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Abstract

Traversable Wormholes, The Positivity of Negativity,

and How to Gauge Your Tensor Network

by

Sean Anthony McBride

This thesis reports on aspects of semiclassical gravity with an eye towards holography.

Chapter 2 introduces a perturbatively traversable wormhole in a particular four-

dimensional quotient spacetime, where traversability is ensured by the Casimir energy of

bulk fermions. We compute the fermionic contribution to the integrated null stress-energy

tensor and find hints that traversability holds at all times.

Chapters 3 and 4 report on computations of entanglement negativity, a multipartite

entanglement measure which distinguishes between classical and quantum correlations.

We compute holographic entanglement negativity in a toy model of Jackiw-Teitelboim

gravity with end-of-the-world branes, finding a rich phase structure which includes replica

symmetry breaking in a large region of phase space. We also compute entanglement

negativity in a toy model of chaotic eigenstates, finding some qualitative agreement with

phase transitions in the holographic model.

Chapter 5 describes a modification to random tensor networks to incorporate bulk

gauge symmetries which we term the “gauged random tensor network.” We find an

area operator valued in the center of the gauged random tensor network bulk algebra

which more closely resembles the area operator provided by the quantum-corrected Ryu-

Takayanagi formula.
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Chapter 1

Introduction

We begin this thesis with a definition:

Definition 0: Physics is a predictive framework.

Given a sufficient set of initial conditions for a physical system, one should be able

to output the state of that system at any later time. This idealistic picture of physics

has no basis in reality, however, as we are constrained by human matters like detector

sensitivities in the infrared and the ultraviolet. Thus, any laws of physics we use can

only be experimentally verified in an effective sense [1–4].

We hope there exists, in some dark corner of the forest of all knowledge, an absolutely

predictive Theory of Everything, expressible in the rigorous lingua franca of mathematics.

Our only criterion is for this theory to consistently incorporate all observable phenomena.

As of the writing of this thesis, this task boils down to incorporating quantum mechanics

and general relativity.

Quantum mechanics, and its big brother quantum field theory (QFT), is the theory of

the very small. Precision tests of quantum electrodynamics have measured the anomalous

magnetic moment of the electron to one part in 10−13 [5, 6], and violations of the principles
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of quantum mechanics continue to be ruled out by Bell tests [7, 8]. There are certainly

many puzzles in the Standard Model of particle physics, but many of these can be resolved

by the addition of new gauge fields or matter multiplets without tinkering with the

underlying mathematics. This body of evidence suggests that unitarity, in particular the

unitary time evolution of quantum mechanics, should be held sacrosanct for the Theory

of Everything.

General relativity (GR), on the other hand, is the theory of the very large. When

we say “general relativity,” we mean that the spacetime metric gµν is upgraded to a

dynamical field, described at low energies by the Einstein-Hilbert action1

SEH =
1

16πGN

∫
d4x

√
−gR. (1.1)

This theory is also robust to näıve interference. Tests for violations of the equivalence

principle have yielded upper bounds of one part in 1015 [9]. Preliminary LIGO tests in

the strong gravity regime of black hole mergers have shown no deviation from classical

expectations [10], demonstrating that semiclassical gravity (AKA quantum field theory

on a curved background) works at experimentally realizable energies. Once again, a

century of modern physics has failed to falsify dynamical gravity as a phenomenological

truth, so we tack it onto the list.

Unlike the Standard Model, which for all its flaws is a renormalizable quantum field

theory, GR as an effective field theory (EFT) is nonrenormalizable, with divergences

1Higher derivative corrections to this action should, by the totalitarian principle approach to particle
physics (or at least the totalitarian principle I was indoctrinated with), be included in this action
suppressed by some string/Planck scale but don’t affect the punchline of dynamical gravity.
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arising at the energy scale set by the gravitational coupling, the Planck energy2

EP =

√
ℏc5
GN

≈ 1.22× 1019 GeV. (1.2)

Let’s pause to contextualize this energy scale. The Large Hadron Collider’s center-of-

mass energy currently caps off at 13.6 TeV, and the proposed Future Circular Collider,

which would optimistically start collecting data when my great-grandchildren are born,

would operate at around 100 TeV. With luck, these mechanical ouroboroi might find an

oasis in the current particle physics desert, but can’t directly inform us about where to

look for modifications to GR. Even inflationary observables, like primordial fluctuations

in the CMB power spectrum [12], are too coarse-grained to be useful in the hunt for a

UV completion.3

We’re thus stuck with a theory of gravity which both defies our current mathematical

framework and plausibly evades any experimental detection. This tension is precisely

why we attack the Theory of Everything from a theoretical vantage point. The rest of

this introduction will go over some theories, loosely defined, of quantum gravity, that is

frameworks which incorporate gravity as an EFT consistently without abandoning uni-

tarity. This isn’t the only approach. We could abandon unitarity and go forth with, say, a

unified theory with stochastic dynamics [13], but this is in conflict, albeit a purely philo-

sophical one, with Definition 0! Often we denote our subfield Quantum Gravity™, rather

than the arXiV-standardized high energy theoretical physics [hep-th], to emphasize

what we want and what we’re not willing to lose.

2For a more in-depth explanation of this fact, see [11].
3This is not to say there don’t exist stringy models of inflation, just that the time scales involved

(10−36 to 10−32 seconds) are orders of magnitude separated from the Planck time tP = 5.39× 10−44 s,
so it’s highly unlikely they can elucidate the quantization of gravity.
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1.1 String Theory

String theory arose in the 1960s as a happy accident, although one likes to think that,

had Veneziano not been reading the right textbook on his maritime return from Israel,

kids of today would still be asking what string theory is.4

At zeroth order, string theory describes a QFT living on a two-dimensional worldsheet

swept out by a one-dimensional string embedded in a target space. One can map the

dynamics of the worldsheet into an EFT living on the target space background, and for

certain choices of worldsheet theory and target space dimension weakly coupled gravity

emerges. Worldsheet unitarity is an important ingredient in this recipe: anomaly cancel-

lation on the worldsheet fixes the equations of motion in the target space. String theory

is a goldmine for high energy theorists; by virtue of the fact that the worldsheet theory

is a renormalizable QFT sans gravity, mathematical rigor emerges from the darkness,

bringing with it what looks like a viable UV theory of quantum gravity.

This is close but no cigar. Aside from some exceptionally simple models [16, 17],

scattering amplitudes in string theory must be dealt with perturbatively in the string

coupling gs on a fixed target space. For this reason, string theory is said to be background

dependent, which for a full theory of quantum gravity is a big no-no. A nonperturbative

or background independent formulation, whether by the name of M-theory or string field

theory, is necessary to fully grasp the grandeur of string theory, but this is still on the

horizon.

None of the topics in this thesis, by design, rely on the framework of string theory.

While there are hints that string theory is the only way of UV completing an effective

Einstein-Hilbert action with matter [18, 19], we’ll never really know for sure without a

rigorous mathematical proof (unlikely) or direct observation of Planck-scale phenomena

4The most useful reference for learning string theory remains [14, 15]. I was taught if you understand
the glossary you understand string theory; this is still a work in progress.

4
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(impossible). We leave those questions to future work.

1.2 The Black Hole Information Paradox

As we’ve discussed, the energy scale at which gravity ceases to be a good EFT is

roughly the same scale at which we expect our description of spacetime as a smooth

background to break down. Thus two competing, well-defined theories of quantum gravity

are experimentally indistinguishable, and a strict empiricist might balk at the whole

program of quantum gravity and go back to their lab, content with the Wilsonian notion

that EFTs are sufficient.

Enter the black hole information paradox. Black holes classically have a nondecreas-

ing horizon area, thermodynamically motivating Bekenstein to conjecture a black hole

entropy proportional to the area of its event horizon [20]. Following a heroic calculation

by Hawking [21], this entropy was fixed to be

SBH =
kBc

3

ℏ
A

4GN

. (1.3)

With this entropy came a temperature, showing that black holes emit a thermal gas of

radiation, shrinking and eventually completely evaporating. The fact that black holes

evaporate doesn’t necessarily obfuscate the treatment of their area as entropy, as entropy

can locally decrease as long as a system’s total entropy is nondecreasing. The real paradox

arises because the radiation is thermal.

A black hole formed from collapse of matter in a pure state should evolve unitarily

to a cloud of radiation in the same pure state. Hawking’s calculation instead shows that

any pure state forming a black hole evolves to the same thermal state. The information

contained in the initial shell of matter is gone, replaced with an informationless mess

5
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Figure 1.1: The Page curve for an evaporating black hole. The red dotted line denotes
the result of Hawking’s calculation, which is inconsistent with unitary time evolution.

composed mostly of photons and gravitons.

This confusion is formalized by the Page curve [22]. For a pure state in a Hilbert

space of dimension D = dRdB ≫ 1, a random density matrix of rank dR < dB obtained

via tracing out part of the system will have von Neumann entropy [23]

SR = log (min (dR, dB)) +O
(
dR
dB

)
. (1.4)

In our scenario, dR is the dimension of the radiation Hilbert space, and dB is the dimension

of the black hole Hilbert space. If the black hole starts in a pure state, an observer

collecting the radiation should see its entropy increase, max out at the Page time5, and

decrease to zero. Hawking’s calculation, on the other hand, shows the radiation entropy

to be monotonically increasing for the entire evaporation life cycle, which is only half of

the story.

5This time was treated precisely in [24] and is slightly longer than half of the black hole’s total
evaporation time.
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This paradox is on a completely different footing than the nonrenormalizability of

gravity as an effective field theory. A supermassive black hole at the Page time, say

Sagittarius A∗ after ∼ 1087 years, is still supermassive, with a horizon scale many or-

ders of magnitude larger than the Planck length. On a practical level this isn’t strictly

speaking falsifiable for astrophysical black holes due to the time scales involved, but it’s a

semiclassical problem which should have a semiclassical solution. Attempts to evade the

black hole information paradox via complementarity [25] fell before the AMPS firewall

paradox [26], which we also won’t discuss but is resolved via similar techniques to the

ones we’ll discuss.6

1.3 AdS/CFT

The anti-de Sitter/conformal field theory correspondence (AdS/CFT), like most good

conjectures in theoretical physics, posits a brevitic equivalence [32–34]:

ZAdS = ZCFT. (1.5)

Also like most conjectures, only one of these terms is actually well-defined. ZAdS

is the partition function of a theory of quantum gravity (usually string theory) on a

(d + 1)-dimensional asymptotically AdS background (“the bulk”). ZCFT we understand

perfectly well as the partition function of a conformal field theory on a d-dimensional

manifold, taken to be the conformal boundary of the bulk spacetime manifold. That

the dual quantum field theory lives on a manifold of one fewer dimension is a sharp

statement of the holographic principle [35, 36]; just as black hole entropy follows an area

law instead of a volume law, gravity itself can be recast as a gravity-less pure boundary

6This firewall paradox is not to be confused with the typical state firewall paradox [27], which has a
different flavor of potential resolution [28–31].
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Prescription S(ρR) = · · · Euclidean Derivation

Ryu-Takayanagi (RT) min
γR

A(γR)
4GN

[40]

Hubeny-Rangamani-Takayangi (HRT) [41] ext
γR

A(γR)
4GN

[42]

Faulkner-Lewkowycz-Maldacena (FLM) [43] min
γR

[
A(γR)
4GN

]
+ Sbulk(ρr) N/A

Quantum Extremal Surface (QES) [44] ext
r

[
A(∂r)
4GN

+ Sbulk(ρr)
]

[45]

Table 1.1: Holographic entropy formulae. By convention, the bulk subregion bounded
by the minimal surface and R, the entanglement wedge, is denoted r.

theory. AdS/CFT has passed numerous tests [37], so ZCFT is sometimes viewed as a

definition for quantum gravity with asympotically AdS boundary conditions, even though

the correspondence has only been demonstrated in any generality for perturbative string

theory on fixed backgrounds.

Stated as (1.5), AdS/CFT immediately resolves the black hole information paradox:

if quantum gravity really has the dynamics of a unitary quantum system, then black hole

evaporation is manifestly unitary! This would have had dramatic consequences, if not

for the small problem that a “proof” of AdS/CFT necessitates a rigorous definition of

ZAdS via some method besides holography.

A sharp statement of the black hole information paradox in AdS/CFT arose via the

Ryu-Takayanagi (RT) formula [38, 39], which conjectured an equivalence between the

entanglement entropy of a boundary subregion and boundary-anchored minimal area

surfaces in the bulk. For a boundary subregion R with a bulk minimal surface γR ho-

mologous to R, the von Neumann entropy for the boundary state ρR is

S(ρR) =
A(γR)

4GN

. (1.6)

This can be seen as a generalization of the Bekenstein-Hawking entropy for spacetimes

without horizons (but with asymptotic boundaries).
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The RT formula was later extended to include both time-dependent spacetimes (which

upgrades minimization to extremization) and perturbative corrections in GN such as bulk

matter/graviton entanglement entropy to match Bekenstein’s generalized entropy [46].

We include a list of these holographic entropy formulae and their associated derivations

in Table 1.1. The quantum extremal surface prescription is notable because it’s correct

to all orders in perturbation theory in GN . Morally speaking, it treats the area term and

the bulk entropy on equal footing such that renormalization of Sbulk(ρr) is counteracted

by renormalization of Newton’s constant.

These formulae were all originally proven using Euclidean methods. Amazingly, these

Euclidean derivations are couched firmly in the language of semiclassical gravity, without

reference to a boundary dual7 Here we sketch the derivation of the RT formula.

The von Neumann entropy is difficult to compute on its own, but can be obtained

via analytic continuation from the Rényi entropy [52]

S(ρ) = lim
n→1

1

1− n
Tr (ρn) . (1.7)

What does it mean to compute Tr(ρn) using semiclassical gravity? Ignoring matter for

the moment, at lowest order it means to compute the leading saddle to the putative

gravitational path integral

Zgrav =

∫
Dge−SEH [g], (1.8)

with n-fold “replicated” boundary conditions on the spacetime metric. Assuming this

path integral is dominated by a single saddle for all integer Rényi index n > 1, one can

continue the saddle point action to n = 1 to obtain a coarse-grained von Neumann en-

tropy. This proves to be equivalent to computing the action on the original, unreplicated

7Recently the generalized entropy was shown to be a well-defined entropy of a bulk Type II von
Neumann algebra [47–51], constituting a separate Lorentzian derivation.
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saddle with the addition of a conical defect, which in the n → 1 limit becomes massless

but gives a contribution to the action proportional to its area. The above derivations

relied on a choice of a single saddle which respects a Zn replica symmetry, such that

these two methods are in fact the same.

1.4 A Unitary Page Curve

The modification to this flavor of derivation to obtain a Page curve turns out to be

surprisingly simple. The homology condition for extremal surfaces constrains at least

part of the surface to be anchored to the boundary. Further restricting to a connected

surface yields an entropy with the same pathologies pointed out by Hawking. Via several

explicit calculations in AdS/CFT with absorbing boundary conditions [53, 54], it was

shown that around the Page time a new disconnected extremal surface appears, part of

which lies roughly a Planck length inside the horizon. No wonder it was so hard to find!

The inclusion of extremal surfaces unanchored to the boundary motivated the so-

called “island rule,” [55] such that the extremization includes disconnected bulk entan-

glement wedges. This is the last modification to the Ryu-Takayanagi formula necessary

to demonstrate unitarity.8 The presence of an island implies that, at late times, the

degrees of freedom in the black hole are entangled with the early radiation quanta, in a

manner not easily explained using quantum field theory on a fixed background [59].

Just as the myriad extremal surface formulas required justification via Euclidean

methods, so too did these islands. On Thanksgiving Day 20199, two papers appeared

with the Euclidean picture, one from groups at Cornell and the IAS [60] (the “East

Coast Model”) and one from the Stanford group [61] (the “West Coast Model”), both

8There are further corrections one can impose for particular incompressible bulk states [56, 57] or for
Rényi entropies with n < 1 [58], but for our modest historical overview islands alone will suffice.

9I joked at Gravity Lunch that reading these papers in the bathroom would give us a good excuse to
sneak away from our families during dinner. It did not land.
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with the same conclusion: one must include “replica wormholes,” connected Euclidean

solutions, when computing gravitational path integrals with replicated boundary condi-

tions. This phenomenon is most easily illustrated in the calculation of the second Rényi

entropy S2(ρR) = Tr(ρ2R). Here we have two disconnected asymptotic boundaries, so

schematically the relevant geometries are:

The disconnected “Hawking saddle” contributes to the first slope of the Page curve,

while the connected replica wormhole saddle dominates at later time, eventually bringing

the entropy back to zero (or saturating in the case of an eternal black hole). The inclusion

of spacetime wormholes into the saddle point calculation of Rényi entropy produces a

Page curve consistent with unitarity, but clashes with the orthodoxy of AdS/CFT: if a

quantum mechanical dual lived on each boundary, correlation functions should factorize

into pieces supported on the individual connected boundary components.

This has resulted in the elevation of the information paradox to the so-called “fac-

torization problem”: replica wormholes seem to conflict with the shockingly basic notion

that two quantum systems on disconnected manifolds are uncorrelated. We won’t at-

tempt a resolution of the factorization problem in this thesis; indeed, its resolution seems

to require input beyond semiclassical gravity [62–65].10 All we’ll endeavor to do is use

the framework of semiclassical gravity to sharpen some corners of the holographic corre-

spondence. Let’s get to it.

10Many would argue this is also true for the “real” information paradox, which can only be resolved
by counting individual black hole microstates and computing the bulk von Neumann entropy directly
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1.5 Permissions and Attributions

1. Chapter 2 is the result of a collaboration with Don Marolf [66], published on arXiV

and in the Journal of High Energy Physics.

2. Chapter 3 is the result of a collaboration with Xi Dong and Wayne Weng [67],

published on arXiV and in the Journal of High Energy Physics.

3. Chapter 4 is the result of a collaboration with Fernando Iniguez [68], published on

arXiV.

4. Chapter 5 is the result of a collaboration with Xi Dong and Wayne Weng [69],

published on arXiV and in the Journal of High Energy Physics.
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Chapter 2

Perturbatively Traversable

Wormholes from Bulk Fermions

2.1 Introduction

Wormholes have long been a source of fascination both in the scientific literature [70–

74] and in science fiction [75] as a potential tool for producing superluminal travel. In

classical general relativity, wormholes are nontraversable due to constraints on causality

from the null energy condition (NEC), which implies the topological censorship theorems

[76, 77]. With the assumption of global hyperbolicity, these theorems require causal

curves that start and end at the boundary to be deformable to the boundary in both

asymptotically flat and asymptotically anti-de Sitter contexts1. Adding quantum correc-

tions allows fluctuations that violate the null energy condition, though the topological

censorship theorems continue to apply in contexts where the integrated null energy along

causal curves is nonnegative so that the averaged null energy condition (ANEC) holds.

1Traversable wormholes can be constructed if one drops the requirement of global hyperbolicity, e.g.
by introducing NUT charge [78, 79].
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More generally, however, one might expect the ANEC to hold only along achronal

curves; i.e., along only the fastest causal curves connecting two events [80]. For exam-

ple, in spacetimes with noncontractible closed spacelike curves, the Casmir effect causes

the ANEC to fail. Indeed, it is this achronal ANEC (AANEC) that follows from the

generalized second law [81]. Traversable wormholes are thus allowed, so long as it takes

longer to travel through the wormhole than to go around. Similar conclusions follow from

requiring boundary causality in the context of AdS/CFT [82].

Consistent with such expectations, traversable wormholes were constructed by Gao,

Jafferis, and Wall (GJW) [83] by introducing a time-dependent coupling between the two

otherwise disconnected asymptotically AdS3 boundaries. This nonlocal coupling induces

a bulk perturbation of a scalar quantum field whose back-reaction allows causal curves

to run between the two boundaries. The averaged null energy along these trajectories

is negative, but the nonlocal boundary coupling transmits signals from one boundary to

the other more quickly than they could travel through the wormhole. In this sense the

AANEC is satisfied. Similar setups have been studied for AdS2 and dual SYK models

[84–86] and for rotating AdS3 wormholes in [87]. Furthermore, since such traversable

wormholes provide a holographic dual of certain quantum teleportation protocols, they

are of broader interest in connection with the ER = EPR [88, 89] and GR = QM [90]

conjectures.

Nonlocal boundary couplings of the sort used in GJW were expected to model more

general backgrounds in which causal curves can travel from one wormhole mouth to the

other, e.g., when both mouths are embedded in the same asymptotically flat or asymp-

totically AdS region of spacetime. This expectation was recently verified by two com-

plementary constructions. In [91], a nearly AdS2 approximation was used to construct a

time-independent asymptotically flat four-dimensional wormhole. This approach allowed

[91] to address many nonperturbative issues. The contrasting approach of [92] (see also
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[93]) used a perturbative framework to argue that standard local quantum fields on a

broad class of such classical wormhole geometries have Hartle-Hawking-like states whose

stress-energy back-reacts on the geometry to render the wormholes traversable.

The class of backgrounds M considered by [92] were of the form M = M̃/Z2, where

the covering space M̃ contains black holes with Killing horizons and well-defined Hartle-

Hawking states for any quantum fields. This context includes many examples with famil-

iar wormhole topologies having fundamental group π1 = Z, though it also includes what

one might call torsion wormholes with e.g. π1 = Z2. For linear quantum fields, the sign

of the back-reaction, and thus whether or not it makes the wormhole traversable, is con-

trolled by a choice of periodic or anti-periodic boundary conditions under the action of

this Z2. For scalar fields, for instance, it depends on whether the Z2 isometry J maps ϕ(x)

to ϕ(Jx) or to −ϕ(Jx), and thus whether ϕ satisfies periodic or anti-periodic boundary

conditions on the quotient spacetime M . Here we follow [92] in using the term wormhole

to refer to any setting where curves both starting and ending at the boundary cannot

be smoothly deformed to the boundary. Such curves would classically be forbidden from

being causal by the aforementioned topological censorship results of [76, 77].

In certain asymptotically AdS3 examples of such torsion wormholes, [92] was able to

exactly compute quantum stress-energy tensor expectation values for general free bulk

scalar fields. The study of more general quantum fields is clearly of interest, though

in curved spacetime computations involving higher spin fields can lead to significant

technical complications. Here we take a first step in this direction by computing the

quantum back-reaction from Weyl fermions of any mass m in the torsion wormholes

of [92]. Again, we find that stress-energy tensor expectation values can be computed

exactly.

The outline of this chapter is as follows. In section 2.2, we review the construction of

Z2 wormholes from [92] and find geometries useful for our consideration of spinor fields.
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In the relevant case the spacetimeM is a Z2 quotient of the rotating Bañados-Teitelboim-

Zanelli black hole [94, 95] (rBTZ) times S1, so that M = (rBTZ × S1)/Z2. We flesh

out the details of this case in section 2.3, providing an analytic expression for the null

stress-energy tensor on the horizon of M for a spinor field of arbitrary mass. The above

quotient breaks rotational symmetry, and we find the sign of the integrated null energy to

generally depend on the BTZ angular coordinate ϕ. But the average is nonzero when the

black hole rotates, and is negative with the appropriate choice of periodicity. Following

[92] we compute T ⟨∆V ⟩, where T is the black hole temperature and −⟨∆V ⟩ measures

the expectation value of the time advance governing traversability of the wormhole. As in

the scalar case, we find T ⟨∆V ⟩ to be independent of T for all fermion masses, suggesting

that ⟨∆V ⟩ diverges as T → 0 and that bulk spinors alone would suffice to yield an

eternally traversable wormhole in that limit. We conclude in section 2.4 by discussing

the extension of our results to other higher spin particles which, like the spinor, have

exactly soluble propagators in AdSd. Working our way all the way up to spin-2 would

allow understanding of the effect of linearized gravitons on such wormholes; this remains

a goal for future work.

2.2 Preliminaries and Review

We begin in section 2.2.1 with a brief review of certain asymptotically AdS (or asymp-

totically AdS ×X) Z2 wormholes studied in [92]. We then recall in section 2.2.2 how

the stress-energy tensor of quantum scalar fields can be computed exactly in these back-

grounds. The extension of such computations to fermions is outlined in section 2.2.3,

which in particular describes further properties required for fermions to yield nontriv-

ial results. The example from [92] satisfying these properties is called the Kaluza-Klein

zero-brane orbifold (KKZBO) spacetime and is discussed in detail in section 2.2.4.
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2.2.1 Review of AdS Z2 Wormholes

The exactly solvable models of [92] involved quantum fields in a Hartle-Hawking-like

state propagating on Z2 quotients M = M̃/Z2 of BTZ and BTZ × S1. This setting

is useful as the Killing symmetry of BTZ preserves the BTZ Hartle-Hawking state. As

a result, in that state on the covering space M̃ the symmetry requires the expected

null-null component of the stress-energy tensor ⟨Tkk⟩M̃ to vanish on the BTZ horizon

for any quantum field. This symmetry is then broken by the Z2 quotient, so on the

physical spacetimeM the horizon expectation value ⟨Tkk⟩M can be nonzero. Nevertheless,

the simplicity of BTZ can be used to provide an analytic expression for ⟨Tkk⟩M . The

integrated ⟨Tkk⟩M on the horizon can then be evaluated numerically and combined with

first order perturbation theory to compute the back-reaction. We begin by reviewing

simple examples of the above geometries and techniques. In this section we set the

angular momentum of the black hole to zero and consider only nonrotating BTZ.

Without rotation, the BTZ metric can be written in the form

ds2 =
1

(1 + UV )2
(
−4ℓ2dUdV + r2+(1− UV )2dϕ2

)
. (2.1)

Here ℓ is the AdS length scale (which we will often take to be one) and 2πr+ is the

length of the BTZ horizon. We use Kruskal-like coordinates (U, V, ϕ) where U and V

parameterize the null directions. The metric (2.1) is global AdS3 when ϕ takes values

in (−∞,∞), but gives the global BTZ black hole when one makes the identification

ϕ ∼ ϕ+ 2π [95].

A variety of interesting spacetimes can be constructed as quotients of (2.1) or of tensor

products with some other simple factor X. For example, the RP 2 geon [96] is a quotient

of (2.1) under the isometry J1 : (U, V, ϕ) 7→ (V, U, ϕ + π); see figure 2.1 below. Note

that J2
1 is the identity and that the quotient BTZ/J1 contains a noncontractible cycle
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Figure 2.1: Conformal diagram of the RP 2 geon, KKEOW, and KKZBO geometries,
with null coordinates (U, V ) indicated. The left region (dashed lines) is the image of
the right (solid lines) under the Z2 isometry J which exchanges U ↔ V , so that the
right alone may be used to represent the quotient. The desired isometries J also act
on S1 factors (just S1 for the RP 2 geon and S1 × S1 for the KKEOW and KKZBO
geometries) not shown in the figure. The geodesic proper distance s between a point
x on the horizon and its image Jx is nonzero and spacelike in all cases, though for
U = V = 0 this is a result of the additional action of J on suppressed angles ϕ and/or
θ not shown in this figure.

with Z2 homotopy that is not deformable to the boundary and can be represented by the

closed curve {ϕ ∈ [0, π]} for any U(ϕ) = V (ϕ). Another interesting related spacetime is

the Kaluza-Klein end-of-the-world brane geometry (hereafter KKEOW) (BTZ× S1)/J2,

where the isometry J2 now acts on the angle θ associated with the internal S1 as well as

on the BTZ factor. In particular, J2 : (U, V, ϕ, θ) 7→ (V, U, ϕ, θ + π). Here the quotient is

smooth but Kaluza-Klein reduction on S1 gives a singular spacetime with what may be

called an end-of-the-world brane at U = V . Again, J2
2 is the identity and the quotient

contains a noncontractible cycle with Z2 homotopy that is not deformable to the boundary

and can be represented by the closed curve {θ ∈ [0, π], ϕ = constant} for any U(θ, ϕ) =

V (θ, ϕ).
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Both of the above quotients are nonorientable, but an orientable spacetime (BTZ ×

S1)/J3 can be obtained by allowing the isometry J3 to act on both θ and ϕ. In particular,

[92] studied the Kaluza-Klein zero-brane orbifold (KKZBO) given by J3 : (U, V, ϕ, θ) 7→

(V, U,−ϕ, θ + π). As before, the quotient is smooth but singularities arise when it is

Kaluza-Klein reduced on the S1. These singularities are localized at U = V with ϕ = 0, π

and may be called zero-brane orbifolds as they represent pointlike defects in the resulting

three-dimensional spacetime. Once again, J2
3 is the identity and the quotient contains

a noncontractible cycle with Z2 homotopy that is not deformable to the boundary and

is now associated with the zero branes. It can be represented by the closed curves

{θ ∈ [0, π]} at ϕ = 0 or π for any U(θ) = V (θ). The KKZBO is more complicated than

the above examples as it breaks translational symmetry in ϕ. However, as noted in [92],

it has the advantage of extending to rotating black holes where both J1 and J2 cease to

be isometries. In particular, the KKZBO admits an interesting extreme limit in which

back-reaction from quantum fields can become large. As reviewed in section 2.2.3 below,

even without rotation, the fact that the KKZBO is orientable makes it a much more

interesting context in which to study fermions.

We are interested in finding the quantity ⟨∆V ⟩, the expected null time delay of a

geodesic starting at U = −∞ and ending at U = ∞ induced by back-reaction from quan-

tum fields. A negative value ⟨∆V ⟩ < 0 indicates that the wormhole becomes traversable,

as a null geodesic fired from the left boundary in the distant past then arrives at the right

boundary at a finite future time with (on average) coordinate V = ⟨∆V ⟩. As shown in

[83], in the linearized approximation and in the presence of rotational symmetry, ⟨∆V ⟩

in nonrotating BTZ (or BTZ ×X) is related to the integrated null stress-energy tensor
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along the horizon through

⟨∆V ⟩ = 4πGN

∫ ∞

0

dU ⟨Tkk⟩ . (2.2)

Here Tkk ≡ Tµνk
µkν for a null horizon generator kµ∂µ = ∂U . The extension to rotating

BTZ and to broken rotational symmetry will be reviewed below in section 2.2.4 below.

As noted in the introduction, symmetry requires ⟨Tkk⟩ to vanish in the Hartle-Hawking

state on BTZ or BTZ×X, but we will in fact compute ⟨Tkk⟩ in the quotient (BTZ×X)/Z2

where the symmetry is broken. At linear order in perturbation theory we may then lift

the resulting ⟨Tkk⟩ back to the (BTZ × X) covering space, compute back-reaction on

the metric using (2.2), and take the quotient of the result to obtain a self-consistent

semi-classical solution.

The stress-energy tensor of a scalar field ϕ takes the form

Tµν = ∂µϕ∂νϕ− 1

2
gµνg

ρσ∂ρϕ∂σϕ− 1

2
gµνm

2ϕ2. (2.3)

Contracting with the null vectors eliminates all but the first term, so ⟨Tkk⟩ is a coincident

limit of derivatives acting on the two-point function ⟨ϕϕ⟩. The pointwise contribution to

the null stress-energy tensor can thus be determined by derivatives of the scalar Green’s

function. Since kµ∂µ = ∂U , we may write

⟨Tkk(x)⟩ = lim
x→x′

⟨∂Uϕ(x)∂Uϕ(x′)⟩ (2.4)

where the computation is to be done in the Hartle-Hawking state on the quotient geom-

etry M .

As reviewed in [92], for linear quantum fields correlations functions in this state may

be computed using the method of images. In particular, one may identify the quantum

20



Perturbatively Traversable Wormholes from Bulk Fermions Chapter 2

field ϕ(x) on the quotientM with an appropriately scaled linear combination of the scalar

field ϕ̃(x) on the covering space M̃ and its image under the relevant isometry J :

ϕ(x) ≡ 1√
2

(
ϕ̃(x)± ϕ̃(Jx)

)
. (2.5)

The choice of sign in (2.5) corresponds to a choice of periodic (+) or anti-periodic (−)

boundary conditions on the Z2 cycle of the quotient.

The stress-energy tensor (2.3) is thus a sum of four terms involving coincident limits

of two point functions involving all possible pairings of ϕ̃(x) and ϕ̃(Jx). Terms involving

coincident points in the covering space are proportional to the stress-energy tensor in

the Hartle-Hawking state on M̃ and thus vanish by the symmetry noted above. Thus all

potentially divergent terms vanish and ⟨Tkk⟩M is explicitly finite. Nonzero contributions

come only from the two cross terms. These contribute equally and give

⟨Tkk(x)⟩M = ±⟨∂Uϕ(x)∂Uϕ(Jx)⟩M̃ . (2.6)

We can now see that creating a traversable wormhole is simple, as unless some coincidence

or symmetry imposes ⟨Tkk⟩M = 0, one will find ⟨Tkk⟩M to be negative for one choice of

periodic or anti-periodic scalars. As verified by detailed computations in [92], the correct

choice turns out to be periodic boundary conditions for the RP 2 geon, the KKEOW

spacetime, and the KKZBO geometry.
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2.2.2 Explicit Calculation

We now review further explicit scalar results from [92]. The scalar two-point function

on empty AdS3 is known exactly [97]. It may be written in the form

GAdS3(Z) =
1

4π

(
Z2 − 1

)−1/2
(
Z +

(
Z2 − 1

)1/2)1−∆

, (2.7)

where Z ≡ 1 + σ(x, x′)/ℓ2, σ(x, x′) is the half squared-geodesic distance in an associated

four dimensional embedding space R2,2, and ∆ is given by the same formula as the scaling

dimension of the associated operator in any dual CFT [37],

∆ = 1±
√
1 +m2ℓ2 (2.8)

where the ± denotes a choice of boundary conditions at AdS infinity. We will always

take the (+) boundary condition below, as this choice is always consistent with unitarity.

However, the (−) choice can also be of interest; see [92] for associated results in the

context of the above Z2 wormholes.

From [92], the half-squared geodesic distance in R2,2 in our Kruskal-like coordinates

is

σ(x, x′) =
ℓ2

(1 + UV )(1 + U ′V ′)

[
(UV − 1)(U ′V ′ − 1) cosh

(
r+ (ϕ− ϕ′)

ℓ

)
− (1 + UV )(1 + U ′V ′) + 2(UV ′ + V U ′)] . (2.9)

We can use the fact that BTZ is a quotient space of AdS3 to recast the BTZ Green’s

function as a sum over images in the AdS3 covering space such that

GBTZ(Z) =
∑
n∈Z

GAdS3 (Zn) (2.10)
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where Zn ≡ 1 + σ(x, x′n)/ℓ
2 and ϕ′

n = ϕ′ + 2πn. The additional isometry to produce the

RP 2 geon means that we are concerned with cases where ϕ′ = ϕ + π, so the sum over

images is a sum over ϕ′ = ϕ+ (2n+ 1)π with U ′ = V = 0 and V ′ = U .

By substituting the expression for the embedding space geodesic distance, we can

calculate GAdS3 , and by extension the two-point function on the RP 2 geon. The full

expression for ⟨Tkk⟩ is quite complicated, so we recall from [92] only the result in the

limit r+/ℓ → 0. Using ⟨Tkk⟩n to denote the contribution to ⟨Tkk⟩ from the nth term in

the sum (2.10), for periodic scalars one finds in this limit the n-independent result

⟨Tkk⟩n =

(
1 + 2U(U +

√
1 + U2)

)1−∆

32πU3(1 + U2)5/2

[
1 +

(
2U

√
1 + U2 + 8U3

√
1 + U2

)
(∆− 1)+

4U4(2− 2∆ +∆2) + U2(6− 8∆ + 4∆2)
]
.

(2.11)

While the sum of (2.11) over n clearly diverges, the result (2.11) will still prove useful

in section 2.3. For general r+, numerically integrating the full expression for periodic

scalars yields a strictly negative result for each ⟨Tkk⟩n, so the back-reaction does indeed

render the wormhole traversable.

The calculation for the KKEOW geometry is slightly more involved. For any given

four-dimensional mass m, Kaluza-Klein (KK) reduction on the S1 produces a tower of

massive three-dimensional fields with effective masses given by

meffℓ =

√
m2ℓ2 +

(
ℓ

RS1

)2

p2, (2.12)

where p ∈ Z is the mode number on the internal S1 with radius RS1 . Since the three-

dimensional two-point function (2.10) is known exactly, it is useful to write the full

four-dimensional stress-energy tensor as a sum over p of contributions ⟨Tkk⟩n,p from the

nth term in (2.10) and the pth mode on the S1.
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Such contributions include a factor of of eipπ = (−1)p from the action of the isometry

on θ. These alternating signs play an important role, as the n = 0 contributions ⟨Tkk⟩n=0,p

all have nonintegrable singularities at U = 0. Indeed, such terms are independent of r+

and give

⟨Tkk⟩n=0,p =
1

32πU3
+

3− 8∆ + 4∆2

64πU
+

−2∆ + 3∆2 −∆3

6π
+O(U). (2.13)

Since the four-dimensional state is Hadamard and the quotient is smooth, the full stress-

energy tensor can have only integrable singularities and the nonintegrable terms in (2.13)

must cancel when summed over p. For numerical calculations, we can simply choose

some large N and sum over modes with |p| ≤ N if we also impose a cutoff at small U

to avoid possible issues from incomplete cancellations of such terms at finite N ; see [92]

for details2. Again, the integrated ⟨Tkk⟩ is negative for all periodic scalars of the type

discussed above.

The KKZBO computations are similar but the integrated ⟨Tkk⟩ now depends on ϕ.

For ϕ ̸= 0, π each term ⟨Tkk⟩n,p is finite and continuous. However, at ϕ = 0, π the action

of J3 coincides with the KKEOW actions of J3. As a result, the expressions for ⟨Tkk⟩n,p

coincide there as well. In particular, corresponding care is required for the n = 0 modes.

For the simple scalars discussed here, periodic boundary conditions make the integrated

⟨Tkk⟩ negative along all horizon generators, though [92] also found more complicated

examples where the sign of ⟨∆V ⟩ varies with ϕ.
2It was also shown in [92] that the explicit terms above vanish when summed over p using Dirichlet

η regularization for the 1/U3 and 1/U terms and Abel summation for the constant term. One may thus
rewrite ⟨Tkk⟩ as a sum of explicitly finite terms.
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2.2.3 Subtleties of Spinor Representations

We now consider how the above constructions should be generalized to accomodate

bulk fermion fields. To begin, recall that spin groups admit two inequivalent fundamental

representations in odd dimensional spacetimes. One may think of this choice as arising

from two distinct possible definitions of γd−1 = ±i− d−3
2

∏d−2
i=0 γ

i, both of which form a

representation of the Clifford algebra {γa, γb} = 2ηab [15], or as choice of

d−1∏
i=0

γi = ±I2(d−1)/2 . (2.14)

We shall simply denote the two choices as γaA and γaB below, with the understanding

that the sign on the right-hand-side of 2.14 is + in the A representation and − in the B

representation, with γaA = −γaB.

