
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Investigating Expert and Novice Programming Differences on Problems of Varying 
Complexity

Permalink
https://escholarship.org/uc/item/138838c5

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Vorobeva, Maria
Carim Bacor, Suhaylah B
Kelly, Mary Alexandria

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/138838c5
https://escholarship.org
http://www.cdlib.org/


Investigating Expert and Novice Programming Differences
on Problems of Varying Complexity

Maria Vorobeva (MariaVorobeva@cmail.carleton.ca)
Suhaylah Carim Bacor (SuhaylahCarimBacor@cmail.carleton.ca)

Mary Alexandria Kelly (Mary.Kelly4@carleton.ca)
Department of Cognitive Science, Carleton University

1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada

Abstract
Programming is a complex problem-solving domain, requir-
ing the coordination of different types of knowledge and skills.
The present study investigates expert and novice programming
problem solving by analyzing talk-aloud transcripts and the
code generated. Based on this analysis a set of basic goal and
step components used by novice and expert programmers are
identified, which will inform on the generation of cognitive
models in the next phase of this research.
Keywords: Programming; Problem Solving; Cognitive Mod-
els; Python; Schemas; Knowledge Representation; Algorithms

Introduction
Programming is a complex problem-solving domain that re-
quires both knowledge of how to implement basic constructs
as well as high-level strategies of how to compose these into
a program. The goal of our research is to develop a model of
problem-solving in programming. Such a model can provide
a theory as to the knowledge, skills, and strategies acquired by
expert programmers that distinguish them from novice pro-
grammers. Existing studies investigating the knowledge rep-
resentations used during programming (e.g., Castro & Fisler,
2020; Rist, 1989) do not formalize their findings in a way
that would allow for the construction of cognitive models of
programming because they do not present sufficient details
on the programming process. Thus, to the best of our knowl-
edge, to date, there does not exist a computational, cogni-
tive model capable of both writing programs and modeling
the differences between expert and novice problem solvers,
for instance by employing programming schemas to structure
problem solving and goal composition.

Computational models have either relied on formalizing
behaviour and low-level implementational knowledge (thus
avoiding formalizing the underlying representations, e.g.,
Recker & Pirolli, 1995), and/or focused on parsing completed
programs without the ability to produce them (Pirolli, 1986).

A notable exception is the ACT-R Programming Tutor
(APT), developed by Corbett (2000), which can write small
snippets of programs. APT engages in both knowledge trac-
ing and model tracing, and it is model tracing that allows it to
write snippets of code. For model tracing, the tutor uses an
underlying production system, called its ideal student model,
that contains the full set of rules to solve all of the practice
problems. For each student input, once the student has se-
lected their next goal and next step, the model tracer gener-
ates a list of all possible, correct next steps and compares it

to the student’s input. If the student input is correct, problem
solving proceeds to the next goal-step combination. If the
student’s input does not match one of the model’s accepted
next steps, the tutor provides feedback and encourages the
student to correct the mistake. The ACT-R model underlying
model-tracing can write the small program snippet solutions
as it has the relevant productions, but it does not consider
programming strategy and cannot produce solutions to entire
programming problems; it also does not model differences
between expert and novice programmers.

To address these gaps, the present study aims to identify
knowledge representations required for programming, by as-
sessing the programming process of both novice and expert
programmers. In future work, we intend to use data from the
present study to develop a model of programming expertise.

Background & Related Work
In other, non-programming domains, novice and expert per-
formance differences have been attributed to differences in
representational knowledge. In their seminal work using the
domain of physics, Chi, Feltovich, and Glaser (1981) showed
through a series of studies that experts do not simply have
more knowledge than novices, but that they hold inherently
different representations. One study presented twenty physics
problems that had their superficial features and underlying
physics laws crossed. Specifically, the problems included
ones that looked superficially similar but required different
underlying physics principles to solve, as well as problems
that were superficially dissimilar but required the same under-
lying physics principles to solve. Experts took longer to cat-
egorize the problems, engaging with the problem at a deeper
level. The results showed that not only do novices and experts
use different features when classifying physics problems, but
that they have different knowledge structures, with experts in-
terpreting the problems according to their deep knowledge of
physics principles (what Chi et al. referred to as schemas).

