established regularity 
regarding the first digits of data, Benford’s law (BL). This 
law proposes that first-digit frequencies follow a log 
distribution where digit-1 occurs 30% of the time while digit-
9 has no more than 5% occurrence (Benford, 1938). Such a 
distribution has been widely discovered to apply to datasets 
from numerous domains in naturally occurring settings, like 
finance indicators, mathematical topics, and physical 
observations. This principle regarding the first digits posits 
that in any numerical domain covering a wide range of values 
without confined limits, the leading digits of its data are 
expected to follow a logarithmic distribution that decreases 
monotonically. Hence, it has been incorporated into the 
auditing and accounting process and used for detecting 
falsified data (Miller, 2015). 

Recent studies (e.g., Burns & Krygier, 2015; Diekmann, 
2007) found that people could spontaneously generate a first-
digit bias that approximates Benford’s law when producing 
unknown numbers, such as the length of a river or national 
debt of a country. They did not find a perfect fit of human 
data to BL, with deviations like spikes at digit-5 sometimes, 
but its pattern accounts for a large amount of variance in 
human first-digit data. Such findings were extended to other 
tasks using visual stimuli, for example, estimating the 
quantities of jellybeans in a jar or dots in displays (Chi & 
Burns, 2022). In these cases, a similar trend was observed: a 
strong preference for smaller leading digits (i.e., 1, 2, 3) and 
a monotonic decline as the first digit increases, suggesting a 
Benford bias in human number production. 

Therefore, this behavioural alignment with BL, a 
phenomenon typically observed in naturally occurring data, 
has raised interesting questions. We do not expect that people 
will perfectly fit to Benford’s law, instead, we can try to 
measure the size of a Benford bias towards the first digit 
distribution suggested by Benford’s law. The existence of this 
bias leads to two questions: 1) What are the processes leading 
to Benford bias in human behaviour; 2) Can Benford bias 
help explain other phenomena of number estimation? 

Possible Explanations of Benford’s Bias 
To understand why people could have a Benford bias, 

several studies have sought to provide explanations based on 
theories of learning, speculating that individuals might have 
been exposed to this statistical pattern during their lifetime, 
given its ubiquitous presence in various datasets.  

 
Tests of the Recognition Hypothesis. Theories of statistical 
learning, well-established in the laboratory, suggest that 
people can quickly grasp statistical relationships, like 
conditional probability (Fiser & Aslin, 2002), even with 
minimal exposure. This forms the basis for the Recognition 
Hypothesis, which posits that regular exposure to data 
consistent with Benford's Law (BL) might lead to an 
unconscious sensitivity towards the statistical pattern of first 
digits. If the bias for smaller first digits is indeed a result of 
unconscious acquisition due to long-term exposure in the 
environment, this preference should extend beyond tasks of 
number generation to also include tasks where participants 
shall recognize and select the numerical answers. 
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To test the Recognition Hypothesis, Burns and Krygier 
(2015) introduced a selection task into one of their studies. 
This task presented numerical questions similar to those used 
in their generation tasks (e.g., national debt, region 
population, etc.). However, instead of generating a number as 
a response, participants were asked to choose an answer from 
nine numerical options, each with a different first digit. If 
people have Benford bias due to long-term exposure in their 
environment, the options with lower first digits should be 
selected more frequently than those with higher first digits. 
Contrary to this prediction, except for a slight elevation for 
digit-1, the relative frequencies of the first digits chosen by 
participants were close to a flat distribution. Unlike their 
number generation tasks, people appeared to have no strong 
preference for any first digits when selecting answers. 
However, it was argued that providing too many choices 
might demotivate individuals to make a rational judgment by 
exhibiting undesired behaviour (Iyengar & Lepper, 2000) 

Chi and Burns (2022) argued that a better approach might 
be to directly contrast the first digits. So, they tested the 
Recognition Hypothesis with what was considered a much 
more sensitive paradigm for a selection task by directly 
pitting a smaller and a larger FSD of a number against each 
other. For example, a forced-choice item was offered 
between 2xx and 8xx where x is a random digit. If people 
implicitly learned that the lower first digits occurred more 
frequently than the higher ones due to exposure to this pattern 
in the environment, the forced-choice selected responses 
should have strongly favoured the number with smaller first 
digits. However, again their data did not show a systematic 
difference in preferences for any first digit. 