Since the two spinor representations differ by the sign of all γµ, they are related

by the action of the three-dimensional parity operator, which we may take to be any

orientation-reversing isometry of 3D Minkowski space. As a result, on a nonorientable

spacetime like the RP 2 geon, spinors can be well-defined only when both representations

are present. In particular, our theory on the geon must contains two spinor fields ψA

and ψB, each corresponding to a different representation, but which are exchanged when

one traverses a noncontractible curve that reverses orientation. While it is inconsistent

to have a single fermion corresponding to either representation alone, this AB doublet of

fermions yields a well-defined theory. In this context, we may use the Lagrangian [98]

L = det(e)
[
ψA(iγ

µ
ADµ −m)ψA + ψB(iγ

µ
BDµ −m)ψB

]
(2.15)

where det(e) is the vielbein determinant and γµA,B denote the gamma matrices for each

fermion representation. In terms of a method-of-images construction paralleling that for
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scalars in [92] in the scalar case, the Lagrangian on the BTZ covering space must also

take the form (2.15).

Let us now consider the analogue of the scalar relation (2.5). For fields of nonzero

spin, adding the field operators at distinct points x and Jx requires one to first find some

way to identify the corresponding two tangent spaces. It is natural to use the isometry J

and, as discussed in section 2.3 below, any isometry can be extended to a map Ĵ taking

spinors at x to spinors at Jx. In particular, the spinor field Ĵ ψ̃ evaluated at x is an

operator built from ψ̃(Jx). We may thus write

ψ(x) ≡ 1√
2

(
ψ̃(x) +

[
jψ̃
])

(x). (2.16)

Since the equation of motion is linear, it is preserved by Ĵ if Ĵ preserves the vielbein and

the γa. We will use these conditions in section 2.2.4 to define the appropriate extension

Ĵ of the isometry J . The ansatz (2.16) will then satisfy the equation of motion on the

quotient M when ψ̃ satisfies the corresponding equation on the covering space M̃ . One

may also check that canonical normalization of ψ̃ gives canonical normalization of ψ.

Thus (2.16) is the desired method-of-images ansatz. As for scalars, correlation functions

in spinor Hartle-Hawking states on M and M̃ will again be related by (2.16).

We now consider the implications for stress-energy tensors on the RP 2 geon, which

we represent as BTZ/J1. The important point here is that J1 reverses orientation and

must thus interchange ψA and ψB. In other words, in this context we may write (2.16)

more explicitly as

ψA(x) ≡
1√
2

(
ψ̃A(x) +

[
Ĵ1ψ̃B

]
(x)
)
, ψB(x) ≡

1√
2

(
ψ̃B(x) +

[
Ĵ1ψ̃A

]
(x)
)
, (2.17)

where
[
J1ψ̃B

]
(x) is built from the operator ψ̃B(J1x). Since the Lagrangian (2.15) con-
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tains no interactions, the full stress-energy tensor is of course a sum of separately con-

served stress-energy tensors for the A and B fields. Let us consider first the expectation

value of the A stress-energy tensor, which is a quadratic composite operator much like

the stress-energy tensor of a scalar field. As in the scalar case, using the first line in (2.17)

generates four terms. The term involving coincident points at x gives the A stress-energy

tensor on the covering space which vanishes by the same symmetry described above for

scalars, and the term involving coincident points at J1x gives the similarly-vanishing

B stress-energy tensor. The final two terms are cross-terms built from the correlators

⟨ψA(x)ψB(J1x)⟩ and ⟨ψB(J1x)ψA(x)⟩ in the Hartle-Hawking state on the covering space

M̃ . The the lack of an interaction term in (2.15) means that such AB cross-correlators

vanish identically. So despite the breaking of the Killing symmetry on the RP 2 geon, the

A stress-energy tensor continues to vanish on the horizon, as does the B stress-energy ten-

sor by the same argument. The shift ∆V thus remains zero and first-order back-reaction

does not render the wormhole traversable.

One might ask if fermionic back-reaction is more interesting on the KKEOW space-

time. There the full spacetime is four-dimensional, so there is only one representation

of the Clifford algebra and it is invariant under orientation-reversal. Thus we need only

consider a single Weyl fermion. However, as for the scalar case one may proceed by

dimensional reduction to three dimensions, where one obtains a set of uncoupled free

fields that come in pairs like the fields AB discussed above. In particular, the AB fields

in each doublet are related by reversal of orientation on the three-dimensional (orbifold)

base space. In terms of each pair, the discussion proceeds precisely as for the RP 2 geon

above, and the full stress-energy tensor again vanishes. From the four dimensional per-

spective the point is that even-dimensional spinors admit a conserved notion of chirality,

and that the two chiralities are exchanged by the orientation-reversing isometry J2. The

cross-terms in the stress-energy tensor are then built from two-point functions between
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Weyl spinor components of opposite chirality, which vanish in Hartle-Hawking state.

The upshot of this discussion is that in any Z2 quotient of a spacetime with a Killing

symmetry (in any spacetime dimension) the contribution of spinors to expected stress-

energy tensors on the horizon will vanish unless the quotient is orientable. For this

reason we focus on the orientable KKZBO spacetime in the remainder of this work. The

generalization of our discussion thus far to this spacetime is reviewed in section 2.2.4

below.

2.2.4 The KKZBO Spacetime and Back-reaction

As mentioned in section 2.2.1, the KKZBO spacetime can be defined in the presence

of rotation. In particular, it admits an extreme limit where [92] found that back-reaction

from matter sources becomes large. Perturbations that render the wormhole traversable

may thus naturally create an eternally traversable wormhole in this limit in agreement

with [86, 91]. We briefly review these results here for later use in studying back-reaction

from the stress-energy tensor of our Weyl fermions.

To begin, recall that the rotating BTZ (rBTZ) metric in our Kruskal-like coordinates

(U, V, ϕ) takes the form

ds2 =
1

(1 + UV )2
(−4ℓ2dUdV + 4ℓr−(UdV − V dU)dϕ+

[
r2+(1− UV )2 + 4UV r2−

]
dϕ2).

(2.18)

We are interested in the Cartesian product of (2.18) with an S1 of radius RS1 , and thus

with line element R2
S1dθ2. Defining

J3 : (U, V, ϕ, θ) → (V, U,−ϕ, θ + π) (2.19)

as in section 2.2.1, it is clear that the (U, V, ϕ) part of J3 preserves (2.18) and the θ part
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preserves the metric on S1.

To understand the implications of the ⟨Tkk⟩KKZBO that we will compute in section 2.3,

we must understand the back-reactions of such a source on the geometry. As in the case

without spin, one may lift the source ⟨Tkk⟩M computed on the quotient M = KKZBO

to the covering space M̃ = rBTZ × S1, compute the associated back-reaction on M̃ =

rBTZ × S1, and then quotient the result again by J3. This lift and quotient procedure

gives the same result as computing back-reaction directly on the KKZBO spacetime. And

since we preserve rotational symmetry on the internal S1, the problem can be Kaluza-

Klein reduced to studying back-reaction on three-dimensional rBTZ. Indeed, section 2.3

will directly compute the effective three-dimensional stress-energy ⟨Tkk⟩3dKKZBO, which is

just the integral over the internal S1 of ⟨Tkk⟩KKZBO.

We thus require the generalization of (2.2) to rotating BTZ and to sources that break

rotational symmetry. As shown in [92], the correct result is

∆V =
1

4ℓ2

∫ ∞

0

dUhkk =
2πGN

ℓ2

∫ ∞

−∞

∫ π

−π
dϕ′dUH(ϕ− ϕ′) ⟨Tkk⟩3d (ϕ′), (2.20)

where the Green’s function H(ϕ− ϕ′) is usefully described as a sum over Fourier modes

of the form

H(ϕ− ϕ′) =
∑
q

eiq(ϕ−ϕ
′)Hq, Hq =

1

2π

2ℓ2r2+
r2+ − r2− − 2iqr− + ℓ2q2

. (2.21)

Perhaps the most interesting feature of (2.21) is that the zero-mode Hq=0 =
ℓ2r2+

π(r2+−r2−)
,

diverges in the extreme limit r+ → r−. As noted in [92], this invalidates our perturbative

analysis for r+ very close to r−, but it also suggests that a full nonperturbative analysis

could produce a static, eternally traversable wormhole. We will thus be most interested

in cases with r+−r− smaller than any classical scale, but with r+ still far enough from r−
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that our perturbative treatment remains valid. Variations with ϕ are then a subleading

effect as the q ̸= 0 modes in (2.21) remain finite at r+ = r−. It is thus useful to focus on

the average of the time delay (2.20) over ϕ. Since the temperature of rotating BTZ is

T =
r2+ − r2−
2πr+ℓ2

=
2r+
H0

, (2.22)

we may average ⟨∆V ⟩ over the ϕ-circle to write

T ⟨∆V ⟩average =
4GNr+
ℓ2

∫ ∞

0

∫ π/2

−π/2
dϕdU ⟨Tkk⟩3d , (2.23)

where the factor of 4 is associated with making use of symemtries to change the limits

of integration relative to those in (2.20). In the scalar case, the numerics in [92] found

the extreme limit of (2.23) to be approximately independent of r+. We will find similar

behavior below.

2.3 Spinors and Stress-Energy Tensors on the KKZBO

Spacetime

We now turn to the fermion details for stress-energy tensors on the KKZBO. We

begin in section 2.3.1 below by extending the KKZBO isometry J3 of rBTZ × S1 to act

on spinor fields. Section 2.3.2 then sets up the calculation of the desired stress-energy

tensor components and section 2.3.3 studies a simplifying limit in preparation for more

complete numerical calculations in section 2.3.4.

30



Perturbatively Traversable Wormholes from Bulk Fermions Chapter 2

2.3.1 Spinor Extensions of the J3 Isometry

Any isometry has a natural action on tensor fields via the associated diffeomorphism.

But spinor fields are not tensors, and are typically defined by attaching an internal

tangent space to each point in spacetime. This is done by choosing a vielbein eaµ, which

has a spacetime index µ = (U, V, ϕ, θ) and an internal index a = (0, 1, 2, 3). Choosing the

metric on the internal space to be ηab = diag(−1, 1, 1, 1), one may use any vielbein that

satisfies eaµe
b
νηab = gµν . Any two such vielbeins are related by an internal O(3, 1) gauge

transformation. For rBTZ× S1 we take

eaµ =
1

1 + UV



ℓ ℓ 0 0

ℓ −ℓ 0 0

−r−(U − V ) −r−(U + V ) r+(1− UV ) 0

0 0 0 RS1 (1 + UV )


, (2.24)

where a labels the columns and µ labels the rows.

The natural action of the isometry J3 on eaµ is given by treating eaµ as a spacetime

vector field for each a. Thus J3 acts on spacetime indices µ and the point at which

the field is evaluated but has no further action on the internal index a. As a result, in

addition to acting on the arguments (U, V, ϕ, θ) in (2.24), it also exchanges the U and

V rows and changes the sign of all entries in the ϕ row. We note that this combined

operation is not a symmetry of the vielbein.

However, as noted in section 2.2.3, it would be more useful for our method-of-images

construction to have an operation Ĵ3 that leaves the vielbein invariant. Since the isometry

J3 preserves the metric, the vielbeins J3e
a
µ and eaµ can differ only by an internal O(3, 1)

transformation. Choosing the right such transformation j (such that (je)aµ = jab e
b
µ) thus

allows us to define a vielbein-preserving Ĵ3 = J3 ◦ j as desired. It is easy to check that
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this is the case for

jba =



1

−1

−1

1


(2.25)

defines a Ĵ3 that preserves the vielbein (2.24).

To describe the corresponding action on spinors, one should view (2.25) as the action

of an O(3, 1) transformation on covectors. There is then a corresponding action j̃ of this

transformation on spinors, up to a sign to be discussed below associated withO(3, 1) being

the double cover of the associated spin group, defined by requiring that j leave invariant

the four-dimensional Clifford algebra {Γa} that satisfies {Γa,Γb} = 2ηab and defines the

four-dimensional spinor representation. The spinor-space matrix j̃ must satisfy

Γa = [j(Γ)]a = (j̃)−1jabΓ
bj̃. (2.26)

Noting that

jbaΓ
a : (Γ0,Γ1,Γ2,Γ3) → (Γ0,−Γ1,−Γ2,Γ3), (2.27)

and setting j̃ = iΓ1Γ2 = (j̃)−1 = j̃† one finds (j̃)−1Γaj̃ = jabΓ
b = (j)−1a

bΓ
b so that (2.26)

is satisfied as desired.

Since we will use Kaluza-Klein reduction on the S1 to express the four-dimensional

fields in terms of three-dimensional fields on a BTZ orbifold, it is useful to express j̃ in

terms of the three-dimensional gamma matrices γa for a = (0, 1, 2). Since each three-

dimensional spinor representation is invariant under the action of any Γa, we can choose

a basis for the four-dimensional representation in which each Γa takes a block diagonal
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form

γaA 0

0 γaB

, where the subscripts denote the two spinor representations labelled A

and B in section 2.2.3. In either representation we thus find

j̃ = iγ1γ2. (2.28)

The fact that the action of Ĵ3 on spinors is ambiguous up to an overall sign implies

that there are two natural notions of periodic spinors on the quotient space: those defined

by spinors on rBTZ×S1 that are invariant under Ĵ3 and those defined by spinors invariant

under−Ĵ3. As a result, any use of the terms periodic and anti-periodic spinors is generally

a choice of convention as these terms can become well-defined only after making an

arbitrary choice of this sign3. Our convention in this work will be to use Ĵ3 as defined

by (2.28). In contrast, consider the ϕ-translation used to construct rBTZ as a quotient

of AdS3. This latter isometry already preserves the vielbein (2.24), so we may take the

corresponding extra action j on spinor indices to be trivial.

2.3.2 Computing ⟨Tkk⟩

For bosonic fields one defines the source for the Einstein equations by

Tµν =
−2
√
g

δSmatter

δgµν
. (2.29)

3This case is like what one often sees in flat space, where the discrete isometry is a special case of a
continuous isometry. Continuous isometries lift uniquely from O(d − 1, 1) to the associated spin group
and can be used to define natural notions of periodic and anti-periodic spinors.
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For spinor fields, as in (2.15), the Lagrangian is best written in terms of the vielbein so

that this source is defined via

Tµν = − 1

det(e)

δSmatter

δeλa

(
δλµeaν + δλν eaµ

)
. (2.30)

Note that (2.30) reduces to (2.29) when the vielbein appears in the action only through

gµν = eµaη
abeνb . Evaluating (2.30) for a spinor field yields the Belinfante stress-energy

tensor [99, 100]

Tµν =
i

2

[
ψ(γ(µDν)ψ) + (D(νψ)γµ)ψ

]
, (2.31)

where Dµ ≡ ∂µ +
1
2
ωabµ Σab is the covariant derivative with spin connection ωabµ and Dν ≡

∂µ − 1
2
ωabµ Σab. This tensor is both symmetric and conserved.

Having understood the action Ĵ3 on spinors of the appropriate rBTZ × S1 isometry

J3 in section 2.3.1 above, we can use the method of images to compute the expectation

value ⟨Tkk⟩ much as for scalars. The critical relation is

ψ(x) ≡ 1√
2

(
ψ̃(x) +

[
Ĵ3ψ̃

]
(x)
)
, (2.32)

where we have chosen signs such that (2.32) is a periodic spinor under our Ĵ3. Recall also

that
[
Ĵ3ψ̃

]
(x) = jψ̃(J3x). Inserting this into (2.31) and taking expectation values in the

rBTZ× S1 Hartle-Hawking state again yields 4 terms. Two of these are the expectation

values of ⟨Tkk⟩ on rBTZ×S1 at x and at J3x, which for x on the horizon must again vanish

by symmetry in the Hartle-Hawking state. We thus need only compute the remaining

cross-terms associated with distinct points x, J3x in the covering space. As for scalars,

in the full four-dimensional stress-energy tensor such terms are manifestly nonsingular

for all x.

However, again as for scalars it will be useful to Kaluza-Klein reduce our spinor to a
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tower of spinors on AdS3 by decomposing ψ into Fourier modes eipθ on the internal S1 (we

assume periodicity on this circle). The resulting three-dimensional spinors have masses

that are again given by (2.12). As noted earlier, this reduction yields three-dimensional

spinors in both representations.

For each p we may write the associated 3D stress-energy tensor ⟨Tkk⟩p on the horizon

in terms of the 3D spinor propagator SBTZ
α
β′(x, x′) = ⟨ψα(x)ψ̄β′(x′)⟩BTZ for a fermion

of the appropriate effective mass and choice of spinor representation in the BTZ Hartle-

Hawking state

⟨Tµν⟩p = (−1)p
i

2
lim
x→x′

∑
A,B

Tr
[
γ(µDν)SBTZ(x, J3x

′)j̃ + j̃D(ν′SBTZ(J3x, x
′)γµ)

]
, (2.33)

where Dν′ denotes a covariant derivative on the second argument that acts on the as-

sociated spinor indices and ΣA,B indicates that the right-hand-side adds togeher the

contributions from the two three-dimensional representations. The null-null component

of this stress-energy tensor can be rewritten

⟨Tkk⟩p = (−1)p+1
∑
A,B

Im{Tr
[
j̃/kDkSBTZ(x, J3x)

]
}. (2.34)

The propagator SBTZ is further given by an image sum SBTZ =
∑

n∈Z SAdS3 over propa-

gators in AdS3.

Using the maximal symmetry of this spacetime, the AdS3 propagators can be written

SAdS3(x, x
′) = [α(s) + /nβ(s)]Λ(x, x′)] (2.35)

in terms of the spinor parallel propagator Λ along the geodesic connecting x and x′, and

two functions α(s), β(s) of the associated geodesic distance s, and the tangent vector
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nµ = ∂
∂xµ

s(x, x′) to this geodesic at x. This construction and the relevant formulae are

reviewed in appendix B, following the same procedure as used by [101] in the Euclidean

case. In particular, the explicit form of α(s) is given by combining (B.14), (B.17), and

(B.19), whence β(s) then follows from the second line of (B.9).

However, it remains to find an expression for the spinor parallel propagator Λ. This

of course depends on our choice of SO(2, 1) gauge, and thus on our choice of vielbein.

Rather than compute the result directly for the choice (2.24) and the relevant geodesics,

it is simpler to proceed by noting that, for each n and x, the contribution to (2.33)

must be invariant under the combined action of AdS3 isometries, diffeomorphisms, and

internal SO(2, 1) gauge transformations and using such transformations to separately

simplify the computations for each n, x. In particular, we may fix an auxiliary (say,

nonrotating) BTZ coordinate system on AdS3 and then use AdS3 isometries to map the

geodesic segment running from x to the relevant image point x′ onto the bifurcation

surface of the (auxiliary) BTZ horizon. Using the (nonrotating version of the) vielbein

(2.24), one then finds the spinor parallel propagator Λ to be trivial along such geodesics,

with Λ(s) = 1 for all s.

To proceed further, it is useful to note that the quotient M̃ = (rBTZ × S1)/J3 can

also be generated by taking the quotient of AdS3 under the group generated by both

an rBTZ ϕ-translation (for which AdS3/Z = rBTZ) and a π rotation in AdS3 global

coordinates. In terms of the standard embedding coordinates reviewed in appendix A,

this is a rotation in the (X1, X2) plane. For each n, we may choosing the lift of x to

AdS3 so that the geodesic from x to the relevant image point x′ intersects the axis of this

rotation at the midpoint of the geodesic, and we may then choose the isometry moving the

geodesic to the bifurcation surface of our auxiliary BTZ coordinates to be just a rotation

around the same axis followed by a translation along it. In particular, we may choose

this AdS3 isometry to preserve the relevant axis so that the action j̃ on spinor indices
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of our extended isometry Ĵ3 is unchanged. Noting that (2.25) holds in our auxiliary

nonrotating BTZ SO(2, 1) frame as well as in the physical one, the expression (2.28) for

j̃ must continue to hold in this frame as well. Computing each contribution to (2.34)

in the associated auxiliary frame and summing over n and the choice of representations

then yields

⟨Tkk⟩p (x) = −4(−1)p
∑
n∈Z

(φn)µk
µ (nµk

µ)

[(
d

dsn
− 1

2ℓ
coth

sn
2ℓ

)
β(sn)

]
, (2.36)

where (φn)µ is the unit-normalized vector at x whose lift to AdS3 points along the

infinitesimal generator of rotations of X1 into X2 when the geodesic from x to its image

point x′ is lifted to AdS3 so as to intersect the associated rotation axis at its midpoint,

and where sn is the geodesic distance in AdS3 between x and x′. In particular, both sn

and φn depend on n.

As reviewed in appendix A, in terms of our rBTZ coordinates the explicit form of the

geodesic distance between two points x, x′ in AdS3 can be written

s(x, x′) = ℓ cosh−1

(
1

(UV + 1)(U ′V ′ + 1)

[
(UV − 1)(U ′V ′ − 1) cosh

(
r+(ϕ− ϕ′)

ℓ

)
+

2(UV ′ + V U ′) cosh

(
r−(ϕ− ϕ′)

ℓ

)
+2(V U ′ − UV ′) sinh

(
r−(ϕ− ϕ′)

ℓ

)])
.

(2.37)

Note that choosing x on the horizon and x′ as above imposes U ′ = V = 0, V ′ = U , and

ϕ′ = −ϕ, simplifying the result to

s(U, ϕ) = ℓ cosh−1

(
cosh

(
2r+ϕ

ℓ

)
+ 2U2 exp

(
−2r−ϕ)

ℓ

))
≡ ℓ cosh−1

(
1 +

2ρ2

ℓ2

)
(2.38)
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where ρ = ℓ

√
sinh2

(
r+ϕ
ℓ

)
+ U2 exp

(
−2r−ϕ

ℓ

)
is the radial coordinate defined by either x

or x′ in a global AdS3 coordinate system whose rotation axis orthogonally intersects the

midpoint of the geodesic from x to x′; in other words, 2πρ is the circumference of the

circle defined by rotating either x or x′ about this axis.

2.3.3 General Features

Since the general form of ⟨Tkk⟩ is quite complicated, we will compute the details of

stress-energy tensor profiles and the associated back-reaction on the metric numerically

in section 2.3.4 below. However, it is useful to first discuss certain general features of

(2.36).

In the scalar case, [92] found the expressions to simplify greatly in the limit r+(ϕ −

ϕ′)/ℓ, r−(ϕ− ϕ′)ℓ → 0, which in particular holds for the n = 0 term near ϕ = 0. This is

even more true in our case, as φµk
µ vanishes in this limit. For n = 0 we find

⟨Tkkn=0,p =
Ue−3r−ϕ sinh (r+ϕ)

(
ρ+

√
1 + ρ2

)−2m3(p)

8πρ5 (1 + ρ2)2[
3 +

(
6 + 4m2

3(p)
)
ρ2 +

(
3 + 4m2

3(p)
)
ρ4 + 6m3(p)ρ

√
1 + ρ2 + 8m3(p)ρ

3
√
1 + ρ2

]
(2.39)

with ρ defined as before and where we have set ℓ to 1.

The expression (2.39) is singular at ρ = 0, or U = ϕ = 0. It is useful to understand

this singularity since, as described above, the four-dimensional stress-energy tensor can

have at most an integrable singularity at this point. For p ̸= 0 and r+ ̸= 0 the terms

⟨Tkk⟩n=0,p are finite, so any nonintegrable singularity must cancel when (2.39) is summed

over p. This is precisely what occurs in the scalar case studied in [92].

However, in our case the singularity in (2.39) is separately integrable for each p.
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Writing e−
r−ϕ

ℓ U = ρ cos θ and sinh r+ϕ
ℓ

= ρ sin θ yields

⟨Tkk⟩n=0,p =
3 sin θ cos θ

8πρ3

(
1− 2

r−
r+

cos θρ+O(ρ2)

)
(2.40)

at small ρ. The result simply vanishes for any U at ϕ = 0 (sin θ = 0) for any U , or for any

ϕ at U = 0 (cos θ = 0). Integrating over U at fixed ϕ thus raises no issues. Integrating

over both ϕ and U also yields a finite result since
∫
dθ sin θ cos θ = 0 =

∫
dθ sin θ cos θ,

so that integral of the explicit terms in (2.40) also vanish, and all other terms give finite

results due to the fact that the measure dUdϕ ∝ ρdρdϕ(1+O(ρ2)) supplies an additional

factor of ρ.

The expression (2.39) has many similarities to the scalar expression (2.11). One

might expect a particularly simple relation between the two in the large mass limit

where occupation numbers are small and quantum effects are suppressed so that the

choice of bosonic vs. fermionic statistics is unimportant. But the kinematic structure of

the expressions remains different in that limit, associated with the nontrivial action j̃ of

the isometry Ĵ3 on fermionic indices. In particular, at large m3 the spinor result (2.39)

yields

⟨Tkk⟩n=0,ψ =
U sinh (r+ϕ) e

−3r−ϕ
(
ρ+

√
1 + ρ2

)−2m3

2πρ3 (1 + ρ2)
m2

3 +O(m3), (2.41)

while ∆ → 1 +m in the bosonic expressions (2.11) gives

⟨Tkk⟩n=0,ϕ =
U2e−4r−ϕ

(
ρ+

√
1 + ρ2

)−2m

8πρ3 (1 + ρ2)3/2
m2 +O(m). (2.42)

The fact that the denominators differ by a factor of 4 may be ascribed to the fact that

we consider a single real scalar and a four-component spinor (from the four-dimensional
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point of view). However, the other discrepancies reflect the difference in kinematics. We

find similar differences in the limit of large U with m fixed, which yields

⟨Tkk⟩n=0,ψ

⟨Tkk⟩n=0,ϕ

= 4 sinh (r+ϕ) +O(1/U2). (2.43)

It is interesting that the above expressions for our fermion field all change signs under

ϕ → −ϕ. This stands in marked contrast to the scalar results whose signs are gener-

ally ϕ-independent4. This odd-parity behavior turns out to arise from the nonrotating

limit r−(ϕ − ϕ′)ℓ → 0 regardless of whether a similar limit is taken for r+. Indeed, for

nonrotating BTZ there is no preferred sign of the unit-vector φµ and the symmetry of

nonrotating BTZ under ϕ → −ϕ requires (φn)µk
µ → −(φn)µk

µ. Since in that case all

other factors in ⟨Tkk⟩ are even, the integrated stress-energy becomes an odd function of

ϕ and the average over the full horizon must vanish. But this symmetry is broken by

rotation and, indeed, we will find below that for nonzero angular velocity the average of

⟨Tkk⟩ over the full horizon is nonzero.

2.3.4 Numerical Results

It remains to study ⟨Tkk⟩ and
∫
dU ⟨Tkk⟩ in detail. For this task we resort to numerics

and follow the same basic strategy as in [92]. We will phrase our results in terms of the

dimensionless quantity ℓ ⟨Tkk⟩ ∝ ∆V . As above, our results are for the effective three-

dimensional Kaluza-Klein-reduced stress-energy tensor. We impose a cutoff N on the

number of Kaluza-Klein modes over which we sum and also regulate the functions near

the (integrable) singularity at U = 0, ϕ = 0. We choose our cutoffs such that our answers

do not change significantly when these cutoffs are altered.

4Though with specially engineered boundary conditions [92] found cases where the sign of the inte-
grated scalar stress-energy depends on ϕ as well.
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In particular, our numerical expressions are computed via

⟨Tkk⟩numerical =
N∑

p=−N

(−1)pf(U,m(p)) + (−1)N+1f(U,m(N + 1)) (2.44)

where we have added an extra term so as to sum over an even number of terms, N of

which have an additional sign change. In computing
(∫

dU ⟨Tkk⟩
)
numerical

we integrate the

stress-energy tensor only over |U | > ϵ. We will interpolate between the origin and U = ϵ

with a linear approximation for the spinor and a constant for the scalar, as shown in

Figure 2.3 and integrate the interpolating function for |U | < ϵ. We choose our spinors to

be periodic under Ĵ3 such that we get a positive overall contribution to the stress-energy

tensor.

Some results for the dimensionless quantity ℓ ⟨Tkk⟩ are shown in figures 2.2 and 2.3.

Figure 2.2 shows the contributions to the stress-energy tensor for a spinor and scalar of

the same mass at a particular value of ϕ. Notably, the spinor contribution is everywhere

positive, as opposed to the scalar contribution which changes sign. Figure 2.3 shows

the details of the interpolation of ⟨Tkk⟩ for small U . As the spinor stress-energy tensor

vanishes at U = 0, a linear interpolation from the origin was used, while a constant

interpolation was used for the scalar case.

We also numerically calculate the contributions to
∫
dU ⟨Tkk⟩ at extremality in figure

2.4 for various values of ϕ and r+ = r−. As opposed to the scalar contribution, the spinor

contribution generically changes sign at different ϕ for a given r+. In the scalar case,

this phenomenon must be engineered [92] by requiring some KK modes to have the (−)

boundary condition in (2.8). Figure 2.5 plots the integral of ⟨Tkk⟩ over both U and ϕ at

extremality as a function of the radius r+ = r−. The physical importance of this quantity

is that, as discussed in section 2.2.4, it is proportional to T ⟨V ⟩average (see (2.23)). As in

[92], we find numerically that this function is independent of r+. We thus find a large
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Figure 2.2: Plot of ℓ ⟨Tkk⟩ vs. U with kµ∂µ = ∂U for a spinor field ψ and a scalar field
ϕ. Both particles have mass m = 1 in units of inverse ℓAdS . We have chosen r+ = 1
and r− = 1/2 in the same units, as well as ϕ = 0.1. Here the cutoff ϵ = 0.02, the
sum over BTZ images has been done to n = 3, and the sum over KK modes has been
performed to N = 50, with ℓ/RS1 =

√
10.

average time advance ⟨V ⟩average ∝ 1/T as T → 0 in the extreme limit r− → r+, suggesting

that a nonperturbative treatment may lead to an eternally traversable wormhole as in

[92], at least in the presence of some large parameter that controls quantum fluctuations

relative to the mean. Figure 2.6 compares the relative size of this quantity at extremality

for one four-dimensional complex scalar field and four four dimensional real scalar fields,

which as mentioned before, have the same number of degrees of freedom. For all values of

the three-dimensional mass m, the spinor contribution to the stress-energy tensor is less

than that of the equivalent scalar fields, owing to cancellations from the spinor kinematic

structure.

2.4 Conclusion

We have studied the contributions of bulk spinors to the integrated null stress-energy

tensor of a Z2 quotient of rBTZ × S1 known as the Kaluza-Klein zero-brane orbifold

42



Perturbatively Traversable Wormholes from Bulk Fermions Chapter 2

0.00 0.01 0.02 0.03 0.04
U

0.01

0.02

0.03

0.04

0.05

ℓ〈Tkk〉ψ

0.00 0.01 0.02 0.03 0.04
U

-0.295

-0.290

-0.285

-0.280

ℓ〈Tkk〉ϕ

Figure 2.3: Details of the interpolation between the origin and U = ϵ = 0.02 for the
spinor and scalar in Figure 2.2.

(KKZBO). As in the scalar case, the Z2 quotient is associated with a sign that controls

the periodicity of the bulk field as well as the overall sign in the null stress-energy ⟨Tkk⟩

on the horizon.

The fact that spinor fields carry Lorentz indices leads to notable differences from the

scalar case. The spinor ⟨Tkk⟩ includes an overall factor of φµk
µ, where φ is a vector field

defined by the Z2 quotient operation. This φµk
µ is an odd function of ϕ for nonrotating

BTZ, so in that case the spinor ⟨Tkk⟩ is odd as well and integrates to zero over the ϕ-circle.

As a result, at least in the limit of large black hole radius where the Green’s function

(2.21) relating ⟨Tkk⟩ to the generator-dependent time delay ⟨∆V ⟩ becomes short-ranged,

without rotation one finds the wormhole to be traversable when entered across one half

of the ϕ-circle (say for ϕ ∈ (0, π)) but to remain nontraversable when entered across the

other half-circle.

This overall factor of φµk
µ is associated with the fact that the simplicity of the model

in four dimensions means that both possible three-dimensional representations of the

Clifford algebra enter with equal weight. Terms that for each representation are not

proportional to φµk
µ have opposite signs in the two representations and cancel. As a

result, a more chiral construction that caused the two representations to enter on a less

equal footing would not have this property.
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Figure 2.4: Plot of ℓ ⟨Tkk⟩ at extremality for a spinor ψ at various values of r+ = r−
and ϕ. The four dimensional mass m = 1 and ℓ/RS1 =

√
10. The cutoff ϵ = 0.1,

the sum over Kaluza-Klein modes was performed to N = 20, and the sum over BTZ
images was performed to n = 3.

While the above ϕ → −ϕ (anti-)symmetry is broken at nonzero angular velocity,

the sign of ⟨Tkk⟩ still varies with ϕ and the average over the ϕ-circle is correspondingly

reduced relative to the scalar case. But choosing the aforementioned sign correctly still

makes the average negative (and thus also ⟨V ⟩average). As in the scalar case [92], the

quantity T ⟨V ⟩average < 0 is nonzero at T = 0, so that the time delay −⟨V ⟩average ∝ 1/T

becomes large. At least in the presence of some large parameter that controls quantum

fluctuations relative to the mean, this suggests that a nonperturbative treatment may

lead to an eternally traversable wormhole as in [91]. It also interesting that, again as in
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Figure 2.5: Plot of the quantity ℓ
∫∞
0

∫ π/2
−π/2 dϕdUr+ ⟨Tkk⟩ at extremality for

m = (0, 1, 2) and ℓ/RS1 = 10. The cutoff ϵ = 0.01, the sum over Kaluza-Klein modes
modes was performed to N = 200, and the sum over BTZ images was performed to
n = 3. This quantity appears constant for all values of r+, up to corrections at small
r+ for the small value of N . Relevant values of the four-dimensional mass m are
indicated above.

the scalar case studied in [92], numerical results suggest T ⟨V ⟩average to be independent

of r+ = r− at extremality, though with values noticeably smaller than in the scalar case

(see figure 2.6) due to partial cancellations associated with the variation in sign with ϕ

described above.

Such results in particular make clear that, even though extreme BTZ preserves cer-

tain supersymmetries, models with N = 1 bulk supersymmetry do not lead to special

cancellations in ⟨Tkk⟩ between bosons and fermions on the extreme KKZBO spacetime.

This lack of cancellations is especially manifest at large mass m where AdS bulk su-

persymmetry relates fermions and bosons of nearly equal masses. It should not be a

surprise since the nonvanishing of ⟨Tkk⟩KKZBO is manifestly due to the breaking of the

BTZ Killing symmetry by the Z2 quotient used to build KKZBO from extreme BTZ.

Since this Killing symmetry is part of the supersymmetry algebra on extreme BTZ, the

quotient must break supersymmetry at the same level.

A natural next step for further investigation would be to study fields of even higher
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Figure 2.6: Plot of the ratio of the quantity
∫∞
0

∫ π/2
−π/2 dϕdUr+ ⟨Tkk⟩ at extremality for

one four-dimensional complex spinor field and four four-dimensional real scalar fields
of the same four-dimensional mass m. ℓ/RS1 = 10 with a cutoff ϵ = 0.01. The sum
over Kaluza-Klein modes was performed to N = 1000 and the sum over BTZ images
was performed to n = 5. The spinor contribution to the integrated stress-energy
tensor is always significantly less than that of the scalars with an equivalent number
of degrees of freedom.

spin, and in particular to better understand what kinematic factors might arise in such

cases. Expressions for the vector propagator for both massive and massless particles on

AdS3 were given in [102] and can be used to compute the stress-energy of such fields

on the KKZBO spacetime in direct analogy to the computations performed here. Fur-

ther extensions to spin-3/2 and spin-2 fields would then allow one to study gravitino

and graviton back-reaction to our wormhole geometry. It would also be interesting to

study the back-reaction of signals passing through our wormholes as was done for GJW

wormholes in [84, 87, 103, 104] to understand how differences from the scalar case above

affect limits on the amount of information that can be transmitted.
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Chapter 3

Replica Wormholes and Holographic

Entanglement Negativity

3.1 Introduction

Replica wormholes have played an important role in recent progress on solving the

black hole information problem [60, 61]. These wormholes appear as nontrivial saddle

points that could dominate gravitational path integrals with replicated boundary con-

ditions. Their appearance leads to nontrivial “island” contributions in the quantum

extremal surface (QES) formula for gravitational entropy [44, 45, 53, 54].

So far most of the discussion has been centered on the von Neumann entropy. While

obtaining the von Neumann entropy is a good first step, we need more detailed informa-

tion about the quantum state — such as more general measures of entanglement — to

fully solve the black hole information problem.

In this chapter, we take a first step towards understanding the structure of entangle-

ment in an evaporating black hole and its Hawking radiation by studying entanglement

negativity and its Rényi generalizations in a couple of toy models. Just as the von Neu-
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mann entropy is a measure of quantum entanglement in pure states, the negativity is an

important measure of entanglement in generally mixed states. Therefore, the negativity

provides an interesting probe in diagnosing the structure of multipartite entanglement in

systems such as an evaporating black hole.

To understand negativity intuitively, consider a general state on two subsystems that

is described by a density matrix, and take its partial transpose on the second subsystem.

The partially transposed density matrix could have negative eigenvalues, and the degree

to which the eigenvalues are negative is characterized by the negativity and logarithmic

negativity. Both of these negativity measures are entanglement monotones, and the

logarithmic negativity provides an upper bound on the distillable entanglement [105–

107]. Negativity has been discussed in a number of interesting prior works [108–130].

We now give a short summary of this chapter.

In Section 4.3, we review the definition and properties of the negativity and its Rényi

generalizations. In Section 3.3, we start our study of negativity in a toy model of an evap-

orating black hole in Jackiw-Teitelboim (JT) gravity with an end-of-the-world (EOW)

brane. This is a slight generalization of the model studied in [61], with the system

describing the Hawking radiation divided into two subsystems so as to study negativity.

As we tune the parameters of the model, we find a rich phase diagram for the negativ-

ities consisting of four phases (see Figure 3.4). Each of the four phases is dominated by a

saddle-point geometry of JT gravity (or a set of saddle points). For a black hole before the

Page time, we find a phase dominated by a totally disconnected geometry, whereas after

the Page time, we find three distinct phases depending on how we divide the radiation

system into two subsystems: the first phase is dominated by a cyclically connected geome-

try (which is the replica wormhole of [61]), the second dominated by an “anti-cyclically”

connected geometry, and the third dominated by pairwise connected geometries that

are in one-to-one correspondence with noncrossing pairings. These pairwise connected
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geometries are new replica wormholes that spontaneously break the replica symmetry.

Their appearance agrees with the general discussions on holographic negativity in [128].

In Sections 3.4 and 4.4, we study the behavior of negativities near the transitions

between the four phases. Near these phase transitions, more geometries than the four

types described earlier could dominate the gravitational path integral for Rényi negativ-

ities, and we need to sum over them. In order to obtain the negativity and logarithmic

negativity (as well as related negativity measures such as the partially transposed en-

tropy [118, 128]), we need to analytically continue in the replica number. We achieve this

by using the resolvent for the partially transposed density matrix to find its eigenvalue

distribution (which we call the “negativity spectrum”). To calculate this “negativity re-

solvent,” we organize the sum over geometries into a Schwinger-Dyson equation, which is

similar to the method used in [61]. We develop this method for negativity in Section 3.4

and apply it to both a microcanonical ensemble and canonical ensemble in Section 4.4.