While much of the research on expertise has focused on
physics, algebra, or other similar problem-solving domains
(Chi et al., 1981; Gobet & Simon, 1996; Leonard, Dufresne,
& Mestre, 1996), there are also studies investigating expert
and novice knowledge structures and representations in the
programming domain. Programmers’ mental representations
are pivotal to programming performance and ability. Of par-
ticular interest for the present work are studies investigating

3924
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



programming expertise (Castro & Fisler, 2020; Soloway &
Ehrlich, 1984; Spohrer, Soloway, Elliot, & Pope, 1985).

Experts vs. Novices Programming
Similar to the earlier findings of Chi et al. (1981), re-
search in the programming domain has also shown that ex-
perts have their programming knowledge structured differ-
ently than novices, and rely on different knowledge repre-
sentations. Soloway and Ehrlich (1984) identified two repre-
sentations related to programming expertise, goals and plans,
through two studies. Goals were high-level requirements re-
lated to the problem specification and could be resolved by
implementing plans in a programming language.

Study 1 used a program completion task where both novice
and expert programmers had to complete a missing line of
code in a program using only the rest of the program as con-
text. Experts were better able to generate the missing code
fragment than novices. The authors proposed this was due to
a schema experts had for that type of program, which allowed
them to infer goals needed to solve the problem.

Study 2 used a program recall task where participants had
to recall as many lines of a program as they could after seeing
it briefly. Experts were better able to recall lines. Soloway
and Ehrlich proposed that experts were able to store program
lines in meaningful chunks (i.e., programming plans). This
finding mirrors work in other domains. For instance, these
programming plans were similar to the schemas identified in
physics problem solvers by Chi et al. (1981).

Spohrer et al. (1985) formalized these findings within a
tree-like representational framework called GAP (goal and
plan networks). GAP trees were used to parse novice pro-
grams, categorize their bugs, and identify the misconceptions
that led to them. GAP aids in these tasks by decomposing a
program into a solution space containing the program’s goals,
and the plan or set of plans that can implement those goals
(often through decomposition into smaller goals and plans).
Students who were not able to correctly complete the pro-
gramming tasks usually had an error in, or the complete ab-
sence of, one or more of the GAP tree components. This sug-
gests that novice errors are caused by a missing goal(s), or
by incorrect knowledge used to solve the problem. Soloway
(1986) proposed that novices have difficulty (1) identifying
the goals needed to solve the problem, (2) recalling appropri-
ate programming plans needed to implement the goals, and
(3) combining these into a final solution plan.

The GAP tree framework is also used to assess expert pro-
grammers (Soloway & Ehrlich, 1984; Spohrer et al., 1985).
Soloway (1986) described the expert process as first obtaining
an understanding of the goal and plan structure of the prob-
lem (i.e., developing a rough GAP tree), then using stepwise
refinement to recall prior solutions that can be combined and
applied to the present problem.

Novice Representations Rist (1989) analyzed talk-aloud
data from a program-generation process of 10 novice pro-
grammers to identify how they used simple programming

plans to compose larger, more complex plans. A qualitative
approach was used to code the talk-aloud transcripts with the
plans implemented and their order of implementation. Novice
programmers first identified a plan focus, which is the first ex-
pression or line of a programming plan that is implemented;
the plan focus served as the anchor for a given programming
plan. Once the plan focus was implemented, the remainder of
the plan was expanded around it.

Castro and Fisler (2020) aimed to identify how and when
students move between high level (task-level) programming
schema considerations, and low level (code-level) implemen-
tational considerations. Here task-level considerations cor-
respond to breaking down and addressing the tasks, analo-
gous to Soloway (1986)’s programming goals of the prob-
lem. Code-level considerations are ones that must be made
while implementing the actual program. Novices in this study
(N = 138) learned how to decompose programming problems
using the How To Design Programs (HTDP) methodology.
HTDP focuses on teaching a high-level approach to students,
where prior to programming students first outline a concrete
plan. Based on their analysis of novice code and talk-aloud
transcripts, three types of styles were identified for shifting
between task-level and code-level thinking. The first style
was cyclic, where students followed the HTDP style, alter-
nating rapidly between task level thinking to identify goals
and code-level thinking to implement them. Students first
mentioned programming goals and then wrote code to ful-
fill the goals, adapting the plans as needed. The second style
was code focused. This approach involved jumping directly
into code writing; tasks were identified on the fly with no
or minimal description of the written code’s relation to the
task. The third style was a one-way style, where students fol-
lowed the HTDP style and made a high level plan at the start
that they then dutifully translated into code. Unlike the cyclic
shifting style, they did not actively adapt the programming
plan with code-level considerations to make it suitable for
the problem. In comparison to the cyclic style, students who
used one-way and code-focused strategies both struggled. In
general, the findings highlight that students can struggle with
knowing when to focus on implementational aspects versus
higher-level task considerations.

