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Deep Compressed Imaging via Optimized-Pattern Scanning

KANGNING ZHANG1, JUNJIE HU1, WEIJIAN YANG1,*

1Department of Electrical and Computer Engineering, University of California, Davis, CA 95616,
USA

Abstract

The need for high-speed imaging in applications such as biomedicine, surveillance and consumer

electronics has called for new developments of imaging systems. While the industrial effort

continuously pushes the advance of silicon focal plane array image sensors, imaging through a

single-pixel detector has gained significant interests thanks to the development of computational

algorithms. Here, we present a new imaging modality, Deep Compressed Imaging via Optimized-

Pattern Scanning (DeCIOPS), which can significantly increase the acquisition speed for a single-

detector-based imaging system. We project and scan an illumination pattern across the object and

collect the sampling signal with a single-pixel detector. We develop an innovative end-to-end

optimized auto-encoder, using a deep neural network and compressed sensing algorithm, to

optimize the illumination pattern, which allows us to reconstruct faithfully the image from a small

number of samples, and with a high frame rate. Compared with the conventional switching-mask

based single-pixel camera and point scanning imaging systems, our method achieves a much

higher imaging speed, while retaining a similar imaging quality. We experimentally validated this

imaging modality in the settings of both continuous-wave (CW) illumination and pulsed light

illumination and showed high-quality image reconstructions with a high compressed sampling

rate. This new compressed sensing modality could be widely applied in different imaging systems,

enabling new applications which require high imaging speed.

1. INTRODUCTION

High-speed imaging has become more and more crucial in many new applications, such as

in biomedicine, surveillance, and consumer electronics. There are two roadmaps for high-

speed optical imaging: engineering a faster focal plane array image sensor and developing

new imaging modalities using a single-pixel detector. Although intense industrial efforts

have been made, high-speed and low-noise silicon focal plane array cameras are still

expensive. Furthermore, imaging at wavelengths outside the silicon sensitivity spectrum can

make the focal plane array cameras considerably more complicated [1]. In contrast, imaging

through a single-pixel detector, which shrinks a photodetector array down to a single unit

[2–9], can enormously reduce the cost and offer additional features such as reduced pixel

crosstalk. A popular imaging modality of single-pixel detector is based on point scanning

[5–9] (Fig. 1a), for example, the laser-scanning microscopes that are commonly used in

* wejyang@ucdavis.edu .

Disclosures. The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
Photonics Res. Author manuscript; available in PMC 2021 September 15.

Published in final edited form as:
Photonics Res. 2021 March 01; 9(3): B57–B70. doi:10.1364/prj.410556.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biomedicine [5–8]. However, such methods are speed limited due to the point-by-point data

acquisition. Another approach with single-pixel detector relies on compressed sensing (CS)

[10–12], represented by the switching-mask based single-pixel cameras [2–4] (Fig. 1b).

There, the images are encoded by a series of spatially well-designed sampling patterns. For

each pattern, all pixels across the entire image are summed and collected by the detector.

Leveraging the general prior knowledge of sparsity in images, CS is used to reconstruct the

image through a small number of measurements [2–4, 13, 14]. Although the sampling rate

can be below the Nyquist criterion, the imaging frame rate is limited by how fast the

sampling pattern can be switched and cycled, which is typically conducted by a digital

micromirror device (DMD) [15] and operates <22.7 kHz. Using LED array to generate the

pattern could increase the overall speed, but so far only 32×32 pixel images have been

demonstrated [16] and it may be expensive to scale up. It does not allow passive light

illumination (i.e. structured detection) either.

In this paper, we propose and demonstrate a deep compressed sensing modality, which can

significantly increase the imaging speed while preserving a high reconstruction quality. This

approach combines the strength of both compressed sensing and point-scanning imaging,

and we term it Deep Compressed Imaging via Optimized-Pattern Scanning (DeCIOPS).

Instead of projecting multiple binary patterns onto the entire object sequentially, we utilize

only one gray-scale optimized pattern and project it to a small subset of the object. We then

scan the pattern across the object by using fast scanning mirrors and collect the signal

convolutionally using a single-pixel detector (Fig. 1c). Compared with the conventional

single-pixel camera which relies on sequentially switching the sampling pattern on a DMD,

our scanning approach significantly increases the sampling speed. Compared with the point-

scanning system, our method samples a much larger portion of the object at once and

recover the resolution computationally. This allows a great reduction of the sampling

number and thus increases the frame rate. We note that the improvement of imaging speed

does not require an increase of light energy. In fact, the required light dosage in our method

is smaller than the conventional point-scanning system due to a reduced number of

measurements. We build an auto-encoder framework [17] to optimize the sampling pattern.

The image acquisition system is treated as an encoder, where the high-resolution object is

encoded through the sampling pattern into a few measurements. We then formulate an ISTA-

Net [18], a CS-induced neural network inspired by the Iterative Shrinkage-Thresholding

Algorithm (ISTA) [19], as a decoder to reconstruct the image. This auto-encoder is trained in

an end-to-end fashion. Such a framework can learn an optimized sampling pattern and

simultaneously recover a high-resolution image by extracting the feature of sparsity and

searching the optimal pair of encoder and decoder with the lowest incoherence [11], which

is one key feature of DeCIOPS versus other compressed sensing or deep learning-based

super-resolution imaging modalities [20–23]. This new imaging modality can be accustomed

to any light scanning imaging system and will greatly benefit the high-throughput imaging

applications.