When the black hole is in a microcanonical ensemble, the Schwinger-Dyson equation

simplifies into a cubic equation for the negativity resolvent, leading to concrete results

for the negativities near all phase transitions. This is similar to the case of a random

mixed state studied in [127].

When the black hole is in a canonical ensemble, the gravitational calculation is tech-

nically more difficult. As a result, we study each of the phase transitions separately, for

we only need to sum over a subset of geometries near each transition. Near the transition

between the “disconnected” phase and “pairwise” phase, the Schwinger-Dyson equation

again simplifies, this time into a quadratic equation for the negativity resolvent. Near

the transition between the “cyclic” phase and “pairwise” phase, it is difficult to solve the

Schwinger-Dyson equation exactly, but we solve it approximately in the semiclassical, or

β → 0, limit. From its solution, we find that the negativity spectrum near the phase

transition consists of two branches, each of which is approximately a shifted thermal
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spectrum with a cutoff. One branch consists of positive eigenvalues, and the other has

negative eigenvalues. From this we find enhanced corrections to various negativity mea-

sures near the phase transition. In particular, a quantity known as the refined Rényi-2

negativity receives an O(1/
√
β) correction, similar to the enhanced corrections to the

von Neumann entropy at the Page transition [61, 131, 132], whereas other negativity

measures such as the logarithmic negativity and the partially transposed entropy exhibit

O(1/β) corrections, similar to what happens to Rényi entropies Sn with n < 1.

Moving beyond the JT gravity model, we study in Section 3.6 the behavior of nega-

tivities in a topological model of 2-dimensional gravity with EOW branes. This is a slight

generalization of the model of [62], where we again divide the radiation system into two

subsystems to study negativity. We find the situation to be very similar to the case of

a microcanonical ensemble in JT gravity described earlier. In particular, the Schwinger-

Dyson equation again simplifies into a cubic equation for the negativity resolvent, leading

to concrete results for the negativities.

We end with some concluding remarks in Section 3.7 and several appendices. In

Appendix C, we derive the set of dominant geometries in each of the phases and near

phase transitions. In Appendix D, we provide a more detailed analysis near the transition

between the cyclic phase and pairwise phase in the canonical ensemble. In Appendix E,

we study the Rényi entropies near the Page transition in a similar fashion and show that

they exhibit corrections analogous to the corrections to the negativities near the phase

transition.

Related works appeared recently and have some partial overlap with our results on the

study of negativity in JT gravity in the microcanonical ensemble [133] and the canonical

ensemble [130, 134].
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3.2 Entanglement Negativity and Rényi Negativities

The motivation for entanglement negativity comes from the Peres-Horodecki criterion

[135, 136], also known as the PPT (positive partial transpose) criterion for mixed states,

which we review here. Consider a mixed state ρAB defined on the product Hilbert space

H = HA ⊗HB. A state is separable if it can be written as

ρAB =
k∑
i=1

piρ
i
A ⊗ ρiB,

k∑
i=1

pi = 1 (3.1)

for states ρiA and ρiB on HA and HB, respectively. Separable states are classical mixtures

of product states and thus do not contain quantum entanglement; inseparable states are

said to be entangled.

We denote the algebra of operators on Hi by Ai, and the space of linear maps from

AA to AB by L(AA,AB). A map Λ ∈ L(AA,AB) is said to be positive if

Λ : AA → AB (3.2)

maps positive operators to positive operators, and is completely positive if for all non-

negative integer n,

Λn ≡ Λ⊗ I : AA ⊗Mn → AB ⊗Mn (3.3)

is positive, where Mn denotes the algebra of n × n complex matrices. For separable

states, this condition is clearly satisfied when Λ is a positive map, as (Λ⊗ I) (ρA ⊗ ρB) =

(ΛρA) ⊗ ρB ≥ 0. For inseparable states, this no longer holds in general, so a good

diagnostic of entanglement would be a positive but not completely positive map, such

that entangled states would have negative eigenvalues under the action of Λ⊗ I.

The partial transpose is such a positive but not completely positive map. Consider
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a bipartite system AB with an orthonormal basis {|a⟩} on A and {|b⟩} on B. Given a

density matrix ρAB on AB, we define the partially transposed density matrix as1

〈
a, b|ρTBAB|a

′, b′
〉
= ⟨a, b′|ρAB|a′, b⟩ . (3.4)

Acting on a reduced density matrix on B, the partial tranpose becomes the usual trans-

pose which preserves the eigenvalues of the original reduced density matrix and is there-

fore a positive map. Acting on the full density matrix is not guaranteed to preserve

positivity. As an example, take an EPR pair of two qubits A and B. The partial trans-

pose of its density matrix has eigenvalues {1
2
, 1
2
, 1
2
,−1

2
}. We therefore see that the par-

tial transpose can be a useful tool for differentiating between separable and inseparable

states.2

The entanglement negativity N (ρ) is defined as the sum of the absolute values of

the negative eigenvalues of this partially transposed density matrix and can be variably

written as

N (ρAB) =
||ρTBAB||1 − 1

2
=
∑
i

|λi| − λi
2

=
∑
i:λi<0

|λi|. (3.5)

Here ||X||1 ≡ Tr |X| = Tr
√
X†X is the Schatten 1-norm of a matrix X. We see why

negativity is such an appealing entanglement measure, as it is computed directly from a

trace, as opposed to a variational principle in the case of other entanglement measures.

Note that as we are taking a trace, it does not matter which subsystem we take the

partial trace over, so choosing ρTBAB instead of ρTAAB is merely a convention. The logarithmic

1For reasons that will become clear shortly, in later sections we will rename the subsystems A and B
as R1 and R2, and the partial transposition TB is thus called T2.

2For 2× 2 and 2× 3 matrices, the PPT criterion is both necessary and sufficient for the state to be
separable. For systems of general dimension it is not sufficient, as bound entangled states have positive
semidefinite partial transpose and therefore require further entanglement criteria to be distinguished
from separable states.
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negativity is similarly defined by

E(ρAB) = log

(∑
i

|λi|

)
= log

(
2N (ρAB) + 1

)
. (3.6)

The logarithmic negativity is an upper bound on the distillable entanglement, i.e., the

asymptotic number of EPR pairs that can be extracted from a set of identically prepared

ρAB with local operations and classical communication (LOCC).

We can also write a Rényi version of negativity via

Nn(ρAB) = Tr
[(
ρTBAB

)n]
. (3.7)

There is a subtlety in the analytic continuation of the Rényi negativity. As the negativity

is defined by the absolute value of the eigenvalues of the partially transposed density

matrix and the Rényi negativity is defined without an absolute value, we need to define

different analytic continuations for even and odd n such that

N (even)
2m =

∑
i

|λi|2m,

N (odd)
2m−1 =

∑
i

sgn(λi)|λi|2m−1. (3.8)

The logarithmic negativity is then obtained from the even analytic condition:

E(ρAB) = lim
m→1/2

logN (even)
2m (ρAB) . (3.9)

In this chapter, we will also be interested in a generalization of the Rényi negativities
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termed refined Rényi negativities, which are given by

STB(n,even)(ρAB) = −n2∂n

(
1

n
logN (even)

n

)
,

STB(n,odd)(ρAB) = −n2∂n

(
1

n
logN (odd)

n

)
. (3.10)

The refined Rényi negativities are inspired by the refined Rényi entropies defined

in [137]. In particular, we will be interested in two measures that descend from the refined

Rényi negativities. The first is the partially transposed entropy STB(ρAB) of [118, 128],

defined as the m→ 1 limit of the refined odd Rényi negativity:

STB(ρAB) = −1

2
lim
m→1

∂m logN (odd)
2m−1 = −

∑
i

λi log |λi|. (3.11)

STB is so named in analogy with the von Neumann entropy. The other measure is the

refined Rényi-2 negativity STB(2,even)(ρAB), which can be written as

STB(2,even)(ρAB) = − lim
m→1

m2∂m

(
1

m
logN (even)

2m

)
= −

∑
i

λ2i∑
j λ

2
j

log

(
λ2i∑
j λ

2
j

)
. (3.12)

We will refer to this quantity as STB(2) for short. It is equivalent to the von Neumann

entropy of
(
ρTBAB

)2
/Tr

[(
ρTBAB

)2]
.

3.3 The Model and Four Phases

3.3.1 JT gravity with EOW branes

We start by reviewing the simple model of black hole evaporation studied in [61] (see

also [138, 139]). This model consists of a black hole in JT gravity, decorated with an
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end-of-the-world (EOW) brane with tension µ. The action is given by

I = IJT + µ

∫
brane

dy, (3.13)

with the JT action being

IJT = −S0

2π

[
1

2

∫
M
R +

∫
∂M

K

]
−
[
1

2

∫
M
ϕ(R + 2) +

∫
∂M

ϕK

]
. (3.14)

We have set GN = 1, though it can be restored by sending the inverse temperature

β → βGN . The parameter S0 can be thought of as the zero temperature entropy of

an eternal two-dimensional black hole. The EOW brane is endowed with k orthonormal

states, or “flavors,” which are entangled with an auxiliary reference system R. The states

on the brane can be thought of as describing the interior partners of the early Hawking

radiation R, so by increasing k we can probe later regimes of an “evaporating” black

hole.

The entangled state of the black hole system B and the “radiation” R can be written

as

|Ψ⟩ = 1√
k

k∑
i=1

|ψi⟩B |i⟩R . (3.15)

The density matrix of the R subsystem is therefore

ρR =
1

k

k∑
i,j=1

|j⟩ ⟨i|R ⟨ψi|ψj⟩B. (3.16)

The inner product ⟨ψi|ψj⟩B is given by a gravitational path integral with standard Dirich-

let boundary conditions on an asymptotic boundary interval and Neumann boundary
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conditions on the EOW branes:

ds2|∂M =
1

ϵ2
dτ 2, ϕ =

1

ϵ
, ϵ→ 0

∂nϕ|brane = µ, K = 0 (3.17)

as well as specifying the brane states i and j at the endpoints of the EOW brane.

As was shown in [61], while naively ⟨ψi|ψj⟩ ∝ δij, this should be understood as an

expectation value in an ensemble, and wormhole contributions indicate exponentially

small fluctuations of the inner product. We illustrate the boundary conditions for the

matrix elements of ρR as follows:

(3.18)

The solid black line denotes an asymptotic boundary interval for the gravitational path

integral, while the blue dashed lines are index lines that impose boundary conditions

for the brane states. Computing Tr (ρR) means contracting the open index lines and

summing over all possible geometries respecting the boundary conditions (3.17).

To study negativity, we need to consider a bipartite mixed state. To that end, we

split the radiation system into two subsystems HR = HR1 ⊗HR2 consisting of k1 and k2

states, respectively, such that k = k1k2 and

ρR1R2 =
1

k

k1∑
i1,i2=1

k2∑
j1,j2=1

|i1, j1⟩⟨i2, j2|⟨ψi2,j2|ψi1,j1⟩. (3.19)

We will refer to this partitioned density matrix as ρR from now on. We define our partially

56



Replica Wormholes and Holographic Entanglement Negativity Chapter 3

Figure 3.1: Boundary conditions for ρR1R2 and ρT2R1R2
. Blue (dashed) lines denote

states in R1, and red (dotted) lines denotes states in R2. If we take a trace, these two
boundary conditions are equivalent.

transposed density matrix as the partial transpose over R2, i.e.,

ρ
TR2
R1R2

=
1

k

k1∑
i1,i2=1

k2∑
j1,j2=1

|i1, j2⟩⟨i2, j1|⟨ψi2,j2|ψi1,j1⟩. (3.20)

We will use the shorthand ρT2R moving forward. This partial transpose affects the bound-

ary conditions for our path integral by swapping the brane flavor index lines corresponding

to states in HR2 . The resulting boundary conditions are illustrated in Figure 3.1.

3.3.2 Dominant Saddles

As in any calculation with a gravitational path integral, our first task is to identify the

saddle-point geometries which obey the given boundary conditions and sum over them

with the appropriate weight. As our goal is to compute Rényi negativities Tr
[(
ρT2R
)n]

,

our boundary conditions will consist of n copies of the boundary conditions illustrated on

the right of Figure 3.1, with matching brane flavor indices contracted. The set of all clas-

sical saddles consists of oriented two-dimensional surfaces which end on the asymptotic

boundaries and EOW branes, possibly connecting two or more boundaries.

As our gravitational action (3.13) is independent of brane flavor, we can factorize the

flavor contributions so that

Zsaddle = Zgravf(k1, k2) (3.21)

for some function f of the brane Hilbert space dimensions k1 and k2. The gravitational
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Figure 3.2: Boundary conditions and some possible classical geometries that con-

tribute to Tr
[
(ρT2R )6

]
. Index lines that run along EOW branes are not shown for

visual clarity. Left: The partially transposed boundary conditions from Figure 3.1
with brane flavor indices contracted. Center left and right: The geometries consist of
disjoint unions of disks in noncrossing or crossing configurations. Right: The geome-
try has a single handle and will be suppressed by a factor of e−2S0 relative to the first
geometry.

partition function Zn for a surface connecting n boundaries depends on the Euler char-

acteristic χ of the surface in the schematic form

Zn ∼ eS0χ. (3.22)

The contribution of a surface with genus g ≥ 1 is therefore suppressed by e−2gS0 for large

S0. This means that the only classical geometries we need to consider are disks or disjoint

unions of disks, and Zgrav is a product of disk partition functions Zn. We will therefore

assume S0 ≫ 1 throughout the rest of the chapter. We illustrate some examples of these

disk geometries as well as a higher genus geometry in Figure 3.2.

More precisely, for a disk connecting n boundaries in JT gravity we have

Zn = eS0

∫ ∞

0

dsρ(s)y(s)n, y(s) ≡ e−
βs2

2 21−2µ

∣∣∣∣Γ(µ− 1

2
+ is

)∣∣∣∣2 (3.23)

where ρ(s) = s
2π2 sinh (2πs) is the disk density of states3 in JT gravity. In order to recover

3The density of states is more typically written in the E = s2 energy basis such that ρ(E) =
1

4π2 sinh
(
2π

√
E
)
. Here s can be thought of as an entropy, and is the more natural variable for our

purposes.
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(3.22), we take S0 ≫ 1 while keeping other parameters fixed. We emphasize this is a

schematic approximation that should only be used to motivate the pertinent saddles for

our problem; in general, there are parametric corrections from the full expression of Zn

which will be discussed in more detail in Sections 3.4 and 4.4.

Since we are ignoring higher genus surfaces, the sum over geometries with n replicated

asymptotic boundaries is equivalent to a sum over elements of Sn, the permutation group

on n elements. In particular, the sum takes the form

Tr
[(
ρT2R
)n]

=
1

(kZ1)n

∑
g∈Sn

χ(g)∏
i=1

Z|ci(g)|

 k
χ(g−1X)
1 k

χ(g−1X−1)
2 (3.24)

∼ 1

(keS0)n

∑
g∈Sn

(
eS0
)χ(g)

k
χ(g−1X)
1 k

χ(g−1X−1)
2 , (3.25)

where χ(g) is the number of disjoint cycles of the permutation g, |ci(g)| is the length of

the i-th disjoint cycle of g, and X (X−1) is the (anti-)cyclic permutation of length n.

Unless otherwise specified, we will take k, eS0 ≫ 1. Note

χ(1) = n, χ(X) = χ(X−1) = 1. (3.26)

The sums (3.25) and (3.24) over elements of the permutation group has a simple

geometric interpretation. The permutation g determines how the asymptotic boundaries

are connected by EOW branes, while the powers of k1 and k2 count the number of

index loops. The totally disconnected geometry corresponds to g = 1, while the totally

connected geometry corresponds to g = X. What does the g = X−1 geometry look like?

We show examples of these three geometries in Figure 3.3. Two of these geometries, the

disconnected and cyclic geometries, belong in the class of noncrossing diagrams discussed

by [61]. The third, the anti-cyclic geometry, is in some sense equivalent to the cyclic
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Figure 3.3: The four classes of geometries which dominate the Rényi negativity cal-
culation. In order, they are the disconnected (g = 1), cyclic (g = X), anti-cyclic
(g = X−1), and pairwise (g = τ) geometries. The pairwise geometries spontaneously
break replica symmetry. The black lines are oriented asymptotic boundaries, the pur-
ple lines are EOW branes, the blue (dashed) lines denote k1 index loops, and the red
(dotted) lines denote k2 index loops.

geometry if one reverses the orientation of the boundary, or equivalently if one exchanges

k1 and k2. This statement will be explained in more detail in Section 3.4.2.

One might naively guess that the anti-cyclic geometry would never dominate the

Rényi negativity, for the same reasons as in [61] where crossing partitions in the calcu-

lation of the Rényi entropy were suppressed by factors of 1/k2. In fact this geometry

dominates in a very large parameter regime: as we show in Appendix C, we have the

following phases dominated by the corresponding permutation g:

Totally disconnected: eS0 ≫ k1k2 → g = 1

Cyclically connected: k1 ≫ k2e
S0 → g = X

Anti-cyclically connected: k2 ≫ k1e
S0 → g = X−1

Pairwise connected: k1k2 ≫ eS0 , → g = τ (3.27)

e−S0 ≪ k1/k2 ≪ eS0

To see this intuitively, we calculate the contributions to Tr
[(
ρT2R
)n]

from these geome-

tries. Consider the totally disconnected phase dominated by g = 1. We have χ(g) = n
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and χ(g−1X) = χ(g−1X−1) = 1, so this diagram contributes schematically

g = 1 ⇒ k
(
eS0
)n

(3.28)

to the sum in (3.25) as in [61]. It is then unsurprising that this dominates in the parameter

regime eS0 ≫ k, since it is the unique diagram which maximizes the power of eS0 . Note

that the contribution only depends on k, and not k1 and k2 individually.

Now, consider the cyclically connected phase with g = X. Then χ(g) = 1, χ(g−1X) =

χ(1) = n, and

χ(g−1X−1) = χ(X−2) = f(n) ≡


1, n odd,

2, n even.

(3.29)

Hence, the cyclic diagrams contribute schematically

g = X ⇒ eS0kn1k
f(n)
2 (3.30)

to the sum in (3.25). This configuration maximizes the power of k1, and therefore it is

expected to become important in the parameter regimes where k1 is comparably large.

In fact, as we prove in Appendix C, it is the unique dominant diagram in the regime

k1 ≫ k2e
S0 . Note that compared to the Rényi entropy calculation in [61] (which can be

recovered by setting k2 = 1 here), the cyclic geometry is suppressed by 1/k
n−f(n)
2 . We

will also show this diagrammatically in Section 3.4.

The anti-cyclically connected phase with g = X−1 is similar, so we will not go through

the analysis. In the end, the anti-cyclic diagrams contribute schematically

g = X−1 ⇒ eS0k
f(n)
1 kn2 (3.31)
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to the sum (3.25). It is thus expected to become important in the parameter regimes

where k2 is comparably large, and we can prove that they are the unique dominant

diagrams when k2 ≫ k2e
S0 .

Finally, there is one additional class of dominant geometries we should consider: the

pairwise connected phase with g = τ . As we show in Appendix C, these diagrams

dominate in a fourth regime satisfying both k1k2 ≫ eS0 and e−S0 ≪ k1/k2 ≪ eS0 ,

and they are the only diagrams aside from the disconnected, cyclically connected, and

anti-cyclically connected diagrams that can dominate in a large regime of the parameter

space. These geometries are in one-to-one correspondence with the set of permutations τ

known as noncrossing pairings. For even n, a pairwise connected geometry is constructed

by choosing an element in τ , for example (12)(34) · · · (n − 1, n), and connecting paired

asymptotic boundaries by two-boundary wormholes. For odd n, the geometries are given

by a similar noncrossing pairings of boundaries, plus a single one-boundary connected

component. We show an example of such a geometry in Figure 3.3. It is evident that

such geometries spontaneously break the replica symmetry.

As we show in Appendix C, each pairwise connected geometry contributes schemati-

cally

g = τ =⇒
(
eS0
)⌈n

2 ⌉ k⌊
n
2 ⌋+1 (3.32)

to the sum in (3.25), where ⌈n
2
⌉ and ⌊n

2
⌋ denote the ceiling and floor function, respectively.

A pairwise connected diagram in some sense puts k1, k2, and e
S0 on the most equal footing

by maximizing the sum of the three exponents in (3.25). As with the disconnected

geometry, the contribution of a pairwise connected geometry only depends on k, and not

k1 and k2 individually.
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Figure 3.4: The phase diagram for entanglement negativity. The four phases are
labeled by the permutations corresponding to their dominant geometries.

Negativities in Dominant Phases

g I X X−1 τ

N (even)
2m

1

k2m−1

Z2m

k2m−2
2 Z2m

1

Z2m

k2m−2
1 Z2m

1

CmZ
m
2

km−1Z2m
1

N (odd)
2m−1

1

k2m−2

Z2m−1

k2m−2
2 Z2m−1

1

Z2m−1

k2m−2
1 Z2m−1

1

(2m− 1)Cm−1Z
m−1
2

km−1Z2m−2
1

E 0 log k2 log k1
1

2
(log k − S0) + log

8

3π

ST2 log k log k2 + S0 log k1 + S0
1

2
(log k + S0)−

1

2

ST2(2) log k 2 log k2 + S0 2 log k1 + S0 log k − 1

2

Table 3.1: Top two rows: Rényi negativities in the four dominant phases labeled by the
corresponding permutation g. Bottom three rows: schematic values of three special
limits of the analytic continued Rényi negativities (where we have used Zn ∼ eS0).
Here Cm = 1

m+1

(
2m
m

)
is the Catalan number which gives the number of noncrossing

pairings.
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3.3.3 Contributions to Negativities

Having worked out the dominant geometries in the four phases and how they con-

tribute to the Rényi negativities schematically (i.e., using Zn ∼ eS0), we now write their

contributions exactly using (3.24). This calculation is straightforward to do, for both

even and odd n. We then analytically continue the resulting Rényi negativities and find

the values of three special limits that we defined in Section 4.3: the logarithmic negativ-

ity E , partially transposed entropy ST2 , and refined Rényi-2 negativity ST2(2). We collect

these results for all four phases in Table 3.1.

From these results, we find a phase diagram for negativity, which we show in Fig-

ure 3.4. Unlike the von Neumann entropy which only has a single phase transition at

k ∼ eS0 , we see that there are two distinct types of phase transitions for negativity, one

from the disconnected phase to the pairwise phase and one from the pairwise phase to the

cyclic phase. The transition from the pairwise phase to the anti-cyclic phase is similar

to the pairwise-to-cyclic transition under the exchange k1 ↔ k2.

3.4 Resolvent Equation for Partial Transpose

Having analyzed the negativity measures deep within each of the four phases, we now

turn our attention to the behavior of negativities near the phase transitions. Generally

speaking, more geometries than the four types studied in the previous section could

dominate the Rényi negativities near a phase transition, and we need to sum over them.

We would then need to analytically continue the resulting sum to find special limits such

as the logarithmic negativity. This is technically difficult to do directly.

Instead, we study the resolvent for the partially transposed density matrix ρT2R , which

we refer to as the negativity resolvent or simply the resolvent. From this resolvent, we

then extract the negativity spectrum, i.e., the eigenvalue distribution of ρT2R . This allows
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us to calculate the Rényi negativities and their special limits.

In this section, we derive a self-consistent equation for calculating the resolvent. As we

will show, the sum over dominant diagrams in a “planar” regime reduces to a Schwinger-

Dyson equation, which can be resummed. This allows us to write down a closed-form

equation for the resolvent.

The negativity resolvent is defined in terms of the partially transposed density matrix

as4

R (λ) = Tr

(
1

λI− ρT2R

)
. (3.33)

From the resolvent, the eigenvalue spectrum for ρT2R , which we will denote by D(λ), can

be obtained by taking the discontinuity across the real axis as follows

D(λ) = lim
ϵ→0+

1

2πi

(
R(λ− iϵ)−R(λ+ iϵ)

)
. (3.34)

From this, we can compute the Rényi negativities via

N (even)
2m =

∫
dλD (λ) |λ|2m, (3.35)

N (odd)
2m−1 =

∫
dλD (λ) sgn (λ) |λ|2m−1, (3.36)

from which all other negativity measures we consider can be derived.

It will be useful to consider (3.33) in the following matrix form:

Ri1i2
j1j2

(λ) =

(
1

λI− ρT2R

)i1i2
j1j2

(3.37)

=
δi1i2δj1j2

λ
+

∞∑
n=1

1

λn+1

( (
ρT2R
)n )i1i2

j1j2
, (3.38)

4The resolvent R (λ) should not be confused with the subsystem R describing the Hawking radiation.
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where we denote the R1 subsystem by upper i-type indices and R2 by lower j-type indices.

In the last line, we have expanded the expression in a formal power series in 1/λ. Each

term in the series is given by the n-replicated density matrix
(
ρT2R
)n
, which defines a

boundary condition with n asymptotic boundaries with the brane indices contracted:

where the blue (upper) dashed lines denote i-type index lines and red (lower) dotted lines

denote j-type index lines. Each pair of blue/red index lines gives a factor of 1/λ and

each asymptotic boundary gives a factor of 1/(kZ1) coming from the normalization of

the density matrix. Note that for up to two boundaries, the boundary conditions are the

same after taking a final trace, with or without partial transpose.

In general, the gravitational path integral can be performed as a sum over bulk

geometries satisfying the boundary conditions. In the JT model we introduced in Sec-

tion 3.3, higher genus corrections are highly suppressed by factors of e−S0 ≪ 1, so we only

need to consider disjoint unions of disk geometries connecting any number of asymptotic

boundaries. The path integral for the disk can be performed exactly including quantum

corrections and is given by (3.23). For n asymptotic boundaries, these disjoint unions of

disk geometries are in one-to-one correspondence with elements of the permutation group

Sn. As we show in Lemma 11 and Corollary 12 of Appendix C, the only geometries that

can possibly dominate in the limit eS0 ≫ 1 are the planar and anti-planar diagrams,

which correspond to certain subsets of permutations in Sn. The term “anti-planar” will

be explained in detail in Section 3.4.2 and in Appendix C. In fact, large regions of the

phase diagram are dominated by either the planar or anti-planar geometries, which we

will call the planar and anti-planar regimes. As we will now show, in each of these

two regimes the resulting sum over diagrams can be resummed via a Schwinger-Dyson
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equation.

3.4.1 Planar Regime

We now derive a resolvent equation in the parameter regime k2 ≪ k1e
S0 . For reasons

that will become clear shortly, we call it the planar regime.

Our strategy is to keep only the subset of geometries which have a possibility of dom-

inating. As we outlined in Section 3.3.2, the phases in this regime away from phase tran-

sitions are defined by the disconnected, cyclic, and pairwise geometries. Closer to phase

transitions, we expect more generic geometries which “interpolate” between these three

types of geometries to have a chance of dominating. Indeed, as we show in Lemma 11 of

Appendix C, the geometries which can dominate are precisely the planar diagrams, which

correspond to the noncrossing partitions, i.e., the permutation group elements g ∈ Sn

lying on a geodesic between 1 and X.

We can write the sum over planar geometries diagrammatically as
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This sum can be recast as a Schwinger-Dyson equation. Diagrammatically, we have

or, as an equation,

Ri1i2
j1j2

=
δi1i2δj1j2

λ
+

1

λ

∞∑
n=1

Zn
(kZ1)

n R̃kn−1k1R̃j1k2R̃k1k3 · · · R̃kn−3kn−1R
i1i2
kn−2j2

, (3.39)

where we have defined the partial trace of the resolvent matrix over the R1 subsystem:

R̃j1j2 ≡
∑k1

i=1R
ii
j1j2

, and repeated indices are summed over5. Note that for n = 1 the

product of resolvents is simply Ri1i2
j1j2

and for n = 2 it is R̃k1k1R
i1i2
j1j2

. As is evident from the

diagrammatics, the i-type indices denoting R1 form simple self-contractions on all but the

last resolvent, while the j-type indices denoting R2 form a complicated set of contractions.

Fortunately, this equation can be solved iteratively: starting with the leading solution

Ri1i2
j1j2

= δi1i2δj1j2/λ+O (1/λ2), self-consistency then requires that Ri1i2
j1j2

∝ δi1i2δj1j2 to all

orders. As we will see, this allows us to rewrite the complicated product of resolvents as

the following simple expression

R̃kn−1k1 · · · R̃kn−3kn−1R
i1i2
kn−2j2

=

{ (
R
k2

)n−1

Ri1i2
j1j2

, n odd,

k2

(
R
k2

)n−1

Ri1i2
j1j2

, n even.
(3.40)

5Note that these repeated indices k1, k2, · · · , kn−1 are j-type indices which should not be confused
with the parameters k1, k2 that count the number of EOW brane states.

68



Replica Wormholes and Holographic Entanglement Negativity Chapter 3

Let us explain this in more detail. In general, the behavior for n odd and even are

different so we will need to treat these cases separately. To illustrate the simplification

for the odd case, we first consider the contribution at n = 3, which is the first nontrivial

diagram under the partial transpose. We can write

R̃k2k1R̃j1k2R
i1i2
k1j2

=
(
R̃j1j1

)2
Ri1i2
j1j1

δk2k1δj1k2δk1j2

=
(
R̃j1j1

)2
Ri1i2
j1j1

δj1j2

=
(
R̃j1j1

)2
Ri1i2
j1j2

(3.41)

where no summation on j1 is implied. Now, recalling the full trace R =
∑

j R̃jj, we find

R̃jj = R/k2 and we can therefore write

R̃k2k1R̃j1k2R
i1i2
k1j2

=

(
R

k2

)2

Ri1i2
j1j2

. (3.42)

We can understand the even case by looking at the first nontrivial contribution at n = 4.

By a similar analysis as above, we have

R̃k3k1R̃j1k2R̃k1k3R
i1i2
k2j2

=
(
R̃j1j1

)3
Ri1i2
j1j1

δk3k1δj1k2δk1k3δk2j2

= k2

(
R̃j1j1

)3
Ri1i2
j1j2

= k2

(
R

k2

)3

Ri1i2
j1j2

. (3.43)

Note the additional factor of k2 compared to n = 3 due to the closed index loop formed

from the first and third resolvent factors.

More generally, one can show that the even case always has a single index loop

and the odd case has no index loops, leading to (3.40). Using this, we can rewrite the

69



Replica Wormholes and Holographic Entanglement Negativity Chapter 3

Schwinger-Dyson equation (3.39) as

λRi1i2
j1j2

= δi1i2δj1j2 + k2

∞∑
m=1

Z2m−1

(kk2Z1)
2m−1R

2m−2Ri1i2
j1j2

+ k22

∞∑
m=1

Z2m

(kk2Z1)
2mR

2m−1Ri1i2
j1j2

.

Taking the full trace, we find

λR = k + k2

∞∑
m=1

Z2m−1R
2m−1

(kk2Z1)
2m−1 + k22

∞∑
m=1

Z2mR
2m

(kk2Z1)
2m . (3.44)

The gravitational partition function of the n-boundary totally connected geometry is

given by (3.23), which we repeat here:

Zn = eS0

∫ ∞

0

dsρ(s)y(s)n. (3.45)

Since this depends on n only through y(s)n, the sum over n becomes a geometric series

and (3.44) can be resummed into

λR = k + k22e
S0

∫ ∞

0

dsρ(s)
w(s)R(k + w(s)R)

k2k22 − w(s)2R2
, (3.46)

where w(s) ≡ y(s)/Z1. As a consistency check, when k2 = 1 this reduces to the resolvent

equation for the original (untransposed) density matrix derived in [61].

3.4.2 Anti-Planar Regime

We now consider a different parameter regime k1 ≪ k2e
S0 . For reasons that will

become clear shortly, we call it the anti-planar regime. This anti-planar regime has a

large overlap with the planar regime; the overlap region is e−S0 ≪ k1/k2 ≪ eS0 . Together

the two regimes cover the entire parameter space.

Once again, we will keep only the subset of geometries which have a possibility of
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dominating. As we outlined in Section 3.3.2, the phases in this regime away from phase

transitions are defined by the disconnected, anti-cyclic, and pairwise geometries. Closer

to phase transitions, we expect geometries which interpolate between these geometries

to have a chance of dominating. Indeed, as we show in Corollary 12 of Appendix C, the

geometries which can dominate are precisely the set of anti-planar diagrams, which are

in one-to-one correspondence with permutations lying on a geodesic between 1 and X−1.

An example of an anti-planar geometry is the anti-cyclic geometry; two other (perhaps

less obvious) examples are the disconnected and pairwise geometries. Geometrically,

anti-planar diagrams are precisely those that become planar diagrams after reversing the

orientation of the asymptotic boundaries:

The sum over anti-planar diagrams can similarly be recast as a Schwinger-Dyson equa-

tion. Diagrammatically, we have
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or, as an equation,

Ri1i2
j1j2

=
δi1i2δj1j2

λ
+

1

λ

∞∑
n=1

Zn
(kZ1)

n R̃
kn−1k1R̃i1k2R̃k1k3 · · · R̃kn−3kn−1R

kn−2i2
j1j2

, (3.47)

where we have defined the partial trace over the R2 subsystem: R̃i1i2 ≡
∑k2

j=1R
i1i2
jj . Note

that the n = 1 and n = 2 terms are the same as in the planar case. Compared to

the planar case, the j-type indices denoting R2 now form simple self-contractions on all

but the last resolvent, while the i-type indices denoting R1 form the complicated set of

contractions. In other words, the i-type indices now play the role of j-type indices in the

planar regime, and vice-versa. As before, we can use the fact that Ri1i2
j1j2

∝ δi1i2δj1j2 to all

orders to rewrite the complicated product of resolvents as

R̃kn−1k1 · · · R̃kn−3kn−1R
kn−2i2
j1j2

=

{ (
R
k1

)n−1

Ri1i2
j1j2

, n odd,

k1

(
R
k1

)n−1

Ri1i2
j1j2

, n even.
(3.48)

Using this, we can rewrite the Schwinger-Dyson equation (3.47) as

λRi1i2
j1j2

= δi1i2δj1j2 + k1

∞∑
m=1

Z2m−1

(kk1Z1)
2m−1R

2m−2Ri1i2
j1j2

+ k21

∞∑
m=1

Z2m

(kk1Z1)
2mR

2m−1Ri1i2
j1j2

.

Taking the full trace, we find

λR = k + k1

∞∑
m=1

Z2m−1R
2m−1

(kk1Z1)
2m−1 + k21

∞∑
m=1

Z2mR
2m

(kk1Z1)
2m . (3.49)

Finally, using (3.23), we resum (3.49) into

λR = k + k21e
S0

∫ ∞

0

dsρ(s)
w(s)R(k + w(s)R)

k2k21 − w(s)2R2
. (3.50)

As expected, this is simply the resolvent equation in the planar regime (3.46) with the
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exchange k1 ↔ k2.

3.5 Negativity Spectrum Near Phase Transitions

Having derived the resolvent equation for the partial transpose, we now solve it to

find the negativity spectrum near phase transitions.

For each negativity measure, we will be interested in a neighborhood near one of the

phase transitions as we tune the relative sizes of our parameters, and we will analyze the

corrections to the negativity measures listed in Table 3.1. Generically these corrections

take the form of fluctuations about a fixed saddle point in the gravitational path integral.

Near a phase transition, however, multiple saddles are competing for dominance, so

enhanced corrections, i.e. corrections larger than those for any individual saddle, provide

additional information about the entanglement structure of the system.

3.5.1 Microcanonical Ensemble

Before studying the negativity spectrum in more detail, let us take a brief detour and

consider the situation where the black hole is in a microcanonical ensemble in the JT

model. In this case, we restrict to some small energy window [s, s+∆s]. We write

eS = ρ(s)∆s, Zn = ρ(s)y(s)n∆s, w(s) =
y(s)

Z1

= e−S, (3.51)

where ρ(s) ≡ eS0ρ(s) is the density of states. In this case, it can be shown that the sum

over geometries for the Rényi negativities (3.24) is given by

Tr
(
ρT2R
)n

=
1

(keS)n

∑
g∈Sn

(
eS
)χ(g)

k
χ(g−1X)
1 k

χ(g−1X−1)
2 . (3.52)
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Figure 3.5: Negativity spectrum in the microcanonical ensemble calculated from the
cubic resolvent equation (3.53). We fix eS = 10, k2 = 2, and move in a horizontal
line in the phase diagram by tuning k. The disconnected-to-pairwise transition (left)
occurs at k = eS = 10, though we only plot to k = 5 for visual clarity, as the
qualitative behavior is the same. The pairwise-to-cyclic transition (right) occurs at
k = k22e

S = 40.

We recognize this as the nth Rényi negativity of a Wishart matrix with eS degrees of

freedom. This implies that ρT2R in a microcanonical ensemble can be thought of as the

partial transpose of a random matrix drawn from the Wishart distribution. A similar

expression for the moments of the partial transpose of a random mixed state was derived

in [127]. The similarity between the microcanonical JT model and a random mixed state

was also noted in [133].

In the planar regime k1 ≫ k2e
−S0 , the resolvent equation (3.46) becomes

R3 +

(
eSk22 − k

λ

)
R2 + e2Skk22

(
1

λ
− k

)
R +

e2Sk3k22
λ

= 0. (3.53)

This matches the resolvent equation derived in [127] for a random mixed state under ap-

propriate rescaling of variables.6 As was shown there, a closed-form solution to this cubic

equation for R can be found, and leads to concrete results for the negativity spectrum

6To match to the resolvent equation in [127], define the rescaled variables z = k2e
Sλ and G =

e−SR/kk2 so that (3.53) becomes

zG3 + (β − 1)G2 + (α− z)G+ 1 = 0, (3.54)

where α = eS/k1 and β = k2e
S/k1. This cubic equation was earlier noted in the context of free

probability theory [140].
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and various negativity measures. The resolvent for the anti-planar regime k2 ≫ k1e
−S0

can be obtained by k1 ↔ k2.

We plot the eigenvalue density in the microcanonical ensemble for various parameter

values in Figure 3.5. The spectrum is approximately a Wigner semicircle distribution in

the disconnected phase, continues to be connected in the pairwise phase, develops sin-

gularities at the pairwise-to-cyclic transition, and has two branches in the cyclic phase,

where it is well approximated by the difference of two disjoint Marchenko-Pastur distri-

butions.

3.5.2 Canonical Ensemble: Disconnected-Pairwise Transition

The transitions that involve the cyclic and anti-cyclic phases are complicated, as

they involve a sum over diagrams with pieces connecting more than two asymptotic

boundaries. Here, we will focus on the transition between the totally disconnected phase

and the pairwise connected phase. The disconnected phase involves single-boundary

diagrams, while the pairwise phase involves pairwise connected wormholes (plus a single

disconnected piece for odd n).

The disconnected-pairwise transition happens within the large overlap e−S0 ≪ k1/k2 ≪

eS0 between the planar regime and the anti-planar regime7. Therefore, the dominant

geometries are those that are simultaneously planar and anti-planar. As we show in Ap-

pendix C, these geometries are disjoint, noncrossing unions of single-boundary disks and

pairwise connected wormholes. This result is the content of Lemma 13 in Appendix C.