Present Study

The goal of the present study is to gather data on the pro-
cess of program generation by novices and experts and to
specifically identify differences in how participants identify
goals and implement those goals as steps in Python code.
Earlier research showed that programmers used algorithms
(schemas) when problem solving (Soloway, 1986; Spohrer et
al., 1985), and that there were individual differences in how
effectively novice programmers navigated between high-level
algorithmic considerations and low level implementational
ones (Castro & Fisler, 2020). However, it is unclear from
the earlier research exactly how algorithms are structured to
aid programming, or how the algorithm is implemented by

3925



programmers with different levels of expertise.

Participants
Participants self-identified as novice or expert programmers.
The novices (N = 12) were undergraduate students who had
completed, or were currently undertaking, one beginner level
programming course (or equivalent experience, but no more
than that). The experts (N = 7) were programmers with a
programming-related degree, and/or related work experience;
this included graduate students, professional software devel-
opers and those with degrees in computer science.

Materials
Python Problems The study involved four programming
problems that varied in difficulty. All problems were solved
in Python, a high-level, general-purpose programming lan-
guage. The problems covered concepts such as loops, con-
ditions, variables and other concepts typically covered by a
first-year programming course.

Questionnaires A five-item pretest was used to assess basic
programming knowledge.

Procedure
The study was done virtually over Zoom. The pretests were
graded and used to verify the self-reported expert and novice
status of the participants. During this time, participants were
given remote access to a code editor (VSCodium), via the
Zoom remote user function, and asked to read a general in-
struction document outlining the study protocol. The instruc-
tions specified that the participants must talk out loud as they
are problem solving, so that insight into their thought pro-
cesses could be recorded while they wrote programs. Par-
ticipants then solved 4 programming problems by writing a
program for each problem. They were given up to 15 min-
utes to complete each problem. During this solution phase,
they were asked to not test the code (i.e., by running it). Af-
ter 15 minutes had passed or they indicated they were done,
they were asked to run their program. Verbal utterances and
programming actions on the screen during the programming
activities were recorded by Zoom. The programming portion
took no more than one hour and ten minutes.

Data Processing
The analysis focuses on two of the problems given to the par-
ticipants: the rainfall problem and the ballot problem. The
rainfall problem requires the user to calculate the average
rainfall over a certain period of time, using a list of rain-
fall amounts; negative numbers in the list are to be ignored
and the program needed to stop processing the list upon en-
countering the first -999. The ballot problem asks the user
to iterate over vote inputs for either of two candidates (Red
and Blue) in three departments (Art, History and Science)
and output which of the two candidates won in each depart-
ment and which candidate won in more than two departments
(called the popular winner). The audio files from the Zoom
sessions were transcribed. The first pass of the transcription

was done by the software Otter.ai. Transcripts were revised
by watching each Zoom recording and ensuring that the tran-
script accurately reflected the verbal utterances. At this point,
the transcripts were also supplemented with snippets of the
participant’s code added at the appropriate location in the
transcript, so that they aligned with the verbal protocol. This
was done in order to produce a transcript that reflected both
verbal data and programming actions in chronological order.