This paper is organized as below. In Section 2, we introduce the mechanisms of the imaging

modality in two configurations of illuminations – continuous-wave (CW) and pulsed light

source, as well as the auto-encoder framework and the deep compressed sensing neural

network for optimizing the imaging and reconstruction. In Section 3 and Section 4, we show
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the simulation results and experimental results. In Section 5, we discuss the system

performance under different signal-to-noise ratio and compression ratio, and how DeCIOPS

can be applied in two-photon microscopy and passive lighting condition.

2. PRINCIPLE

A. Image formation

In DeCIOPS, an illumination pattern is generated through a mask, and is scanned across the

object by using a set of scanning mirrors. The detector records a subsample of the 2D

convolution between the pattern and the object (Fig. 2). Similar to any point-scanning

imaging system, DeCIOPS can use either CW or pulsed light sources. The former is

commonly used in imaging systems, whereas the latter is specialized for nonlinear

microscopy. When a CW light source or high-repetition-rate pulsed light source is used, the

detector continuously integrates the signal as the pattern scans. Hence, in DeCIOPS, we

project a rectangle-shape pattern to the object. By finely adjusting the integration time, each

acquisition measures a square subset of the object with a desired resolution (Fig. 2c). In case

of a low-repetition-rate pulsed light source, the sampling time stamps of the detector is

synchronized with the pulse train, and a square-shape pattern is projected to the object. By

matching the spatial sampling step with the size of the pattern, the entire object is sampled

appropriately (Fig. 2d).

Mathematically, in low-repetition-rate pulsed light illumination, the image formation of

DeCIOPS can be expressed as

b = f n × n x ∗ g , (1)

where x is the object, g is a square shape illumination pattern, * represents the 2D

convolution, f n×n(·) models the n × n undersampling, and b is the measured image. Here, we

assume that the mask has a size of n × n pixels. In the particular case where g is a uniform

mask g1 (Fig. 2d, left), Eq. (1) is equivalent to a naïve undersampling by unweighted

averaging every n × n pixels of the full resolution image (Fig. 2a) acquired in single-point

scanning. As discussed in Section 2.B, g can be optimized to achieve the best image

reconstruction performance (Fig. 2d, right).

In the CW light or high-repetition-rate pulsed light illumination case, where the detector

continuously integrates the signal, we configure the illumination pattern in a size of n × 1

pixels. When this pattern sweeps n columns, the information of n × n pixels is integrated into

a single measurement (Fig. 2c). We can use the same mathematical formulation as Eq. (1) to

model the image formation, where each column in the n × n mask g is identical.

B. End-to-end optimized auto-encoder framework

In DeCIOPS, we build an auto-encoder framework to simultaneously learn the optimized

mask pattern and a neural network for image reconstruction (Fig. 3). The encoder block

models the image formation through the following expression:
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b+ = f n × n x ∗ g + ϵ = F x + ϵ = Φx + ϵ, (2)

where F is an operator and Φ is the linear transfer matrix, both equivalent to the subsampled

convolution with the mask g in Eq. (1), ϵ is the additive noise inherent in the imaging

system, and b+ is the measured mask-encoded image.

The decoder takes b+ as the input and aims to reconstruct the original object x, by solving

the following convex optimization problem with a constraint of the sparse representation of

x:

argmin
x

1
2 Φx − b+

2
2 + λ Ψ x 1, (3)

where Ψ(x) denotes a transform of x into a sparse representation under the basis of Ψ, and λ
is a hyperparameter.

The solution of the problem in Eq. (3) can be initialized by calculating the pseudo-inverse of

the encoder from the measurement b+. We then use the ISTA algorithm [19] to find an

optimized solution of x by iterating the following two steps:

r k = x k − 1 − ρΦT Φx k − 1 − b+ , (4)

x k = argmin
x

1
2 x − r k

2
2 + λ Ψ x 1, (5)

where k denotes the kth ISTA iteration step and ρ is the step size.

As Ψ is predefined empirically and may not be suitable for the data, we adopt ISTA-Net

algorithm [18] which can learn Ψ through the data. In ISTA-Net, Ψ is replaced with a

trainable neural network ℱ · , and the optimization problem in Eq. (3) can be rephrased

into the following L1-norm regularization problem with a nonlinear transform ℱ

argmin
x

1
2 Φx − b+

2
2 + λ ℱ x 1 . (6)

The kth iteration step in the original ISTA algorithm is replaced by a series of symmetric

learnable parameters in the kth ISTA-Net phase:

ℱ x k = so f t ℱ r k , θ , (7)

x k = ℱ−1 so f t ℱ r k , θ , (8)
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where θ is a learnable parameter in the kth module, ℱ−1 ·  is the inverse of ℱ · , and

Soft(·) represents soft shrinkage threshold. Finally, we obtain the output of the decoder xN

after a total number of N ISTA-Net phases.

The loss function of ISTA-Net is obtained by calculating the mean-square-error (MSE)

between the output and the ground truth with the constraint of ℱ−1 ∘ ℱ = I as both ℱ−1 and

ℱ are learnable and symmetric, where I is the identity operator. As a result, we have the

following loss function with the symmetry constraint:

Ltotal = Lerror + γLconstraint

= x N − x 2
2 + γ ∑

k = 1

N
ℱ−1 k ℱ k x − x 2

2
, (9)

where γ is the weight of the symmetry constraint.