Intuitively, these dominant geometries interpolate between the disconnected and pair-

wise geometries. Geometries with pieces connecting more than two asymptotic bound-

aries are parametrically suppressed. As such, the resolvent equation (3.44) truncates at

7In other words, we stay away from the two triple points on the phase diagram, as we would need to
analyze transitions to the (anti-)cyclic phase there.
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Figure 3.6: Logarithmic negativity near the disconnected-to-pairwise transition with
Z2/Z

2
1 = e−5, along with the naive answers in the dominant regions: Edisconnected = 0

and Epairwise =
1
2

(
log k + log Z2

Z2
1

)
+ log 8

3π , where log 8
3π is an O(1) term arising from

the analytic continuation of the Catalan number in N (even)
2m to m = 1/2 [128].

the quadratic order:

λR = k +
R

k
+

Z2R
2

(kZ1)2
. (3.55)

This quadratic equation can be solved analytically giving the resolvent and eigenvalue

density as

R(λ) =
2k

A2

(
λ− 1

k
−
√
λ− 1

k
+ A

√
λ− 1

k
− A

)
,

D(λ) =
2k

πA2

√
A2 −

(
λ− 1

k

)2

, (3.56)

where A2 ≡ 4Z2/(kZ
2
1). Thus the eigenvalue density is a Wigner semicircle distribution

supported on λ ∈
[
−A+ 1

k
, A+ 1

k

]
. For k ≤ 1/A, D(λ) only has support on λ ≥ 0

and the negativity vanishes; for k > 1/A, D(λ) has support on λ < 0 and we find

the negativity is nonvanishing. The phase transition thus occurs at k = 1/A ∼ eS0 , as

expected from the schematic analysis in Section 3.3.2.

We can write an explicit expression for the logarithmic negativity using (3.6) and
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(3.56):

E = log

∫ ∞

−∞
dλD(λ)|λ| (3.57)

= log

[
2

3π

(√
A2k2 − 1 (2A2k2 + 1)

A2k2
+ 3 csc−1 (Ak)

)]
Θ

(
k − 1

A

)
. (3.58)

We plot this result in Figure 3.6, along with the naive answers for logarithmic negativity

in the dominant phases.

How large is the correction at the transition? It is easy to verify that it is O(1).

There are no enhanced corrections here, as we are working in a regime where higher order

terms in the Schwinger-Dyson equation are parametrically suppressed. The logarithmic

negativity, along with all other negativity measures, never receives contributions from

geometries containing pieces with Zn>2, so corrections are O(1).

3.5.3 Canonical Ensemble: Cyclic-Pairwise Transition

In this subsection we will study the richer phase transition between the pairwise phase

and the cyclic phase.8 Our computation is inspired by that of Appendix F of [61].

First, let us define some useful values of s. In the semiclassical β ≪ 1 and large brane

mass µ≫ 1/β limits, we have

ρ(s)y(s)n ∼ s

2π2
y(0)ne2πs−nβs

2/2. (3.59)

This means that the integral that defines Zn in (3.23) can be well approximated by the

8The pairwise to anti-cyclic transition follows from the calculation in this subsection by exchanging
k1 ↔ k2.
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saddle point located at

s(n) =
2π

nβ
+O(1)

⇒ logZn ≈ S0 +
2π2

nβ
+O(log β). (3.60)

Throughout, we take our parameters S0, k1, and k2 to be large before taking the semi-

classical limit, such that e.g. logZn ≈ S0 as S0 ≫ 1/β. We will also need to define sk,

the value of s for which

k = k22e
S0

∫ sk

0

dsρ(s). (3.61)

We can approximate sk by

sk ≈
1

2π
log

(
k

k22

)
− S0 +O(1). (3.62)

Note that here we are considering the values of k and k2 at transition, so the particular

values of sk we are interested in will depend on the details of the negativity measure we

are computing. In our schematic analysis where Zn ∼ eS0 , we derived the location of the

phase transition between the cyclic and pairwise phase and found that it was independent

of n. However, taking into account dependence on β, the Zn’s are distinct for different

n, which leads to n-dependent transition points. The Rényi negativities in the cyclic

and pairwise phases are given by the contributions of the dominant geometries in each

phase (see Table 3.1), and coincide at transition. Equating their contributions at the

transition, we find, up to factors O(1) in β,

N (even)
2m =

Z2m

k2m−2
2 Z2m

1

=
Zm

2

km−1Z2m
1

,

N (odd)
2m−1 =

Z2m−1

k2m−2
2 Z2m−1

1

=
Zm−1

2

km−1Z2m−2
1

. (3.63)
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In terms of the approximation (3.60), we can solve for log (k/k22) at transition to obtain

Even: log

(
k

k22

)
= log

(
Zm

2

Z2m

) 1
m−1

= S0 +

(
1 +

1

m

)
π2

β
+O (log β)

Odd: log

(
k

k22

)
= log

(
Zm−1

2 Z1

Z2m−1

) 1
m−1

= S0 +

(
1 +

4

2m− 1

)
π2

β
+O (log β) . (3.64)

From this, we can solve for sk at the transition using (3.62) to obtain

s
(n, even)
k ≈ π

2β

(
1 +

2

n

)
+O (log β)

s
(n, odd)
k ≈ π

2β

(
1 +

4

n

)
+O (log β) . (3.65)

As expected, the transition point depends on n. In particular, it is O(1/β) at leading

order and bounded below as a function of n.

For this phase transition, we will fix k and tune k2. In the phase diagram, this

corresponds to moving along a line between the upper left corner and the lower right

corner. We need to consider diagrams with pieces made of an arbitrary number of

boundaries, and we can restrict ourselves to planar diagrams, as anti-planar diagrams

are suppressed by factors of k2/k1 relative to their planar counterparts. The resolvent

equation is again (3.50):

λR = k + k22e
S0

∫ ∞

0

dsρ(s)
w(s)R(k + w(s)R)

k2k22 − w(s)2R2
. (3.66)

We are going to split this integral at some transition st such that

λR = k + k22e
S0

∫ st

0

dsρ(s)
w(s)R(k + w(s)R)

k2k22 − w(s)2R2
+ k22e

S0

∫ ∞

st

dsρ(s)
w(s)R(k + w(s)R)

k2k22 − w(s)2R2
.

(3.67)

We rewrite this simple step to emphasize that no approximations have been used yet.
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We are now going to use a set of three assumptions:

1. w(st)R ≪ kk2.

2. k22e
S0
∫ st
0
dsρ(s)w(s)R(k+w(s)R)

k2k22−w(s)2R2 ≪ k.

3. st = sk − κ, where κ is O(1) but large.

These assumptions are justified in detail in Appendix D, where we show that the resulting

simplifications to the resolvent equation give a self-consistent treatment of the problem.

For now we will take these as facts and proceed. The first approximation allows us to

simplify the final term in (3.67) such that

λR ≈ k + k22e
S0

∫ st

0

dsρ(s)
w(s)R(k + w(s)R)

k2k22 − w(s)2R2
+
eS0

k

∫ ∞

st

dsρ(s)w(s)R, (3.68)

where we have dropped an R2 term from the last integral because it can be shown to

be much smaller than the leading term k using Assumptions 1 and 3. We define the

coefficient of R in the last term to be the constant λ0, given by

λ0 ≡
eS0

k

∫ ∞

st

dsρ(s)w(s). (3.69)

We can now write the resolvent equation as

(λ− λ0)R ≈ k + k22e
S0

∫ st

0

dsρ(s)
w(s)R(k + w(s)R)

k2k22 − w(s)2R2
. (3.70)

Now we turn to Assumption 2, which allows us to treat the second term above as a

perturbation to the zeroth order solution

R ≈ R0 =
k

λ− λ0
. (3.71)
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Figure 3.7: A rough sketch (not to scale) of the negativity spectrum near the cyclic–
to-pairwise transition.

Plugging this solution back into (3.70), we obtain the first order iterated solution

R1 ≈
k

λ− λ0
+

k22e
S0

λ− λ0

∫ st

0

dsρ(s)
w(s)R0(k + w(s)R0)

k2k22 − w(s)2R2
0

≈ k

λ− λ0
+ eS0

∫ st

0

ds
1

λ− λ0

ρ(s)w(s)(λ− λ0 + w(s))

(λ− λ0)2 −
(
w(s)
k2

)2 . (3.72)

Now we can find the discontinuity in this expression and extract D(λ). There are three

contributions to the spectrum: a simple pole at λ = λ0, and a pair of branch cuts given

by the poles at λ = λ0 ± w(s)/k2 in the integrand. We obtain

D(λ) = #δ(λ− λ0)

+ eS0

∫ st

0

dsρ(s)

[
k2(k2 + 1)

2
δ

(
λ− λ0 −

w(s)

k2

)
+
k2(k2 − 1)

2
δ

(
λ− λ0 +

w(s)

k2

)]
.

(3.73)

Let us pause for a second to unpack this equation. The spectrum consists of a delta

function located at λ0 from the simple pole and two regions of nonzero eigenvalue den-

sity from the integrated delta functions. We plot a sketch of this eigenvalue density in

Figure 3.7. There are two distinct regions with nonzero eigenvalue density, similar to
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the spectrum in the microcanonical ensemble. One point we emphasize in Appendix D

is the presence of a “controlled” region 0 < s < sc in which our assumptions hold and an

“uncontrolled” region s > sc where we claim ignorance about the spectrum. In terms of

the eigenvalues, this corresponds to an ignorance in the spectrum for a region

λ ∈
[
λ0 −

w(sc)

k2
, λ0 +

w(sc)

k2

]
. (3.74)

We show that our ignorance about the uncontrolled region leads to at most O(1) mul-

tiplicative corrections to the Rényi negativities, or O(1) additive corrections to E , ST2 ,

and ST2(2), due to the constraint that the total number of eigenvalues must be k.

Clearly, λ0 lies within this uncontrolled region, so we should not take seriously the

presence of the delta function at λ0. In fact, we will now show that this delta function

vanishes if we extend the upper limit of the integral from st to sk in (3.73) (which only

affects the uncontrolled region and therefore causes a small error). Our density matrix

has a total of k eigenvalues and is unit normalized, which translates into conditions on

the zeroth and first moments of D(λ), namely

∫ ∞

−∞
dλD(λ) = k,

∫ ∞

−∞
dλD(λ)λ = 1. (3.75)

We see that these conditions are satisfied by (3.73) if we replace st by sk, compensating

for the fact that st = sk − κ by sending the coefficient of the δ(λ− λ0) piece to zero. We

conclude that a good approximation for the spectrum of the partially transposed density

matrix at transition is given by

D(λ) = eS0

∫ sk

0

dsρ(s)

[
k2(k2 + 1)

2
δ

(
λ− λ0 −

w(s)

k2

)
+
k2(k2 − 1)

2
δ

(
λ− λ0 +

w(s)

k2

)]
(3.76)
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In order to simplify our calculations for negativity, we would like that the delta function

branch cuts were purely positive or negative, which is equivalent to the condition λ0 <

w(sk)/k2. By definition, λ0 is bounded above by 1/k, and at transition we have k/k22 =

eS0+2πsk . In the semiclassical limit, we can use the approximation

w(sk) ≈
e−βs

2
k/2

Z1

≈ e−S0−βs2k/2−2π2/β. (3.77)

Our condition on the branch cuts becomes

kw(sk)

k2
> 1 ⇒ k2e

S0+2πskw(sk) ≈ k2e
2πsk−βs2k/2−2π2/β ∼ k2e

C/β ≫ 1 (3.78)

as sk ∼ 1/β for a generic n. This is satisfied even if the unknown order one constant

is negative under our previous assumption that we take our counting parameters to be

large before taking small β, such that log k2 ≫ 1
β
.

Now that we have the spectrum at transition, we are ready to calculate the corrections

to any negativity measure we want! Let us start with the logarithmic negativity, which

has a transition located at

s
(1,even)
k =

3π

2β
. (3.79)

We find

E = log

∫ ∞

−∞
dλD(λ)|λ|

= log eS0

∫ sk

0

dsρ(s)

[
k2(k2 + 1)

2

(
λ0 +

w(s)

k2

)
+
k2(k2 − 1)

2

(
w(s)

k2
− λ0

)]
= log

(
1

k2
+ k2e

S0

∫ sk

0

dsρ(s)w(s)

)
. (3.80)

As sk < s(1) for logarithmic negativity, we have approximated λ0 ≈ 1/k, and the final in-
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tegral is well approximated by its maximum value ρ(sk)w(sk). The logarithmic negativity

is then

E ≈ log

(
1

k2
+ k2e

S0ρ(sk)w(sk)

)
≈ log

(
1

k2
+
kw(sk)

k2

)
≈ log k2 −

π2

8β
. (3.81)

In the second line we used our previous approximation (3.62) for sk, and in the third line

we used (3.78). As we see, the logarithmic negativity experiences an O(1/β) correction

to the naive answer E = log k2.

Where do we expect O(1/
√
β) corrections? In the case of even Rényi negativities,

this happens at

s
(n,even)
k = s(n) ⇒ n = 2, s(2) =

π

β
. (3.82)

We can check this explicitly for a negativity measure descending from the even analytic

continuation. The simplest such measure, the Rényi-2 negativity N (even)
2 , is related to

the second Rényi entropy S2 by

N (even)
2 = e−S2 (3.83)

and therefore comes with O(1) corrections. We instead turn to the refined Rényi-2

negativity ST2(2), defined in (3.12). We can read off the naive answer for ST2(2) from

Table 3.1, again using the approximation (3.60). We find

ST2(2) ≈ 2 log k2 + S0 +
2π2

β
. (3.84)

To compute ST2(2), we first need to compute
∑

i λ
2
i = N (even)

2 . At transition, the naive
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answer is given by Table 3.1, where N (even)
2 = Z2/Z

2
1 . However, using (3.76), we find

N (even)
2 =

∫ ∞

−∞
dλD(λ)λ2

= eS0

∫ sk

0

dsρ(s)
(
k22λ

2
0 + 2λ0w(s) + w(s)2

)
(3.85)

Again, sk < s(1), so λ0 ≈ 1/k. This integral gives

N (even)
2 =

1

k
+

2eS0ρ(sk)w(sk)

k
+

Z2

2Z2
1

≈ 1

k
+

2e−π
2/2β

k
+

Z2

2Z2
1

. (3.86)

In the limit k ≫ eS0 , we can safely ignore the first two terms, and the Rényi-2 negativity

becomes

N (even)
2 ≈ Z2

2Z2
1

≈
√
π

4
β3/2e−S0−3π2/β. (3.87)

The factor of 1/2 out front may seem like a problem, as we do not reproduce the naive

answer for N (even)
2 . However, as the refined Rényi negativities are functions of logNn,

this factor will only contribute an O(1) difference from the true answer for ST2(2), and we

are safe in using this approximation. The refined Rényi-2 negativity is therefore given by

ST2(2) =−
∫ ∞

−∞
dλD(λ)

λ2

N (even)
2

log
λ2

N (even)
2

=− eS0

N (even)
2

∫ sk

0

dsρ(s)

(
k2(k2 + 1)

2

(
λ0 +

w(s)

k2

)2

log

(
λ0 +

w(s)

k2

)2

+
k2(k2 − 1)

2

(
λ0 −

w(s)

k2

)2

log

(
λ0 −

w(s)

k2

)2
)

+ logN (even)
2 (3.88)

Again, as λ0 ≈ 1/k, the dominant contribution to this integral will come from the w(s)2
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term, which is where the enhanced transition should come in. Previously, using (3.59),

we showed that an integral of the form ρ(s)w(s)n can be approximated by a sharply

peaked Gaussian with mean s(n) and standard deviation 1/
√
nβ, up to normalization.

We use these simplifications to obtain

− eS0

N (even)
2

∫ sk

0

dsρ(s)w(s)2 log
w(s)2

k22
(3.89)

= − eS0

N (even)
2

∫ sk

0

dsρ(s)w(s)2
(
log

w(s(2))2

k22
+ log

w(s)2

w(s(2))2

)
= − log

(
w(s(2))2

k22

)
− eS0

N (even)
2

∫ sk

0

ds

(
ρ(s)w(s)2 log

w(s)2

w(s(2))2

)
≈ − log

(
w(s(2))2

k22

)
− 2

√
β

π

∫ s(2)

0

dse−β(s−s
(2))

2

β
((
s(2)
)2 − s2

)
≈ 2 log k2 + 2S0 +

5π2

β
−
√

4π

β
+O(1) (3.90)

Our final expression for ST2(2) is therefore

ST2(2) = 2 log k2 + S0 +
2π2

β
−
√

4π

β
(3.91)

confirming that there is an O(1/
√
β) correction at transition.

The fact that the refined Rényi-2 negativity experiences this particular correction

is not surprising due to its close connection to von Neumann entropies. It is known

that von Neumann entropies receive O(1/
√
β) or O(1/

√
GN) corrections at the Page

transition [61, 131, 132], which can be explained using a diagonal approximation with

respect to a basis of fixed-area states [131, 132, 141]. It was shown that the refined Rényi-

2 negativity can be written in holography as the sum of the von Neumann entropies of

R1 and R2 in the state ρ2R1R2
(once properly normalized) [128].9 Therefore, the O(1/

√
β)

9This can be understood in terms of two cosmic branes homologous to R1 and R2, respectively, in the
gravity dual of the even Rényi negativity. These cosmic branes arise from a Zn/2 quotient and therefore
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correction that we find in the refined Rényi-2 negativity can similarly be explained using

the diagonal approximation.

As we show in Appendix E, the Rényi entropy Sn with n < 1 experiences O(1/β)

corrections in the model of [61], as there too we are computing an entanglement measure

with s
(n)
k < s(n). In other words, the Rényi index of both the logarithmic negativity and

the Rényi entropy with n < 1 is below some “critical” Rényi index at which there exist

O(1/
√
G) corrections.

For measures descending from odd Rényi negativity, we might not expect O(1/
√
β)

corrections, as we never have s
(n,odd)
k = s(n). However, we may still expect some enhanced

corrections for some negativity measures in this case. The partially transposed entropy

ST2 is one such measure. As s
(1,odd)
k = 5π/2β, the naive answer for ST2 is given by

ST2 = log k2 + S0 +
4π2

β
. (3.92)

Our approximation gives

ST2 = −
∫ ∞

−∞
dλD(λ)λ log |λ|

=− eS0

∫ sk

0

dsρ(s)

(
k2(k2 + 1)

2

(
λ0 +

w(s)

k2

)
log

(
λ0 +

w(s)

k2

)

+
k2(k2 − 1)

2

(
λ0 −

w(s)

k2

)
log

(
w(s)

k2
− λ0

))
. (3.93)

There is however a subtlety here. The dominant contribution to this integral no longer

comes solely from the w(s) term. This can be seen by expanding (3.93) using

log

(
w(s)

k2
± λ0

)
≈ log

w(s)

k2
± λ0k2
w(s)

. (3.94)

become tensionless in the n→ 2 limit, which is similar to the case of the von Neumann entropy.
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From this we obtain

ST2 = −eS0

∫ sk

0

dsρ(s)

(
k22

(
λ0 + λ0 log

w(s)

k2

)
+ k2

(
λ20k2
w(s)

+
w(s)

k2
log

w(s)

k2

))
≈ −eS0

∫ sk

0

dsρ(s)
(
k22λ0 + w(s)

)
log

w(s)

k2
. (3.95)

Treating the log w(s)
k2

as negligible compared to the exponential ρ(s), the two terms in the

integrand are of the same order, so we should keep them both. If we look at the naive

transition point sk = 5π/2β > s(1), we find

ST2 ≈ −eS0

∫ sk

0

ρ(s)w(s) log
w(s)

k2

≈ − log
w(sk)

k2

≈ log k2 + S0 +
4π2

β
, (3.96)

and we would conclude that the correction is O(1). However, if we were to find the

largest correction to this quantity, we would look not at the naive transition, but at the

point where we might find O(1/
√
β) corrections, at sk = s(1). At this point λ0 = 1/2k

and we capture half of the Gaussian ρ(s)w(s), so we have

ST2 ≈ −1

2
log

w(s(1))

k2
−
√

β

2π

∫ s(1)

0

e−β(s−s
(1))2/2β

2
log

w(s)

k2

≈ − log
w(s(1))

k2
−
√

β

2π

∫ s(1)

0

e−β(s−s
(1))2/2β

2

((
s(1)
)2 − s2

)
≈ log k2 + S0 +

4π2

β
−
√

2π

β
. (3.97)

This looks the same as the naive answer with a O(1/
√
β) correction. However, as we are

working at fixed k, we should really be writing everything in terms of k and eS0 using

88



Replica Wormholes and Holographic Entanglement Negativity Chapter 3

(3.62), in which case our naive and corrected ST2 ’s are

Naive: ST2 =
1

2
(log k − S0) +

3π2

2β

Corrected: ST2 =
1

2
(log k − S0) +

2π2

β
, (3.98)

and we find an O(1/β) correction.

3.6 Topological Model with EOW Branes

Having studied a toy model of an evaporating black hole in JT gravity, we will now

consider entanglement negativity in the context of the topological model of Marolf-

Maxfield [62], including dynamical end-of-the-world (EOW) branes. This is a theory

of topological two-dimensional gravity in which spacetimes are two-dimensional mani-

folds endowed only with orientation. In contrast to the JT model of Section 3.3, there

are no metric or dilaton degrees of freedom and EOW brane boundaries can be generated

dynamically.

The action for the topological model is given by

Stop = −S0χ(M)− S∂|∂M |, (3.99)

where S0 is some arbitrary parameter, χ(M) is the Euler characteristic of the (possibly

disconnected) manifold M , and |∂M | counts the number of boundaries. S∂|∂M | is a

nonlocal term that we put in by hand to ensure reflection positivity. As shown in [62],

the simplest choice which results in reflection positivity is S∂ = S0.
10 The action then

10Other valid choices are S∂ = S0 + logm for any positive integer m or S∂ > S0 + log k. Any of these
choices give a discrete spectrum for the operator Ẑ.
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becomes

Stop = −S0χ̃ (3.100)

where χ̃ = 2 − 2g for any manifold, with or without boundary. To make contact with

black hole evaporation, we can extend the model to include EOW branes, which can take

one of k “flavors”. Since we are interested in studying negativity, we will allow the branes

to be labeled by a set of two of flavor indices {i, j}, where i ∈ {1, . . . , k1}, j ∈ {1, . . . , k2},

and such that k = k1k2. This is exactly analogous to our construction in Section 3.3 and

is a slight generalization of the model in [62].

There are three distinct types of boundaries allowed by the theory. The first are

circular asymptotically AdS boundaries denoted by Z. These boundaries are associated

with an operator Ẑ which acts on the baby universe Hilbert space HBU and creates

a Z boundary. Second, there are boundary conditions which we denote by (ψi2j2 , ψi1j1)

composed of an oriented interval of asymptotically AdS boundaries with endpoints labeled

by flavor indices {i1, j1} and {i2, j2}. The diagram that describes this is the same as in

(3.18). These boundaries are associated with an operator ̂(ψi2j2 , ψi1j1) on HBU. Finally,

there are circular EOW brane boundaries labeled by an arbitrary flavor index {i, j},

independent of all boundary conditions. These brane boundaries can be dynamically

generated as additional boundaries when performing the gravitational path integral.

Let us consider the simplest quantity one can compute with the gravitational path

integral of this theory, namely the partition function associated to a single connected com-

ponent of spacetime with some number of asymptotic boundaries. The gravitational path

integral demands that we sum over all such manifolds with arbitrary genus, weighted by

e−S0χ̃. Additionally, since the EOW branes are dynamical, there is the possibility of the

gravitational path integral generating an arbitrary number of closed brane boundaries,

each of which contribute a factor of k and are mutually indistinguishable. The parti-
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tion function for a single connected component with some fixed number of asymptotic

boundaries is therefore

λ ≡
∞∑
g=0

∞∑
m=0

e(2−2g)S0
km

m!
=

e2S0

1− e−2S0
ek. (3.101)

More generally, one can consider amplitudes

〈
Zm(ψi′1j′1 , ψi1j1) · · · (ψi′nj′n , ψinjn)

〉
≡
〈
NB
∣∣Ẑm ̂(ψi′1j′1 , ψi1j1) · · · ̂(ψi′nj′n , ψinjn)

∣∣NB〉
(3.102)

which are computed using the gravitational path integral by summing over all (possibly

disconnected) manifolds with boundary conditions specified by m circular boundaries Z

and n oriented intervals (ψi′j′ , ψij) with endpoints labeled by the corresponding flavor

indices and connected to oriented brane boundaries labeled with matching flavors. The

brackets in (3.102) can be interpreted the expectation value of the corresponding oper-

ators in the no-boundary state
∣∣NB〉 ∈ HBU. In what follows, we will assume that the

no-boundary state is unit normalized,
〈
NB
∣∣NB〉 = 1.11

Let us now proceed to the calculation of negativity in this model. In analogy to

Section 3.3, we can define the (unnormalized) density matrix

ρ =

k1∑
i1,i2=1

k2∑
j1,j2=1

|i1, j1⟩⟨i2, j2|(ψi2j2 , ψi1j1), (3.103)

which plays the role of the state of the Hawking radiation. We are interested in studying

the Rényi negativities Nn = Tr
[(
ρT2
)n]

of this density matrix. The most straightforward

method is to use the moment generating function of ρi1i2j1j2
≡ (ψi2j2 , ψi1j1), which one can

11In [62], the no-boundary state has inner product
〈
NB
∣∣NB

〉
= eλ and represents the sum over

arbitrary numbers of closed universes. This normalization enters as a universal prefactor in all amplitudes
we compute, so we can choose to normalize it to one.
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show is given by

〈
exp

( k1∑
i1,i2=1

k2∑
j1,j2=1

ti1i2j1j2
ρi1i2j1j2

)〉
= e−λ exp

[
λ det (I− t)−1

]
, (3.104)

where t can be thought of as the k × k matrix with entries ti1i2j1j2
by treating {i, j} as a

single index of size k and I is the k× k identity matrix . This is a slight generalization of

the result derived in [62]. In principle, one can compute all moments of ρi1i2j1j2
, and hence

all Rényi negativities, by taking appropriate partial derivatives of (3.104) with respect

to ti1i2j1j2
.

However, there is a shortcut that we will now describe. As shown in [62], the spectrum

of the operator Ẑ takes values in N. One can derive the distribution for ρi1i2j1j2
in a fixed

Z = d ∈ N sector by Taylor expanding (3.104) in λ:

〈
exp

( k1∑
i1,i2=1

k2∑
j1,j2=1

ti1i2j1j2
ρi1i2j1j2

)〉
=

∞∑
d=0

pd(λ)

〈
exp

(
k1∑

i1,i2=1

k2∑
j1,j2=1

ti1i2j1j2
ρi1i2j1j2

)〉
Z=d

=⇒
〈
exp

(
k1∑

i1,i2=1

k2∑
j1,j2=1

ti1i2j1j2
ρi1i2j1j2

)〉
Z=d

= det (I − t)−d , (3.105)

where pd(λ) = e−λ λ
d

d!
is a Poisson distribution. We can recognize (3.105) as the moment

generating function for a Wishart distribution with d degrees of freedom, and coincides

with the distribution of a random mixed state and the microcanonical JT model in

Section 3.5.1. Thus, we can immediately write down the Rényi negativities in a fixed

Z = d sector 〈
Tr
(
ρT2R
)n 〉

Z=d
=
∑
g∈Sn

dχ(g)k
χ(g−1X)
1 k

χ(g−1X−1)
2 , (3.106)

which matches the answer for the microcanonical ensemble (3.52) with d playing the role

of eS. The results for the negativity spectrum obtained in Sections 3.3.2 and 3.5.1 there-
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fore apply with this replacement. However, since d does not correspond to the partition

function on some manifold, it is difficult to interpret the result in (3.106) geometrically.

To obtain the Rényi negativities in the full theory, we simply sum over d ∈ N with

Poisson weight pd (λ):

〈
Tr
(
ρT2R
)n 〉

=
∞∑
d=0

pd(λ)
〈
Tr
(
ρT2R
)n 〉

Z=d

=
∑
g∈Sn

Bχ(g)(λ)k
χ(g−1X)
1 k

χ(g−1X−1)
2 (3.107)

where Bm(λ) = e−x
∑∞

k=0
λkkm

m!
are the Bell polynomials, whose asymptotic behavior is

Bm(λ) ∼ λm as λ→ ∞. We therefore find

〈
Tr
(
ρT2R
)n 〉 ≈

∑
g∈Sn

λχ(g)k
χ(g−1X)
1 k

χ(g−1X−1)
2 , λ≫ 1. (3.108)

This is once again equivalent to the microcanonical ensemble in (3.52), with λ now

playing the role of eS, and therefore we can obtain concrete results for the negativity

spectrum. Since λ is the gravitational partition function of a single connected component

of spacetime, we can in fact find a geometric interpretation for the terms in (3.107).

To understand the geometric origins of the terms in (3.107), let us first look at the

case n = 2, which gives the purity

〈
Tr ρ2

〉
= λ2k + λk2 + λk. (3.109)
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The terms in (3.109) correspond to the following geometries:

(3.110)

The first two diagrams are familiar: they are the disk and wormhole geometries, summed

over genus and closed brane boundaries. The last diagram represents two disk geometries

joined by an arbitrary number of wormholes; we thus call it a joining wormhole.

More generally, the geometries which contribute at leading order in λ in the Rényi

negativities (3.107) are in one-to-one correspondence with elements of the permutation

group. To be precise, each of these geometries is actually a disjoint union of disks,

summed over genus and closed brane boundaries.12 The subleading contributions in

(3.107) can be identified with the same geometries but with arbitrary numbers of joining

wormholes between connected components, and thus can not be mapped to elements of

the permutation group.

It is clear that log λ plays the same role as S in the microcanonical JT model, namely

it is the Bekenstein-Hawking entropy. In analogy to black hole evaporation, we should

assume λ≫ 1. The joining wormholes are therefore parametrically suppressed, but disks

with handles are not since they instead come with factors of e−2gS0 and S0 is not a priori

a large parameter (in fact, it may have a small or even negative real part).13 This is

the analogue of the “planar” limit in the topological model. There are thus two distinct

classes of higher genus geometries: disks with handles and joining wormholes. The higher

12This is in contrast with the JT model where we identify only a single geometry, namely some disjoint
union of disks with no handles, with each element of the permutation group. In that case, the sum over
genus is highly suppressed by factors of e−S, and they are in fact as suppressed as geometries with joining
wormholes. Furthermore, in the JT model closed brane boundaries can not be dynamically generated.

13In the JT model both geometries are suppressed in the same parameter e−S.
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genus disk geometries can be systematically included in a Schwinger-Dyson equation as

in Section 3.4, while the joining wormholes can not.

To study the Page curve, we would like to fix the value of λ and tune k. Since

λ ∼ ek, this involves scaling the prefactor e2S0

1−e−2S0
with e−k. However, this function has

a minimum value for real S0, which means the black hole can not evaporate completely.

To decrease λ beyond the minimum value, we need to go to complex values of S0, namely

e2S0 ∈ 1
2
+iR. This is a bit strange because it implies a complex action, but is presumably

fine because S0 is not a physical parameter (it is not the Bekenstein-Hawking entropy

here). This is simply a quirk of the model, and can be attributed as a consequence of

having a nonvanishing S∂.

3.7 Discussion

In this chapter, we analyzed the behavior of negativity measures in toy models of

evaporating black holes in both JT gravity and a topological theory of gravity, with EOW

branes. We found four distinct phases dominated by different saddle-point geometries:

the disconnected, cyclically connected, anti-cyclically connected, and pairwise connected.

The last of these geometries are new replica wormholes that break the replica symmetry

spontaneously.

We also studied the negativity resolvent using a Schwinger-Dyson equation that re-

sums the contributions of different geometries, and used it to extract the negativity

spectrum and negativity measures. This analysis is valid not only within each of the four

phases, but also near phase transitions. For the topological model or a microcanonical

ensemble in JT gravity, we found a cubic equation for the resolvent which can be solved

exactly. For a canonical ensemble in JT gravity, we found a quadratic resolvent equation

near the disconnected-pairwise transition, and we solved a more complicated resolvent
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equation approximately near the cyclic-pairwise transition. Near this last transition, we

found enhanced corrections to various negativity measures: the refined Rényi-2 negativ-

ity receives an O(1/
√
β) correction, whereas the logarithmic negativity and the partially

transposed entropy receive O(1/β) corrections.

These enhanced corrections to negativities are similar to previously found corrections

to the von Neumann entropy at the Page transition [61, 131, 132]. For the von Neumann

entropy, the enhanced corrections can be explained using a diagonal approximation with

respect to a basis of fixed-area states [131, 132, 141]. We argued that the O(1/
√
β)

correction to the refined Rényi-2 negativity can be explained in the same way by noting its

close connection to von Neumann entropies. It would be interesting to understand further

the O(1/β) corrections to the logarithmic negativity and the partially transposed entropy

in a similar way. Moreover, it would be useful to study the implications of these O(1/β)

corrections for the partially transposed entropy more generally: it was conjectured in [128]

that ST2(ρR1R2) is given as a sum of von Neumann entropies (SR1 + SR2 + SR1R2)/2 in

general non-fixed-area states by assuming a diagonal approximation, but this would imply

an O(1/
√
β) correction and seems to be in tension with the O(1/β) correction that we

find here.

We focused our study on two specific toy models of evaporating black holes, but it

would be interesting to generalize our analysis to other models, including the examples

studied in [60].

Finally, it would be very interesting to use these results on negativity to diagnose the

structure of multipartite entanglement in a realistic evaporating black hole and learn more

about its quantum state. We hope that this will lead to new insights on understanding

the interior of black holes and the dynamics of their evaporation.
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Chapter 4

Entanglement Negativity Transitions

in Chaotic Eigenstates

4.1 Introduction

The application of ideas from quantum chaos to gravitational settings has been par-

ticularly fruitful. Gravitational observables have been shown to be well approximated

by observables obeying the eigenstate thermalization hypothesis (ETH) [142–145]. This

is due to the fact that a holographic quantum field theory with a semiclassical Einstein

gravity dual is expected to be maximally chaotic, i.e. it saturates the bound of [146], up

to higher derivative/stringy corrections which take one away from this regime. The power

of ETH is that it allows us to approximate observables in the microcanonical ensemble

by an observable’s long-time quantum expectation value. The resulting microcanoni-

cal expectation value should resemble that of the canonical ensemble, up to corrections

expected to be suppressed in the system size V by the thermodynamic ensembles’ equiv-

alence at large N . This gives a quantitative idea of the process of thermalization in

isolated quantum many-body systems.
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From the perspective of subsystem ETH [147–151], for a subsystem with volume

fraction f < 1/2, the corrections to ETH are suppressed in system size. Formally,

this means the trace-norm distance between the canonical and microcanonical density

matrices vanishes in the large volume/thermodynamic limit, implying that off-diagonal

matrix elements of operators vanishes and expectation values are roughly thermal. This

line of thinking is expected to apply to Rényi entropies.

When f = 1/2 exactly, the usual wisdom would say there’s an O(1) correction to

the Rényi entropies. One way of seeing this is that there exists a phase transition in the

Rényi entropy at f = 1/2, and the correction at this phase transition should be given

by the uncertainty in choosing between an O(1) number of equivalent dominant phases.

However, in a model-specific result, a correction to the entanglement entropy of O(
√
V )

was observed in [152], a correction derived in [153] and explicated in [131]. In particular,

the von Neumann entropy of a subregion A with volume fraction f = 1/2 takes the form

SA =
S(E)

2
−
√
CV
2π

+O(a) (4.1)

where S(E) is the thermodynamic entropy at energy E and CV is the heat capacity at

constant volume. As CV is extensive in the system size, the correction is “enhanced” to

O(
√
V ). This formula is valid in the large volume limit, where

√
V ≫ a, a being the

area of the splitting surface.

In a parallel story, the attempt to match results from tensor networks with the grav-

itational path integral led to the understanding of “fixed area states” [141, 154]. These

states, which are eigenstates of the area operator in semiclassical gravity, have a flat

entanglement spectrum, up to fluctuations about a fixed saddle point which can näıvely

be at most O(1) in units of GN , where GN ≪ 1. One can think of these fluctuations as

the difference in the “canonical” ensemble where one fixes the canonical conjugate to the
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area operator, namely the relative boost between the entanglement wedges of the two

sides [155], and a “microcanonical” ensemble where the eigenvalue of the area operator

is fixed at its most probable value.

It was noted in [131, 132] that the universal enhanced correction to the entanglement

entropy also appears in fixed area states near transition, where the “transition” in this

context occurs due to a competition between two extremal surfaces. One way of un-

derstanding this correction is that near transition we no longer care about fluctuations

about a fixed saddle, but instead we care about resumming an infinite number of saddles

which appear in the sum over topologies in the replicated geometries. Both of these

results match with a more detailed calculation of the same quantity in [61], where in a

model of Jackiw-Teitelboim (JT) gravity + end-of-the-world (EOW) branes a particular

subsystem entropy S(ρR) had the form

S(ρR) = log k −
√

2π

β
+O(log β). (4.2)

This
√
1/β correction is analogous to the

√
CV correction in chaotic eigenstates. Here

we’ve set Newton’s constant (which is analagous to N) to one, but it can be restored via

β → GNβ.

Recently, it was shown by [67] that similar enhanced corrections exist near transitions

in entanglement negativity, a tripartite entanglement measure defined on a bipartite

density matrix ρA1A2 . In particular, the logarithmic negativity was shown to have the

following form at transition:

E(ρR1R2) = log k2 −
π2

8β
+O(log β), (4.3)

for two subsystems R1 and R2 with R1 ∪ R2 = R. Further corrections were derived for
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measures descending from a Rényi version of negativity.

There exists a rich phase diagram for entanglement negativity in holographic states,

and we show that a similar phase diagram exists for a generic chaotic eigenstate. Our aim

is to systematically derive the corrections at transitions in this phase space. There are

two possible transitions, but as was explored in [67] we only expect interesting behavior

near one of the transitions, for reasons we’ll recapitulate in the main text.

The outline of the chapter is as follows. In section 4.2 we review the derivation of

(4.1), in particular the resolvent formalism of [131]. In section 4.3 we review the various

negativity measures discussed in [67] and the sum over relevant permutations for the

phase transition of interest. In section 4.4 we compute corrections to the entanglement

measures of interest. We conclude with some discussion and future directions.

4.2 Diagrammatics for Chaotic Subsystems

We first review the formalism of [131, 153], which was used to compute the universal

form of corrections to the entanglement entropy of a subsystem at transition. We focus

on [131], as their formalism more easily generalizes to our future calculations. Readers

familiar with their formalism may skip this section, whose only purpose is to make this

work self-contained.