The Benford bias, characterized by generating numbers 
with smaller leading digits, has been notably observed in 
tasks where participants generate responses to unfamiliar 
questions, such as estimating electricity consumption and 
jellybeans. In contrast, recognition tasks all show no such 
bias, with participants not displaying any differential first-
digit patterns when selecting answers. This suggests that the 
Benford bias may be a product of the process by which people 
generate responses (Burns, 2009; Chi & Burns, 2022) rather 
than the sensitivity to the first-digit patterns. Thus we believe 
the Recognition Hypothesis has to be rejected. Consequently, 
it becomes essential to explore alternative explanations for 
the Benford bias, focusing on the cognitive processing 
involved in producing estimates. 

An important implication of the lack of a Benford bias in 
selection tasks is that it shows that Benford bias arises only 
when people generate numbers. This puts important 
constraints on how it could be explained. 

 
Optimal Statistical Inferences in Everyday Prediction. 
Although previous examinations failed to support the 
Recognition hypothesis, the idea that Benford bias is due to 
sensitivity to the first-digit distribution emergent from long-
term exposure to this real-world relationship, remains 
intuitively appealing due to its alignment with other research 
on how learning statistical relationships in the environment 

can influence decision-making. A study by Griffith and 
Tenenbaum (2006) strongly supported the idea that people’s 
cognitive judgment can be explained in terms of optimal 
statistical inferences that follow prior probabilities with 
evidence from estimation in real-life scenarios. Their 
experiments captured our attention not only because the 
estimated values were collected as outcomes, but also 
because of the identical domains of the testing items used, as 
those found in Benford bias. Their questions were selected 
from familiar activities in daily life, such as the movie gross 
and run time, poem lengths, lifespan, lengths of marriages, 
and baking time for cakes. 

Griffith and Tenenbaum’s (2006) studies examined how 
humans made predictions about events by asking them to 
predict numerical outcomes based on a pre-existing 
reference, such as estimating the lifespan of a man with a 
current age of 65. The findings showed that people's 
cognitive judgments align with optimal statistical inferences 
informed by accurate prior probabilities. It appears that 
people are aware that data come from different distributions, 
and their responses agree with the appropriate prior 
distribution depending on the context. For instance, when 
estimating a person’s total lifetime, the responses were 
consistent with the use of the appropriate Gaussian prior; but, 
when predicting the total gross of a movie, the responses 
tended to follow a power-law prior.  

 
The Distribution Hypothesis. Despite the failure of the 
Recognition Hypothesis to explain the observation of 
Benford bias in first-digit distributions, people also seem 
aware of how each variable should be distributed. Such 
conjecture, combined with the mathematical proposal that BL 
shall emerge from the numbers aggregated from the variables 
following the power law (Berger & Hill, 2015; 2020), directly 
build up the basis for establishing an alternative explanation, 
the Distributional Hypothesis. 

Assuming that individuals can produce estimates 
consistent with a power law, Benford bias should emerge as 
anticipated. Given the mathematical evidence that power 
laws tend to follow Benford's law, while normally distributed 
data should not, the Distribution Hypothesis posits that the 
Benford bias arises from generating values from underlying 
distributions that follow a power law. Thus, assuming people 
can learn the distribution of variables, this makes a testable 
prediction that varying what people think the distribution of 
numbers is will affect the degree to which they fit BL. 