3. SIMULATION RESULTS

We trained the auto-encoder using 1500 samples of natural scenes (2D grey-scale image,

256 × 256 pixel size) from ImageNet [24], and validated the model with 79 samples from

two widely used benchmark datasets: Set11 [25] and BSD68 [26]. As an illustration, we

chose an undersampling rate of 6.25% (4 × 4 undersampling), and initialized the pattern g as

a 4 × 4 normalized random Gaussian matrix. γ was set to be 0.01 in the loss function,

accompanied by Adam optimization with a learning rate of 1 ×10−4. We included additive

noises in the measurement (5~10% of the signal strength). The training was performed on a

GPU RTX2080Ti 11GB. The training work of N=9 ISTA-Net phases takes ~5 hours for 200

epochs with a batch size of 5. We trained two independent auto-encoders, one with a

constraint on g so each column of g is identical (CW light or high-repetition-rate pulsed light

illumination), and one without such a constraint (low-repetition-rate pulsed light

illumination). The reconstruction results are evaluated in terms of Peak Signal-to-Noise

Ratio (PSNR) and spatial resolution by using Fourier ring correlation [27] in the validation

dataset. As a control measure, we compared the reconstruction performance of the optimized

pattern (Fig. 2c–d, right) with a random pattern, and two naïve undersampling schemes of

the full resolution image either through an unweighted averaging of 4 × 4 pixels (equivalent

to the uniform pattern, Fig. 2c–d, left) or a simple dropout (i.e. pick one pixel in every 4 × 4

and drop out the others, Fig. 2b). All the simulation groups employ an independently trained

ISTA-Net for image reconstruction. In addition, we also used a B-spline interpolation [28] to

reconstruct the image undersampled through simple dropout.

We compared the measurements and their corresponding reconstruction results for various

schemes (Fig. 4). In all cases, the reconstructed results can resolve higher resolution features

than the raw measurement. In the undersampling through simple dropout (Fig. 4a), ISTA-

Net shows better performance than the interpolation. These results demonstrate the

effectiveness of ISTA-Net. As the undersampling through dropout (Fig. 4a) misses a
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substantial amount of information in the original object, its reconstruction result is expected

to be the worst. Comparing the undersampling through the uniform pattern (Fig. 4b) and the

optimized pattern (Fig. 4c–d), we find that the optimized pattern cases show reconstruction

results with sharper edges. We reason this as the optimized pattern balances both the high-

frequency and low-frequency components of the original object during sampling; whereas

the uniform pattern performs a lowpass filtering such that the high-frequency component is

lost before reconstructed by the decoder. Indeed, when comparing the quantitative results of

the PSNR (Fig. 4e) and the resolution of the reconstructed image through Fourier ring

correlation (Fig. 4f), we find the optimized pattern case shows the best performance. It is

important to note that the optimized pattern also outperforms the exemplary random pattern

(Fig. 4c–d) for both PSNR and resolution. This verifies the effectiveness of our end-to-end

optimized auto-encoder framework. We also note that the optimized mask without

constraints of identical column show a better performance in resolution than the one with

constrains, though their PSNR does not show significant difference.

4. EXPERIMENTAL RESULTS

To validate the numerical simulation results, we built an imaging system for DeCIOPS (Fig.

5, more details in Appendix 1). Here, we used a DMD to generate the light pattern as it

offers a great flexibility in comparing the performance between different patterns. In

general, as DeCIOPS requires only one illumination pattern, a fixed pattern mask can be

used. To generate a gray-scale mask from the DMD binary pixels, we binned 32 × 32 pixels

in the DMD into a super-pixel which could provide up to 1025 gray-scale levels. A total of 4

× 4 super-pixels were programmed to generate the optimized mask pattern. A 520 nm diode

CW laser source was expanded in beam size and collimated to illuminate the mask pattern

on the DMD. The spatially encoded light then passed a 4f system composed of a tube lens

and objective lens to reduce its beam size. The light pattern was then raster scanned across

the sample through an optically coupled resonant-galvo scanner set. We used a

photolithography mask as the sample. The light transmitting through the sample was then

collected by a photodetector through a collection lens. While we built this transmission-

based imaging system for simplicity, we could turn it into a reflection-based system through

a beam splitter in front of the sample. We used ScanImage [29] as control software for data

acquisition. By adding another 4f system composed of cylindrical lenses right after the

objective lens, we could turn the 4 × 4 size pattern into 4 × 1 size (Appendix 1.A). Thus, we

could use the same setup to validate the different sampling schemes.

As the optical mode from the diode laser did not have uniform intensity and the pattern

could be corrupted by laser interference, we calibrated the DMD to ensure the illumination

pattern on the sample plane matched well with the design (Appendix 1.C). While our

imaging system is naturally a CW light imaging system, we could also mimic the pulsed

light source condition through an additional digital sampling step after the image acquisition

(Appendix 1.E).
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A. Reconstruction results with a CW light source

We evaluated the experimental results in the naturally CW light source setting with the 4 × 1

pattern mask. We compared the reconstruction results across the four undersampling

schemes: simple dropout, the uniform illumination pattern, an exemplary random

illumination pattern, and the optimized illumination pattern for various samples (Fig. 6). The

ground truth images were obtained by the high-resolution point-scanning approach. Though

at an undersampling rate of 6.25%, all reconstructed results through ISTA-Net show a

significant improvement from the raw measurement where high-resolution features are

better resolved. Comparing between different illumination patterns, we notice more details

on the edges of the reconstructed images in the optimized-pattern illumination cases (Fig.