Qualitative Coding of Transcripts
We used a qualitative approach to analyze the data. The
transcripts for the rainfall problem were analyzed by the
first author, and the ballot problem by the second author, to
identify components of the problem-solving process for both
problems in order to enable subsequent analysis of problem-
solving approaches and novice and expert differences. The
coding was based on an approach used in prior work analyz-
ing problem solving in the domain of physics and geometry
(Gertner & VanLehn, 2000; Koedinger & Anderson, 1993) as
well as programming (Corbett, 2000). In that work, knowl-
edge needed for problem solving was comprised of two key
constructs: steps and goals. For the present work, we de-
signed a coding scheme to subsequently label the data with
goals and steps, shown in Table 1 and 2, respectively. This
was done by reading the transcripts to identify common goal
patterns and common implementation steps used. In this
scheme, goals corresponded to concrete, verbally stated in-
tentions about a high-level programming action that needed to
be performed. A sequence of goals is an algorithm, namely a
recipe for solving the problem. Depending on the confidence
and experience of the programmer, goals could be very clear
and explicit as in “I need to initialize variables for the sum
and count” or the goal may be stated in a more confused and
uncertain manner, as in “I think I need to go through the list
somehow”. Utterances not related to the programming pro-
cess were ignored and not coded. Steps correspond to written
code in Python (i.e., in order for something to be labelled
as a step, it had to be written in the Python IDE). A step or
sequence of steps could immediately follow a goal. For ex-
ample, once the goal to iterate through the list was expressed,
the subsequent code “for x in rains:” corresponds to a step.
Steps could also occur in the absence of a goal - in this case
steps were identified on the basis of a written Python line,
or short written statement (for example a conditional break,
which can be written on 2 lines, but it’s functionally one ex-
pression). Finally, steps could occur later on in the solving
process after the corresponding goal.

Qualitative Coding Process
Applying the coding scheme to the transcripts involved read-
ing each utterance and labelling it with a goal tag (see Ta-
ble 1) if it corresponded to a goal. It also involved labelling
the Python code with the step labels (see Table 2). Once the
transcripts were coded, the goal and the step codings were
extracted and recorded in a separate document tracking their
chronological order (i.e., the order that goals were stated and

3926



Table 1: Goals coding scheme

Goal label Description
Request user inputs Request user vote input (department/colour)
Iterate user inputs Use loop to go through user inputs
Identify input Identify what department, colour or stopping condition was input
Track count - specify by data structure Increment count by 1 for when target information is met
Stop loop Break loop when stopping condition is met
Compare count - specify by data structure Compare counts to find departmental winner or popular winner
Initialize count variable(s) Set up variable(s) to store data as required by the problem
Print outcome Output president according to comparisons
Initialize count dictionary(ies) - x Set up a dictionary of size x to count the number of votes input
Initialize variable total Set up variable total to store sum of positive numbers
Iterate through list Iterate through the list of values given
Calculate average Calculate average of positive numbers in list using sum and count
Track total Add positive numbers in list to total
Other - idiosyncratic Goal does not fall into above definitions and is highly idiosyncratic to programmer

Table 2: Steps coding scheme

Steps label Description
Initialize variable Create a variable to be used

by other steps in the program
User input Input from user taken
Loop Iterate until a condition is met or go

through all items in a data structure
Condition A Boolean statement that acts as a

condition for another step
Increment variable Add a value to the variables
Input Get an input from console
Output Output information to console
Compare Find if the value of one variable is

bigger than another variable
Calculation Perform a calculation with a variable
Break Stop loop
Other - idiosyncratic Performed a step that did not

conform to expected solution

steps were implemented; these did not include time-stamps
and only snippets of the original utterances). We refer to the
latter codings as chronotranscripts. Once chronotranscripts
were made for all of the participants for the rainfall prob-
lem, they were compared to each other and the canonical so-
lution and general trends were identified. A qualitative anal-

ysis of the chronotranscripts was conducted to identify solu-
tion strategies as well as similarities and differences in the
problem-solving strategies of experts and novices. To ex-
amine how goal decomposition differs between experts and
novices, and to identify possible relationships between goals
and between goals and steps, we focused on the order of goal
identification and step implementation, as well as any varia-
tions of the goals and their implementation.

Canonical Solution Canonical solutions for the rainfall
and ballot problem were provided by two educational experts
within the research team, to which expert and novice solu-
tions were compared. While the solutions are not Pythonic in
that they could be more compact, they represent a common
strategy taught to students in first year programming classes
that has the advantage of being language independent. As the
experts had programming experience but were not Python ex-
perts, the solutions are appropriate for the present study. The
canonical solutions assume that the programs are written in
the particular order specified. For the rainfall problem, first
the two variables, sum and count are initialized, and are used
to track how many positive numbers there are in the list and
the sum of the positive list values. Next, the program iter-
ates through the list of rainfall amounts (using a for-loop).
Within the loop, the program checks if the current value is
the stop signal (-999), which stops the loop; otherwise, the
program checks if the current number is positive and if so
updates the sum and count. Once all values in the list are pro-
cessed or the stop value is found, the program calculates the
average rainfall. For the ballot problem the canonical solu-
tion starts by initializing a dictionary that stores the votes for
each department and for each candidate in the department.