Using Benford Bias to Examine Anchoring 
One of the few behavioural phenomena regarding number 

estimation that has been well studied are anchoring effect 
(Kahneman and Tversky, 1974). In this phenomenon, the first 
piece of information encountered serves as an anchor or 
reference point and influences the subsequent estimates of a 
value, even if they are not related. For instance, recalling the 
last two digits of a social security number impacted the 
estimated cost for an item with an unknown value, in the  
group with higher social security numbers placed higher bids 
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than those with lower digits (Ariely et al., 2003). The effect 
has been observed across various domains, including legal 
judgment (e.g., Enough & Mussweiler, 2001), purchasing 
decisions (e.g., Mussweiler, Strack & Pfeiffer, 2000), 
predicting and negotiation (e.g., Galinsky & Mussweiler, 
2001). 

When the anchoring effect was introduced by Kahneman 
and Tversky (1974) they described it as a result of insufficient 
adjustments from the initial value offered. When individuals 
are expected to generate an estimate with limited information, 
they tend to adjust the value from the initially encountered 
anchor. However, this effortless modification is inadequate, 
leading to estimates closer to the anchor than they should be. 
While some studies using self-generated anchors supported 
this theory (e.g., Epley & Gilovich, 2001), others argued that 
it only applies when the anchor is outside a reasonable range. 
For instance, most would agree that 153 is not the likely 
answer for Mahatma Gandhi’s life expectancy, so people 
would adjust away from that number. However, when an 
anchor is within a plausible range or provided externally, the 
Anchoring-and-Adjusting model might not fully explain the 
outcome.  

An alternative theory, Selective Accessibility, derived from 
confirmatory hypothesis testing, has emerged as another 
dominant explanation (e.g., Mussweiler & Strack, 1999). 
Specifically, it posits that people evaluate the target against 
the anchor value by actively generating information that 
aligns with the idea that the anchor is a plausible targeted 
value (referred to as the Selectivity Hypothesis). When it’s 
not, they move to the next guess, yet not without examining 
all attributes of the anchor itself in the first place. This process 
of generating such information enhances its accessibility, 
thereby influencing its utilization in forming the ultimate 
absolute judgment (referred to as the Accessibility 
Hypothesis). Traditionally, it was believed that a more 
extreme anchor would produce a stronger anchoring effect, 
which is supported by both the Anchoring-and-Adjusting and 
Selective Accessibility models. However, Wegener and 
colleagues (2001) found that extremely high or low anchors 
did not produce a stronger effect than moderate anchors. 
While no single theory may fully capture the nuances of the 
anchoring effect, they collectively provide valuable insights 
into the cognitive processes associated with this bias in 
estimation. 

As discussed above, evidence of a Benford bias has been 
found in several tasks when people have to generate 
estimated numerical answers to questions they are not sure 
of. Therefore, the presence of Benford bias could be used as 
an indicator of a number generation process. This could be 
important for understanding anchoring effects because the 
Anchoring-and-Adjusting and Selective Accessibility models 
propose different processes. Selective Accessibility appears 
to suggest that anchoring is no different to any other number 
generation process, just one that is biased by the information 
associated with the anchor. Therefore, selective accessibility 
predicts that the results of anchoring tasks should show a 
strong Benford bias. In contrast, Anchoring-and-Adjusting 

proposes that anchoring tasks involve a different process to 
that used when people normally generate numerical 
estimates, a process that is tightly constrained by a specific 
number. In general, evidence for Benford’s law is less likely 
to be found when the possible answers are tightly 
constrained. Therefore, the Anchoring-and-Adjusting model 
predicts that the results of anchoring tasks should show a 
weak Benford bias. 

The Present Study 
The study presented here aimed to both test the 

Distribution Hypothesis as an explanation for Beford bias 
and, assuming that we continue to find evidence of Benford 
bias, to examine the effects of anchors on Benford bias. We 
tested the distribution hypothesis by varying the underlying 
distribution of variables participants tried to estimate, and we 
examined anchoring effects by giving near or far anchors.   