6a–d). Using the metric of PSNR (Fig. 6e) and spatial resolution (Fig. 6f), we find that

DeCIOPS outperforms the simple dropout, the uniform illumination pattern and the random

illumination pattern with an average of 2.41 dB, 1.82 dB and 1.73 dB improvement in

PSNR, and an average of 18.9%, 14.0% and 11.6% improvement on spatial resolution

respectively.

B. Reconstruction results with a low-repetition-rate pulsed light source

Using the same experimental setup and CW light source, we preprocess the acquired data

through a digital undersampling process (Appendix 1.E) so the results mimic that acquired

by using a low-repetition-rate pulsed light source (Fig. 7). As the integration time of each

measured pixel is reduced, the raw measurements have a lower signal-to-noise ratio (SNR)

compared with the CW light source setting. Nevertheless, the reconstruction results show a

greatly improved quality. On average, the PSNR of the reconstructed images using the

optimized illumination pattern shows an improvement of 1.73 dB, 1.41 dB and 0.64 dB

when they are compared with the simple dropout, uniform illumination pattern and the

exemplary random illumination pattern, respectively. The improvement in the spatial

resolution in the optimized illumination pattern against the simple dropout, the uniform and

the random illumination pattern is 14.06%, 10.33% and 7.95%, respectively. Compared with

the CW light source setting, the performance improvement of the optimized illumination

pattern is reduced because of a reduced SNR in the raw measurement in the low-repetition-

rate pulsed light source setting. In the Session 5.A, we further discuss how the SNR

influences the reconstructed results.

5. DISCUSSION

A. The influence of SNR on image reconstruction

In this section, we study the influence of SNR of the raw measurement on the PSNR and

pixel resolution of the reconstruction (Fig. 8). We performed simulations by adding different

noise levels in the measurement. For each SNR level, we trained the DeCIOPS

independently. As expected, both the PSNR and pixel resolution of the reconstruction

improve as the SNR increases and saturates at a high SNR. Compared with the naïve

undersampling through simple dropout (blue curve, Fig. 8) and unweighted average (green

curve, Fig. 8), the performance of the optimized illumination pattern (red curve, Fig. 8) has a

larger improvement in the PSNR and pixel resolution as SNR increases. This phenomenon

emphasizes the advantage of the DeCIOPS, where the optimal encoder and the decoder are
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able to match each other better than other independent untrained encoders. As the noise

reduces in the raw measurement (i.e. increasing SNR), the network tends to pay more

attention on the reconstruction rather than denoising. As a result, the performance difference

among different illumination patterns increase.

B. Compressed ratio and size of the optimized pattern

In the above simulations and experiments, we set the illumination pattern size such that each

pixel in the original high-resolution object is measured only once during the scanning. We

term this as the matching condition between the pattern and undersampling rate. Here, for

each specific undersampling rate, we simulated the PSNR of the reconstructed images

versus the size of the illumination pattern (Fig. 9). We notice that DeCIOPS generates the

best reconstruction results when the size of the pattern matches to the two-dimensional

undersampling rate, where the imaging modality in the encoder is a linear orthonormal

transform algebraically. When the size of the pattern is smaller than that of the matching

condition, there appears a sharp drop in the reconstruction performance. This is attributed to

the permanent information loss from the unsampled pixels in between the adjacent

measurements, such that the sensing basis ΦT in Eq. (2) forms a singular transform matrix

and thus degrades the quality of reconstruction. When the size of the pattern is larger than

that of the matching condition, the sensing basis ΦT becomes less column orthonormal,

resulting in a less accurate reconstruction under the CS framework and thus a drop of the

PSNR in the reconstructed images.

C. Optimized pattern versus random pattern

In the conventional switching-mask based single pixel camera, random mask is one of the

commonly used sampling basis as it is incoherent with the spatial property of the sample.

We found the same in the pattern scanning scheme: the random pattern shows a superior

performance compared with the uniformed pattern. However, the optimized pattern, found

by the auto-encoder through the end-to-end optimization, outperforms the random pattern.

This is expected as random pattern attained by Monte Carlo method is independent to the

dataset of specific task unlike the optimized pattern. Furthermore, the performance

improvement of the optimized pattern over the random pattern increases when the

measurements are more highly undersampled, as seen in the comparison between 6.25% (4

× 4 pattern) and 1.5625% (8 × 8 pattern) (Table 1). This is attributed by more trainable

parameters in case of the optimized pattern and more uncertain random variables in case of

the random pattern.

D. Comparison with conventional switching-mask based single-pixel camera

As both DeCIOPS and the conventional switching-mask based single-pixel camera (Fig. 1b)

leverages compressed sensing, we expect their reconstruction quality is similar at the same

undersampling rate. Indeed, the one-way ANOVA test shows no significant difference for

PSNR and pixel resolution in the reconstructed images between these two approaches, for

both simulation and experiment (Fig. 10, Table 2, 256 × 256 pixels high-resolution objects,

6.25% undersampling rate, ISTA-Net reconstruction framework for both DeCIOPS and

switching-mask based single-pixel camera). However, DeCIOPS has a much faster

acquisition speed. To image a high-resolution object with 256 × 256 pixels, DeCIOPS
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acquires 64 × 64 measurements at an undersampling rate of 6.25%. By using a scanning

system with an 8 kHz resonant scanner, the acquisition time is 4 ms. In the conventional

switching-mask based single-pixel camera, at the same undersampling rate, it takes 180 ms

to cycle 64 × 64 = patterns using a 22.7 kHz high-speed DMD, without considering the

integration time of the detector. Thus, the image speed of our method is orders of magnitude

faster than the conventional compressed sensing approach using a single-pixel camera.