A generic eigenstate |E⟩ of a Hamiltonian H defined on a bipartite system such that

H = HA ⊗HB can be Schmidt decomposed via

|E⟩ =
∑
iJ

MiJ |Ei⟩A ⊗ |EJ⟩B , (4.4)

where |Ei⟩ and |EJ⟩ denote eigenstates of the subsystem Hamiltonians HA and HB,

respectively. As is convention, we use lowercase indices for states of A and uppercase
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indices for states of B. ETH instructs us to think of MiJ as a Gaussian random variable

with zero mean and energy banded with width ∆ [156, 157]. In particular, for a system

with spatial dimension d ≥ 2, we have the ansatz

MiJ = e−S(EAi+EBJ )/2

(
e−ϵ

2/2∆2

√
2π∆

)1/2

CiJ , (4.5)

where ϵ = Ei + EJ − E is the deviation from the total microcanonical energy. When

averaged over a small energy band in EA and EB, the random coefficients CiJ satisfy

CiJ = 0, CiJCi′J ′ = δii′δJJ ′ . (4.6)

The effects of finite ∆ will not affect the current and future computation, so we work in

the limit ∆ → 0, where we approximate

MiJ ≈ e−S(E)/2CiJ . (4.7)

This approximation assumes the true density of states in a narrow energy band is well

approximated by the thermodynamic entropy in the canonical ensemble. To leading

order in the system volume, we can further approximate the density of states of the total

system as the product of the density of states of the subsystems A and B, evaluated at

the subsystem energy EA. In other words,

S(E) ≈ SA(EA) + SB(E − EA). (4.8)
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This leads to the following form for a subsystem density matrix ρA

ρA =
1

N
∑

Ei−2∆<Ej<Ei+2∆

∑
E−Ei−∆<EJ<E−Ei+∆

CiJCjJ |Ei⟩A ⟨Ej|A . (4.9)

The double sum takes into account energies in a region of width 2∆. Averaging over the

Cij’s gives the averaged subsystem density matrix

ρA =
1

N
∑
i

dB(E − Ei) |Ei⟩A ⟨Ei|A , (4.10)

where the normalization is given by

N =
∑
i

dA(Ei)dB(E − Ei). (4.11)

Here dA and dB are the degeneracies at a given energy. As a shorthand and as a motivation

for our future computation, we can instead write

dA(Ei) = eSA(Ei) ≡ eSA ; dB(E − Ei) = eSB(E−Ei) ≡ eSB . (4.12)

As our goal is to compute subsystem von Neumann entropy, we should proceed by gen-

eralizing this procedure to compute Tr ρnA. Before averaging, from (4.9) we have

ρnA =
1

N n

∑
Ei1

∑
i2,··· ,in+1;J1,··· ,Jn

n∏
m=1

CimJmCim+1Jm |Ei1⟩A ⟨Ein+1 |A , (4.13)

where the second sum is understood to be over a strip of width 2n∆, but we assume ∆

vanishes quickly enough at finite n that this isn’t a significant effect.

The difference between log Tr (ρA)
n and log Tr (ρA)

n is exponentially suppressed in the

system volume [151], so our goal will be to compute Tr (ρA)
n, as it is a more tractable
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calculation. This involves a sum over Wick contractions, as we assume higher point

connected correlations of the CiJ ’s vanish. The result is

Tr (ρA)n =


1

Nn e
SA+nSB

2F1

(
1− n,−n; 2; eSA−SB

)
, SA < SB

1
Nn e

nSA+SB
2F1

(
1− n,−n; 2; eSB−SA

)
, SA > SB.

(4.14)

As a sanity check, we recover Sn(ρA) = S/2 + O(1) where SA = SB = S/2 at f = 1/2.

The derivation of this expression from the resolvent sum over noncrossing permutations

is given in Appendix G.

To study the corrections to this quantity at transition, we upgrade the putative

constant density of states to an integral over an energy dependent density of states. In

other words, we send

SA → SA(EA), SB → SB(E − EA) (4.15)

and integrate over EA. The new averaged trace is given by

Tr (ρA)n =
1

N n

∫
dEAe

SA(EA)+SB(E−EA)Gn(EA), (4.16)

where Gn(f, EA) encompasses the n-dependent piece of the trace:

Gn(EA) =


e(n−1)SB(E−EA)

2F1

(
1− n,−n; 2; eSA(EA)−SB(E−EA)

)
, SA(EA) < SB(E − EA)

e(n−1)SA(EA)
2F1

(
1− n,−n; 2; eSB(E−EA)−SA(EA)

)
, SA(EA) > SB(E − EA)

(4.17)

and the normalization is now

N =

∫
dEAe

SA(EA)+SB(E−EA). (4.18)
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From this, we can directly calculate the ensemble averaged Rényi entropies Sn(ρA):

Sn =
1

1− n
log

(
1

N n

∫
dEAe

SA(EA)+SB(E−EA)Gn(EA)

)
. (4.19)

4.2.1 Saddle Point Analysis

We make the ansatz that the entropy is extensive in the subsystem size, that is

SA(EA) = fV s

(
EA
fV

)
, SB(E − EA) = (1− f)V s

(
E − EA
(1− f)V

)
, (4.20)

where f ≡ VA/V is the volume fraction, s(e) is the entropy density as a function of the

energy density e, and the other factors come from dimensional analysis. We’re mainly

interested in what happens at the transition f = 1/2. The “featureless” or infinite

temperature case is when s(e) = 1 such that all subsystem entropies are proportional

to subsystem volume. We’re only interested in the corrections from finite temperature,

which can be thought of as the difference between the answer in the canonical ensemble

and the microcanonical ensemble. The microcanonical Rényi entropy is the contribution

of the global “unaveraged” microcanonical state ρ =
∑

E−∆<Ei<E+∆ |Ei⟩ ⟨Ei| :

SMC
n =

1

1− n
log

(
1

N n

∫
dEAe

SA(EA)+nSB(E−EA)

)
. (4.21)

We are interested in the correction away from the dominant microcanonical saddle, so

we are interested in computing the following quantity:

Sn − SMC
n =

1

1− n
ln

(∫
dEA exp(F1(EA))∫
dEA exp(F2(EA))

)
, (4.22)
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where F1(EA) and F2(EA) are functions defined by

F1(EA) = fV s

(
EA
fV

)
+ (1− f)V s

(
E − EA
(1− f)V

)
+ lnGn(EA)

F2(EA) = fV s

(
EA
fV

)
+ n(1− f)V s

(
E − EA
(1− f)V

)
. (4.23)

As both functions scale with volume, we can perform a saddle point analysis. The saddle

point equations for these functions are

s′
(
E1

fV

)
= s′

(
E − E1

(1− f)V

)
− G′

n(f, E1)

Gn(f, E1)

s′
(
E2

fV

)
= ns′

(
E − E2

(1− f)V

)
, (4.24)

where E1 and E2 are the saddle point energies of F1(EA) and F2(EA), respectively. The

analysis of these saddle point equations was done in totality for n > 1 in [131].1 Here

we fill in a small gap and study the case of n < 1. This will be useful later when we are

computing analytic continuations of Rényi negativities below n = 1.

4.2.2 Corrections at Transition for n < 1

s(x) is a monotonically increasing function of x with a monotonically decreasing first

derivative (take s(x) =
√
x as a concrete example). For the case n < 1, we can therefore

write the iequality

E2

f
>
E − E2

1− f
, (4.25)

which immediately implies

SA(E2) >
f

1− f
SB(E − E2), (4.26)

1See also [158] for a similar study of relative entropy with the same ansatz.
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and therefore SA(E1) > SB(E − E1) for f > 1/2.

The first thing to notice is that there is only one saddle point for both F1(EA) and

F2(EA), as Gn(f, EA) is now a strictly concave function. The single saddle for F1(EA)

depends sensitively on the saddle point of Gn(f, EA), which itself only depends on the

crossover point between the two hypergeometrics. As the crossover point is completely

determined by the n-independent quantity

SA(EA)− SB(E − EA) (4.27)

and the rest of the E1 saddle point equation is independent of n, the full saddle similarly

becomes completely independent of n. This should be contrasted with the obviously n-

dependent saddle point of F2(EA). This difference will generically cause the two saddles

to differ by an O(1) factor, so for all volume fractions we expect the different in Rényi

entropies to be volume law:

Sn − SMC
n = O(V ), n < 1. (4.28)

Note that this applies for all volume fractions, implying that the n < 1 Rényi entropies

do not obey the principle of canonical typicality.

This clarifies a conceptual point. For n → 1+, the
√
V correction lies in between

an exponentially suppressed O(e−cV ) region (f < 1/2) and a strongly enhanced O(V )

region (f > 1/2). Why, then, do we not get a similar enhancement for n → 1−? The

answer is that the dominant behavior in F1(EA), which previously supplied the emergent

“soft mode” for the flat interval between two saddles, becomes independent of the Rényi

index. This nonanalyticity might be worrying if one is used to a Rényi entropy analytic

in n, but the thermodynamic limit breaks this assumption. The form of these corrections
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agrees with the analysis of a gravitational model in Appendix C of [67].

4.3 Entanglement Negativity

In this section we compute similar quantities as [131] for entanglement negativity

measures. We begin by reviewing some salient properties of entanglement negativity and

its utility as a tripartite measure of entanglement before diving into the calculation.

4.3.1 Review of Negativity

Entanglement negativity refers to an entanglement measure based on properties of

the partial transpose operation applied to a bipartite density matrix ρA1A2 , defined via

〈
a1, a2|ρ

TA2
A1A2

|a′1, a′2
〉
= ⟨a1, a′2|ρA1A2 |a′1, a2⟩ (4.29)

for basis states {|a1⟩} in A1 and {|a2⟩} in A2 [106, 107, 159]. The partial transpose is a

positive but not completely positive map, which means some of the eigenvalues of ρ
TA2
A1A2

(hereafter ρT2A1A2
) can be negative. Entanglement negativity quantifies the different be-

tween the eigenvalues of the partially transposed density matrix and the original density

matrix via

N (ρA1A2) =
∑
i

|λi| − λi
2

=
∑
i:λi<0

|λi|. (4.30)

As with the von Neumann entropy, there exist Rényi generalizations of entanglement

negativity:

Nn = Tr
(
ρT2A1A2

)n
. (4.31)
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Due to the absolute value, one needs to define two different analytic continuations for

even and odd Rényi index n, so there are in fact two Rényi negativities given by

N (even)
2k =

∑
i

|λi|2k

N (odd)
2k−1 =

∑
i

sgnλi|λi|2k−1 (4.32)

for integer k. We define relevant entanglement measures via analytic continuation from

these quantities. The most common quantity to talk about is the logarithmic negativity,

given via a k → 1/2 analytic continuation of the even Rényi negativity

E(ρA1A2) = lim
k→1/2

logN (even)
2k (ρA1A2) = log

∑
i

|λi|. (4.33)

One other quantity of interest is the partially transposed entropy, also known as the odd

entropy, which is related to the k → 1 analytic continuation of the odd Rényi negativity

and is explicitly given by

ST2 ≡ lim
k→1

1

2k − 2
logN2k−1 = −

∑
i

λi log |λi|. (4.34)

We need to include the Rényi entropy-like singular term out front as N (odd)
1 = Tr ρT2A1A2

=

1.
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4.3.2 Disorder Averaged Negativity

Now we can discuss the disorder average2 in the Gaussian approximation described

in the previous section. The Schmidt decomposition of the energy eigenstate |E⟩ is now

|E⟩ =
∑
i1j1J

MijJ |Ei⟩A1
⊗ |Ej⟩A2

⊗ |EJ⟩B . (4.35)

Once again we’ll consider MijJ as a Gaussian random variable, in particular with

MijJ ≈ e−S(E)/2CijJ (4.36)

CijJ = 0, CijJCi′j′J ′ = δii′δjj′δJJ ′ . (4.37)

The partially transposed density matrix is

ρT2A1A2
=

1

N
∑

EiEjEJ

Ci1j1JCi2j2J |Ei1 , Ej2⟩ ⟨Ei2 , Ej1| , (4.38)

or, by replacing dummy variables

ρT2A1A2
=

1

N
∑

EiEjEJ

Ci1j2JCi2j1J |Ei1 , Ej1⟩ ⟨Ei2 , Ej2| , (4.39)

where the sum over energies is understood to be in a window of width 3∆, though again

we take this width to vanish. We also have

(
ρT2A1A2

)n
=

1

N n

∑
Ei1

,Ej1

∑
i1,··· ,in,j1,··· ,jn,J1,···Jn

n∏
m=1

Cimjm+1JmCim+1jmJm |Ei1 , Ej1⟩ ⟨Ein+1 , Ejn+1| .

(4.40)

2In the condensed matter literature, disorder averaging has a different meaning and what we’re doing
should more properly be called “ensemble averaging”. Ensemble averaging, however, already has a
meaning in the high energy literature, so we keep with the terminology of [131].
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Figure 4.1: Phase diagram of Rényi negativity for various subsystem densities of
state. The g’s label the dominant permutation which appears in the sum over Wick
contractions; their exact forms are given in Appendix F. The resolvent equation (4.41)
is valid in the regime SA2 << SA1+SB; we’ve indicated the forbidden region g = X−1

in a lighter shade. Reproduced with minor alterations from [67]

Note that the partial transpose has made it so the i (A1) indices are contracted cyclically,

while the j (A2) indices are contracted anti-cyclically. The resolvent equation for these

Wick contractions is the same as derived in [67], and a more detailed explanation is given

in Appendix G. We quote the result here:

λR(λ) = eSA1
+SA2 +

eSB

eSA2

R(λ)(1 +R(λ))

1− e2SA2R(λ)2
. (4.41)

This resolvent equation furnishes a negativity spectrum described by the phase diagram

in Figure 4.1. There are two transitions to consider. The first is when the A and B

subsystems are the same size, i.e. SA1 + SA2 = SB, corresponding to the transition from

g = 1 to g = X in the phase diagram. From the calculation in [67], we don’t expect any

enhanced corrections at this transition, so we don’t study it in any detail, though the
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calculation would presumably follow the same steps. The second transition of interest is

when the A1 subsystem is the same size as the combined A2B subsystem, SA1 = SA2+SB,

corresponding to the transition from g = τ to g = X in the phase diagram. In this regime

the sum over diagrams is known explicitly, and the disorder averaged partially transposed

density matrices are, for SA1 < SA2 + SB and SA1 > SA2 + SB respectively,

Tr (ρT2A1A2
)2k =


1

N 2k e
2k(SA2

+SB)+SA1eSA2 2F1

(
1− k,−2k; 2; eSA1

−SA2
−SB
)
,

1
N 2k e

2kSA1
+SA2

+SBeSA2 2F1

(
1− k,−2k; 2; eSA2

+SB−SA1

)
,

(4.42)

for even n = 2k and

Tr (ρT2A1A2
)2k−1 =


1

N 2k−1 e
(2k−1)(SA2

+SB)+SA1 2F1

(
1− 2k, 1− k; 1; eSA1

−SA2
−SB
)
,

1
N 2k−1 e

(2k−1)SA1
+SA2

+SB
2F1

(
1− 2k, 1− k; 1; eSA2

+SB−SA1

)
,

(4.43)

for odd n = 2k − 1. We give derivations for these formulae in Appendix F; the gist

is that we sum over all permutations which lie on a geodesic between two dominant

regions in phase space. The permutations on this geodesic can be enumerated, and the

previous formulae are functions whose moments reproduce the combinatoric factors for

these permutations.

4.4 Negativity Phase Transitions

We can use (4.42) and (4.43) to understand the difference between the microcanonical

and canonical Rényi negativities in a chaotic eigenstate, using much the same techniques

as were used in [131]. We denote by fA1 the volume fraction of A1 such that the näıve

phase transition happens at fA1 = 1/2. We also denote the volume fraction of A2 by fA2

and use fA = fA1 + fA2 to denote the total volume fraction of system A.
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We impose energy conservation in all three subsystems, such that our ansatz is for

subsystem entropies is

SA1(EA1) = fA1V s

(
EA1

fA1V

)
SA2(EA2) = fA2V s

(
EA2

fA2V

)
SB(E − EA1 − EA2) = (1− fA)V s

(
E − EA1 − EA2

(1− fA)V

)
. (4.44)

These again follow from ergodicity and imposing that the subsystem entropy is only a

function of the subsystem energy density.

4.4.1 A Comment On Our Ensemble Averaging

Unlike the case of Rényi entropy, the disorder average over the partially transposed

density matrix is not equivalent to upgrading the resummed traces (4.42) and (4.43) using

the ansatz (B.7). The reason for this is that energy conservation between replicated

subsystems for negativity forces “nonadjacent” subsystems to interact. The rules for

energy conservation are outlined in [134]. For a given permutation, one can “follow the

lines” of the three subsystems to see how the replicas interact. For an untransposed

system, the constraints conspire such that a resolvent sum over diagrams holds away

from the infinite temperature limit.

This is no longer the case upon transposing. For simple permutations like g = 1

and g = X, imposing the constraints returns integrals similar to those in the Rényi

entropy case. Things get more involved for general permutations on G(τ,X); the simplest

permutations are a subset of our τ permutations, labelled τES in [134]:

τES = (12)(34) · · · (n− 1 n) or (23)(45) · · · (n 1) (4.45)
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These permutations require an integral over four subsystem energies, and the number

of integrals only grows for arbitrary permutations on G(τ,X). This implies our ansatz

(B.7) doesn’t describe energy conservation described by disorder averaging over (4.40).

Given this obstruction, we make the choice to connect the replicas in a manner that

reduces to the smallest number of integrals over subsystem energies. This has the advan-

tage of allowing us to write a resolvent equation and resum the relevant permutations,

while not having a correct interpretation as a trace-preserving energy flow between repli-

cas. This produces some obvious pathologies, such as disagreement between the second

even Rényi negativity and the second Rényi entropy, which must agree for a well-defined

density matrix. However, as we’ll see, even in this model one can reproduce some features

of negativity seen in the gravitational model, namely large deviations from the thermo-

dynamic answer for entanglement negativity and an enhanced correction for the partially

transposed entropy.

4.4.2 Even Rényi Negativity

We’ll start with studying the even Rényi negativities, from which the logarithmic

negativity descends. Our expressions for the logarithms of the canonical ensemble and

microcanonical ensemble Rényi negativities using our previous ansatzes are as follows:

N2k =
1

N 2k

∫
dEA1dEA2e

SA1
(EA1

)+2SA2
(EA2

)+SB(E−EA1
−EA2

)Gk(fA1 , fA2 , EA1 , EA2)

NMC
2k =

1

N 2k

∫
dEA1dEA2e

SA1
(EA1

)+SA2
(EA2

)+2k(SA2
(EA2

)+SB(E−EA1
−EA2

)), (4.46)
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where the function Gk(fA1 , fA2 , EA1 , EA2) is defined as the k-dependent part of (4.42)

Gk(fA1 , fA2 , EA1 , EA2) =


e(2k−1)(SA2

+SB)
2F1

(
1− k,−2k; 2; eSA1

−SA2
−SB
)
,

e(2k−1)SA1 2F1

(
1− k,−2k; 2; eSA2

+SB−SA1

)
,

(4.47)

and N (with no other sub/superscripts) is an overall normalization given by

N =

∫
dEA1dEA2e

SA1
(EA1

)+SA2
(EA2

)+SB(E−EA1
−EA2

). (4.48)

Whenever unspecified, the subsystem entropies should now be understood to be valued at

the subsystem energies, which we only omit for notational clarity. We write the difference

between the logarithms of these quantities as

logN2k − logNMC
2k ≡ log

(∫
dEA1dEA2 exp(F1(EA1 , EA2))∫
dEA1dEA2 exp(F2(EA1 , EA2))

)
, (4.49)

where the functions F1(EA1 , EA2) and F2(EA1 , EA2) are defined via the corresponding

integrands in (4.46). The strategy will be to find saddle points for F1(EA1 , EA2) and

F2(EA1 , EA2) and use the relative behavior of those saddle points to determine the scaling

of the correction at transition.

We have two coupled saddle point equations for each both functions, which are given
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Figure 4.2: A schematic plot of regions (shaded in red) in the EA1 − EA2 plane
where our ansatz for the dominant sum over permutations does not hold. The lines
separating the regions will depend sensitively on the form of s(e) and the volume
fractions of the subsystems.

by

s′

(
E

(1)
1

fA1V

)
= s′

(
E − E

(1)
1 − E

(2)
1

(1− fA)V

)
−
∂EA1

Gk(fA1 , fA2 , E
(1)
1 , E

(2)
1 )

Gk(fA1 , fA2 , E
(1)
1 , E

(2)
1 )

2s′

(
E

(2)
1

fA2V

)
= s′

(
E − E

(1)
1 − E

(2)
1

(1− fA)V

)
−
∂EA2

Gk(fA1 , fA2 , E
(1)
1 , E

(2)
1 )

Gk(fA1 , fA2 , E
(1)
1 , E

(2)
1 )

s′

(
E

(1)
2

fA1V

)
= 2ks′

(
E − E

(1)
2 − E

(2)
2

(1− fA)V

)

(2k + 1)s′

(
E

(2)
2

fA2V

)
= 2ks′

(
E − E

(1)
2 − E

(2)
2

(1− fA)V

)
, (4.50)

where the pair E1 = (E
(1)
1 , E

(2)
1 ) denotes a saddle point for F1(EA1 , EA2), while E2 =

(E
(1)
2 , E

(2)
2 ) denotes the saddle point for F2(EA1 , EA2). As F2(EA1 , EA2) is a strictly

concave function, there is only one global maximum. F1(EA1 , EA2) on the other hand

can have two maxima, as Gk(fA1 , fA2 , EA1 , EA2) is strictly nonmonotonic.

The first thing we have to be careful about is whether we are still within our regime
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of validity for probing the transition of interest. In the case of Rényi entropy, the fact

that the dominant contribution comes from noncrossing partitions was assumed to hold

for all of parameter space, that is for all values of subsystem entropy. This can be traced

back to the fact that the dominant permutations all lie on a single geodesic G(1, X). In

our case, we’re trying to probe the transition on one geodesic G(τ,X) while suppressing

diagrams from other geodesics, which imposes some natural constraints on the size of our

subsystems.

We are justified in only considering the diagrams from Appendix F only if the saddle

point energies satisfy the conditions:

SA2(E
(2)
1,2) < SA1(E

(1)
1,2) + SB(E − E

(1)
1,2 − E

(2)
1,2)

SB(E − E
(1)
1,2 − E

(2)
1,2) < SA1(E

(1)
1,2) + SA2(E

(2)
1,2), (4.51)

such that all contributions from subleading permutations remain subleading. We include

a rough phase diagram of the allowed region to explore in Figure 4.2. If the saddle point

lies outside the allowed region, our answer for the dominant sum over permutations no

longer holds, so we shouldn’t try to explore those regions of phase space.

This means before attempting to compute corrections at transition for all subsys-

tem volume fractions, we should derive some bounds on the regime of validity of our

approximation. We’ll make use of the following inequality:

SA1(EA1) + SA2(EA2) + SB(E − EA1 − EA2) ≤ V s

(
E

V

)
, (4.52)

which follows from the fact that our subsystem entropy function s(e) is concave. Plugging
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in the saddle points and using the first constraint in (4.51) we can write

2SA2(E
(2)
2 ) < SA1(E

(1)
2 ) + SA2(E

(2)
2 ) + SB(E − E

(1)
2 − E

(2)
2 ) < V s

(
E

V

)
⇒ SA2(E

(2)
2 ) <

V

2
s

(
E

V

)
. (4.53)

We can use this relation to find

SA2(E
(2)
2 ) = fA2s

(
E

(2)
2

fA2V

)
> fA2s

(
E

(2)
2

V

)

⇒ fA2s

(
E

(2)
2

V

)
<
V

2
s

(
E

V

)
, (4.54)

as E
(2)
2 < E, a constraint on fA2 which makes this true for all subsystem entropy densities

is

fA2 < 1/2. (4.55)

Therefore our calculations are only valid when subsystem A2 is less than half of the total

system size. We can find a similar inequality on SB using the second constraint in (4.51).

We have

2SB(E − E
(1)
2 − E

(2)
2 ) < SA1(E

(1)
2 ) + SA2(E

(2)
2 ) + SB(E − E

(1)
2 − E

(2)
2 ) ≤ V s

(
E

V

)
⇒ SB(E − E

(1)
2 − E

(2)
2 ) <

V

2
s

(
E

V

)
. (4.56)

We can therefore write

SB(E − E
(1)
2 − E

(2)
2 ) = (1− fA)V s

(
E − E

(1)
2 − E

(2)
2

(1− fA)V

)
> (1− fA)V s

(
E − E

(1)
2 − E

(2)
2

V

)

⇒ (1− fA)V s

(
E − E

(1)
2 − E

(2)
2

V

)
<
V

2
s

(
E

V

)
. (4.57)
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Figure 4.3: Excluded volume fractions from our analysis of the cyclic to pairwise
phase transition. Describing the colored “forbidden” regions would require a sum
over permutations we assert to be subdominant.

Again, a result that makes this inequality true for all saddle point energies is

fA > 1/2. (4.58)

This ties together a nice family of restrictions: both subsystems A2 and B have to have

volume fraction less then half of the system. We illustrate these constraints in Figure

4.3. This makes some sense, as we want to probe transitions dominated by the behavior

of A1 relative to the rest of the system.

Another way of seeing there should be a restricted regime for our procedure is as

follows: entanglement negativity is agnostic as to which subsystem A1 or A2 one applies

the partial transpose to. This would of course result in an averaged density matrix trace

symmetric under exchange of SA1 and SA2 , which our expressions (4.42) and (4.43) are

not. However, by writing a resolvent equation valid only in a certain parameter regime,

we can no longer comfortably integrate over all energies. This is an important point

because the deviations from the featureless case can in principle be of order the system
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size, and so corrections are not necessarily perturbative as they were assumed to be in

[67].

We can, however, be comfortable in the validity of our calculation if the saddle points

for F1(EA1 , EA2) and F2(EA1 , EA2) obey the conditions above, so restricting to the set of

entropy functions which satisfy (4.51), let’s first look at the saddle point equations for

E2. Setting the third and fourth equations equal yields

s′

(
E

(1)
2

fA1V

)
= (2k + 1)s′

(
E

(2)
2

fA2V

)
. (4.59)

As s′(e) is a monotonically decreasing function, for all k > 0 we have the inequality

E
(2)
2 >

fA2

fA1

E
(1)
2 . (4.60)

We can use this inequality to write a simple inequality on E
(1)
2 by rewriting the E

(1)
2

saddle point equation as

s′

(
E

(1)
2

fA1V

)
> 2ks′

E − fA
fA1

E
(1)
2

(1− fA)V

 . (4.61)

Now we have an inequality which depends on k, as we can write

E
(1)
2 < fA1E, k ≥ 1/2. (4.62)

Note that this result is also valid for k = 1/2, as the relation (4.60) is a strict inequal-

ity which is never saturated for positive k. We can use a similar strategy to write an
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inequality for E
(2)
2 . Rewriting the E

(2)
2 equation with (4.60) yields

(2k + 1)s′

(
E

(2)
2

fA2V

)
< 2ks′

E − fA
fA2

E
(2)
2

1− fA

 . (4.63)

The resulting inequality has a slightly different k dependence:

E
(2)
2 > fA2E, k > 0. (4.64)

The last inequalities we can write are those for the saddle point values of SA1 and SA2 :

SA1(E
(1)
2 ) = fA1V s

(
E

(1)
2

fA1V

)
< fA1V s

(
E

V

)

SA2(E
(2)
2 ) = fA2V s

(
E

(2)
2

fA2V

)
> fA2V s

(
E

V

)
. (4.65)

We’d like to find conditions on the hypergeometric being stuck on the first branch, i.e.

SA1 < SA2 + SB. This is guaranteed to happen if the weaker inequality SA1 < SA2 is

satisfied, which from (4.65) is necessarily true when

fA2 > fA1 . (4.66)

If we assume SA1 < SA2 for the E1 saddle point as well, the argument of the hypergeo-

metric is exponentially suppressed and we can approximate it by

2F1(1− k,−2k; 2;x) ≈ 1 + k(k − 1)x, (4.67)
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where the small parameter x is now

x ≡ eSA1
(E

(1)
1 )−SA2

(E
(2)
1 )−SB(E−E(1)

1 −E(2)
1 ). (4.68)

Under this assumption the saddle point equations for E1 and E2 are the same up to expo-

nentially suppressed terms, and therefore the saddle points E1 and E2 are exponentially

close. This leads to the following form of corrections to ETH:

logN2k − logNMC
2k ∝ O(e−cV ), k ≥ 1/2, fA2 > fA1 (4.69)

We can write a similar inequality for which SA1 < SB is always satisfied. We recall the

E
(1)
2 saddle point equation:

s′

(
E

(1)
2

fA1

)
= 2ks′

(
E − E

(1)
2 − E

(2)
2

(1− fA)V

)
. (4.70)

At k = 1/2 there’s clearly an equality between the arguments of the functions on the

right and left, so for k ≥ 1/2 we have the inequality

E
(1)
2

fV
≤ E − E

(1)
2 − E

(2)
2

(1− fA)V
, k ≥ 1/2. (4.71)

We’d like to satisfy the inequality SA1 < SB, or

fA1V s

(
E

(1)
2

fV

)
< (1− fA)V s

(
E − E

(1)
2 − E

(2)
2

(1− fA)V

)
. (4.72)

This is always satisfied if

fA1 < 1− fA. (4.73)

So far we have two constraints which carve out a corner of the phase space for all k ≥ 1/2.
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Now let’s try to find a condition such that SA1 > SA2+SB. Using our previous ansatz

this condition is written as

fA1s

(
E

(1)
2

fA1V

)
> fA2s

(
E

(2)
2

fA2V

)
+ (1− fA)s

(
E − E

(1)
2 − E

(2)
2

(1− fA)V

)
. (4.74)

For all k > 0 we can use (4.60) to rewrite this as

(fA1 − fA2)s

(
E

(2)
2

fA2V

)
> (1− fA)s

(
E − E

(1)
2 − E

(2)
2

(1− fA)V

)
. (4.75)

Using the E
(2)
2 saddle point equation, there exists for k > 0:

E
(2)
2

fA2

>
E − E

(1)
2 − E

(2)
2

1− fA
. (4.76)

Therefore, SA1 > SA2 + SB is always satisfied if

fA1 − fA2 > 1− fA ⇒ fA1 > 1/2, k > 0. (4.77)

For these volume fractions the corrections to the Rényi negativity are extensive in the

system size, as E1 and E2 have no relation:

logN2k − logNMC
2k ∝ O(V ), k > 0, fA1 > 1/2. (4.78)

We summarize the results so far in Figure 4.4. In that phase diagram, none of the bound-

aries should be though of as sharp, that is as (4.60) is never saturated for k > 0, neither

are any constraints that depend on it. The interpolation between O(e−cV ) corrections

and O(V ) corrections will happen somewhere in this “unknown region”, though the only

relevant point is that at fA1 = 1/2 we should still be in a region with extensive correc-
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Figure 4.4: Phase diagram for corrections to even Rényi negativities. The concave
region with O(e−cV ) corrections comes from requiring SA1 < SA2 and/or SA1 < SB.
The O(V ) region requires SA1 > SA2 + SB. The interpolation between these regions
will lie somewhere with fA1 < 1/2 and is outlined by the dashed lines. The yellow
curve represents a system specific boundary which will depend on k and potentially
on the specifics of s(e).
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tions. In particular this implies the logarithmic negativity receives O(V ) corrections, as

was noted in [67].3

We won’t comment on the case k < 1/2 for fA1 < 1/2, though the expectation is that,

like the n < 1 Rényi entropy, these measures always receive volume law corrections. It’s

also entirely possible the interpolating line continues moving towards the point (0, 1/2),

meaning there’s some set of volume fractions for which arbitrarily small but positive k

are well-approximated by ETH.

4.4.3 Odd Rényi Negativity

We can repeat the previous analysis for odd n. We have different expressions for the

canonical and microcanonical Rényi negativities:

logN2k−1 =
1

N2k−1

∫
dEA1dEA2e

SA1
(EA1

)+SA2
(EA2

)+SB(E−EA1
−EA2

)Gk(fA1 , fA2 , EA1 , EA2)

logNMC
2k−1 =

1

N2k−1

∫
dEA1dEA2e

SA1
(EA1

)+(2k−1)(SA2
(EA2

)+SB(E−EA1
−EA2

)), (4.79)

where Gk(fA1 , fA2 , EA1 , EA2) is now defined by (4.43) as:

Gk(fA1 , fA2 , EA1 , EA2) =


e(2k−2)(SA2

+SB)
2F1

(
1− k, 1− 2k; 1; eSA1

−SA2
−SB
)
,

e(2k−2)SA1 2F1

(
1− 2k, 1− k; 1; eSA2

+SB−SA1

)
.

(4.80)

Again the subsystem entropies should be valued at their respective subsystem energies.

Notably logN2k−1 enjoys a symmetry under SA1 ↔ SA2 + SB. We again write the

3At k = 1, the even Rényi negativity is equal to the second Rényi entropy S2(ρA), which for fA1
+

fA2 > 1/2 is expected to always receive volume law corrections, which we don’t see for all volume
fractions. This could be a consequence of the restriction to a particular phase transition, but more likely
is a result of the issues discussed in our ansatz above.
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difference between the canonical and microcanonical answers as

logN2k−1 − logNMC
2k−1 = log

(∫
dEA1dEA2 exp(F1(EA1 , EA2))∫
dEA1dEA2 exp(F2(EA1 , EA2))

)
(4.81)

and use the same ansatz (B.7) to write the saddle point equations for F1 and F2 as

s′

(
E

(1)
1

fA1V

)
= s′

(
E − E

(1)
1 − E

(2)
1

(1− fA)V

)
−
∂EA1

Gk(fA1 , fA2 , E
(1)
1 , E

(2)
1 )

Gk(fA1 , fA2 , E
(1)
1 , E

(2)
1 )

s′

(
E

(2)
1

fA2V

)
= s′

(
E − E

(1)
1 − E

(2)
1

(1− fA)V

)
−
∂EA2

Gk(fA1 , fA2 , E
(1)
1 , E

(2)
1 )

Gk(fA1 , fA2 , E
(1)
1 , E

(2)
1 )

s′

(
E

(1)
2

fA1V

)
= (2k − 1)s′

(
E − E

(1)
2 − E

(2)
2

(1− fA)V

)

s′

(
E

(2)
2

fA2V

)
= s′

(
E − E

(1)
2 − E

(2)
2

(1− fA)V

)
. (4.82)

Let’s again investigate the saddle point for F2. We immediately see

E
(2)
2

fA2

=
E − E

(1)
2 − E

(2)
2

1− fA
(4.83)

for all k! This is a striking result, as it means we can write the sum of subsystem entropies

in A2 and B as

SA2(E
(2)
2 ) + SB(E − E

(1)
2 − E

(2)
2 ) ≡ SA1

(E
(2)
2 ) = (1− fA1)s

(
E

(2)
2

fA2V

)
(4.84)

This is important as for the odd Rényi negativity, SA2 and SB always appear summed,

so if we’re only interested in the leading saddle point approximation we can treat them

as one subsystem entropy SA1
. As such we can rewrite the single saddle point equation
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as

s′

(
E

(1)
2

fA1V

)
= (2k − 1)s′

(
E

(2)
2

fA2V

)
. (4.85)

We recognize this as similar to the saddle point equation (4.24) for F2(E) in the Rényi

entropy, but we’ll go through the discussion nonetheless. At k = 1 we can exactly solve for

the subsystem energies and they are, unsurprisingly, proportional to the volume fractions

of their respective subsystems:

E
(1)
2 = fA1E, k = 1

E
(2)
2 = fA2E, k = 1. (4.86)

When k > 1, we again have

E
(2)
2 >

fA2

fA1

E
(1)
2 , (4.87)

which was true for general k in the even case. Similar inequalities on volume fraction

hold in the odd case; we still have

E
(1)
2 < fA1E, k > 1

E
(2)
2 > fA2E, k > 1. (4.88)

From this the inequality SA1 < SA1
is clearly satisfied when

fA1 < 1/2, (4.89)

and corrections are exponentially suppressed. For fA1 > 1/2, this won’t be true generi-

cally and the corrections are extensive.

We can also say interesting things about k < 1. In this case the inequalities are
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flipped:

E
(1)
2 > fA1E, k < 1

E
(2)
2 < fA2E, k < 1

E
(2)
2 <

fA2

fA1

E
(1)
2 . (4.90)

We can check where SA1 > SA1
. From (4.90) we have

SA1(E
(1)
2 ) = fA1V s

(
E

(1)
2

fA1V

)
> fA1V s

(
E

V

)

SA1
(E

(2)
2 ) = (1− fA1)V s

(
E

(2)
2

fA2V

)
< (1− fA1)V s

(
E

V

)
. (4.91)

We see that SA1 > SA1
is guaranteed to be satisfied if fA1 > 1/2, and indeed there is

no generic behavior for fA1 < 1/2. Thus the corrections are extensive for all volume

fractions for k < 1.

4.4.4 Odd Rényi Negativity at Transition

We would like to study this case in analogy with the entanglement entropy, for reasons

that will be clear shortly. Let’s follow the same procedure of dividing F1 into two pieces,

Fdom and F∆, defined as

Fdom = SA1(EA1) + SA2(EA2) + SB(E − EA1 − EA2)

+ (2k − 2)max{SA1(EA1), SA2(EA2) + SB(E − EA1 − EA2)}

F∆ = log 2F1

(
1− 2k, 1− k; 1; e−|SA1

(EA1
)−SA2

(EA2
)−SB(E−EA1

−EA2
)|) . (4.92)
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That is, we take the dominant contribution and relegate the subleading contributions to

a term bounded by O(1) in volume factors:

1 ≤ eF∆ ≤ ak, ak ≡
(
3k − 2

k − 1

)
=

Γ(3k − 1)

Γ(k)Γ(2k)
= 1 + (k − 1) +O(k − 1)2. (4.93)

The averaged Rényi negativity, with a 1
2k−2

factor which will be important later, can be

rewritten as

1

2k − 2
logN2k−1 =

1

2k − 2
log

(
1

N2k−1

∫
dEA1dEA2e

Fdom+F∆

)
, (4.94)

and we can bound logN2k−1 via

logN2k−1 − logN dom
2k−1 ≤

1

2
+O(k − 1). (4.95)

As such N dom
2k−1 is enough to look for corrections larger than O(1).

Unlike the Rényi entropy, at f = 1/2 there’s no obvious reflection symmetry of the

energies in Fdom, and indeed we don’t find one numerically. There is, however, a symmetry

in the saddle points, which we’ll argue for as follows. Call the two saddle points for Fdom

(or F1, it makes no difference here) E (a)
1 = (E

(1,a)
1 , E

(2,a)
1 ) and E (b)

1 = (E
(1,b)
1 , E

(2,b)
1 ). Under

the exchange SA1 ↔ SA1
, the saddles are swapped due to the symmetry of the odd Rényi

negativity. It’s clear then at fA1 = 1/2 there exists the equivalence

E
(1,a)
1

fA1

=
E

(2,b)
1

fA2

E
(1,b)
1

fA2

=
E

(2,a)
1

fA2

. (4.96)

This means that the two saddle points contribute with equal magnitude, which con-

tributes an O(1) factor to the difference between the canonical and microcanonical neg-
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ativities:

1

2k − 2

(
logN dom

2k−1 − logNMC
2k−1

)
=

log 2

2− 2k
∼ O(1) (4.97)

However, as in the case of von Neumann entropy, there is a subtletly related to the

fact that the two saddles collide in the limit k → 1, i.e. the partially transposed entropy.