To follow the paradigm of previous studies showing 
Benford bias, our tasks continued to ask for estimates of 
factual knowledge. When assessing the reliability of the 
Distribution Hypothesis, it was essential to offer the variables 
characterised by different shapes of distributions for contrast 
to see if individuals are capable of producing and following 
them accordingly. Hence, the attributes of animals were 
chosen for their distinct distribution characteristics: animal 
weight typically follows a normal distribution (Uchmański, 
1983), lifespan is often left-skewed (Muradian, 1989), and 
group-size generally adheres to a power law (Griesser et al., 
2011).  

Similar to the standard paradigm in statistical learning 
research, prior to the testing phase, the exposure stage 
introduced the statistical data illustrating the distribution of 
each variable estimated, using human-related examples for 
clarity. A quiz was also supplied to ensure a basic 
understanding of the materials. As proposed by the 
distribution hypothesis, if individuals are sensitive to the 
underlying distribution of a variable, we expect to observe 
Benford bias when participants generate answers in response 
to questions characterised by a power law such as group-size, 
but not from Gaussian variables like weight. 

To test the effects of anchoring on Benford bias two types 
of anchors were introduced: Average and Juvenile. For the 
Average type, when participants had to make an estimate, a 
number about the average value (e.g., the mean weight of a 
Megabat) was given. We anticipated participants generating 
answers close to the average, so it was usually effectively a 
near anchor which should suppress the Benford bias. For the 
Juvenile type of anchor, we gave participants juvenile 
information (e.g., the current age of a young sea otter). Given 
that participants were asked about adult animals, this 
effectively usually was a far anchor.  

The effects of both anchored value and statistical 
regularities to answer questions do not necessarily have to be 
mutually exclusive. Each direction of tests simply offers a 
unique viewpoint that highlights a possible mechanism when 
making reasonable estimates. The task of Animal Estimation 
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in this experiment was a 3 (variables: weight vs. lifespan vs. 
group-size) × 2 (anchors: average vs. juvenile) mixed design. 

Methods 

Participants 
236 first-year psychology students with an average age of 

20.17 (SD = 2.335) provided valid responses. Most 
participants identified as female (65.68%), while males 
accounted for about 33.05%. The two most common native 
languages were English (46.61%) and Chinese (38.14%). 

Procedure and materials 
Each participant completed 27 estimation items in the task 

of Animal Estimation, which involves two stages. During the 
exposure phase, participants were introduced to visual 
examples representing three different statistical distributions, 
accompanied by thorough explanations to ensure 
comprehension of distribution concepts. These examples 
utilised human-related data, illustrating a normal distribution 
through human birth weight, a left-skewed distribution via 
female life expectancy, and a power law distribution through 
the size of WhatsApp groups. This was followed by a 
manipulation check with six quiz questions to ensure a basic 
level of understanding.  

 
 

  
 

Figure 1: Example of questions including average anchors 
for the sea otter in Picture A about its weight, lifespan, and 

group-size. Also shown are the four images depicting 
animals of various sizes and age groups used for this 

specific animal. Nine wild animals were selected: sea otters, 
Atlantic herrings, cape buffalo, red-winged blackbirds, 

bottlenose dolphins, plains garter snakes, Atlantic horseshoe 
crabs, Megabats, and greater flamingos. 

 

In the subsequent testing phase, participants were 
presented with images of nine animals and asked to estimate 
for each their weight, lifespan, and group-size. However, they 
were randomly assigned to a question version containing an 
anchor related to either the average or the juvenile data. In the 
average anchor group, four distinct images were prepared for 
each animal, each depicting the animal at different sizes and 
ages. Among these, one image (labelled as A, B, C, or D) was 

randomly assigned to be presented to a participant (see Figure 
1) showing average values. Those in the juvenile group were 
asked to predict the animal’s mature weight, total lifespan, 
and final group-size based on a starting point given for each 
variable (see Figure 2). The first digits of anchored data for 
each variable were uniformly distributed. 
 