E. Advantage of ISTA-Net in image reconstruction

In DeCIOPS, we apply ISTA-Net as the decoder. ISTA-Net is a CS-induced neural network.

Compared with the conventional optimization algorithms where the regularization term is

designed empirically, ISTA-Net is entirely data-driven and can learn an optimized

regularization through the neural network. Compared with other neural networks that could

be used for super-resolution, such as U-Net [30, 31] and Densely Connected Super-

Resolution Network (DCSRN) [32, 33], the embedded CS algorithm in ISTA-Net fits better

in the motivation of DeCIOPS and other compressed sensing framework, i.e. performing

fewer measurements while being able to reconstruct high resolution image. Indeed, when we

compare the PSNR and pixel resolution of the reconstructed images across ISTA-Net, U-Net

and DCSRN, ISTA-Net shows the best performance (Appendix 2). In addition to DeCIOPS,

we believe ISTA-Net could also benefit other applications such as denoise [34], fast

Magnetic Resonance Imaging (MRI) [35], and other super-resolution imaging modalities

[18].

F. Advantage of end-to-end optimized auto-encoder and its application in future imaging
systems

In most existing optical imaging modalities, the image formation is empirically designed and

optimized, and the deconvolution or object reconstruction algorithm is subsequently tailored

to the image formation process. The recent development of low-cost, advanced micro-optics

manufacturing techniques such as 3D printing and micro-nano-fabrication [36–40] allows

rapid prototyping of user-designed optical elements, which opens new opportunities to

redesign the image formation process that best fits the specific applications. Instead of

sequentially designing the image formation and the reconstruction algorithm, their joint end-

to-end optimization produces a global optimal solution [41–43], which is the underlying

principle of DeCIOPS. We use an auto-encoder to model the image formation and

reconstruction within a single framework and perform an end-to-end training to optimize the

sampling pattern and ISTA-Net simultaneously. Our results show the optimized sampling

pattern indeed results in the best overall performance. Such an end-to-end training and data-

driven approach prevents any empirical bias that may negatively impact the design. We

envision that such an approach will enable many challenging applications such as super-

resolution imaging [23, 42–46], 3D imaging [41, 47–49], and high-speed computational

camera [50–52].

G. Applicability in two-photon microscopy

While our imaging system used a CW light source, we mimicked the experimental condition

of a pulsed light source and successfully demonstrated the applicability and excellent

performance of DeCIOPS. This opens a new avenue to apply DeCIOPS in two-photon
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microscopy. In conventional two-photon microscopes [5, 7, 8], the image is acquired through

pixel-by-pixel point scanning. While this enables deep tissue imaging as it resists light

scattering, it reduces the imaging speed. Recently, there have been multiple reports applying

compressed sensing in two-photon microscopy, with the same approach in the conventional

switching-mask based single-pixel camera [53–55]. However, the improvement on the

imaging speed is limited due to the low switching speed of DMD. When applying DeCIOPS

in two-photon microscopy, we expect that our approach will significantly increase the

imaging speed and will notably benefit functional imaging through two-photon microscopy.

H. Passive light illumination

In our experiment, DeCIOPS is implemented using active light illumination (i.e. structured

illumination), which is commonly used in biomedical imaging. In other imaging systems,

passive light illumination may be preferred. In fact, any passive light illumination wide-field

imaging using a focal plane array (i.e. camera) can be converted to DeCIOPS (Appendix 3).

A scanner can be added to the passive wide-field imaging to scan the entire image originally

projected to the camera. By inserting a fixed mask with an appropriate aperture at the plane

where the image is scanned, a single-pixel detector can measure the subsampled convolution

between the mask and the original image. The object can then be reconstructed using the

same algorithms in DeCIOPS for the active light illumination cases. This way, a structured

detection version of DeCIOPS can be implemented.

6. CONCLUSION

We demonstrated a new high-speed imaging modality, DeCIOPS, by synthesizing the

strength of conventional point scanning and single-pixel camera through compressed

sensing. The high-speed imaging arises from the fast beam scanning mechanism and a

highly efficient sampling scheme through compressed sensing; meanwhile, an auto-encoder

framework allows the simultaneous optimization of the image formation and reconstruction

process in DeCIOPS. We validated DeCIOPS through both simulation and experiments, in

both CW and pulsed light source conditions. This new image modality can be adapted to any

existing imaging systems using beam scanning, such as confocal microscope and two-

photon microscope, or wide-field cameras with an added scanning system and will benefit

broad applications requiring high speed imaging.
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APPENDIX 1.: Experimental setup of DeCIOPS

A. Optical setup

The optical setup of DeCIOPS illustrated in Fig. 5 scans an n × n pattern on the object and is

suitable for low-repetition-rate pulsed light illumination setting. For CW light or high-

repetition-rate pulsed light illumination, an n × 1 pattern is scanned. When this pattern
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sweeps n columns, the information of n × n pixels can be integrated into a single

measurement. To generate the n × 1 pattern, we set the column to be identical in the n × n
pattern and add a 4f system composed of cylindrical lenses after the objective lens. The n ×
n pattern is then shrunk in one dimension by a factor of n into n × 1 pattern (Fig. 11). The

parameters of the lenses used in the setup are listed in Table 3.