3927



Next, a while loop is used to iterate through the votes being
input and breaks the loop when -1 is entered as a vote. Within
the loop, the vote colour and the department for the vote are
requested. To increment the correct dictionary element, the
input colour and department are used as the keys for the dic-
tionary and the value for that key pair is incremented. Once
the loop is stopped, the program initializes a variable ‘victo-
ries’ that counts the number of departments the Red candi-
date wins to determine the popular winner. Next, a for-loop
is used to iterate through all the departments in the dictionary
and comparing the Red and Blue votes to find the winner for
each department. For every iteration, the victories variable
is incremented if the Red candidate is a departmental winner.
The departmental winner is output within each iteration. The
next block of code outside the for-loop uses the victories vari-
able such that if it is > 1 this means Red has won in more than
2 departments and is thus the popular winner, otherwise Blue
is the popular winner and prints the result.

Results
As noted above, the results are based on a qualitative analysis
of expert and novice programming solutions.

Deviations from the Canonical Solution
For the most cases, both novices and experts’ final programs
were similar to the canonical solution for both the rainfall
and ballot problems. When completing the rainfall problem,
participants created and initialized variables to track the pos-
itive numbers and iterated through the rainfall data list using
a loop. Most expert and novice participants addressed the
stop signal (-999) correctly and tracked the sum and count of
the positive numbers within a single loop over the list. Fi-
nally, both experts and novices calculated the average using
their variables for sum and count outside of the loop. How-
ever, not all participants followed this solution exactly. For
instance, participant P117 implemented additional steps not
included in the canonical solution. The ballot problem had
more deviations from the canonical solution. Most experts
used more than one dictionary to store the vote counts. All
other participants used a series of simple variables to count
the votes. Consequently comparisons to find departmental
winners used if else statements instead of for-loops like in the
canonical solution. Participants that were able to find the pop-
ular winner used two variables to count the number of wins
for the candidates instead of one as in the canonical solution.

Novice vs Expert Difference in Programming
Strategy
Rainfall Problem When it came to the rainfall problem,
most novices (and some experts like participant P115) iden-
tified and implemented the goal and step of initializing the
variables related to sum and count in sequence. In con-
trast, the experts were more variable in terms of when they
implemented this goal and step. Some experts initialized
sum before count, with at least one other non-variable re-
lated step or goal in between. For example, expert partici-

pant P117 first initialized the variable sum (called rain sum in
their program), then only initialized the variable count (called
rain count) when they had nearly completed their solution.
Additionally, some novices had additional sources of vari-
ability in their solutions compared to the experts’ solutions,
due to inefficiencies and inaccuracies in their solution Some
novices struggled more with the problem, and would use extra
steps and had misconceptions in their approach. To illustrate,
participant P109 not only added additional code not required
for the problem, which was not used in the canonical solution
nor by any other participant, but also made errors when cal-
culating the average. Specifically, rather than keeping a count
of the positive values, P109 relied on the built in len function
and used that in the average calculation. Thus, their average
calculation incorrectly divided the sum of the positive num-
bers by the total length of the list (that included both the pos-
itive and negative numbers). In contrast, experts broadly im-
plemented the standard canonical solution (even though their
chronotranscripts deviated from the canonical order). Some
deviations did exist, but unlike for the novice deviations they
did not represent inaccuracies in the solution process, instead
reflecting idiosyncratic variation. To illustrate, expert P117
dealt explicitly with negative values in the list rains, which
they handled at the same time as the stop code, and P115
identified the goal to ignore negative numbers but did not im-
plement any steps towards it.

Ballot Problem How votes were stored is an important dif-
ference between novices and experts in the ballot problem.
Most experts used one or more dictionaries to store and clas-
sify the votes and some also used a for-loop to iterate through
the dictionaries to compare the votes to find departmental
winners like PX and P120. All novices used simple vari-
ables to store the votes (see Figure 1 line 18), most often six
variables, one for each department and colour pair and used
if-else statements to find the departmental winners. Experts
tended to identify and implement vote count initialization ear-
lier than novices (see Figure 2 lines 1 to 4). Novices, however,
identified iterating user input as their first goal and start cod-
ing a while loop and getting the user inputs (see Figure 1 lines
1 to 3). Count initialization was thus a goal they uttered while
working on the loop. This shows that the main focus of the
novices was on the iteration aspect when reading the prob-
lem while experts had a more holistic approach and knew the
choice of data structure was a priority. Novices also faced is-
sues related to the count variables. Several novices had trou-
ble visualising how to store the votes and would make several
goal changes on how many variables to use. P112 changed
the number of counts used 5 times (see Figure 1) at differ-
ent points in the code generation while working on the while
loop. Novices that changed their counts would then run out
of time and not complete the problem.