 
 
 

 
 

 
 
Figure 2: This is an example of questions including juvenile 
information regarding a young megabat’s weight, lifespan, 

and group-size. 

Results 
Standard methods for testing goodness of fit, such as the 

chi-square (χ²) test, provided a way to determine whether the 
datasets conform to a hypothetical model or not. However, in 
our study, we aimed to quantify the degree of fit rather than 
just obtaining a binary answer of yes or no. This was achieved 
by calculating the eta-squared (η²) for the digit liner contrast 
weighted according to the proportions specified by BL. 
Having an η² measures how much variances can be explained 
by Benford’s proportions, with a larger size indicating a 
stronger fit to the expected model.  

A three-way interaction was found between the first digits, 
variables asked and anchor types, as indicated by the contrast 
analysis weighted by the proportions of BL, F(1,169)= 7.462, 
p= .007, η² =.042. Additionally, a main effect of anchor type 
on the first-digit distribution was reported, F(1,169) = 
198.728, p< .001, η² = .54. Therefore, the following sections 
separately discussed the first-digit pattern observed for 
average and juvenile conditions. 

 
First-digit Patterns When Given Juvenile Anchors 

In the group where participants were given juvenile 
information, the first-digit distribution of the estimates for 
three variables asked visually displayed a reasonable 
monotonic decline (see Figure 3). The test of within-subject 
contrasts weighted by the proportions of BL indicated that the 
variances of estimates in three rounds were all reasonably 
explained by Benford’s proportions (Weight: η² = .767; 
Lifespan: η² = .734; Group-size 3: η² = .584). It also reported 
a significant interaction between the variable questioned and 
the first digits, F(1,64) = 4.482, p = .038, η² = .065. 
Fluctuations were observed at digit-1, 2 and 8. Digit-5 was 
consistently elevated. Nevertheless, a strong Benford bias 

It is a picture of a juvenile Megabat. 
Please give an estimate to the questions 
below: 
 
If the weight of this young Megabat is 750 
g, please estimate its weight once it 
matures.________ (g) 
 
If this young Megabat has been living for 
4,500 days, please estimate its total 
lifespan. ________ (days) 
 
If 8,500 Megabats were observed at a 
point of time during their gathering in the 
wild, please estimate the final group size. 

Here is a series of pictures of a Sea Otter. 
Please generate the estimates to Picture 
A only: 
 
 
If the average weight of the Sea Otter is 
25,000 g, please estimate the weight for 
this Sea Otter.  ________ (g) 
 
If the average lifespan of the Sea Otter is 
4,500 days, please estimate the lifespan 
for this Sea Otter.  ______(days) 
 
If the average group size of the Sea 
Otters in the wild is 250, please estimate 
the group size for this Sea Otter. 
________  
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was consistently present across all three variables. Contrary 
to expectations, Benford bias was not disrupted as a result of 
introducing a Gaussian variable. 
 

 
 

Figure 3: The first-digit proportions of the estimates in 
response to three types of variables questioned with Juvenile 

anchors, compared to BL. 
 
 
First-digit Patterns When Given Average Anchors 

 Contrary to the pattern of data for juvenile anchors, when 
an average anchor was offered the first-digit distribution 
largely deviated from a monotonic decline (see Figure 4). The 
contrast analysis showed that the BL accounted for only a 
small portion of the variances for the three variables (weight: 
η²= .081, lifespan: η²= .297, group-size: η²= .18). The first-
digit patterns were not significantly different from each other 
reported by the within-subject contrast analysis weighted by 
the proportions of BL, F(1,105) = .203, p =.653. Unlike the 
juvenile group, it lacked clear evidence to support the 
presence of a Benford bias when showing an average anchor. 
 