B. Pattern generation

The pattern is generated from a DMD illuminated by a parallel beam. In our experiment, the

pattern has 4 × 4 pixels, each of which has a gray-scale throughput/intensity ranging from 0

to 1. As each DMD mirror pixel only provides a binary (on or off) light throughput, we

group 32 × 32 DMD mirror pixels as one super pixel, so a gray-scale light throughput

becomes feasible within one super-pixel. Each super-pixel thus provides 1025 states in the

range from 0 to 1. The multistate light throughput is achieved by randomly selecting parts of

the mirrors to be on, the number of which is the product of the desired light throughput and

total number of mirror pixels (1024).

In the case of 4 × 1 pattern scanning, another 4f system composed of cylindrical lenses is

added after the objective lens (Fig. 11). Such a system shrinks the 4 × 4 pattern in one

dimension by a factor of four.

Fig. 11.
The experimental setup of DeCIOPS that generates an n × 1 size pattern and scans it across

the sample. The setup is similar as that generates the n × n size pattern shown in Fig. 5, but

with a 4f system composed of cylindrical lenses added after the objective lens to shrink the

original n × n size pattern in one dimension by a factor of n into n × 1 size. The red dashed

line (plane 1 and object plane) indicates the conjugate plane of the gray-scale pattern mask.
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To obtain the high-resolution ground truth image, we reconfigure the imaging system for

point scanning. We replace the collimating lens between the pinhole and the DMD to the one

with shorter focal length and set the displayed pattern on the DMD to be uniform. This

reduces the beam size on the image plane, and the pattern effectively turns into a spot

matching the size of a single super-pixel of the 4 × 4 pattern. This ensures the same overall

energy collected by the photodetector and thus a similar SNR per measurement as in

DeCIOPS.

C. Characterization of the pattern

As the optical mode from the diode laser was not symmetric, we implemented a spatial filter

using a pinhole after the diode laser output. Nevertheless, there still appeared non-uniform

intensity of the light illuminated on the DMD. Furthermore, the laser interference could

corrupt the pattern. We thus fine-tuned the DMD pixel value to calibrate the intensity of the

super pixels, so their values were as close to the design as possible.

We used an iterative approach to calibrate the intensity of the super pixel. The design pattern

M0 with the gray scale super-pixel, which was also written as M(0) for consistency, was first

converted to a pattern W(0) on the DMD through an operator 𝓓 . 𝓓 essentially converted

each super-pixel in M0 into 32 × 32 pixels in binary values on the DMD, with the on and off

pixels randomly distributed. 𝓓−1 is the inverse operation. We used a camera to capture the

projected pattern M(1) on the object plane. We then compared M(1) and M0, and updated

W(0) into W(1) through the following algorithm:

W 1 = 𝓓 M 1 − M0 × a + M 0 , (10)

where a is the step size to control the update rate. For the Kth iteration, we have

W k = 𝓓 M k − M0 × a + 𝓓−1 W k − 1 , (11)

In general, the pattern could be calibrated well with <5 iterations. With this calibration, we

verified that the projected pattern on the sample matched the designed pattern in most of the

cases (Fig. 12). In the special case of the 4 × 1 random pattern, we took an alternative

approach. We randomly generated the pattern and measured it at the object plane. We then

used this pattern as the “design” to train the decoder for object reconstruction.
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Fig. 12.
(a) The measured patterns on the sample (super-pixels) match well with the designed

patterns. Each gray-scale super-pixel is generated by 32×32 binary pixels in the DMD. The

left panel shows the cases for 4×4 patterns, and the right panel shows the cases for 4×1

pattern. (b) A single spot pattern is generated for conventional point scanning imaging to

obtain the high-resolution ground truth of the sample. The spot size matches the size of a

super-pixel. (c) Pixel-by-pixel comparisons between the measured patterns on the sample

and the designed patterns show excellent matchings between the two.

D. Pixel resolution and field of view

The size of an individual DMD mirror is 13.6×13.6 μm2, and thus the size of a super-pixel is

(32 × 13.6) × (32 × 13.6)= 435.2 × 435.2 μm2. The imaging system has a magnification of
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4.44, resulting in a size of 435.2
4.44 × 435.2

4.44 = 97.9 × 97.9μm2 of a super-pixel on the image

plane. A full resolution object with 256 × 256 pixels (~24.5 × 24.5 mm2), requires a

scanning range of ±2.8o × ±2.8o in the scanner set. We measured the illumination pattern on

the object plane across different scanning angles (Fig. 13). The excellent field uniformity

ensures the quality of DeCIOPS.

Fig. 13.
The measured patterns at the image plane stay consistent cross different scanning angles.

E. Data Acquisition

The data acquisition is performed using a high speed data acquisition card vDAQ and

ScanImage software (Vidrio Technologies). As the illumination pattern continuously scans

across each row, the data acquisition card samples the data from the photodetector at a rate

higher than the single pixel rate. The data acquired within the duration of a single pixel is

then automatically averaged/integrated and saved as a single pixel value. Compared with the

full resolution single point scanning condition (256×256 pixels), we reduce the single pixel

rate and the number of scanning lines by 75% in DeCIOPS (CW light setting), reaching an

undersampling rate of 6.25% (64×64 pixels of measurement).