Summary Novices and experts differ quite significantly in
their problem solving strategy; both in terms of identifying
the goals of the problem, and implementing code to address

3928



Figure 1: Novice P112 Chronotranscript - Ballot Problem

Figure 2: Expert P117 Chronotranscript - Ballot Problem

those goals. These differences become more pronounced as
the complexity of the problem increases. Experts are much
more reliably able to identify the goals of complex program-
ming problems and are much more flexible in the functions
and data structures they choose to use. Differences between
experts often reflect different priorities in higher level con-
cerns such as readability or ease of use. These findings sup-
port Soloway (1986) notion of programming plans, with ex-
perts having accumulated and refined numerous plans (and
their associated goals) that they can apply towards a variety
of problems. Conversely, even if familiar with complex data
structures and functions, novices lack the knowledge to re-
liably employ them during problem solving. Consequently,
they struggle to visualise how to correctly store the data and
thus correctly implement their identified goals. Instead they
identify iterating through the data as a plan focus (as de-
scribed by Rist (1989)) around which they try to expand the
rest of the code.

Discussion
The main goal of the present study was to gather data on
novice and experts’ process of program generation in order
to construct cognitive models of both expert and novice pro-
gramming approaches. The proposed cognitive models will
use the same goals and steps identified in the present study
(formalizing the procedural and declarative memory contents
respectively), and will rely on expert and novice strategies
identified through this study and through earlier work. Find-
ings from prior work include the findings that show expert
programmers rely on algorithms (Soloway, 1986) and that
novice programmers expand around a program focus (Rist,

1989). The chronotranscript analysis provides strategy in-
formation in the order of the goals identified by novice and
expert programmers and how they chose to implement those
goals. Implementing expert strategies in a cognitive model
that can produce solutions to simple programming problems
will further our understanding of how goal-level knowledge
is used by expert programmers when generating code to solve
problems. Additionally, implementing models of novice ap-
proaches to problem solving that rely on strategies identified
in prior work (Rist, 1989) and the present study will help for-
malize the knowledge representational differences between
expert and novice programmers. This line of work is still rel-
evant, even with the prevalence of advanced large-language
models such as Chat-GPT. While ChatGPT is able to pro-
duce code, there are clear indications that the code was not
produced by a human. Future work can thus compare the
strategies used by ChatGPT in programming problem solv-
ing against the strategies by humans on the same problems
and using the same sets of goals and steps as in this pa-
per. This will give an insight on some fundamental ways
that the model approaches programming problems differently
than humans. For the rainfall problem, participants’ final so-
lutions tended to include many of the same steps as the canon-
ical solutions, but both experts and novices varied the order
that they produced the steps in a way that did not impact the
validity of the solution. This demonstrates that participants
addressed the problem goals in variable order. For example,
both novices and experts varied whether to first stop the loop
or increment the sum and count variables within the loop.
Novices had other sources of variability that did affect the
validity of their solution and reflected gaps and/or inefficien-
cies in their domain knowledge, such as identifying the in-
dex of the stop signal in a separate loop. As for the ballot
problem, both expert and novice participants deviated sub-
stantially from the canonical solution and each other, relying
on different data structures and thus producing vastly differ-
ent chronotranscripts, with experts using a more complex data
structure (dictionaries), and novices relying on sets of single
variables. The implications for a cognitive model would be
that when modelling more complex problem solving, multi-
ple data constructs may be used, and the one used will re-
flect the knowledge base and experience level of the pro-
grammer. Novices and experts also differ in their approach
to problem solving. Experts first took the time to assess the
problem and decide on the best data structure to resolve the
problem, whether when selecting the simple variables needed
for the rainfall problem, or the dictionaries needed for the
ballot problem. Conversely, novices would often jump right
into implementing the instructions of the problem, only con-
sidering the data structure once they had something written
down. This is in line with the findings of Chi et al. (1981)
with physics problems, where, early in problem solving, ex-
perts engage in slower, deeper processing of the problem than
novices.