 
 

Figure 4: The first-digit proportions of the estimates in 
response to three types of variables questioned with 

Average anchors, compared to BL. 

Analysis of Estimated Values 
The distribution of the estimated values was assessed to see 

if people were capable of following the underlying 
distributions of the variables. In the case where participants 
provided estimates based on juvenile anchors, none of the 
distributions for the estimated answers conformed to 
normality. All twenty-seven distributions (3 variables × 9 
animals) exhibited strong positive skewness based on a 
normality test. In contrast, normal distributions were more 
frequently detected in the group provided with average 
anchors. Five specific patterns of estimates, the group-size of 
herrings, the lifespan of blackbirds, the weight of dolphins, 
the lifespan of snakes, and both the age and group-size of 
crabs, were found to be closely normally distributed. Their 
skewness values fell within the -1 to 1 range, meeting the 
criteria for approximate normal distributions defined by Hair 
et al. (2022). Some estimates were even found to be 
negatively skewed, such as the estimates for the group-size 
of Garter snakes. It seems that the type of variable being 
estimated did not systematically affect the underlying 
distribution of the numerical responses; however, the nature 
of the anchored data provided did have an impact.  

We also assessed the influence of anchors by measuring the 
differences between the mean estimated values and reference 
values provided. The group that received the average anchors 
showed that most estimated weights were not statistically 
different from the average data in the question. The data 
suggested that approximately 55.4% of the weight estimates, 
69.9% of the lifespan estimates, and 65.9% of the group-size 
estimates were generated within 10% differences of the 
average anchor values provided in the questions. This implies 
that people are more likely to make minor adjustments when 
the average value is known. However, the group with juvenile 
anchors produced estimates that largely deviated from the 
starting point values offered in the questions, demonstrating 
a completely different estimation pattern. Our data 
additionally showed that, in the juvenile group, about 56.3% 
of the weight estimates, 64.7% of the lifespan estimates, and 
47.8% of the group-size estimates were more than double the 
starting point value. More specifically, over a third of the 
estimates were a direct result of multiplying the starting value 
(e.g., 750) or the first digit of the starting value (e.g., 700) 
provided in the question by an integer, such as 2, 3, 4 or 10. 

Discussion 
Testing the Distribution Hypothesis  

Unlike what we expected due to previous studies (e.g., 
Griffith & Tenenbaum, 2006; Lewandowsky, Griffiths & 
Kalish, 2009) which indicated that predictions are informed 
by accurate prior probabilities, our data did not show 
significant differences in the first-digit pattern across 
different variables with different distributions. The results 
indicated that even when participants were explicitly 
informed about the underlying distributions, they might not 
be influenced by those statistical relationships when solving 
unknown questions. For example, most estimated weights in 
our sample deviated strongly from a typical bell curve when 
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they were supposed to be a Gaussian variable. Thus, the 
evidence collected so far challenged the utility of the 
Distribution Hypothesis’s emphasis on sensitivity to the 
distributions of the estimated variables for explaining 
Benford bias, at least at the aggregated level. 

Nevertheless, the absence of adherence to certain 
regularities does not necessarily mean participants had failed 
to utilize the knowledge they were given. There might be a 
gap between knowing and applying, an area still under-
explored in Psychology. Examples of probability learning, 
focusing on behavioural changes over time, suggested that 
the different strategies used by adults and children in 
transitioning from probability matching to maximising 
rewards were a result of choices rather than the knowledge of 
associations (Plate, Shutts, Green & Pollak, 2018). 
Sensitivity to underlying distributions was often reported 
from responses estimated for everyday activities, like baking 
times (Griffiths & Tenenbaum, 2006). However, anomalies 
were also detected in highly unfamiliar situations, such as in 
predictions about pharaohs’ reigns, where people’s 
predictions failed to follow Bayesian calculations based on 
optimal statistical judgment. The questions asked in our study 
such as the weight or lifespan of wild animals may not be 
easily answered based on daily experiences, hence such 
deviation from the expected distribution might additionally 
offer insights into understanding the constraints of the utility 
of people’s sensitivity to accurate prior probabilities. 
The Effects of Anchors on Benford bias 