To mimic the low-repetition-rate pulsed light source condition, we sample the object with a

high resolution at 2048×2048 pixels (corresponding to a high single pixel rate) and then

downsample the acquired image digitally into 64×64 pixels by dropping all the other pixels.

Here, each pixel has a small average/integration duration, and could thus be considered as

being acquired by a single light pulse.

F. Estimation of signal-to-noise ratio

To calculate the signal-to-noise ratio of the image in the experiment, we acquire the same

image for 20 times. For each pixel, we calculate the signal μ and the noise σ as the mean and

the standard deviation across 20 measurements respectively. The signal-to-noise ratio for the

pixel is then estimated as μ/σ. The signal-to-noise ratio of the entire image is taken as the

average of the signal-to-noise ratio of all pixels.

APPENDIX 2.: Comparison between ISTA-Net, U-Net and DCSRN

We compare the performance of ISTA-Net, U-Net and DCSRN in object reconstruction. In

the auto-encoder framework, the decoder implemented by ISTA-Net is replaced by U-Net or

DCSRN. U-Net is widely used in image reconstruction and segmentation. It first condenses

the size of the input images to extract its context and feature, and then grows them in an

expanding path to perform local reconstruction [30]. DCSRN, derived from Densely

Connected Convolutional Networks [33], has a faster training speed and accurate

ZHANG et al. Page 14

Photonics Res. Author manuscript; available in PMC 2021 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reconstruction results, and is commonly used in applications such as 2D or 3D biomedical

super-resolution imaging. In addition to ISTA-Net, U-Net and DCSRN, we used B-spline

interpolation [28] to reconstruct the object undersampled through a simple dropout as a

baseline. All the simulation was completed on GPU RTX1080Ti 11GB with 200 epochs and

a batch size of 5. In each decoder except for B-Spline, we learned an optimized illumination

pattern. We used the validation data set to evaluate the PSNR and pixel resolution of the

reconstructed objects. U-Net, DCSRN and ISTA-Net all outperform B-spline interpolation.

While U-Net and DCSRN do not show a significant difference in performance, ISTA-Net

outperforms both U-Net and DCSRN with a ~1.85 dB increase in PSNR and 6.55 %

improvement in resolution, at an undersampling rate of 6.25% (Fig. 14). The simulation

results demonstrated a clear advantage of ISTA-Net, which is a Compressed Sensing (CS)

inspired neural network, in DeCIOPS.

Fig. 14.
Comparison of (a) PSNR and (b) pixel resolution of the reconstructed objects of all 79

samples in the validation dataset for B-Spine, U-Net, DCSRN and ISTA-Net in the auto-

encoder framework, at an undersampling rate of 6.25%. n.s., not significant; *, p<0.05; ***,

p<0.001; ****, p<0.0001, in one-way Analysis of Variance (ANOVA).

APPENDIX 3.: DeCIOPS using passive light illumination

To implement DeCIOPS in a passive light illumination setting (i.e. structured detection),

which is commonly used in photography, a scanner can be added to the passive wide-field

imaging system to scan the entire image originally projected to the camera. By inserting a
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fixed mask with an appropriate aperture at the plane where the image is scanned, a single

pixel detector can measure the subsampled convolution between the mask and the original

image (Fig. 15). The object can then be reconstructed using the same algorithms in

DeCIOPS for the active light illumination cases.

Fig. 15.
The optical setup of DeCIOPS with passive light illumination (i.e. structured detection), for

applications such as photography.
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Fig. 1.
The landscape of imaging methods using a single-pixel detector. (a) Point scanning system

where signal from individual pixel is sequentially recorded. (b) A conventional single-pixel

camera where different patterns are sequentially projected on the entire object and the

overlap integrals between the object and each pattern are measured. (c) Deep compressed

imaging via optimized-pattern scanning (DeCIOPS), where a pattern is scanned across the

object and the subsampled convolution between the pattern and the object is measured.
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Fig. 2.
Schematic of the undersampling schemes in DeCIOPS. (a) Conventional pixel-by-pixel

point-scanning. (b) Pixel-by-pixel point-scanning with a simple undersampling scheme. (c)

DeCIOPS in a CW light source configuration with an illumination pattern of a uniform mask

(left) or an optimized mask (right). (d) DeCIOPS in a low-repetition-rate pulsed light source

configuration with a uniform mask (left) or an optimized mask (right) as an illumination

pattern. The mathematic formula below each panel illustrates the process of image

formation, where g1 and g2 are both in square shape.
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Fig. 3.
An end-to-end optimized auto-encoder framework of image formation and reconstruction in

DeCIOPS. The encoder models the image formation. It encodes the high resolution (HR)

object x into a low resolution (LR) output b+ through subsampled convolution Φ and

additive noise. The decoder is implemented with an ISTA-Net, which contains N phases and

reconstructs the object x(N). Each phase is realized by a structure-symmetric pair of a

forward transform ℱ k  and a backward transform ℱ−1 k
 with a soft shrinkage threshold,

which factually matches one iteration in the conventional ISTA. ReLU, rectified linear unit.