As they collide, there is an emergent region between the saddles which contributes to the

integral, so we can’t treat the presence of multiple equivalent saddles at leading order,

we must integrate over the interpolating region. We show a plot of this phenomenon in

Figure 4.5. Let’s solve the F2 saddle point equations perturbatively in δ ≡ 2k − 2. The

E
(1)
2 saddle point equation (4.85) becomes

s′

(
E

(1)
2

fA1V

)
= (1 + δ)s′

(
E

(2)
2

fA2V

)
≈ s′

(
E

(2)
2

fA2V
+ δ

s′ (E/V )

s′′ (E/V )

)
, (4.98)

where we’ve again used that E
(2)
2 = fA2E. Combining this with the unchanged (4.83)

and plugging in fA1 = 1/2 yields

E
(1)
2 =

E

2
+
V δ

4

s′(E/V )

s′′(E/V )

E
(2)
2 = fA2E − fA2V δ

2

s′(E/V )

s′′(E/V )
(4.99)

From this we can write our subsystem entropies SA1 and SA1
in the familiar form

SA1(E
(1)
2 ) =

1

2
s

(
E +

V δ

2

s′(E/V )

s′′(E/V )

)
SA1

(E
(2)
2 ) =

1

2
s

(
E − V δ

2

s′(E/V )

s′′(E/V )

)
(4.100)

What happens as k → 1 for the odd Rényi negativity is precisely the same as what

happens for the n → 1 von Neumann entropy, namely that the F∆ term “fills in” the
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Figure 4.5: Plots of F1(EA1 , EA2) at phase transition. We’ve set
E = V = 1, fA1 = 1/2, and fA2 = 3/10. For large k (upper left), the two
saddle points are well-separated and can be treated separately. As we decrease k
(upper right) the saddle points approach one another and produce an emergent flat
region. At exactly k = 1 (bottom) the saddle points coincide at (fA1E, fA2E). The
dotted line connecting the saddle points is given by EA2 = −2fA2(EA1 − E); all
saddles at fA1 = 1/2 lie along this line.
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space between the two saddles. The only difference is that this flat direction runs between

two saddles separated along a line in the EA1−EA2 plane specified by fA2 . The rest of the

calculation is completely unchanged from that of the von Neumann entropy, and there

is an enhanced correction exactly of the same form:

ST2 − ST2MC = −
√
CV
2π

+O(δ) ∼ O(
√
V ) (4.101)

In [67], it was noted that a näıve calculation shows the partially transposed entropy

receives O(
√
V ) corrections, but a more accurate analysis shows it receives O(V ) correc-

tions. It would be interesting to understand the difference between our calculation and

theirs.4

4.5 Discussion and Future Work

In this work we’ve studied a class of tripartite entanglement measures, the Rényi neg-

ativities, in a toy model of a chaotic eigenstate. We’ve resummed the relevant noncrossing

permutations obtained via Wick contractions relevant at the transition of interest and

studied the corrections to the dominant microcanonical saddle.

The main takeaway is as follows: logarithmic negativity and its Rényi generalizations

thereof are not always “good” chaotic observables in the sense that their fluctuations

(the difference between the canonical and microcanincal expectation values) are often of

the same order as the quantities themselves, implying they are not self-averaging for all

volume fractions. We’ve shown this is the case for the even Rényi negativity at transition,

as well as for both even and odd Rényi negativities for fA1 > 1/2. In particular we’ve

shown that odd Rényi negativity behaves mostly the same as Rényi entropy at the τ to

4A possible resolution is that our calculation was done at fixed fA2
, roughly the same as fixing k2 in

[67]. Only when k = k1k2 was fixed, similar to fixing fA, do they see O(V ) corrections.
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X transition, exhibiting a O(
√
V ) enhanced correction at exactly k = 1. One surprising

outcome is that, for both Rényi negativities, canonical typicality holds in some cases

where the partially transposed density matrix is defined on a subsystem A1A2 larger

than half of the total system.

One interesting question is what bearing these volumetric corrections have on the

validity of the cosmic brane prescription. It’s expected that the holographic dual of

subregion entanglement measures is given by the action of a geometric solution with a

massive cosmic brane (or branes) inserted [40, 137]. Away from transition, it’s expected

that there is a single dominant saddle, or at the very least an O(1) number of equivalent

saddles, all of which have have small enough fluctuations that we can treat the calculation

of the brane area perturbatively. What happens if this saddle doesn’t exist?5 For the

n < 1 Rényi entropy, for example, the dual gravitational description is expected to be

a cosmic brane with negative tension [137], so the minimal energy configuration would

be a brane that falls towards the boundary. This is roughly the “holographic dual” of

the O(V ) corrections to ETH; it represents a failure of a single approximately geometric

state to describe the dual system.

We now discuss some extensions to our work. A necessary restriction in our analysis

is only summing over a subset of all relevant permutations near a particular phase tran-

sition. It would be useful to find a closed form expression for the moments of a block

transposed Wishart matrix without these assumptions, which would involve finding a

closed form solution to the recursion relation in [140]. This would be especially nice as

we could probe the region fA < 1/2, which is where one could expect ETH to hold as

the partially transposed density matrix is defined on less than half of the total system.

A technical point in our analysis was the use of 2-Dyck paths and 2-Narayana num-

bers, as opposed to (1-)Dyck paths which appear in the calculation of entanglement

5We thank Pratik Rath for discussions on this point.
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entropy. It’s possible some further generalization of Narayana numbers (as in e.g. [160])

will be relevant for calculating transitions in higher party entanglement measures in a

similar model.

So far, we’ve only discussed Rényi negativity, but there exists a family of holograph-

ically inspired measures termed refined Rényi negativities, which are given by

ST2(n)(ρA1A2) = −n2∂n

(
1

n
logN (odd/even)

n (ρA1A2)

)
(4.102)

We have not touched on the structure of transitions in these measures, but they could

presumably be treated in the same way we’ve presented. Of particular interest is the

refined Rényi 2-negativity ST2(2), the n→ 2 limit of the even refined Rényi entropy. This

quantity is explicitly given by

ST2(2) = − lim
m→1

m2∂m

(
1

m
logN (even)

2m

)
= −

∑
i

λ2i∑
j λ

2
j

log

(
λ2i∑
j λ

2
j

)
(4.103)

which is the von Neumann entropy of the normalized density matrix
(
ρT2A1A2

)2
. Conse-

quently, the expectation is that the corrections will be O(
√
V ), which is indeed what

is seen in the gravitational setting. It would be nice to derive this relation from our

formalism.

Additionally, this formalism could be applied to study the reflected entropy [161] and

its Rényi generalizations thereof [162–164]. Reflected entropy has been studied in a simi-

lar gravitational system [163] and was shown to have O(
√
V ) corrections at transition, as

in the case of the von Neumann entropy, derived via a resolvent calculation. Presumably

the relevant permutations could be enumerated and the corrections calculated as we’ve

done in this work.

Lastly, it would be interesting to see the corrections to our results from imposing
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energy conservation between replicas as described in [134], and to understand if our

simplified ansatz produces similar corrections at transition.
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Chapter 5

Holographic Tensor Networks with

Bulk Gauge Symmetries

5.1 Introduction

The ultimate goal of the AdS/CFT correspondence is to understand, concretely, the

relationship between a bulk gravitational theory and its dual boundary conformal field

theory. Holographic duality posits that the partition functions of the two theories are

equal and that there exists an isomorphism between the Hilbert space of states of a

theory of quantum gravity Hbulk and the Hilbert space of a seemingly unrelated quantum

mechanical system Hboundary. If we were to understand the precise relation between these

Hilbert spaces, we would have a tractable handle with which to study quantum gravity,

in whatever form it may ultimately arise.

In practice, the UV degrees of freedom in the bulk are not well-understood, so one

must often be satisfied with studying a subspace of states given by small fluctuations

around a fixed semiclassical saddle. These states span a code subspace of the quantum

gravity Hilbert space, and are thus embedded in the larger Hilbert space of the dual
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boundary theory, in the same way as the logical qubits of a quantum error correcting

code (QECC) are embedded in a larger Hilbert space of physical qubits [165].

In the last decade, a useful tool for developing intuition about the bulk-to-boundary

map has been tensor networks. Tensor networks, specifically projected entangled pair

states (PEPS) and PEPS-inspired tensor networks, originally arose in many-body physics

as a generalization of matrix product states, which allowed one to efficiently prepare spin

chain states with area law entanglement [166].

As a toy model for holography, tensor networks found their niche due to the fact that

they obey the Ryu-Takayanagi (RT) formula [38] and its refinements [40, 43, 45, 167]. In

particular, random tensor networks (RTNs) [168] reproduce several desirable properties

of a holographic QECC, namely satisfying a quantum-corrected RT formula and the Petz

recontruction of local operators [169].

We now give a short overview of holographic RTNs and their entanglement properties,

as well as their issues. A rank-k tensor can be represented by its components Tµ1···µk ,

with µi = 1, . . . , Di (the bond dimension). We can associate to each leg a Di-dimensional

Hilbert space Hi spanned by an orthonormal basis of states {|µi⟩, µi = 1, · · · , Di}. The

tensor T can then be thought of as a state on the tensor product Hilbert space
⊗k

i=1 Hi:

|T ⟩ =
∑

µ1,··· ,µk

Tµ1···µk |µ1⟩ ⊗ · · · ⊗ |µk⟩. (5.1)

To construct a tensor network, we consider a set of vertices and links which form a

network. To each vertex x we associate a state |Tx⟩, such that the collection of all tensors

defines a product state ⊗x|Tx⟩. Adjacent tensors are those connected by a link; their

corresponding legs are contracted by projecting onto a maximally entangled state. For

simplicity, we assume that all contracted legs have the same bond dimension D. Denoting

the tensor product Hilbert space on the two legs connecting the tensors at vertices x and
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y as Hxy ⊗ Hyx, this means that we project onto the state |xy⟩ = D−1/2
∑D

µ=1 |µxy⟩ ⊗

|µyx⟩. Uncontracted legs are called “dangling” and come in two types: bulk legs (viewed

as input) and boundary legs (viewed as output). We write the boundary state in the

following way:1

|Ψ∂⟩ =

⟨Φb| ⊗
⊗
⟨xy⟩

⟨xy|

(⊗
x

|Tx⟩

)
, (5.2)

where we project the bulk input legs onto a bulk state |Φb⟩. In an RTN, we choose Tx

to be independent random tensors and take D to be large. We will not go into details

on how one computes Rényi entropy in the RTN here; the important point is that, for a

boundary subregion R, one finds the following answer for the Rényi entropy Sn(R):

Sn(R) = |γR| logD + Sn(ρr), (5.3)

where |γR| is the number of links cut by the minimal surface γR homologous to R and

Sn(ρr) is the Rényi entropy of the bulk subregion r bounded by R ∪ γR (we will call

r the entanglement wedge). Analytically continuing to n = 1 recovers the Faulkner-

Lewkowycz-Maldacena (FLM) formula

SvN(R) =

〈
Â
〉

4GN

+ SvN(ρr), (5.4)

with |γR| logD identified with the expectation value of the area operator ⟨Â⟩/4GN .

In a state with vanishing bulk Rényi entropy (such as a product state), the boundary

Rényi entropy (5.3) is consequently independent of n. The RTN thus exhibits a flat

entanglement spectrum due to the projection of contracted legs onto maximally mixed

states.2 This differs sharply from what we expect from generic situations in AdS/CFT.

1Here, we have chosen a pure state as the bulk input, but generalizing to mixed states is straightfor-
ward.

2The HaPPY code [170] also features a flat Rényi spectrum for similar reasons.
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For example, the Rényi entropy for an interval R of length ℓ in the vacuum state of a

two-dimensional CFT takes the form

Sn(R) =
c

6

(
1 +

1

n

)
log

(
ℓ

ϵ

)
, (5.5)

which is manifestly n-dependent. One possible solution is to instead project contracted

legs onto a nonmaximally entangled link state [128, 171]. By tuning the entanglement

spectrum appropriately, this allows one to reproduce the correct single-interval CFT

vacuum Rényi entropy (5.5), but does not work in more general cases such as that of

multiple disjoint intervals. To see this, consider two disjoint intervals R1 and R2 (see

Figure 5.1), and for simplicity consider the case where the mutual information between

the intervals is small in the sense that the RT surfaces are always in a disconnected

phase. The boundary Rényi entropy can be obtained by inserting appropriate cosmic

branes into the bulk [137]. The tension of the cosmic branes is proportional to 1− 1/n.

In a fully gravitating system, the two cosmic branes homologous to R1, R2 will backreact

and affect each other in an n-dependent way. This results in a nonzero Rényi mutual

information between the two intervals that cannot be reproduced in RTNs by simply

adding nonmaximally entangled links, because they would not allow the minimal surfaces

to affect each other.

From the gravity point of view, the RTN prepares a so-called fixed-area state [141,

154], which is an eigenstate of the area operator Â in (5.4). Such eigenstates form a

complete basis for semiclassical states prepared via the gravitational path integral, so

in principle any semiclassical state can be represented as a superposition over fixed-

area basis states |α⟩, where α labels the eigenvalues of the area operator. As the area

operator lives on the RT surface dividing the entanglement wedge r and its complement

r, it naturally belongs to the center of the algebra of bulk operators in r. This view was
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Figure 5.1: The cosmic branes that arise in computing the Rényi entropy for disjoint
subregions. These branes have nonzero, n-dependent tension, and so would backreact
in a realistic holographic system.

espoused in [172], where it was shown that the FLM formula (5.4) can be derived from a

quantum error correcting code with complementary recovery. In that language, the area

operator is a specific element of the center of the bulk von Neumann algebra on r. The

usual RTN implements a special case of this where the algebra has a trivial center, i.e.,

the center consists of c-numbers only and is therefore isomorphic to C. In particular,

this means that the area operator must be a c-number, which, as previously discussed,

is incongruous with what one observes in gravitational holography.

The goal of this chapter is to construct a model where the algebra on r has a nontrivial

center and to identify a nontrivial area operator living in the center.3 An ad hoc way of

getting a nontrivial center is to “stack” multiple layers of tensor networks by hand to form

superpositions of fixed-area states. We will not do this but will instead pursue a more

physically motivated approach. In particular, one would like to incorporate something

3Having a nontrivial center does not guarantee that the area operator is not a c-number; for example,
see [173].
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akin to “edge states”, degrees of freedom which live on the minimal surface, in order to

go beyond fixed-area states and produce a nontrivial area operator.4 Our goal in this

work is to give a model which provides a physical origin for these edge states. Inspired

by similar operators found in gauge theory [175], we will add a second layer on top of the

standard RTN which imposes gauge invariance. This alters the algebra of operators in

the bulk, and as we will show, it introduces a nontrivial contribution to the area operator

of the following form:

∆Ã =
⊕
α

P̃α log dα, (5.6)

where roughly speaking α denotes a superselection sector in the gauge-invariant Hilbert

space, P̃α is the projection onto that superselection sector, and dα is the dimension of α

viewed as an irreducible representation. The important thing to note at the moment is

that this operator is not a c-number and is therefore nontrivial.

The structure of this chapter is as follows. In Section 5.2 we will set up our model – a

two-layer gauged random tensor network – and introduce the formalism for gauge theory

on a graph. In Section 5.3 we will analyze the Hilbert space of gauge-invariant states and

the algebras of gauge-invariant operators for a subregion. In Section 5.4 we will compute

entanglement and Rényi entropies in both the pre-gauged and gauge-invariant algebras,

which we will use to derive the new area operator for our model. We conclude with some

discussion and future directions.

5.2 The Gauged Random Tensor Network

We now construct our model. It has two layers: a top layer consisting of a gauge

theory on a graph, and a bottom layer made of a standard random tensor network. We

illustrate some examples of this two-layer model in Figure 5.2. The top layer produces a

4Initial work in this direction was taken in [174] by generalizing the HaPPY code.
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Figure 5.2: Some examples of our two-layer model, with a gauge theory on a directed
graph on the top layer and a random tensor network with dangling boundary legs on
the bottom. In these examples, we choose each tensor in the bottom layer to have a
bulk input leg which is either a vertex or edge on the graph. The light gray planes in
the right example are included for visual clarity.

gauge-invariant state which is then fed into the bottom layer as input. The final output

of the model is the boundary state produced by the bottom RTN. We can then analyze

properties of the boundary state (such as its entropy) using the usual techniques for the

random tensor network.

This construction has some nice properties. In particular, one might be worried that

if the structure of the RTN is altered, Petz reconstruction of local operators might no

longer hold. Here we avoid this potential issue by keeping the tensor network the same,

but changing the space of states that can be fed into the network.

Given this construction, we would like to understand what set of gauge-invariant

states we will be feeding into the bottom layer. The following is based on a nondynamical

version of the standard Kogut-Susskind construction in lattice gauge theory [176].5 As

we do not require our graph to be a lattice, i.e. there is not necessarily a regular tiling,

we will refrain from calling our top layer a lattice gauge theory.

Our starting point is an arbitrary directed graph Λ = (V,E) consisting of vertices

5See also related discussion in [177].
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V = {v} and edges E = {e}. We require the graph to be directed so we have a well-

defined orientation on each edge, though we emphasize that the choice of orientation is

arbitrary. We impose no additional conditions on the graph. In particular, the graph

could have loops, adjacent vertices could be connected by multiple edges, and the graph

does not need to be planar.

We start with a gauge group, which we choose to be a compact Lie group G. It does

not have to be connected, and in particular, we could consider finite groups such as Z2 if

we wish. We assign a (pre-gauged) Hilbert space to each vertex and edge of the graph Λ.

The Hilbert space He on each edge e is taken to be L2(G), the space of square-integrable

functions on G. A state |ψ⟩e in this He = L2(G) can be written as an integral6 over

orthonormal basis elements |g⟩ labeled by g ∈ G:

|ψ⟩e =
∫
dgψ(g) |g⟩e , (5.7)

where dg is the Haar measure7 on G. For our purposes, it will be useful to work with

another orthonormal basis

|αij⟩e , i, j = 1, 2, · · · , dα (5.8)

for the same He = L2(G), where α labels irreducible representations (irreps) of G and

dα is the dimension of the representation α. This representation basis is orthonormal:

e⟨αij|βkℓ⟩e = δαβδikδjℓ, (5.9)

6In cases where G is finite, the integral is understood as a sum: |ψ⟩e =
∑

g∈G
1
|G|ψ(g) |g⟩e, where |G|

is the order of G.
7The Haar measure on G is invariant under left and right group multiplication (g → g′g and g → gg′)

and is normalized such that
∫
dg = 1.
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and can be written in terms of the previously defined group basis |g⟩e:

|αij⟩e =
√
dα

∫
dg Dα

ij(g) |g⟩e , (5.10)

where Dα
ij(g) are elements of a unitary matrix Dα(g) representing g in α. This can be

viewed as a “Fourier transform” between the representation basis and the group basis.

The group action induces a set of unitaries Le(g) and Re(g) which act as left and

right group multiplications on the group basis:

Le(g) |h⟩e = |gh⟩e , Re(g
−1) |h⟩e = |hg−1⟩e . (5.11)

In the representation basis, the group unitaries instead act as unitary matrix multiplica-

tion on one of the two indices i, j:

Le(g) |αij⟩e =
∑
k

Dα
ki(g) |αkj⟩e , Re(g

−1) |αij⟩e =
∑
k

Dα
kj(g) |αik⟩e , (5.12)

where α denotes the complex conjugate representation of α defined by Dα
ij(g) = Dα∗

ij (g).

Thus there are two copies of G acting on He: Le(g) gives the group action of the first

copy under which |αij⟩e transforms in the representation α, and Re(g
−1) gives the action

of the second copy under which |αij⟩e transforms in the representation α. Altogether,

|αij⟩e transforms in the external tensor product8 representation α ⊠ α of G×G. Using

8For representations α1, α2 ofG, their external tensor product α1⊠α2 is a representation ofG×G with
an underlying vector space Hα1 ⊗Hα2 , where Hα1 transforms under the first G in the α1 representation
and Hα2 transforms under the second G in the α2 representation. Note that this is different from the
(usual) tensor product α1 ⊗ α2 which is a representation of G (not G × G), with an underlying vector
space Hα1 ⊗Hα2 where Hα1 and Hα2 transform under the same G.
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this, we decompose He as

He
∼=
⊕
α

Hα ⊗Hα ∼=
⊕
α

(Hα)⊕dα , (5.13)

where the sum runs over all irreducible representations α of G and Hα is a Hilbert space

of dimension dα transforming in the α representation. It will be convenient to use the

representation basis for the remainder of this work.

Now we turn to the (pre-gauged) Hilbert space Hv on a vertex v. In general, Hv may

be chosen quite arbitrarily (corresponding to specifying any number of matter degrees

of freedom including the case of no matter), but it needs to furnish some representation

under the group action of G. This representation could be reducible or trivial, but it can

always be decomposed into a direct sum of irreducible representations of G. Using this,

we may decompose a general Hv as

Hv =
⊕
α

(Hα
v )

⊕nα . (5.14)

Here the sum again runs over all distinct irreducible representations α of G and nα is the

multiplicity of the representation α inHv. Note that nα could be any nonnegative integer,

and in particular, it could be zero (representing the absence of a given representation

α in Hv). Thus, the simplest choice of Hv is a trivial Hilbert space with no matter

(corresponding to nα = 0 for all α), but in the discussion below we will consider the

general case (5.14) with arbitrary nα. Furthermore, we will allow Hv to vary from one

vertex to another. An orthonormal basis of states for the Hilbert space Hv can be written

as

|αij⟩v , i = 1, · · · , nα, j = 1, · · · , dα, (5.15)

where the first index i runs over the multiplicity nα and the second runs over the dimen-
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sion dα. The group action of G on Hv is given by unitary operators Uv(g), which act on

the |αij⟩v basis as

Uv(g) |αij⟩v =
∑
k

Dα
kj(g) |αik⟩v . (5.16)

Note that Uv(g) only acts on the second index j and is analogous to the action of Re(g
−1)

in (5.11). Thus, we find an important distinction between the vertex Hilbert space Hv

and the edge Hilbert space He. To see this, first note that the two Hilbert spaces share

some similarities. In particular, He is a direct sum of irreducible representations α with

multiplicity dα as shown on the right-hand side of (5.13), and this is the analogue of

(5.14) for Hv. The representation basis (5.8) of He is similar to the basis (5.15) of Hv.

However, the difference is that an edge has the additional structure of allowing another

group action Le(g) that acts on the first index i of |αij⟩e, whereas at a vertex the first

index i of |αij⟩v is a multiplicity index that does not admit a natural group action.

The pre-gauged Hilbert space for the entire graph is then

H =

(⊗
v∈V

Hv

)
⊗

(⊗
e∈E

He

)
. (5.17)

We refer to the algebra of all bounded operators on H as A = B (H). As H completely

factorizes over the vertices and edges, so too does the algebra of operators

A =

(⊗
v∈V

Av

)
⊗

(⊗
e∈E

Ae

)
. (5.18)

Using the representation basis (5.8) of He, Ae can be written as

Ae = span{|αij⟩e ⟨βkℓ|}, (5.19)
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where the indices i, j, k, ℓ run over the irrep dimension. Similarly, using (5.15) we write

Av = span{|αij⟩v ⟨βkℓ|}, (5.20)

where i, k run over the irrep multiplicity and j, ℓ run over the irrep dimension.

For each vertex v, we now define a gauge transformation Av(g) as the following unitary

operator acting on v and all its associated edges:

Av(g) ≡ Uv(g)
∏

e∈E−(v)

Le(g)
∏

e∈E+(v)

Re(g
−1), (5.21)

where E−(v) consists of edges associated to v oriented away from the vertex and E+(v)

consists of edges oriented into the vertex. Physical states are defined to be those invariant

under gauge transformations Av(g) for all g and v. The easiest way of generating a gauge-

invariant state is to average over all gauge transformations acting on a state in H. The

operator that implements this averaging on a vertex v is the following projector:

Πv =

∫
dgAv(g). (5.22)

Πv obeys the usual properties of a projector such that Π2
v = Πv and Πv = Π†

v. The gauge-

invariant projector on the entire graph is simply the product of individual projectors on

all vertices:

ΠGI =
∏
v∈V

Πv. (5.23)

It is easy to verify that [Av(g), Av′(g
′)] = 0 for all v, v′, g, g′, and therefore [Πv,Πv′ ] = 0.

Throughout the chapter, we will denote fully gauge-invariant spaces, states, and op-

erators with a tilde; for instance, the gauge-invariant states |ψ̃⟩ are elements of H̃ defined
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via

H̃ ≡ ΠGIH. (5.24)

The gauge-invariant algebra Ã is defined as the space of bounded operators on H̃. Ã

can alternatively be represented by conjugation of the pre-gauged algebra A with the

projector ΠGI:

Ã = ΠGIAΠGI. (5.25)

We should comment on the interpretation of the operators in this gauge-invariant algebra.

Every operator Õ ∈ Ã can be extended to a pre-gauged operator O ∈ A which acts

identically on gauge-invariant states. There is generally more than one extension to A,

and to choose a unique extension one must specify the action of the pre-gauged operator

on the orthogonal complement of H̃. We make the natural choice that the extension O

should annihilate the orthogonal complement. Moreover, for notational simplicity, we

identify every Õ ∈ Ã with its natural extension O ∈ A (which annihilates the orthogonal

complement), as we have done in (5.25). The reason for this natural extension will

become clearer in later sections.

We now feed any gauge-invariant state |ψ̃⟩ as the bulk input into the RTN on the

bottom layer, in a manner illustrated by Figure 5.2. In particular, the bulk dangling legs

of the RTN should match and connect to the edges and vertices of the graph G on the

top layer, for |ψ̃⟩ lives on these edges and vertices. In other words, each edge or vertex

of G is fed into a bulk dangling leg of the RTN.9

In order to utilize the full machinery of the original RTN, we would like the Hilbert

spaces associated with the tensors on the bottom layer to be finite-dimensional (as is

the case for the original RTN). When G is an infinite group, He = L2(G) is infinite-

9In principle, the RTN could also take any pre-gauged state as the bulk input, but we choose to feed
only gauge-invariant states because as we will see, this restriction leads to a nontrivial area operator.
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dimensional and there are an infinite number of irreducible representations to sum over,

so in order to avoid a tensor in the bottom layer having an infinite-dimensional leg, we

impose a cutoff on our edge and vertex Hilbert spaces. This can take the form of, e.g.,

a cutoff in the sums in (5.13) and (5.14). Therefore, we are only feeding in states that

live in a finite-dimensional subspace of H̃. This does not affect the discussion in the

next section of the gauge-invariant algebra; the cutoff is only relevant when we compute

entanglement measures in Section 5.4.

5.3 Deriving the Gauge-Invariant Algebra

Now that we have defined our gauge-invariant states, we would like to understand the

structure of the algebra of gauge-invariant operators. Our overarching goal is to write

down the gauge-invariant subalgebra for a subregion r of the top layer which we will later

use to derive an FLM formula for the gauged RTN.

5.3.1 The Structure of the Gauge-Invariant Hilbert Space

We now study the decomposition of H̃ when our graph Λ is divided into a subregion

and its complement. We define a subregion r of Λ to be an arbitrary subset of vertices

and edges (without further restrictions). We call the complement subregion r.

In order to work out a useful basis for gauge-invariant states, it is convenient to divide

the set V of all vertices into three types: those strictly in r (meaning that the vertex and

its associated edges are all in r), those strictly in r, and vertices “on the cut” (meaning

that the vertex and its associated edges are partly in r and partly in r). We call these sets

Vr, Vr, and Vc ≡ V/ (Vr ∪ Vr), respectively. Consequently, the gauge-invariant projector
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can be decomposed in the following way:

ΠGI = ΠVrΠVcΠVr , (5.26)

where ΠVi is defined as the product of individual projections Πv over all vertices v ∈ Vi,

for i = r, c, r. First, let us discuss a partial gauging of the pre-gauged Hilbert space.

Using the tensor decomposition of H = Hr ⊗Hr, we can write H̃ = ΠGIH as

H̃ = ΠVrΠVcΠVr (Hr ⊗Hr)

= ΠVc ((ΠVrHr)⊗ (ΠVrHr)) . (5.27)

We define the two terms in the parentheses as

Ĥr ≡ ΠVrHr, Ĥr ≡ ΠVrHr. (5.28)

These are “partially gauged” Hilbert spaces, in the sense that states in Ĥr (Ĥr) are

invariant under gauge transformations associated to vertices in Vr (Vr), but not so under

gauge transformations on the cut. We denote the partially gauged Hilbert space on the

full graph as

Ĥ = Ĥr ⊗ Ĥr. (5.29)

As Ĥ tensor factorizes, the algebra of operators on Ĥ also factorizes as

Â = Âr ⊗ Âr. (5.30)

Now that we have a partially gauged Hilbert space Ĥ, it remains to impose gauge

invariance “on the cut” and obtain the fully gauged Hilbert space H̃ = ΠVcĤ. The gauge

149



Holographic Tensor Networks with Bulk Gauge Symmetries Chapter 5

transformation (5.21) associated to each vertex vi ∈ Vc can be decomposed into unitary

operators in r and r:

Avi(gi) = Avi,r(gi)Avi,r(gi). (5.31)

Let n ≡ |Vc| be the number of vertices on the cut. The gauge-invariant projector on the

cut ΠVc acts by integrating over the gauge transformations associated to the n vertices

in Vc:

ΠVc =

∫
dg1 · · · dgnAv1(g1) · · ·Avn(gn)

=

∫
dg1 · · · dgnAv1,r(g1) · · ·Avn,r(gn)Av1,r(g1) · · ·Avn,r(gn)

≡
∫
dgAr(g)Ar(g), (5.32)

where we have defined Ar(g) =
∏n

i=1Avi,r(gi) (and similarly for Ar(g)), g = (g1, · · · , gn)

is a element of Gn (the direct product of n copies of G on the cut), and dg is the Haar

measure on Gn. Thus Ar(g) is a G
n action on Ĥr, and Ĥr can be decomposed into irreps

of Gn. We decompose Ĥr into the following way:

Ĥr
∼=
⊕
α,i

Ĥαi
r , (5.33)

where α as an irreducible representation of Gn can also be thought of as the external

tensor product of n irreps of G, i.e., α denotes the external tensor product α1 ⊠ α2 ⊠

· · · ⊠ αn. Thus, we will sometimes write α as a tuple of G irreps (α1, α2, · · · , αn). The

index i = 1, · · · , nα denotes the multiplicity of the α irrep. The sum ranges over all Gn

irreps but some irreps may appear with zero multiplicity, as in the single vertex Hilbert

space (5.14).

From the decomposition (5.33), we write an orthonormal basis for Ĥr as {|αik⟩r},
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where again the first index i = 1, · · · , nα runs over the irrep multiplicity and the second

index k = 1, · · · , dα labels an orthonormal basis for each Ĥαi
r . Similarly, we write an

orthonormal basis for Ĥr as {|βjℓ⟩r}, where j = 1, · · · , nβ, and nβ is the multiplicity of

the β irrep on r. Explicitly, Ar(g) (Ar(g)) acts on the basis states of Ĥr (Ĥr) via

Ar(g) |αik⟩r =
∑
k′

Dα
k′k(g) |αik′⟩r ,

Ar(g) |βjℓ⟩r =
∑
ℓ′

Dβ
ℓ′ℓ(g) |βjℓ

′⟩r . (5.34)

my Combining the basis for Ĥr and for Ĥr, we write an orthonormal basis for Ĥ as

{|αik⟩r |βjℓ⟩r}.

It is worth noting that the multiplicities nα on r are generally independent from the

multiplicities nα on r; in particular, nα could vanish while nα is nonzero, and vice versa.

In a sense, we have done as much gauging as we can while keeping the factorization

of the Hilbert space between r and r. Ĥ is similar to what is often called the extended

Hilbert space [175, 178–180], which is a choice of Hilbert space into which one can embed

gauge-invariant states such that the extended Hilbert space factorizes across the cut.

Here we arrive at a similar prescription by restricting from a larger Hilbert space H.

Now we will write a basis of states for the fully gauge-invariant Hilbert space H̃.

Lemma 1. The fully gauge-invariant Hilbert space H̃ = ΠVc

(
Ĥr ⊗ Ĥr

)
is given by

H̃ =

{∑
αijk

ψ̃αij |αik⟩r |αjk⟩r : ψ̃αij ∈ C

}
. (5.35)

Proof: Since we already have a basis for the partially gauged Hilbert space, it
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suffices to demonstrate the action of ΠVc on these basis states, which is given by

ΠVc |αik⟩r |βjℓ⟩r =
∑
k′ℓ′

∫
dgDα

k′k(g)D
β
ℓ′ℓ(g) |αik

′⟩r |βjℓ
′⟩r . (5.36)

We recall the Schur orthogonality relation for compact groups:

∫
dgDα

k′k(g)D
β
ℓ′ℓ(g) =

δαβδk′ℓ′δkℓ
dα

, (5.37)

so that the fully gauge-invariant basis states are

ΠVc |αik⟩r |βjℓ⟩r =
1

dα
δαβδkℓ

∑
k′ℓ′

δk′ℓ′ |αik′⟩r |βjℓ
′⟩r =

1

dα
δαβδkℓ

∑
k′

|αik′⟩r |βjk
′⟩r .

(5.38)

Choosing α = β and k = ℓ gives the desired form (5.35).

Remark 1. (5.35) immediately implies a natural Hilbert space isomorphism

H̃ ∼=
⊕
α

H̃α
r ⊗ H̃α

r . (5.39)

Here H̃α
r denotes a Hilbert space of dimension nα with orthonormal basis states |αi⟩r

transforming in the α representation of Gn, and H̃α
r similarly denotes a Hilbert space of

dimension nα with orthonormal basis states |αj⟩r transforming in the α representation.

Note that although irrep labels such as α appear in the basis states, they are fixed within

each Hilbert space H̃α
r or H̃α

r .

More explicitly, the natural isomorphism (5.39) maps an arbitrary state of (5.35) in

the following way:

|ψ̃⟩ =
∑
αijk

ψ̃αij |αik⟩r |αjk⟩r →
∑
αij

√
dαψ̃αij |αi⟩r |αj⟩r . (5.40)
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The
√
dα is a crucial factor which ensures that the isomorphism preserves the inner

product.

Given this decomposition, our next goal will be to define an algebra of gauge-invariant

operators on r, which we will call Ãr. Given the lack of factorization of H̃ as indicated by

(5.39), we cannot easily write Ãr as B(H̃r) for some putative Hilbert space H̃r. Rather,

we will use the known algebra of operators on Hr and Ĥr to define Ãr.

5.3.2 The Gauge-Invariant Subregion Algebra

It is tempting to define the algebra of gauge-invariant operators in a subregion r via

restriction of the pre-gauged algebra in that region

Ãr = ΠGIArΠGI, (5.41)

similar to (5.25). There is a second possible description of the gauge-invariant algebra,

which is that Ãr consists of the set of operators {Õr = OrΠGI} for all operators Or ∈

Ar which commute with the gauge-invariant projector: [Or,ΠGI] = 0. We will call

this algebra Ã(1)
r , and the algebra (5.41) defined by conjugation by the gauge-invariant

projector Ã(2)
r . At first blush it is only obvious that Ã(1)

r is a subset of Ã(2)
r , as

OrΠGI = OrΠ
2
GI = ΠGIOrΠGI ⇒ Ã(1)

r ⊆ Ã(2)
r , (5.42)

but it is not obvious the two definitions are equivalent. Here we aim to show that.

Lemma 2. Ã(1)
r = Ã(2)

r .

Proof: We again use the group action on the cut A(g) = Ar(g)Ar(g) and the
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gauge-invariant projector on the cut ΠVc which integrates over the group action:

ΠVc =

∫
dgA(g). (5.43)

We define an element of Ã(2)
r by acting on an arbitrary pre-gauged operator Or ∈ Ar via

ΠGIOrΠGI = ΠVr (ΠVcΠVrOrΠVrΠVc)ΠVr

= (ΠVcΠVrOrΠVrΠVc)ΠVr

≡
(
ΠVcÔrΠVc

)
ΠVr (5.44)

where Ôr ≡ ΠVrOrΠVr ∈ Âr is an operator on the partially gauged Hilbert space Ĥr.

Conjugation via the gauge-invariant projector on the cut yields

ΠVcÔrΠVc =

∫
dgdg′A(g)ÔrA(g

′). (5.45)

Using the right-invariance of the Haar measure, we can shift g → g(g′)−1 to obtain

ΠVcÔrΠVc =

∫
dgA(g)

∫
dg′A((g′)−1)ÔrA(g

′) (5.46)

= ΠVc

∫
dg′A((g′)−1)ÔrA(g

′) ≡ ΠVcÔ′
r, (5.47)

where Ô′
r is defined by the integral over g′. We could equivalently send g′ → g−1g′ to

obtain

ΠVcÔrΠVc =

∫
dgA(g)ÔrA(g

−1)ΠVc

=

∫
dgA(g−1)ÔrA(g)ΠVc = Ô′

rΠVc (5.48)
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where we use the fact that the Haar measure is invariant under inversion dg → d(g−1).

This shows Ô′
rΠVc = ΠVcÔ′

r, so Ô′
r commutes with the gauge-invariant projector on the

cut. By construction, Ô′
r also commutes with ΠVr and ΠVr , so it commutes with ΠGI.

Now we show that Ô′
r is an element of Ar, which is not obvious as A(g) on the cut

acts on both r and r. However, we can write

Ô′
r =

∫
dgA(g−1)ÔrA(g) =

∫
dgAr(g

−1)Ar(g
−1)ÔrAr(g)Ar(g)

=

∫
dgAr(g

−1)ÔrAr(g), (5.49)

as Ôr commutes with operators in r. Thus Ô′
r is in Ar.

Combining the above, we can write any element of Ã(2)
r as

ΠGIOrΠGI = Ô′
rΠVcΠVr = Ô′

rΠVrΠVcΠVr = Ô′
rΠGI, (5.50)

which belong to Ã(1)
r as Ô′

r is an operator in Ar that commutes with ΠGI. Therefore,

Ã(2)
r ⊆ Ã(1)

r . Moreover, as we argued earlier, we have Ã(1)
r ⊆ Ã(2)

r . Thus, we have shown

Ã(1)
r = Ã(2)

r .