The animal estimation task involved asking participants 
factual questions about variables like the weight and group-
size of animals. While learning about the distributions of 
these variables showed limited impact, the type of anchor 
used significantly influenced estimation behaviours. From 
examining the first-digit patterns of estimated numbers of 
participants given juvenile anchors we found evidence of a 
strong Benford bias, whereas for the group given average 
anchors we did not. This suggests that the type of anchor can 
disrupt the Benford bias by altering the cognitive process of 
number generation. 

In line with the expectations proposed in Anchoring and 
Adjusting (Kahneman & Tversky, 1974), the use of average 
anchors as references was supposed to constrain the range of 
plausible answers, which ultimately suppresses the 
emergence of Benford bias. In contrast, showing juvenile 
anchors appears to lead to the same sort of number generation 
process we saw in Burns & Krygier (2015) when no anchor 
was presented.  

A previous analysis of this data set that examined full-
number responses further revealed that most mean estimates 
closely aligned with the average anchors, while estimates in 
the juvenile group often exceeded the starting point by 
significant multiples. This pattern suggests that individuals 
adjust their estimation strategies based on the available 
information, often using multiplication for projections from a 
known starting point and addition or subtraction for average-
based estimations. Such behavioural shifts indicate that 
cognitive judgment heavily relies on anchored information, 

with distribution expectations being primed by the type of 
anchors presented. For instance, an average score is often 
associated with a normal distribution, while a starting point 
typically suggests a growth pattern following a power law. 
Stereotypical reasoning about measures of central tendency 
is widespread among students from primary to tertiary 
education (Ismail & Chan, 2015). These stereotypes often 
align with everyday assumptions, such as the notion that an 
average score is its midpoint (Mokros & Russell, 1995), 
which may not always be true. 

This reliance on anchored information in reasoning implies 
that people tend to favour mental shortcuts over newly 
acquired factual evidence, especially in uncertain situations. 
Even participants who passed our quiz and demonstrated a 
basic understanding of variable distributions often resorted to 
solutions based on assumptions drawn from specific anchor 
types. Whether consciously or unconsciously, they 
disregarded the factual information presented, showing a 
preference for a simple adjustment based on the anchors for 
judgment. This suggests that overriding established norms in 
response to general knowledge questions is challenging, even 
when explicit factual information is presented. Such an 
approach might be a practical means of navigating 
uncertainty, akin to representative bias or base-rate neglect 
(Kahneman & Tversky, 1972). 

It could be pointed out that many studies of anchoring 
effects use arbitrary anchors, which our study did not. 
Whereas arbitrary anchors can produce impressive anchoring 
effects, their usefulness in explaining anchoring depends on 
the assumption that they invoke the same cognitive processes 
as nonarbitrary anchors. Thus both arbitrary and nonarbitrary 
anchors have a role in exploring the phenomenon. 
Conclusions 

In summary, the unexpected results in the test of sensitivity 
to the underlying distribution of variables pointed out that 
further research is needed to fully capture the constraints of 
statistical learning. Our study also found that specific 
anchored information could disrupt the Benford bias by 
altering the cognitive process in number estimation. This 
finding potentially extends our understanding of the 
anchoring effect and its underlying mechanisms regarding the 
adjustment. To the extent that a strong Benford bias indicates 
a number estimation process, our results suggest that far 
anchors induce general number estimation processes whereas 
near anchors induce a different process, plausibly adjustment. 
Future studies could attempt to offer questions related to 
everyday activities to examine the Distribution hypothesis in 
familiar situations. Nonarbitrary anchors could also be 
supplied for contrast to see if it makes a difference when 
examining the impact of the anchoring effect on Benford 
bias. 
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