3929



References
Castro, F. E. V., & Fisler, K. (2020). Qualitative analyses

of movements between task-level and code-level thinking
of novice programmers. In Proceedings of the 51st ACM
technical symposium on computer science education (pp.
487–493). ACM. doi: 10.1145/3328778.3366847

Chi, M. T. H. (2006). Two approaches to the study of ex-
perts’ characteristics. The Cambridge Handbook of Ex-
pertise and Expert Performance, 21-30. doi: 10.1017/
CBO9780511816796

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Cat-
egorization and representation of physics problems by ex-
perts and novices. Cognitive Science, 5(2), 121–152. doi:
10.1207/s15516709cog0502 2

Corbett, A. (2000). Cognitive mastery learning in the
ACT programming tutor. In Adaptive user interfaces.
AAAI SS-00-01. Palo Alto, California: The AAAI
Press. Retrieved from https://aaai.org/papers/
0007-ss00-01-007-cognitive-master-learning-in
-the-act-programming-tutor/

Frischkorn, G., & Schubert, A.-L. (2018). Cognitive models
in intelligence research: Advantages and recommendations
for their application. Journal of Intelligence, 6(3), 34. doi:
10.3390/jintelligence6030034

Gertner, A. S., & VanLehn, K. (2000). Andes: A coached
problem solving environment for physics. In G. Gau-
thier, C. Frasson, & K. VanLehn (Eds.), Intelligent Tu-
toring Systems, Lecture Notes in Computer Science (Vol.
1839, pp. 133–142). Springer Berlin Heidelberg. doi:
10.1007/3-540-45108-0 17

Gobet, F., & Simon, H. A. (1996). Templates in chess mem-
ory: A mechanism for recalling several boards. Cognitive
Psychology, 31(1), 1–40. doi: 10.1006/cogp.1996.0011

Koedinger, K. R., & Anderson, J. R. (1993). Reifying im-
plicit planning in geometry: Guidelines for model-based
intelligent tutoring system design. In Computers as cogni-
tive tools (pp. 15–46).

Leonard, W. J., Dufresne, R. J., & Mestre, J. P. (1996). Using
qualitative problem-solving strategies to highlight the role
of conceptual knowledge in solving problems. American
Journal of Physics, 64(12), 1495–1503. doi: 10.1119/1
.18409

Pirolli, P. (1986). A cognitive model and computer tutor
for programming recursion. Human–Computer Interac-
tion, 2(4), 319–355. doi: 10.1207/s15327051hci0204 3

Recker, M. M., & Pirolli, P. (1995). Modeling individ-
ual differences in students’ learning strategies. Journal
of the Learning Sciences, 4(1), 1–38. doi: 10.1207/
s15327809jls0401 1

Rist, R. S. (1989). Schema creation in programming.
Cognitive Science, 13(3), 389–414. doi: 10.1207/
s15516709cog1303 3

Soloway, E. (1986). Learning to program = learning to con-
struct mechanisms and explanations. Communications of
the ACM, 29(9), 850–858. doi: 10.1145/6592.6594

Soloway, E., & Ehrlich, K. (1984). Empirical studies of
programming knowledge. IEEE Transactions on Software
Engineering, SE-10(5), 595-609. doi: 10.1109/TSE.1984
.5010283

Spohrer, J., Soloway, Elliot, & Pope, E. (1985). A
goal/plan analysis of buggy Pascal programs. Hu-
man–Computer Interaction, 1(2), 163–207. doi: 10.1207/
s15327051hci0102\ 4

3930

https://aaai.org/papers/0007-ss00-01-007-cognitive-master-learning-in-the-act-programming-tutor/
https://aaai.org/papers/0007-ss00-01-007-cognitive-master-learning-in-the-act-programming-tutor/
https://aaai.org/papers/0007-ss00-01-007-cognitive-master-learning-in-the-act-programming-tutor/

	Introduction
	Background & Related Work
	Experts vs. Novices Programming

	Present Study
	Participants
	Materials
	Procedure
	Data Processing
	Qualitative Coding of Transcripts
	Qualitative Coding Process

	Results
	Deviations from the Canonical Solution
	Novice vs Expert Difference in Programming Strategy

	Discussion
	References