Remark 2. It will be more convenient to use Ã(1)
r as our definition of Ãr in later dis-

cussions. We now rewrite it by introducing the following notation. For the rest of the

chapter, we will denote the subset of operators in an algebra that commute with the

gauge-invariant projector with a superscript Π; for example, the algebra AΠ is defined

by

AΠ ≡ {O ∈ A : [O,ΠGI] = 0}. (5.51)

It is clear that this subset is itself a von Neumann algebra, as it contains the identity,

which necessarily commutes with any projector, and is closed under addition, multipli-
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cation, and involution10. Similarly, we define the subalgebra AΠ
r as

AΠ
r = {Or ∈ Ar : [Or,ΠGI] = 0}, (5.52)

and define ÂΠ
r as

ÂΠ
r = {Ôr ∈ Âr : [Ôr,ΠGI] = 0}. (5.53)

So far, we have shown

Ãr = AΠ
r ΠGI. (5.54)

Lemma 3. AΠ
r ΠGI = ÂΠ

r ΠGI. Proof: It is clear that ÂΠ
r ΠGI ⊆ AΠ

r ΠGI, so we only

need to show the opposite inclusion. Consider any operator Or ∈ AΠ
r . As this operator

commutes with ΠGI, we can use the decomposition of the gauge-invariant projector to

write OrΠGI as

OrΠGI = ΠGIOrΠGI = ΠGI (ΠVrOrΠVr)ΠGI = (ΠVrOrΠVr)ΠGI. (5.55)

Note that ΠVrOrΠVr is an operator on Ĥr that commutes with ΠGI, so it belongs to

ÂΠ
r . Thus, every element of AΠ

r ΠGI is an element of ÂΠ
r ΠGI. This shows the inclusion

AΠ
r ΠGI ⊆ ÂΠ

r ΠGI, from which we conclude AΠ
r ΠGI = ÂΠ

r ΠGI.

Corollary 4. Ãr = ÂΠ
r ΠGI.

Using the corollary above, we will now construct a generic operator in Ãr.

10Closure of AΠ under addition and multiplication is obvious, and closure under involution follows
from the projector being Hermitian.
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Lemma 5. Ãr can be written in the following two forms:

Ãr =

{
ÔrΠGI : Ôr =

∑
αijk

Ôαij |αik⟩r ⟨αjk| ⊗ 1r, Ôαij ∈ C

}
(5.56)

=

{
Õr =

∑
αii′jkℓ

Õαij |αik⟩r ⟨αjℓ| ⊗ |αi′k⟩r ⟨αi
′ℓ| : Õαij ∈ C

}
, (5.57)

with Õr in (5.57) identified with ÔrΠGI in (5.56) under Õαij = Ôαij/dα.
11

Proof: We show this by noting Ãr = ÂΠ
r ΠGI and constructing a generic operator

therein. Recall that {|αik⟩r} is a basis for Ĥr, so an operator Ôr ∈ Âr (not necessarily

gauge-invariant) can be written as

Ôr =
∑
αβijkℓ

Ôαβijkℓ |αik⟩r ⟨βjℓ| ⊗ 1r (5.58)

with some Ôαβijkℓ ∈ C. Now we require Ôr ∈ ÂΠ
r , so we will try to impose ÔrΠGI =

ΠGIÔr. We find

ÔrΠGI = ÔrΠVrΠVrΠVc

=

( ∑
αβijkℓ

Ôαβijkℓ |αik⟩r ⟨βjℓ| ⊗ 1r

)
ΠVrΠVc

=

( ∑
αβγijkℓi′k′

Ôαβijkℓ |αik⟩r ⟨βjℓ| ⊗ |γi′k′⟩r ⟨γi
′k′|

)
ΠVc

=
∑

αβγijkℓi′k′ℓ′

Ôαβijkℓ
1

dβ
δβγδℓk′ |αik⟩r ⟨βjℓ

′| ⊗ |γi′k′⟩r ⟨γi
′ℓ′|

=
∑

αβijkℓi′ℓ′

Ôαβijkℓ
1

dβ
|αik⟩r ⟨βjℓ

′| ⊗ |βi′ℓ⟩r ⟨βi
′ℓ′| , (5.59)

11In a slight abuse of notation, we have referred to the matrix elements of an operator with the same
symbol as the operator itself, but with irrep labels and indices such as α, i, and j. We could have
referred to Ôαij as Ôr,αij in (5.56), but for simplicity, we will use the former.
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where we have used the basis of Ĥr in going to the third line and used (5.38) in going to

the fourth line. We can apply the same procedure to write ΠGIÔr as

ΠGIÔr = ΠVc

∑
αβγijkℓi′k′

Ôαβijkℓ |αik⟩r ⟨βjℓ| ⊗ |γi′k′⟩r ⟨γi
′k′|

=
∑

αβγijkℓi′k′ℓ′

Ôαβijkℓ
1

dα
δαγδkk′ |αiℓ′⟩r ⟨βjℓ| ⊗ |γi′ℓ′⟩r ⟨γi

′k′|

=
∑

αβijkℓi′ℓ′

Ôαβijkℓ
1

dα
|αiℓ′⟩r ⟨βjℓ| ⊗ |αi′ℓ′⟩r ⟨αi

′k| . (5.60)

One way to proceed is to find conditions on Ôαβaijkℓ such that the two expressions (5.59),

(5.60) are equal, but doing this explicitly turns out to be slightly complicated (in cases

where the multiplicities nα, nβ vanish but nα, nβ do not). Instead, we will use the

equality of (5.59) and (5.60) to directly show that ÂΠ
r ΠGI contains and is contained in

the right-hand side of (5.56), which we now define as

Ã(3)
r ≡

{
ÔrΠGI : Ôr =

∑
αijk

Ôαij |αik⟩r ⟨αjk| ⊗ 1r, Ôαij ∈ C

}
. (5.61)

First, we show that Ã(3)
r defined by (5.61) is equal to (5.57) as claimed. To see this,

we simply apply (5.59) to the special case of Ôr =
∑

αijk Ôαij |αik⟩r ⟨αjk| ⊗ 1r and find

ÔrΠVc to be identical to Õr in (5.57) under Õαij = Ôαij/dα. Moreover, applying (5.60)

to this case yields the same operator, so we find that this special Ôr commutes with ΠGI.

Thus, Ã(3)
r is contained in ÂΠ

r ΠGI.

Finally, we will show that ÂΠ
r ΠGI is contained in Ã(3)

r . Any ÔrΠGI ∈ ÂΠ
r ΠGI can be
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written explicitly as

ÔrΠGI = ΠGIÔrΠGI = ΠVc

∑
αβijkℓi′ℓ′

Ôαβijkℓ
1

dβ
|αik⟩r ⟨βjℓ

′| ⊗ |βi′ℓ⟩r ⟨βi
′ℓ′|

=
∑

αβijkℓi′k′ℓ′

Ôαβijkℓ
1

dαdβ
δαβδkℓ |αik′⟩r ⟨βjℓ

′| ⊗ |βi′k′⟩r ⟨βi
′ℓ′|

=
∑

αijkℓi′k′

Ôααijk′k′
1

d2α
|αik⟩r ⟨αjℓ| ⊗ |αi′k⟩r ⟨αi

′ℓ| , (5.62)

which is identical to Õr in (5.57) under Õαij =
∑

k′ Ôααijk′k′/d
2
α, and thus belongs to

Ã(3)
r . Combining the above results, we conclude Ãr = Ã(3)

r .

After all of this machinery, it is clear that one is justified in writing the algebra Ãr

of gauge-invariant operators on a subregion r as a restriction via ΠGI of the pre-gauged

algebra Ar on r. Crucially, however, Ãr is not a subalgebra of Ar, as is obvious from the

nontrivial action of (5.57) on Ĥr. This is manifest from the fact that ΠGI is an element

of A, not of Ar, and so the projection takes one out of the pre-gauged subregion algebra

Ar.

5.3.3 The Center of the Algebra

For spatial subregions the following inclusion is obvious:

Ar ⊆ (Ar)
′ , (5.63)

as causally disconnected operators must commute. Here (Ar)
′ denotes the commutant of

Ar. Haag duality is the saturation of the above bound:

Ar = (Ar)
′ , (5.64)
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that is, the commutant of the algebra of operators in a subregion is equal to the algebra

of operators in the complement region.12

In our model, Haag duality certainly holds for the pre-gauged algebras, but does it

also hold for the gauge-invariant algebras? We will now show that it does, i.e.,

Ãr =
(
Ãr

)′
. (5.65)

Proposition 6. The Hilbert space isomorphism (5.39) induces the following isomor-

phisms between algebras:

Ãr
∼=
⊕
α

Ãα
r ⊗ 1

α
r , Ãr

∼=
⊕
α

1
α
r ⊗ Ãα

r , (5.66)

where Ãα
r ≡ B(H̃α

r ), the algebra of bounded operators on H̃α
r , and similarly we define

Ãα
r ≡ B(H̃α

r ). Moreover, 1αr , 1
α
r denote the identity operators on H̃α

r , H̃α
r , respectively.

Proof: Recall from (5.39) that H̃ is isomorphic to a direct sum of factorizing Hilbert

spaces:

H̃ ∼=
⊕
α

H̃α
r ⊗ H̃α

r ; (5.67)

where the two sides are identified under the natural isomorphism (5.40), which we repro-

duce here:

|ψ̃⟩ =
∑
αijk

ψ̃αij |αik⟩r |αjk⟩r →
∑
αij

√
dαψ̃αij |αi⟩r |αj⟩r . (5.68)

We now apply this isomorphism to our algebra Ãr. Consider a general element of Ãr

12There are counterexamples to Haag duality in quantum field theories with global or gauge symme-
tries; see for example [181].
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defined via (5.57). Under (5.68), this element becomes

∑
αii′jkℓ

Õαij |αik⟩r ⟨αjℓ| ⊗ |αi′k⟩r ⟨αi
′ℓ| →

∑
αii′j

dαÕαij |αi⟩r ⟨αj| ⊗ |αi′⟩r ⟨αi
′|

=
∑
αij

dαÕαij |αi⟩r ⟨αj| ⊗ 1
α
r , (5.69)

which is an element of Ãα
r ⊗ 1

α
r . Thus, we have demonstrated the isomorphism for Ãr in

(5.66). The isomorphism for Ãr follows from a similar argument.

Corollary 7. Ãr obeys Haag duality, such that
(
Ãr

)′
= Ãr, where the commutant is

defined with respect to the full gauge-invariant algebra Ã. Proof: This immediately

follows from the algebra isomorphisms (5.66) and

(⊕
α

Ãα
r ⊗ 1

α
r

)′

=
⊕
α

(
Ãα
r ⊗ 1

α
r

)′
=
⊕
α

1
α
r ⊗ Ãα

r . (5.70)

The center of an algebra is defined to be the intersection of the algebra with its

commutant. As our gauge-invariant subalgebra Ãr obeys Haag duality, the center is

Z̃r = Ãr ∩ Ã′
r = Ãr ∩ Ãr. (5.71)

Lemma 8. The center Z̃r is

Z̃r =
{
zαP̃

α : zα ∈ C

}
, (5.72)

where P̃α are mutually orthogonal projections defined via

P̃α =
1

dα

∑
ijkℓ

|αik⟩r ⟨αiℓ| ⊗ |αjk⟩r ⟨αjℓ| . (5.73)
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Proof: Under the algebra isomorphisms (5.66) for Ãr and Ãr, we can immediately

identify the center as

Z̃r
∼=
⊕
α

C
(
1
α
r ⊗ 1

α
r

)
. (5.74)

That is, the center Z̃r is the direct sum of complex multiples of the identity within each

superselection sector α. We can write the identity in a superselection sector as

1
α
r ⊗ 1

α
r =

∑
ij

|αi⟩r ⟨αi| ⊗ |αj⟩r ⟨αj| , (5.75)

and examine the pullback of these operators under the natural isomorphism (5.68) to

find the corresponding operators in Ã. We obtain

1
α
r ⊗ 1

α
r ⇒ 1

dα

∑
ijkℓ

|αik⟩r ⟨αiℓ| ⊗ |αjk⟩r ⟨αjℓ| = P̃α. (5.76)

We identify these operators P̃α as the (properly normalized) projections onto the α

superselection sector, where we remind the reader that α is an irreducible representation

of Gn. These operators can alternatively be written as

P̃α =
(
P̂α
r ⊗ 1r

)
ΠGI =

(
1r ⊗ P̂α

r

)
ΠGI, (5.77)

where P̂α
r and P̂α

r are orthogonal projections in Ĥr and Ĥr, respectively:

P̂α
r =

∑
ik

|αik⟩r ⟨αik| , P̂α
r =

∑
ik

|αik⟩r ⟨αik| . (5.78)

One can show the P̃α are orthogonal and idempotent such that P̃αP̃ β = δαβP̃
α.
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5.3.4 Traces in Ar and Ãr

We now define traces in our von Neumann algebras. When an algebra is B(H) for

some Hilbert space H, we can simply identify the minimal projections as projections

onto a pure state in H, and the trace is the usual trace of a square matrix. Our algebras

are not always of this form; an example is Ãr. Therefore, we will first identify the

minimal projections, which are then used to define a normalized trace on the algebra. In

particular, for Ãr our task is to find the minimal projections P̃r in Ãr and use them to

define a “rescaled” trace T̃rr which satisfies

T̃rrP̃r = 1. (5.79)

Let us first discuss the case that we understand well: that of Ar, and by extension

Âr. As Ar = B(Hr), the minimal projections are projections onto a pure state in Hr,

and we define the trace Trr in Ar such that the minimal projections have trace 1. As

Âr = B(Ĥr), we proceed similarly. Recall that the basis states of Ĥr are {|αik⟩r}, and

so we define the trace T̂rr in Âr via

T̂rr |αik⟩r ⟨αik| = 1. (5.80)

As the minimal projections in Âr are also minimal projections in Ar, the two traces agree

(on Âr):

Trr = T̂rr, (5.81)

so we will use only Trr (not T̂rr) moving forward.

Now consider Ãr. Although Ãr is not the algebra of all bounded operators on a

Hilbert space, the algebra isomorphism (5.66) shows that we can write it as a direct sum of
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algebras for which we can easily identify minimal projections. In particular, the pullback

of minimal projections onto pure states |αi⟩r ∈ H̃α
r under the natural isomorphism (5.68)

gives minimal projections in Ãr. Thus, we write these minimal projections P̃αi
r ∈ Ãr as

P̃αi
r =

1

dα

∑
jkℓ

|αik⟩r ⟨αiℓ| ⊗ |αjk⟩r ⟨αjℓ| (5.82)

for all nonempty sectors α, defined as those with nonzero nα, nα. If nα vanishes, the

index i above has an empty range, and if nα vanishes, P̃αi
r vanishes due to the empty

sum over j in (5.82).

We can alternatively write P̃αi
r as

P̃αi
r = P̂αi

r ΠGI, (5.83)

where the projections P̂αi
r are defined similarly to (5.78):

P̂αi
r ≡

∑
k

|αik⟩ ⟨αik|r ⊗ 1r. (5.84)

Although we already argued that P̃αi
r are minimal projections using the natural iso-

morphism, we now show it more directly.

Lemma 9. The projections P̃αi
r (for nonempty sectors α) are minimal projections in Ãr.

Proof: We recall that minimal projections are nonzero and have the property that

any subprojection Q̃r of P̃
αi
r is either zero or P̃αi

r . As an element of Ãr, Q̃r must be of

the form

Q̃r =
∑
βjj′k

Q̂βjj′ (|βjk⟩r ⟨βj
′k| ⊗ 1r)ΠGI (5.85)

with complex coefficients Q̂βjj′ . The subprojection Q̃r is left fixed under conjugation via
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P̃αi
r , so we have

Q̃r = P̃αi
r Q̃rP̃

αi
r =

∑
k

Q̂αii (|αik⟩r ⟨αik| ⊗ 1r)ΠGI = Q̂αiiP̃
αi
r . (5.86)

Additionally imposing Q̃2
r = Q̃r, we find

Q̃2
r = Q̂2

αiiP̃
αi
r = Q̂αiiP̃

αi
r . (5.87)

Unless Q̃r is zero, we obtain Q̂αii = 1 and thus Q̃r = P̃αi
r . So P̃αi

r (for a nonempty sector

α) is indeed a minimal projection.

Therefore, we define the trace T̃rr in Ãr by imposing

T̃rrP̃
αi
r = 1 (5.88)

for every nonempty sector α and every i = 1, · · · , nα.

How do we understand this trace acting on a general operator in Ãr? Such an operator

can always be written in the form (5.56):

Õr = ÔrΠGI, Ôr =
∑
αijk

Ôαij |αik⟩r ⟨αjk| ⊗ 1r. (5.89)

Taking the trace using T̃rr, we find

T̃rrÕr = T̃rr
∑
αi

ÔαiiP̃
αi
r =

∑
αi

Ôαii. (5.90)
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If we were to take the trace Trr of the corresponding Ôr, we would instead find

Trr Ôr = Tr
∑
αi

ÔαiiP̂
αi
r =

∑
αi

dαÔαii. (5.91)

Thus, it is tempting to relate the trace T̃rr to Trr using an appropriate rescaling by 1/dα

in each sector. A more precise version of this statement is the following: for any operator

Õα
r ∈ Ãr that acts only in the α sector such that it can be written as

Õα
r = Ôα

rΠGI, Ôα
r =

∑
ijk

Ôαij |αik⟩r ⟨αjk| ⊗ 1r, (5.92)

i.e., with no sum over α, the two traces are related by

T̃rrÕα
r =

1

dα
Trr Ôα

r . (5.93)

Summing both sides over α recovers (5.90) and (5.91).

5.3.5 Reduced States

Our ultimate goal is to relate the von Neumann entropies for the same gauge-invariant

state ρ̃ in H̃ on two different subalgebras: Ar and Ãr.

The first thing to note is that, when we consider the full graph (instead of restricting

to a subregion r), we have A = B(H) and Ã = B(H̃) where H̃ is a subspace of H,

so minimal projections in Ã are also minimal projections in A, and the trace T̃r in Ã

therefore agrees with the trace Tr in A when acting on gauge-invariant states. Hence, a

gauge-invariant state ρ̃ on the full graph that is properly normalized under the T̃r trace

is also properly normalized under the Tr trace, and can therefore be viewed as a properly

normalized state ρ = ρ̃ in H (albeit a special one). Thus, we will use only ρ (not ρ̃) for
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notational simplicity in the following discussions. We should still remember that ρ is a

special state that belongs to Ã.

The above statements do not hold for reduced states on subregions. In particular, we

need to distinguish a properly normalized state ρr in Ar from a properly normalized ρ̃r

in Ãr. Now we derive the relation between these two states.

Recall that to find S(ρ,Ar) for a general subalgebra Ar ⊂ A, we need to find a

reduced state ρr ∈ Ar satisfying

Trr(ρrOr) = Tr(ρOr) (5.94)

for all Or ∈ Ar. For our particular Ar (the pre-gauged algebra on r), the answer is, of

course, ρr = Trr ρ.

Now we work out the reduced state in the subalgebra Ãr.

Lemma 10. The reduced state ρ̃r ∈ Ãr satisfying

T̃rr(ρ̃rÕr) = Tr
(
ρÕr

)
(5.95)

for all Õr ∈ Ãr is of the form

ρ̃r = ρ̂rΠGI, ρ̂r =
∑
αijk

ρ̂αij |αik⟩r ⟨αjk| ⊗ 1r, (5.96)

with ρ̂αij = dαραij, where ραij is defined by

ρr =
∑
αijk

ραij |αik⟩r ⟨αjk| . (5.97)

Proof:
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A general gauge-invariant state ρ ∈ Ã can be written as

ρ =
∑

αβijki′j′k′

ραβii′jj′ |αik⟩r |αjk⟩r ⟨βi
′k′|r ⟨βj

′k′|r (5.98)

using the basis states for H̃. Tracing over r, we find

ρr = Trr ρ =
∑

αβijki′j′k′

ραβii′jj′
〈
βj′k′|αjk

〉
r
|αi′k′⟩r ⟨βik|

=
∑
αii′jk

ρααii′jj |αik⟩r ⟨αi
′k| . (5.99)

This verifies (5.97) and determines ρaij.

Now recall that as an element of Ãr, ρ̃r must be of the form (5.96) with some complex

coefficients ρ̂αij. It remains to determine what they are from (5.95). In order to impose

it, we define the following basis for Ãr:

Õαij
r = Ôαij

r ΠGI, Ôαij
r =

∑
k

|αik⟩r ⟨αjk| ⊗ 1r, (5.100)

such that we can rewrite the reduced gauge-invariant density matrix as

ρ̃r =
∑
αij

ρ̂αijÕαij. (5.101)

Note that the basis elements Õαij
r and their corresponding basis elements Ôαij

r ∈ Âr obey

the following relations:

Õαij
r Õβi′j′

r = δαβδi′jÕαij′

r , T̃rrÕαij
r = δij (5.102)

Ôαij
r Ôβi′j′

r = δαβδi′jÔαij′

r , Trr Ôαij
r = dαδij. (5.103)
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From these relations we can check both sides of (5.95) for Õr set to one of the basis

elements Õαij
r . The trace in the gauge-invariant algebra becomes

T̃rr

(
ρ̃rÕαij

r

)
= T̃rr

(∑
βi′j′

ρ̂βi′j′Õβi′j′

r Õαij

)
=
∑
βi′j′

ρ̂βi′j′δαβδi′jδij′ = ρ̂αji. (5.104)

We need to equate this with the trace in the pre-gauged algebra, which we begin to

evaluate by simplifying to the trace in Ar. We have

Tr
(
ρÕαij

r

)
= Tr

(
ρÔαij

r ΠGI

)
= Tr

(
ΠGIρÔαij

r

)
= Tr

(
ρÔαij

r

)
= Trr(ρrÔαij

r ), (5.105)

where we have used the cyclicity of the trace, the gauge invariance of ρ, and the fact that

Ôαij
r ∈ Ar. We further simplify this and obtain

Trr(ρrÔαij
r ) = Trr

(∑
βi′j′

ρβi′j′Ôβi′j′

r Ôαij
r

)
=
∑
βi′j′

dαρβi′j′δαβδi′jδij′ = dαραji. (5.106)

Thus we identify the reduced density matrix ρ̃r ∈ Ãr as a density matrix of the form

(5.96) with

ρ̂αij = dαραij. (5.107)

5.4 Entropies in the Gauged Random Tensor Net-

work

Having written down the reduced states in Ar and Ãr, we are now ready to compute

the von Neumann entropies with respect to the two algebras. As we will see, the difference

between the two entropies in the gauged random tensor network is precisely accounted

for by an additional contribution to the area operator in the nontrivial center Z̃r.
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5.4.1 Entanglement Entropy

From (5.96) and (5.97), we proceed by defining the reduced states projected onto a

superselection sector α:

ραr =
∑
ijk

ραij|αik⟩r⟨αjk|, ρ̂αr =
∑
ijk

ρ̂αij|αik⟩r⟨αjk| = dαρ
α
r . (5.108)

Note that these density matrices are not properly normalized with respect to their ap-

propriate traces. The reduced states (5.96) and (5.97) can be written as a direct sum

over representations:

ρr =
⊕
α

ραr , ρ̃r =
⊕
α

ρ̂αrΠGI. (5.109)

Furthermore, functions of the reduced states are superselected in the same way. In

particular,

ρr log ρr =
⊕
α

ραr log ρ
α
r , ρ̃r log ρ̃r =

⊕
α

(ρ̂αr log ρ̂
α
r )ΠGI, (5.110)

where we used the fact that [ρ̂αr ,ΠGI] = 0.

We are now ready to compute the subregion entropies (in the bulk). The von Neu-

mann entropy of ρ with respect to Ar is simply given by

S(ρ,Ar) = −Trr ρr log ρr = −
∑
α

Trr ρ
α
r log ρ

α
r . (5.111)

On the other hand, using the relation between the traces (5.93), we can write the von

Neumann entropy with respect to Ãr as

S(ρ, Ãr) = −T̃rrρ̃r log ρ̃r = −
∑
α

d−1
α Trr ρ̂

α
r log ρ̂

α
r . (5.112)
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Using ρ̂αr = dαρ
α
r and Trr ρ

α
r = T̃rrρ̃

α
r , we can rewrite each term in the sum as

d−1
α Trr ρ̂

α
r log ρ̂

α
r = Trr ρ

α
r log ρ

α
r + Trr ρ

α
r log dα

= Trr ρ
α
r log ρ

α
r + T̃rrρ̃

α
r log dα. (5.113)

The von Neumann entropy with respect to Ãr can thus be written as

S(ρ, Ãr) = −
∑
α

(
Trr ρ

α
r log ρ

α
r + T̃rrρ̃

α
r log dα

)
= S(ρ,Ar)− T̃rr

(
ρ̃r∆Ã

)
, (5.114)

where we have defined a new “extra area operator” via

∆Ã ≡
⊕
α

P̃α log dα. (5.115)

The projections P̃α are precisely the projections (5.73) which generate the center Z̃r, so

∆Ã is manifestly an operator in the center.

We have now arrived at our final relation between the entropies with respect to Ar

and Ãr,

S(ρ,Ar) = S(ρ, Ãr) + T̃rr

(
ρ̃r∆Ã

)
, (5.116)

which we now use in our two-layer gauged RTN defined in Section 5.2. In particular, we

would like to derive an FLM formula relating the boundary entropy with the gauged bulk

entropy S(ρ, Ãr). Recall that when we feed any bulk state ρ in the pre-gauged algebra A

into the RTN, the entropy S(R) of the resulting boundary state on a boundary subregion

R satisfies an FLM formula:

S(R) = |γR| logD + S(ρ,Ar), (5.117)
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where the bulk subregion r is chosen to be the entanglement wedge between R and its

minimal surface γR. Now specializing to a gauge-invariant bulk state ρ ∈ Ã and using

(5.116), we find that the boundary entropy can now be written as a new FLM formula:

S(R) = T̃rr

(
ρ̃rÃ

)
+ S

(
ρ, Ãr

)
, (5.118)

where the full area operator Ã is

Ã = |γR| logD +
⊕
α

P̃α log dα = |γR| logD +
⊕

α1,··· ,αñ

P (α1,··· ,αn)

n∑
i=1

log dαi
. (5.119)

Again, we sum over all irreps α = (α1, · · · , αn) of Gn acting on the cut, although some

α sectors may be emtpy (i.e., nα or nα is zero) in which case P̃α vanishes.

This is our main result. We note that this area operator looks like what arises

in a superposition of a stack of standard RTNs with probabilities determined by the

projections P̃α and with bond dimensions augmented by dαi
.

5.4.2 Rényi Entropy and Rényi Mutual Information

As discussed in Section 5.2, one can modify the entanglement structure of the links

in the standard RTN to obtain a nonflat Rényi spectrum for boundary states. However,

this is not enough to reproduce the properties of holographic Rényi entropies on general

boundary subregions. In particular, it fails to account for the lack of backreaction, dis-

played in the tensor network as a lack of (Rényi) correlation between disconnected bound-

ary subregions when the RT surface is in a disconnected phase. This problem becomes

clear when one calculates the Rényi mutual information between two such boundary
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subregions R1 and R2, defined as13

In(R1 : R2) ≡ Sn(R1) + Sn(R2)− Sn(R1 ∪R2). (5.120)

As the area operator in the original RTN is a c-number, using (5.3) we find that the area

operator contribution cancels out in In(R1 : R2) for all n (as long as the minimal surface

γR is in a disconnected phase), leaving the boundary mutual information equal to the

bulk mutual information:

In(R1 : R2) = In(r1 : r2,Ar1r2). (5.121)

This implies that, if one wants a contribution to the Rényi mutual information of the

same order as the area, that is O(logD), one must input by hand a highly entangled

bulk state. Doing this is unsatisfying and quite arbitrary.

We will now see that our gauged RTN solves this problem in a natural way, due to

our nontrivial area operator. In general, the presence of a nontrivial area operator will

lead to a nontrivial, n-dependent boundary Rényi mutual information, even for states

with vanishing bulk Rényi mutual information.

To see how this is realized in the gauged RTN, we will study a simple example shown

in Figure 5.3, where the top layer is disconnected but the bottom layer is connected.14

We allow the bond dimensions in the bottom layer to be different for different links,

and in fact design them so that the minimal surfaces associated with R1, R2, and their

union R1 ∪ R2 are fixed as we vary the Rényi index n at O(1) values. We will feed in a

13The Rényi index n should not be confused with the number of vertices on the cut n = |Vc|.
14This connection is unnecessary to prove our point, as the internal leg connecting r1 and r2 never

contributes to the area term, but it is more intuitively satisfying to discuss a connected spatial slice for
the purposes of demonstrating backreaction.
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Figure 5.3: A simple gauged RTN in which we compute the Rényi mutual information
between R1 and R2. The input from the top layer lives on four edges of a disconnected
graph G, as we choose to have no matter on any of the vertices. In the bottom layer,
the thick legs have a bond dimension much larger than that of the thin legs, such that
the minimal surfaces for the three boundary regions R1, R2, and R1∪R2 only involve
the light internal legs. Consequently, the associated bulk regions will be r1, r2, and
r1 ∪ r2.
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gauge-invariant bulk state ρ with the following reduced state on r1 ∪ r2:

ρr1r2 =
∑
αβ

(dαdβ)
−1P (α, β)

∑
kℓ

|αik⟩r1 |βjℓ⟩r2 ⟨αik|r1 ⟨βjℓ|r2 , (5.122)

for some particular choice of i, j. This state has classical correlations between r1 and r2

as described by a probability distribution P (α, β), but has no quantum correlations. For

simplicity, we consider the following distribution P (α, β) that has support on only two

superselection sectors α1, α2 on r1 and only two sectors β1, β2 on r2:

P (α1, β1) = p, P (α2, β1) = P (α1, β2) = p′, P (α2, β2) = p′′, (5.123)

subject to the constraint p+ 2p′ + p′′ = 1.

The Rényi entropy of ρ in the pre-gauged algebra Ar1r2 is defined as

Sn(ρ,Ar1r2) ≡
1

1− n
log
(
Trr1r2 ρ

n
r1r2

)
. (5.124)

Using our ρr1r2 , we find

Sn(ρ,Ar1r2) =
1

1− n
log

(
dα1dβ1

(
p

dα1dβ1

)n
+ dα2dβ1

(
p′

dα2dβ1

)n
+ dα1dβ2

(
p′

dα1dβ2

)n
+ dα2dβ2

(
p′′

dα2dβ2

)n)
. (5.125)

We can also compute the reduced density matrices on r1 and r2, as well as their corre-

sponding Rényi entropies in the pre-gauged algebra. We find the reduced density matrices
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to be

ρr1 =

dα1∑
k=1

d−1
α1
(p+ p′) |α1ik⟩r1 ⟨α1ik|+

dα2∑
k′=1

d−1
α2
(p′ + p′′) |α2ik

′⟩r1 ⟨α2ik
′| ,

ρr2 =

dβ1∑
k=1

d−1
β1
(p+ p′) |β1jk⟩r2 ⟨β1jk|+

dβ2∑
k′=1

d−1
β2
(p′ + p′′) |β2jk′⟩r2 ⟨β2jk

′| , (5.126)

and the bulk Rényi entropies are

Sn(ρ,Ar1) =
1

1− n
log

(
dα1

(
p+ p′

dα1

)n
+ dα2

(
p′ + p′′

dα2

)n)
Sn(ρ,Ar2) =

1

1− n
log

(
dβ1

(
p+ p′

dβ1

)n
+ dβ2

(
p′ + p′′

dβ2

)n)
. (5.127)

In the gauge-invariant algebra, the dependence on irrep dimensions drops out and the

Rényi entropies become purely Shannon terms:

Sn(ρ, Ãr1) = Sn(ρ, Ãr2) =
1

1− n
log
(
(p+ p′)

n
+ (p′ + p′′)

n)
Sn(ρ, Ãr1r2) =

1

1− n
log (pn + 2(p′)n + (p′′)n) , (5.128)

which we choose to be parametrically suppressed relative to the Rényi entropies in the

pre-gauged algebra.

When the sum inside the logarithm is dominated by one term, we can approximate

it using

log
(∑

ixi

)
≈ log

(
max
i

{xi}
)
. (5.129)

To simplify our calculation, we will enter a parameter regime where all three (pre-gauged)

Rényi entropies satisfy the approximation above and have phase transitions.

First consider Sn(ρ,Ar1). We take dα1 > dα2 . The two terms in the sum are equal at
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some critical n∗, given by

(
p+ p′

p′ + p′′

)n∗

=

(
dα1

dα2

)n∗−1

⇒ n∗

n∗ − 1
=

log
(
dα1

dα2

)
log
(
p+p′

p′+p′′

) . (5.130)

Thus, in order to have a phase transition at n∗ > 1 we require

log

(
dα1

dα2

)
> log

(
p+ p′

p′ + p′′

)
. (5.131)

The width of this transition is controlled by the corrections to (5.129). This depends

on the curvature of Sn(ρ,Ar1) at n∗; explicitly we can diagnose this with the following

quantity:

d2

dn2
(1− n)Sn(ρ,Ar1)

∣∣∣∣
n=n∗

=
1

4

(
log

dα1(p
′ + p′′)

dα2(p+ p′)

)2

. (5.132)

For fixed n∗, this quantity increases with increasing dα1/dα2 , so we should make this

ratio large for a sharp transition. A simple way to ensure the previous conditions is the

following:

dα1

dα2

≡ q ≫ 1, p≫ p′, p′ ≫ p′′. (5.133)

Furthermore, we impose

dα1

dα2

=
dβ1
dβ2

= q, (5.134)

which forces the phase transitions in Sn(ρ,Ar1) and Sn(ρ,Ar2) to occur at the same

critical n∗.

Now let us examine the phase transition in Sn(ρ,Ar1r2). In the limit of sharp transi-

tions we have

Sn(ρ,Ar1r2) ≈
1

1− n
log

(
max

{
pn

(dα1dβ1)
n−1

,
(p′)n

(dα2dβ1)
n−1

,
(p′)n

(dα1dβ2)
n−1

,
(p′′)n

(dα2dβ2)
n−1

})
.

(5.135)
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For simplicity, we will choose

p

p′
>
p′

p′′
≫ 1. (5.136)

In this case, we find that Sn(ρ,Ar1r2) has a phase transition occurring at a critical nc

determined by

nc
nc − 1

=
log(q2)

log
(
p
p′′

) =
log(q2)

log
(
p
p′
p′

p′′

) (5.137)

which satisfies 1 < nc < n∗.

We now combine the above results to find the (pre-gauged) Rényi mutual information

In(r1 : r2,Ar1r2) ≡ Sn(ρ,Ar1) + Sn(ρ,Ar2)− Sn(ρ,Ar1r2). (5.138)

We find the following phases:

In(r1 : r2,Ar1r2) ≈


0 n < nc,

log (q2) + n
1−n log

(
(p+p′)2

p′′

)
nc < n < n∗,

n
1−n log

(
(p′+p′′)2

p′′

)
n∗ < n.

(5.139)

Now we rewrite the boundary Rényi mutual information (5.121) as

Sn(R1 : R2) = In(r1 : r2,Ar1r2)− In(r1 : r2, Ãr1r2)︸ ︷︷ ︸
area contribution

+ In(r1 : r2, Ãr1r2)︸ ︷︷ ︸
bulk matter contribution

, (5.140)

where the contribution of the nontrivial area operator to the boundary Rényi mutual

information is identified with the difference of the bulk Rényi mutual information in the

two algebras. As stated previously, In(r1 : r2, Ãr1r2) is suppressed relative to In(r1 :

r2,Ar1r2), so this model implements phase transitions in the boundary Rényi mutual

information without a large bulk matter contribution (in the gauge-invariant algebra).
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Figure 5.4: Phase transitions in the Rényi mutual information. Here we set q = 1050,
p′ = 10−16, and p′′ = 10−24. We plot the dominant contribution to the Rényi mutual
information in the three phases (dashed) as well as the fully analytic interpolating
function (solid).

We plot these two phase transitions for an example in Figure 5.4.

This is a proof of concept showing that adding bulk gauge symmetries to the RTN

in this manner allows the boundary Rényi mutual information to be nontrivial and n-

dependent, even for states with small bulk Rényi mutual information (in the gauge-

invariant algebra). In our simple example here, the minimal surface does not shift—i.e.

it is the same for all n—but there is no obstruction to writing a more complicated example

in which the location of the minimal surface changes with n due to the nontrivial area

operator.
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5.5 Discussion and Outlook

In this work, we have presented a modification of the random tensor network which

allows us to reproduce known features of semiclassical holographic states. We discuss

some open questions and possible future directions below.

We have presented a toy model which, for simple choices of bulk input state, exhibits

sharp phase transitions in the Rényi entropy and Rényi mutual information. With a

sufficiently tuned set of probabilities and irrep dimensions, one could engineer a smooth

varying Rényi entropy that matches with, for example, the correct one-interval CFT2

Rényi entropy (5.5). It would be an even more complicated task to reproduce the correct

Rényi entropy for multiple intervals in the CFT [182, 183].

The bulk algebras that we encountered in our model are type I von Neumann algebras.

This is in contrast to the type II von Neumann algebras for gravity constructed using

the crossed product [49, 51, 184]. A “type I approximation” to the crossed product was

recently studied in [185]. It is thus tempting to incorporate the crossed product and the

resultant birth of a type II algebra into the tensor network toy models of holography.

Our gauge-invariant subregion algebras generally have nontrivial centers. On the

other hand, a prescription was given in [186] to construct gauge-invariant subregion

algebras with trivial centers in lattice gauge theory. This prescription involves adding

operators to the algebra that we do not include, so it does not contradict our results in

any way.

Here we have implemented a graph version of the lattice gauge theory construction

along the lines of Kogut and Susskind, but crucially without dynamics, due to the lack

of a Hamiltonian. Because of this, our construction does not have anything more to say

about time evolution in tensor networks than previous models. It would be interesting

to understand how to incorporate a Hamiltonian and the associated time evolution into
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tensor networks. It would also be interesting to study the commutators of intersecting

area operators in our gauged RTN, which in standard AdS/CFT do not commute [187].
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Appendix A

Geodesic Length in Kruskal-like

Coordinates

We start with AdS3 in Rindler coordinates. The metric in the embedding space R2,2 is

ds2 = −dT 2
1 − dT 2

2 + dX2
1 + dX2

2 . (A.1)

The usual Rindler patch has a horizon at r = r+, but to describe a rotating black hole

solution we requires two horizons r+ and r−. The embedding functions for this geometry

are given by

T1 = ℓ
√
α cosh

(
r+ϕ

ℓ
− r−t

ℓ2

)
X1 = ℓ

√
α sinh

(
r+ϕ

ℓ
− r−t

ℓ2

)
T2 = ℓ

√
α− 1 sinh

(
r+t

ℓ2
− r−ϕ

ℓ

)
X2 = ℓ

√
α− 1 cosh

(
r+t

ℓ2
− r−ϕ

ℓ

)
(A.2)
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for α ≡ r2−r2−
r2+−r2−

. For this problem, we would like a coordinate reparametrization that

makes the null directions manifest, so we use the coordinates (U, V, ϕ), where U and V

are defined to be

U = exp [κ(t+ r∗)]

V = exp [−κ(t− r∗)] (A.3)

where κ =
r2+−r2−
ℓ2r+

and r∗ = ℓ2

2κ

(√
r2+−r2−−

√
r2−r2−√

r2+−r2−+
√
r2−r2−

)
. In our new Kruskal-like coordinates,

and using the corotating coordinates ϕ→ ϕ− r−
ℓr+
t, the AdS3 embedding functions become

T1 = ℓ

(
U + V

1 + UV
cosh

r−ϕ

ℓ
− U − V

1 + UV
sinh

r−ϕ

ℓ

)
X1 = ℓ

(
U − V

1 + UV
cosh

r−ϕ

ℓ
− U + V

1 + UV
sinh

r−ϕ

ℓ

)
T2 = ℓ

1− UV

1 + UV
cosh

r+ϕ

ℓ

X2 = ℓ
1− UV

1 + UV
sinh

r+ϕ

ℓ
. (A.4)

The metric that results from these embedding functions is

ds2 =
1

(1 + UV )2
(
−4ℓ2dUdV + 4ℓr−(UdV − V dU) + (r2+(1− UV )2 + 4UV r2−)dϕ

2
)
.