Soft(·): soft shrinkage threshold.
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Fig. 4.
Comparison of the reconstruction performance in the validation data set Set11 and BSD68,

at an undersampling rate of 6.25%, through (a) a simple dropout, (b) an unweighted average

(uniform pattern), (c) a random or an optimized illumination pattern (DeCIOPS) with a

constraint of identical column, and (d) a random or an optimized illumination pattern

(DeCIOPS). The PSNR and resolution of the reconstructed images are labeled below the

exemplary sample. (e) PSNR of the reconstructed images of all 79 samples in the validation

dataset for cases in (a-d). (f) Resolution of the reconstructed images of all 79 samples in the

validation dataset for cases in (a-d). n.s., not significant; *, p<0.05; **, p<0.01; ***,

p<0.001; ****, p<0.0001, in one-way Analysis of Variance (ANOVA).
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Fig 5.
The experiment setup of DeCIOPS. The laser beam is spatially filtered to improve its spatial

uniformity and symmetricity, collimated and expanded in size, and then incident onto a

DMD. The beam is spatially modulated by the DMD and then shrunk in size by a 4f system

formed by a tube lens and an objective lens. The light pattern is scanned by a resonant-galvo

scanner set, where a resonant scanner and a galvanometer mirror is optically coupled

through a relay lens set. The transmitted light from the sample is collected by a

photodetector through a collection lens. The n × n pattern is generated by the DMD. With an

additional 4f system with cylindrical lenses after the objective lens, the n × n pattern can be

turned into n × 1 size (Appendix 1.A). The red dashed line (plane 1 and object plane)

indicates the conjugate plane of the gray-scale pattern mask.
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Fig. 6.
Comparison of the experimental results using different illumination patterns in the scanning

in a CW illumination setting. (a-d), Experimental results of the sample (a) Butterfly, (b)

Cameraman, (c) House and (d) Flinstones. The different columns show the ground truth

results using high-resolution point-scanning, raw measurement using different illumination

patterns at an undersampling rate of 6.25%, and the corresponding reconstruction results. (e)

PSNR of the reconstructed images for a total of 9 samples. (f) Spatial resolution of the

reconstructed images for a total of 9 samples, calculated from Fourier ring correlation. *,

p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, in one-way Analysis of Variance

(ANOVA).
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Fig. 7.
Comparison of the experimental results using different illumination patterns in the scanning

in the low-repetition-rate pulsed light illumination setting. (a-d), Experimental results of the

sample (a) Butterfly, (b) Cameraman, (c) House and (d) Flinstones. The different columns

show the ground truth results using high-resolution point-scanning, raw measurement using

different illumination patterns at an undersampling rate of 6.25%, and the corresponding

reconstruction results. (e) PSNR of the reconstructed images for a total of 9 samples. (f)

Spatial resolution of the reconstructed images for a total of 9 samples, calculated from

Fourier ring correlation. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, in one-way

Analysis of Variance (ANOVA).
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Fig. 8.
(a) PSNR and (b) pixel resolution of the reconstructed images versus different SNR in the

raw measurement, for three different sampling patterns (CW configuration), performed

through simulation, at an undersampling rate of 6.25%. The results were averaged across 9

samples used in the experiment and fitted with polynomial curves. (c) and (d) shows the

experimental results, averaged across 9 samples.
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Fig. 9.
DeCIOPS reconstruction quality (a) PSNR and (b) pixel resolution dependence on the size

of the optimized pattern, for an undersampling rate of 25% (2 ×2, red), 11.1% (3 ×3, green),

6.25% (4 × 4, blue) and 1.5625% (8 ×8, black), across all 79 samples in the validation

dataset. Solid curve: mean; shaded area: standard deviation.
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Fig. 10.
Comparison of the reconstruction results between DeCIOPS and conventional switching-

mask based single-pixel camera. (a) The ground truth of an original object, butterfly. (b)

Reconstruction result of DeCIOPS using ISTA-Net at an undersampling rate of 6.25%. (c)

Reconstruction result of the switching-mask based single-pixel camera imaging approach

using ISTA-Net. Top row, simulation. Bottom row, experiment. The ground truth of the

experiment is obtained by the high-resolution point-scanning.
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Table 3.

Detailed parameters of the optical components used in the imaging system.

Element Manufacturer Part Number Note

Focusing lens Thorlabs A397TM-A Aspherical lens, focal length 11 mm

Pinhole Thorlabs P30D 30 μm pinhole

Collimating lens Thorlabs AC254–100-AB-ML Achromatic lens, focal length 100
mm (for pattern scanning)

Thorlabs ACL5040-A Aspherical lens, focal length 40 mm
(for point scanning)

Tube lens Thorlabs SM2V10 Focal length 200 mm

Objective lens Olympus RMS4X 4 × objective lens

Cylindrical lens Throlabs LJ1014L1-A Focal length 25.4 mm

Throlabs LJ1227L2-A Focal length 6.35 mm

Lens 1 and 2 OptoSigma SLB-60–250P Focal length 250 mm

Relay lens set [56] (one set listed here; two sets
arranged symmetrically are required in setup)

Throlabs LC1582-A Focal length -75 mm

Thorlabs LC1582-A Focal length -75 mm

Thorlabs LE1076-A Meniscus Lens, focal length 100 mm

Thorlabs LA1399-A Focal length 175 mm

Thorlabs LA1050-A Focal length 100 mm

Thorlabs LA1727-A Focal length 750 mm

Collection lens Thorlabs AC508–075-A-ML Achromatic lens, focal length 75 mm

Galvometric scanner Cambridge
Technology

6215HM40B

Resonant scanner Cambridge
Technology

CRS 8 KHz Resonant frequency 8 KHz

DMD Texas Instruments DLP7000
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