(A.5)

Under an identification ϕ ∼ ϕ+2π, this metric becomes the BTZ metric with r2+ + r2− =

ℓ2M .

With our embedding functions (A.4), one can also derive an expression for the geodesic

distance s in our AdS3 Kruskal-like coordinates using the geodesic distance in the em-
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bedding spacetime. The result is [188]

s(x, x′) = ℓ cos−1 σ(x, x′) s timelike

s(x, x′) = ℓ cosh−1 σ(x, x′) s spacelike (A.6)

The geodesic we will be concerned with for our calculations is the spacelike case. This

σ(x, x′) is the same quantity that appears in the calculation of the scalar Green’s function

and is given by

σ(x, x′) =
1

ℓ2
[T1(x)T1(x

′) + T2(x)T2(x
′)−X1(x)X1(x

′) +X2(x)X2(x
′)] . (A.7)

Substituting our Kruskal-like embedding functions, we arrive at an expression for the

geodesic distance in AdS3

s = ℓ cosh−1

(
1

(UV + 1)(U ′V ′ + 1)

[
(UV − 1)(U ′V ′ − 1) cosh

(
r+(ϕ− ϕ′)

ℓ

)
+

2(UV ′ + V U ′) cosh

(
r−(ϕ− ϕ′)

ℓ

)
+2(V U ′ − UV ′) sinh

(
r−(ϕ− ϕ′)

ℓ

)])
.

(A.8)

As a consistency check, the norm of this geodesic, nµ ≡ ∂µs, satisfies n
2 = 1, as it should

for a spacelike geodesic, ∇µnν ≡ nµ∇µnν = 0, and the constraints on the bitensor of

parallel transport gν
′
ν in Appendix C of [102].
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Appendix B

Spinor Propagator in AdSd

We follow the derivation given in [101] for the parallel propagator in Hd, with the nec-

essary few changes required for analytic continuation to AdSd pointed out in footnotes.

The calculation of ⟨Tµν⟩ for timelike geodesics in d = 4 can be found in [189].

We start with defining the norms of the AdSd geodesic, which are given by

nµ = ∂µs(x, x
′)

nµ′ = ∂µ′s(x, x
′). (B.1)

We also define the bitensor of parallel transport gν
′
µ , which takes vectors between the two

tangent spaces defined at x and x′. In particular, nµ = −gν′µ nν′ , as the geodesic norm at

a point is in the opposite direction of the geodesic length.

We also define two functions A and C relating the derivatives of nµ and nµ′ to
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similarly-indexed quantities1

∇µnν = A(gµν − nµnν)

∇µnν′ = C(gµν′ + nµnν′). (B.2)

For spacetimes with negative curvature, A = 1
ℓ
coth

(
s
ℓ

)
and C = −1

ℓ
csch

(
s
ℓ

)
2. By

inverting the second equation and substituting the first, we find

∇µgνλ′ = −(A+ C)(gµνnλ′ + gµλ′nν). (B.3)

In order to properly treat spinors at two disconnected points, we also need to write a

spinor parallel propagator Λα
′

β , which transports a spinor from x to x′ as

Ψ′(x′)α
′
= Λ(x′, x)α

′

β Ψ(x)β. (B.4)

The covariant derivatives of Λα
′

β with respect to primed and unprimed coordinates are

fixed by the parallel transport of the gamma matrices and (B.2) to be

DµΛ(x, x
′) =

1

2
(A+ C)(γµγ

νnν − nµ)Λ(x, x
′)

Dµ′Λ(x, x
′) = −1

2
(A+ C)Λ(x, x′)(γµ′γ

ν′nν′ − nµ′). (B.5)

In principle, we could define a vierbein, find the exact form of the gamma matrices and

the covariant derivative, and solve a system of PDEs for the spinor parallel propagator.

1In the case of timelike geodesics, these differ from [102] by the transforms

gµν → −gµν , gµν′ → −gµν′

2In [101], these functions in Hd are instead given by A = 1
ℓ cot

(
s
ℓ

)
and C = − 1

ℓ csc
(
s
ℓ

)
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However, as for the scalar case, making use of the maximal symmetry of AdS turns out

to greatly simplify the derivation [101].

The spinor propagator Sαβ′(x, x′) = ⟨ψα(x)ψ̄β′(x′)⟩ is a solution of the spacelike Dirac

equation [
( /D −m)S(x, x′)

]α
β′ =

δ(x− x′)√
−g

δαβ′ (B.6)

with appropriate short-distance singularities. In the AdS vacuum it will share the maxi-

mal symmetry of the spacetime. It must therefore be of the form

S(x, x′) = [α(s) + /nβ(s)]Λ(x, x′), (B.7)

for /n = nµγ
µ and some functions of the geodesic distance α(s) and β(s). Inserting (B.7)

into (B.6) yields

[(
α′ +

1

2
(d− 1)(A+ C)α−mβ

)
/n+

(
β′ +

1

2
(d− 1)(A− C)β −mα

)]
Λ(x, x′)

=
δ(x− x′)√

−g
δαβ′

(B.8)

where a prime indicates a derivative with respect to s. Taking the trace of the above

equation gives a set of two coupled differential equations

β′ +
1

2
(d− 1)(A− C)β −mα =

δ(x− x′)√
−g

,

α′ +
2
(d− 1)(A+ C)α−mβ = 0, (B.9)

Substituting the second equation into the first and using identities involving A and C
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from table 1 of [102], one finds a second order equation for α(s):

α′′ + (d− 1)Aα′ −
[
m2 +

1

2
(d− 1)(C2 + AC)− (d− 1)2

4ℓ2

]
α = m

δ(s)√
−g

. (B.10)

B.0.1 Solution in Minkowski Space

In order to find the proper normalization of the solutions in AdSd, we need to find

the short distance behavior of α(s), which is just the solution of (B.10) in Minkd, or

equivalently, in the limit ℓ→ ∞. (B.10) becomes

α′′ +
d− 1

s
α′ −m2α = mδ(s). (B.11)

The solution to this equation, properly normalized such that the left and right sides agree

in the coincident limit, is

α(s) = −
(m
2π

)d/2
s1−d/2Kd/2−1(ms) (B.12)

where Kn(z) is the modified Bessel function of the second kind. The series expansion of

this solution around s = 0 is given by

α(s) ≈ −m
4
π−d/2s2−dΓ

(
d

2
− 1

)
. (B.13)

B.0.2 Solution in AdSd

To solve (B.10) in AdSd, we make the substitutions z ≡ cosh2
(
s
2ℓ

)
and

γ(z) ≡ 1√
z
α(z) (B.14)
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to obtain3

z(1− z)γ′′(z) +

(
d

2
+ 1− (d+ 1)z

)
γ′(z) +

(
m2ℓ2 − d2

4

)
γ(z) = −m δ(s)√

−g
, (B.15)

where here primes denote derivatives with respect to z. This is a hypergeometric equation

in γ(z), with differential operator

H(a, b, c; z) = z(1− z)
d2

dz2
+ (c− (a+ b− 1)z)

d

dz
− ab, (B.16)

with a = d
2
−mℓ, b = d

2
+mℓ, c = d

2
+ 1. This is the same as the Hd solution in [101],

so we can proceed as follows. We want solutions that decay as a power of z as z → ∞.

There are two independent solutions, which up to overall normalizations λ± are

γ±(z) = λ±z
−( d

2
±mℓ)

2F1

(
d

2
±mℓ,±mℓ, 1± 2mℓ;

1

z

)
. (B.17)

Both are allowed for sufficiently small |mℓ|, though large |mℓ| requires the + sign. The

expansion of α±(s) around s = 0 is

α±(s) ≈ λ±

( s
2ℓ

)2−d Γ(1± 2mℓ)Γ
(
d
2
− 1
)

Γ
(
d
2
±mℓ

)
Γ(±mℓ)

. (B.18)

The above expression must match with the Minkowski solution in the limit of vanishing

s, so the coefficients λ± are given by

λ± = ∓2−(d±2mℓ)ℓ1−d
Γ
(
d
2
±mℓ

)
π(d−1)/2Γ(1

2
±mℓ)

. (B.19)

3For timelike geodesics, we would instead make the same substitutions as in [101], with z ≡ cos2
(

s
2ℓ

)
.
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The choice of sign in these quantities corresponds to a choice of boundary conditions

analogous to that referenced in (2.8). For simplicity, we will choose the (+) boundary

condition for all p, as this is allowed for any effective 3D fermion mass. We do so for all

computations in the main text.

B.0.3 ⟨Tkk⟩ in KKZBO

We still don’t have a closed form expression for S(x, x′), as we don’t know anything

about Λ(x, x′), but we can still calculate observables such as ⟨ψ(x)ψ(x′)⟩, ⟨Jµ⟩, and ⟨Tµν⟩.

We’ll only carry out the calculation for our quotient spacetime4. The expectation value

of the Belinfante stress-energy tensor in terms of the spinor propagator is [99]

⟨Tµν⟩ =
i

2
lim
x→x′

Tr
[(
γ(µDν)S(x, x

′)−Dν′S(x, x
′)γ(µg

ν′

ν)

)
Λ(x′, x)

]
(B.20)

where a primed index on the covariant derivative denotes a derivative on the second

coordinate and action from the left. The parallel propagators become trivial at coincident

points, namely gν
′
ν = δν

′
ν and Λ(x, x′) = I2 at x = x′. As shown in section 2.3.2, the null-

null component of the stress-energy tensor in the quotient KKZBO spacetime is

⟨Tkk⟩ ≡ kµkν ⟨Tµν⟩ =
i

2

∑
A,B

Tr
[
/kDkS(x, J3x

′)j̃
]
+ Tr

[
j̃Dk′S(J3x

′, x)/k
]
, (B.21)

where we’ve suppressed the sum over Kaluza-Klein modes p but kept the sum over three-

dimensional fermion representations A and B. In order for this stress-energy tensor to

be real, we expect that the second trace is related to the first by complex conjugation.

Using the fact that

γ0S(x, x′)†γ0 = S(x′, x) (B.22)

4For a similar calculation in AdS4 for timelike geodesics, see [189]
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the trace of the Hermitian conjugate of the first term becomes

Tr

[(
/kDkS(x, J3x

′)j̃
)†]

= Tr
[
j̃†D†

k′S(x, J3x
′)†/k

†
]

= Tr
[
j̃†D†

k′γ
0S(J3x

′, x)γ0/k
†
]

= −Tr
[
j̃Dk′S(J3x

′, x)/k
]

(B.23)

where we’ve also used γ0/kγ0 = /k
†
and γ0j̃γ0 = −j̃ = −j̃†. As the trace of the Hermitian

conjugate is the complex conjugate of the original trace, we have

Tr
[
/kDkS(x, J3x

′)j̃
]
= −Tr

[
j̃Dk′S(J3x

′, x)/k
]∗

(B.24)

as expected. The sum of the two traces can then be represented as the imaginary part

of the first, and the stress-energy tensor becomes

⟨Tkk⟩ = −
∑
A,B

Im
{
Tr
[
j̃/kDkS(x, J3x

′)
]}
. (B.25)

Plugging in our ansatz (B.7) and substituting (B.5), we obtain

⟨Tkk⟩ = −
∑
A,B

Im
{
Tr
[
j̃/kkµDµ ((α(s) + β(s)/n)Λ(x, J3x))

] }
= − (kµnµ)

∑
A,B

Im

{
Tr

[
j̃/k

((
α′ +

α

2
(A+ C)

)
+

(
β′ +

β

2
(C − A)

)
/n

)
Λ(x, J3x)

]}
.

(B.26)

The A and B representations are distinguished by gamma matrices with opposite sign:

γµA = −γµB. The sum over representations will cancel terms containing α(s), as they

involve an odd number of gamma matrices, and introduce a factor of 2 to the β(s) terms,
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as they contain an even number of gamma matrices. The stress-energy tensor is therefore

⟨Tkk⟩ = −2 (kµnµ)

(
β′ +

β

2
(C − A)

)
Im
{
Tr
[
j̃/k/nΛ(x, J3x)

]}
= −2 (kµnµ)

(
∂

∂s
− 1

2ℓ
coth

s

2ℓ

)
β(s) Im

{
Tr
[
j̃/k/nΛ(x, J3x)

]}
. (B.27)

In general, calculating Λ(x, x′) involves a path ordered integral along the geodesic in

question, so it’s easier to choose coordinates such that the parallel propagator becomes

trivial even for noncoincident points. As our calculation ultimately takes place in the

covering space AdS3, we can choose global AdS3 coordinates (t, ρ, φ) with metric

ds2 = −
(
1 + ρ2/ℓ2

)
dt2 +

dρ2

1 + ρ2/ℓ2
+ ρ2dφ2. (B.28)

For a timelike slice of AdS3, we define the origin by the intersection of the timelike

axis defined by the isometry and the geodesic itself as in Figure 2.1. We therefore have

geodesic norm nµ = 1√
1+ρ2/ℓ2

∂ρ and a perpendicular unit vector φµ = ρ∂φ. In these

coordinates, the spinor parallel propagator for our spacelike geodesic is trivial, as can be

seen from the covariance of Λ(x, x′) along the geodesic:

nµDµΛ(x, x
′) = nρ∂ρΛ(x, x

′) = 0

⇒ Λ(x, x′) = I2. (B.29)

Additionally, as the vielbein for this coordinate system is diagonal, we can rewrite the

isometry j̃ = iγ1γ2 as

j̃ = i/n/φ. (B.30)
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The trace inside of the stress-energy tensor therefore becomes

Tr
[
j̃/k/n

]
= Tr

[
i/k/φ
]

= 2ikµφµ. (B.31)

This expression is manifestly vielbein independent. The final expression for the null-null

component of the stress-energy tensor is therefore

⟨Tkk⟩ = −4 (kµnµ) (k
µφµ)

(
∂

∂s
− 1

2ℓ
coth

s

2ℓ

)
β(s). (B.32)

The full calculation involves a sum over Kaluza-Klein modes p and BTZ images n. Ex-

plicitly, in terms of our Kruskal-like coordinates (U, V, ϕ) and radial coordinate

ρ = ℓ

√
sinh2

(
r+ϕ

ℓ

)
+ U2 exp

(
−2r−ϕ

ℓ

)
, (B.33)

we have

kµnµ = nU =
e−2r−ϕ/ℓℓ3U

ρ
√
ρ2 + ℓ2

kµφµ = φU =
e−r−ϕ/ℓℓ2 sinh

(
r+ϕ
ℓ

)
ρ

. (B.34)
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Appendix C

Derivation of Dominant Saddles for

Negativity

In this appendix, we derive the set of saddle-point geometries that give dominant contri-

butions to the Rényi negativity in various regimes of the parameter space. This includes

each of the distinct phases and near phase transitions.

Our derivation uses facts about geodesics on the permutation group, which we review

first. Let Sn be the symmetric group of order n, which is the set of permutations on n

elements. For any permutation g ∈ Sn, we define ℓ (g) as the minimum number of swaps

from the identity 1 = (1)(2) · · · (n) to g and χ(g) as the number of disjoint cycles in g,

including 1-cycles. These quantities satisfy the relations

ℓ (g) + χ(g) = n, (C.1)

χ(g) = χ(g−1). (C.2)

As an example, the permutation1 g = (12)(345) ∈ S5 has ℓ (g) = 3 and χ(g) = 2.

1This g is the permutation 12345 → 21453 written in cycle notation. Each digit in a given cycle is
replaced by the following digit, except for the last digit which is replaced by the first.
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We can define the distance between two permutations g and h by

d(g, h) ≡ ℓ(g−1h) (C.3)

which satisfies the usual properties of a distance measure. In particular, given any se-

quence of permutations (g1, · · · , gm), the distance satisfies the triangle inequality

d(g1, g2) + · · ·+ d(gm−1, gm) ≥ d(g1, gm). (C.4)

A sequence of permutations that saturates (C.4) is said to be on a geodesic. We denote

a geodesic between two permutations g and h by G(g, h). We say that a permutation g′

is on G(g, h), or equivalently g′ ∈ G(g, h), if the sequence (g, g′, h) saturates the triangle

inequality (C.4).

Our goal is to identify the permutations g that dominate the sum in the Rényi nega-

tivity (3.25), in different regimes of the parameter space labeled by eS0 , k1, and k2. We

repeat the sum in (3.25) here:

∑
g∈Sn

(
eS0
)χ(g)

k
χ(g−1X)
1 k

χ(g−1X−1)
2 . (C.5)

For reasons that will become clear shortly, it is useful to first identify the permutations

on one or more of the following geodesics: G(1, X), G(1, X−1), and G(X,X−1). Here

X = (12 · · ·n) is the cyclic permutation of n elements, and X−1 = (n · · · 21) is the

anti-cyclic permutation.

For a given permutation g, let us use m, p, q to denote the three exponents in the

sum (C.5):

m = χ(g), p = χ(g−1X), q = χ(g−1X−1). (C.6)
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They satisfy three triangle inequalities, which can be obtained from (C.1), (C.3), and (C.4):

d(1, g) + d(g,X) ≥ d(1, X) ⇒ m+ p ≤ n+ 1, (C.7)

d(1, g) + d(g,X−1) ≥ d(1, X−1) ⇒ m+ q ≤ n+ 1, (C.8)

d(X, g) + d(g,X−1) ≥ d(X,X−1) ⇒ p+ q ≤ n+ f(n), (C.9)

where f(n) is a useful function defined as

f(n) ≡


1, n odd,

2, n even,

(C.10)

and we have used χ(X) = χ(X−1) = 1, χ(X2) = f(n).

We now identify the permutations g on one or more of the three geodesics.

Permutations on G(1, X): These are known to be in one-to-one correspondence with

noncrossing partitions, so we say that the corresponding geometries are planar. We can

write such a element as a product of m noncrossing cycles (including 1-cycles):

g =
m∏
i=1

ci. (C.11)

It is clear that such an element exists for every m ∈ [1, n]. Since it saturates (C.7), we

immediately find

p = n−m+ 1. (C.12)

Moreover, it is straightforward to derive

q =
m∑
i=1

f(|ci|)−m+ 1, (C.13)
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where |ci| is the length of the i-th cycle ci.

Permutations on G(1, X−1): These can be obtained by simply taking the inverse of

the permutations on G(1, X), sending ci in (C.11) to c−1
i . We say that these correspond

to “anti-planar” geometries.

Permutations on G(1, X) and G(1, X−1): Their cycles ci must be their own inverses,

so the length of each cycle is at most 2. Therefore, these permutations are precisely those

noncrossing partitions that consist of only 1-cycles and 2-cycles. Such permutations exist

for every m ≥ ⌈n
2
⌉, with the lower bound saturated by noncrossing pairings consisting of

⌈n
2
⌉ pairs and at most one 1-cycle.

Permutations on G(1, X) and G(X,X−1): As they saturate (C.9), it is straight-

forward to use (C.12) and (C.13) to show that these permutations are precisely those

noncrossing partitions with at most one odd cycle. Here we define an odd cycle as one

of odd length and an even cycle as one of even length. For even n, these permutations

consist of only even cycles, whereas for odd n, they have exactly one odd cycle. Such

permutations exist for every m ≤ ⌈n
2
⌉, with the upper bound saturated by noncrossing

pairings.

Permutations on G(1, X−1) and G(X,X−1): These are obtained by taking the in-

verse of the permutations on G(1, X) and G(X,X−1).

Permutations on G(1, X), G(1, X−1), and G(X,X−1): It is clear by combining the

previous cases that these permutations are those noncrossing partitions that consist of

only 2-cycles and at most one 1-cycle. Therefore, they are in one-to-one correspondence

with noncrossing pairings [128]. These all have m = ⌈n
2
⌉ and p = q = ⌊n

2
⌋+1. We denote
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Figure C.1: A schematic Cayley graph for the relevant permutations and the geodesics
connecting them.

these noncrossing pairings by τ , and say that they correspond to pairwise geometries. A

simple example is τ = (12)(34) · · · (n−1, n) for even n and τ = (12)(34) · · · (n−2, n−1)(n)

for odd n.

These results are illustrated schematically in Figure C.1. We now state and prove the

main points of this appendix.

Lemma 11. In the regime k1/k2 ≫ e−S0 , planar geometries dominate the sum (C.5). In

other words, for any g /∈ G(1, X), there exists g′ ∈ G(1, X) such that g′ dominates over

g.

Proof: As g /∈ G(1, X), the difference

d(1, g) + d(g,X)− d(1, X) (C.14)

is positive. However, this difference must be even, regardless of whether g is an even or

odd permutation. Therefore, we denote this difference by 2r with a positive integer r,
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and use it to rewrite the triangle inequality (C.7) as

m+ p = n+ 1− 2r. (C.15)

Our goal is to choose a more dominant g′. For g′, we define m′, p′, q′ similarly as

m′ = χ(g′), p′ = χ(g′−1X), q′ = χ(g′−1X−1). (C.16)

Let us discuss m+ r ≥ ⌈n
2
⌉ and m+ r < ⌈n

2
⌉ separately. For m+ r ≥ ⌈n

2
⌉, we choose

g′ to be on G(1, X) and G(1, X−1), with m′ = m + r. As we discussed earlier, such a

permutation exists; in particular, (C.15) guarantees m + r < n. As g′ saturates (C.7)

and (C.8) (after primes are added), we find

p′ = n−m− r + 1 = p+ r, q′ = n−m− r + 1 ≥ q − r, (C.17)

where the second equality for p′ comes from (C.15) and the inequality comes from (C.8)

for g. We thus find that g′ gives a more dominant contribution to the sum (C.5) than g,

as

em
′S0kp

′

1 k
q′

2

emS0kp1k
q
2

≥
(
eS0

k1
k2

)r
≫ 1. (C.18)

In the other case with m + r < ⌈n
2
⌉, we choose g′ to be on G(1, X) and G(X,X−1),

with m′ = m + r. Again, such a permutation exists. As g′ saturates (C.7) and (C.9)

(after primes are added), we find

p′ = n−m− r + 1 = p+ r, q′ = n+ f(n)− p− r ≥ q − r, (C.19)

where the inequality comes from (C.9) for g. We again find that (C.18) holds and

therefore g′ dominates over g.

199



Derivation of Dominant Saddles for Negativity Chapter C

It is clear that Lemma 11 is tight in the sense that every planar geometry could give

a dominant contribution to the sum (C.5) at some point in the regime k1/k2 ≫ e−S0 .

In particular, at the point where k1 = eS0 and k2 = 1, they give an equal contribution

e(n+1)S0 .

From Lemma 11, we immediately obtain the following corollary by taking the inverse

of all permutations and switching k1 ↔ k2.

Corollary 12. In the regime k2/k1 ≫ e−S0 , anti-planar geometries dominate the sum (C.5).

Combining Lemma 11 and Corollary 12, and recalling that the permutations on

G(1, X) and G(1, X−1) are precisely those that consist of only 1-cycles and 2-cycles, we

immediately obtain the following corollary (which is useful for studying the disconnected-

pairwise transition in Section 3.5.2).

Corollary 13. In the regime e−S0 ≪ k1/k2 ≪ eS0 , the permutations consisting of only

1-cycles and 2-cycles dominate the sum (C.5).

It is again clear that Corollary 13 is tight in the sense that every permutation on

G(1, X) and G(1, X−1) could give a dominant contribution to the sum (C.5) at some

point in the regime e−S0 ≪ k1/k2 ≪ eS0 . In particular, at the point where k1 = k2 = eS0/2,

they all give an equal contribution e(n+1)S0 .

Lemma 14. In the regime k1k2 ≪ eS0 , the disconnected geometry dominates the

sum (C.5).

Proof: The disconnected geometry is represented by the identity 1 and contributes

enS0k1k2. For any other permutation g, we have m ≤ n − 1. From (C.7) and (C.8), we

obtain p, q ≤ n−m+ 1. We thus find that 1 gives a more dominant contribution to the

sum (C.5) than g, as

enS0k1k2
emS0kp1k

q
2

≥
(
eS0

k1k2

)n−m
≫ 1. (C.20)
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Lemma 15. In the regime k1/k2 ≫ eS0 , the cyclic geometry dominates the sum (C.5).

Proof: The cyclic geometry is represented by X and contributes eS0kn1k
f(n)
2 . For any

other permutation g, we have p ≤ n− 1. From (C.7) and (C.9), we obtain m ≤ n− p+1

and q ≤ n + f(n) − p. We thus find that X gives a more dominant contribution to the

sum (C.5) than g, as

eS0kn1k
f(n)
2

emS0kp1k
q
2

≥
(
k1
k2
e−S0

)n−p
≫ 1. (C.21)

From Lemma 15, we immediately obtain the following corollary by taking the inverse

of all permutations and switching k1 ↔ k2.

Corollary 16. In the regime k2/k1 ≫ eS0 , the anti-cyclic geometry dominates the

sum (C.5).

We now show that pairwise geometries dominate a fourth phase. We first derive the

following lemma as a useful intermediate step.

Lemma 17. In the regime k1k2 ≫ eS0 , the permutations on G(X,X−1) dominate the

sum (C.5). In other words, for any g /∈ G(X,X−1), there exists g′ ∈ G(X,X−1) such

that g′ dominates over g.

Proof: As g /∈ G(X,X−1), the triangle inequality (C.9) must fail to saturate by a

positive but even integer, which is at least 2:

p+ q ≤ n+ f(n)− 2 = 2
⌊n
2

⌋
. (C.22)

Therefore, one of p, q must be no greater than ⌊n
2
⌋. Without loss of generality, we

consider the case of p ≤ ⌊n
2
⌋. We then choose g′ to be on G(1, X) and G(X,X−1), with

p′ = p+ 1. As g′ saturates (C.7) and (C.9) (after primes are added), we find

m′ = n− p ≥ m− 1, q′ = n+ f(n)− p− 1 ≥ q + 1, (C.23)
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where the two inequalities comes from (C.7) and (C.22), respectively. As we discussed

earlier, such a permutation g′ exists, as m′ = n − p ≥ ⌈n
2
⌉. From this, we find that g′

gives a more dominant contribution to the sum (C.5) than g, as

em
′S0kp

′

1 k
q′

2

emS0kp1k
q
2

≥ k1k2
eS0

≫ 1. (C.24)

Combining Lemmas 11, 17 and Corollary 12, and recalling that the permutations on

all three geodesics G(1, X), G(1, X−1), and G(X,X−1) are precisely noncrossing pairings

that lead to pairwise geometries, we immediately obtain the following corollary.

Corollary 18. In the regime satisfying both k1k2 ≫ eS0 and e−S0 ≪ k1/k2 ≪ eS0 , the

pairwise geometries dominate the sum (C.5).

It is clear that Corollary 18 is tight in the sense that all pairwise geometries give an

equal, dominant contribution (eS0)⌈
n
2
⌉(k1k2)

⌊n
2
⌋+1 to the sum (C.5), as they all have the

same m = ⌈n
2
⌉ and p = q = ⌊n

2
⌋+ 1.
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Appendix D

Details of the Cyclic-Pairwise

Transition in the Canonical

Ensemble

In Section 4.4, we used some of the techniques developed in [61] to derive an approxima-

tion for the eigenvalue spectrum of the partially transposed density matrix near transi-

tion:

D(λ) = eS0

∫ sk

0

dsρ(s)

[
k2(k2 + 1)

2
δ

(
λ− λ0 −

w(s)

k2

)
+
k2(k2 − 1)

2
δ

(
λ− λ0 +

w(s)

k2

)]
.

(D.1)

This approximation was derived under a set of assumptions which we repeat here:

1. w(st)R ≪ kk2

2. k22e
S0
∫ st
0
dsρ(s)w(s)R(k+w(s)R)

k2k22−w(s)2R2 ≪ k

3. st = sk − κ, where κ is O(1) but large
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Our analysis in this section will be based on checking the consistency of the iterative

procedure we applied to the resolvent equation (3.67), namely the zeroth order approxi-

mation

R0 =
k

λ− λ0
. (D.2)

We start with Assumption (2). We want to rigorously show the following inequality on

the second term in (3.67):

∣∣∣∣k22eS0

∫ st

0

ρ(s)
w(s)R(k + w(s)R)

k2k22 − w(s)2R2

∣∣∣∣ ≡ ∣∣∣∣eS0

∫ st

0

ρ(s)f(s)

∣∣∣∣≪ k. (D.3)

This function has a pole located at s = s∗, which is captured by the integral under the

assumption |w(st)R| ≪ kk2, as w(s) is a monotonically decreasing function of s. We can

therefore rewrite the integral with an iϵ prescription as

eS0

∫
dsρ(s)f(s) = PV

(
eS0

∫
dsρ(s)f(s)

)
± iπk22e

S0

∫
dsρ(s)

w(s)R(k + w(s)R)

∂s (k2k22 − w(s)2R2)
δ(s− s∗), (D.4)

where PV denotes the Cauchy principal value. We choose the sign of iϵ arbitrarily, as we

are only looking to bound the absolute value of this integral.

Let us treat the first term. The principle value is dominated by the (s− s∗)
0 term in

the Laurent expansion of ρ(s)f(s). We can perform a Laurent expansion around s = s∗

using the semiclassical approximation

w(s) ≈ e−βs
2/2−S0−2π2/β. (D.5)
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We find

ρ(s)f(s) = ρ(s∗)

(
k2(k2 + 1)

2(βs∗)(s− s∗)
− k2(1 + k2(1 + 2βs2∗))

4βs2∗
+O(s− s∗)

)
. (D.6)

Ignoring scaling in β, the O(s − s∗)
0 term goes like k22 ∼ k/eS0 ≪ k, so we can safely

ignore this term.

Let us now look at the second term in (D.4). We have

k22e
S0ρ(s)

w(s)R(k + w(s)R)

∂s (k2k22 − w(s)2R2)

∣∣∣∣
s=s∗

≈ k22e
S0ρ(s)

(w(s)R)2

(2βs)w(s)2R2

∣∣∣∣
s=s∗

≈ k22e
S0ρ(s∗)

2βs∗
, (D.7)

where we have used |w(s∗)R| = kk2 ≫ k to simplify the numerator. We can rewrite this

in terms of sk using (3.61) and the asymptotic form of ρ(s):

k22e
S0ρ(s∗)

2βs∗
≈ k22

2β
e2πs∗

≈ k22
2βsk

eS0ρ(sk)e
2π(s∗−sk)

=
k

2βsk
e2π(s∗−sk) ≪ k. (D.8)

As stated previously, sk ∼ O(1/β), so for this to be much smaller than k we require

sk − s∗ being at least O(1) but large, and by proxy κ ≡ sk − st being at least O(1) but

large, as stated in assumption (3).

What is stopping κ from being much larger, say O(1/β)? Now we check the validity of

assumption (1), that is |w(st)R| ≪ kk2. Under our approximation (D.2), this assumption

translates into the condition

|λ− λ0| ≫
w(st)

k2
. (D.9)
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However, at the boundary of our spectrum located at s = st, we should also have

|λ− λ0| = w(st)/k2. The way to reconcile these two assumptions is to state that our

approximation only holds for some range of s between 0 and some control parameter sc

where

|λ− λ0| =
w(sc)

k2
. (D.10)

What is the value of sc? We have

w(sc) ≫ w(st) ⇒ e−β(s
2
t−s2c)/2 ≪ 1. (D.11)

We define κ′ ≡ st − sc. Now (D.11) becomes

2stκ
′ + κ′2 ≫ 1/β. (D.12)

Under our previous assumption that κ is O(1) in β such that st ∼ 1/β, κ′ too must be

O(1) but large. This answers our previous question about the size of κ. There is some-

thing of an inverse relationship between st and κ
′: our goal is to design an approximation

in which sc is as close as possible to st, as well as one in which st is as close as possible

to sk. Under the assumption that st is as close as possible to sk, that is κ is O(1) but

large, we also have κ′ O(1) but large. If st was far from sk so that, say, st ∼ 1/
√
β, we

would also require κ′ ∼ O(1)/
√
β with a large O(1) constant, thus missing a large part

of the spectrum in our approximation.

Our conclusion is that there exists a region of size O(1) in s where assumption (1)

does not hold. As the spectrum is over a region of size w(0)−w(sk)
k2

, the size of a region

O(1) in s is exponentially suppressed in 1/β, and we conclude that very few eigenvalues

are in the uncontrolled region.
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Appendix E

Rényi Entropies near the Page

Transition

We draw an analogy between the O(1/β) corrections to the logarithmic negativity and

the partially transposed entropy and the O(1/β) corrections to the Rényi entropy Sn

with n < 1. Here we show this result explicitly in the model of [61]. We recall many of

their results, which can equivalently be obtained from ours by sending k1 to k and k2 to

1.

We consider the model of Section 3.3, but without partitioning the radiation system.

The approximation for the density of states (3.76) is now

D(λ) = eS0

∫ sk

0

dsρ(s)δ(λ− λ0 − w(s)), (E.1)

where w(s) and λ0 are defined as in the main text. Here sk is defined as

k = eS0

∫ sk

0

dsρ(s) ⇒ sk ≈
1

2π
(log k − S0) . (E.2)
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The transition at the Page time can be thought of as the transition from the fully dis-

connected phase to the cyclic phase along the x axis of our phase diagram (Figure 3.4).

Using our results from Table 3.1 and the semiclassical approximation µ ≫ 1
β
≫ 1, we

have

Tr ρnR =

(
Z1

k

)n−1

=
Zn
Zn

1

⇒ Sn = S0 +

(
1 +

1

n

)
2π2

β
. (E.3)

Again we can solve for log k at transition in the semiclassical regime to obtain

log k = log

(
Zn

1

Zn

) 1
n−1

= S0 +

(
1 +

1

n

)
2π2

β
. (E.4)

From this we find s
(n)
k at transition to be

s
(n)
k =

π

β

(
1 +

1

n

)
. (E.5)

As s(n) = 2π
nβ
, for n < 1 we have s

(n)
k < s(n). Part of our derivation relied on sk scaling

like 1/β, which remains true for n of O(1).

The Rényi entropy is given by

Sn =
1

1− n
log

∫ ∞

−∞
dλD(λ)λn

=
1

1− n
log

(
eS0

∫ sk

0

dsρ(s) (λ0 + w(s))n
)
. (E.6)

As sk > s(1), λ0 will be exponentially suppressed in 1/β, so this integral is dominated by
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the w(s) term, and as s
(n)
k < s(n) we approximate

Sn ≈ 1

1− n
log

(
eS0

∫ sk

0

dsρ(s)w(s)n
)

≈ 1

1− n
log
(
eS0ρ(sk)w(sk)

n
)

≈ 1

1− n

(
log k − nS0 −

nβs2k
2

− 2π2n

β

)
. (E.7)

Using our expressions (E.4) and s
(n)
k , we find

Sn = S0 +

(
3 + 5n

2n

)
π2

β
. (E.8)

Comparing this to our previous answer (E.3), we find a correction ∆Sn at transition of

the form

∆Sn =
π2

2β

(
1− 1

n

)
. (E.9)

We conclude that there are enhanced corrections of the form O(1/β) to the Rényi entropy

for n < 1.
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Appendix F

Deriving the Relevant Sum Over

Permutations

Let’s recall a few facts about the permutation group. For an element g ∈ Sn, we denote

the number of swaps from the identity permutation 1 = (1)(2) · · · (n) to g by ℓ(g) and

the number of distinct cycles in g by χ(g). These quantities satisfy the relation

ℓ(g) + χ(g) = n (F.1)

The number of swaps between two permutations ℓ(g−1h) ≡ d(g, h) introduces a natural

distance measure between two permutations. In particular, there exists the traingle

inequality

d(g, g1) + d(g1, h) ≥ d(g, h) (F.2)

A geodesic between two permutations G(g, h) is the set of g′1s which saturate this in-

equality.
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The sum over permutations we’re interested in takes the form [67, 127, 134]

SUM =
∑
g∈Sn

(eSB)m(eSA1 )p(eSA2 )q (F.3)

where we’ve made the substitutions

m = χ(g), p = χ(g−1X), q = χ(g−1X−1) (F.4)

Here X is the cyclic permutation (12 · · ·n) and X−1 is the anti-cyclic permutation (n n−

1 · · · 1). This is the sum relevant for calculating the moments of a block transposed

Wishart matrix [140], i.e. the weighting of Wick contractions when averaging over a

random density matrix with Gaussian correlations. In our work, we’re interested in the

permutations which live on the geodesic G(1, X) and the geodesic G(X,X−1) but not

necessarily on the geodesic G(1, X−1). These permutations satisfy the following three

equations:

m+ p = n+ 1

m+ q ≤ n+ 1

p+ q = n+ f(n) (F.5)

where the function f(n) = 1 if n is odd and 2 if n is even. When the second inequality

is saturated, we’re talking about the set of noncrossing pairings τ . There are Cn of these

permutations, where Cn are the Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
(F.6)

An example of a τ permutation on an even number of elements is (12)(34) · · · (n− 1 n).
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A noncrossing pairing on an odd number of elements will have a single cycle of length 1

and all other cycles of length 2. Permutations which live on G(1, X) and G(X,X−1) but

not G(1, X−1) are precisely those which live on the single geodesic G(τ,X), which is the

phase transition we’re interested in. How do we enumerate these permutations? From

the two equalities, we have:

p = n− 1−mq = m+ f(n)− 1 (F.7)

From this, we can derive an upper bound on m:

m ≤ n+ 2− f(n)

2
(F.8)

So we’ve reduced the sum over all permutations to a sum over a single parameter m =

χ(g). We now have

SUM =

n−f(n)+2
2∑

m=1

T ′(n,m)
(
eSA2

)f(n)−1 (
eSA1

)n+1
(
eSBeSA2

eSA1

)m
(F.9)

for some counting function T ′(n,m) which denotes the multiplicity at every χ(g). What

is this function? Let’s consider it for both even and odd n. For even n = 2k, the sum is

EVEN SUM =
k∑

m=1

Te(k,m)eSA2

(
eSA1

)2k+1
(
eSBeSA2

eSA1

)m
(F.10)

This is a sum over permutations starting with the cyclic permutation X at m = 1 and

ending with the pairwise connected permutations τ at m = k. Each m corresponds to

a permutation with m cycles of even length. In this case, the numbers Te(k,m) are
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equivalent to the number of 2-Dyck paths of order k with m peaks and are given by

Te(k,m) =
1

k

(
k

m

)(
2k

m− 1

)
(F.11)

The Te(k,m) that appear here are analagous to the Narayana numbers which appear in

the sum over noncrossing permutations. They are sometimes referred to as 2-Narayana

numbers and appeared in various contexts elsewhere [160, 190, 191]. We therefore have

EVEN SUM = eSA2

(
eSA1

)2k+1
k∑

m=1

Te(k,m)

(
eSBeSA2

eSA1

)m
= e2kSA1e2SA2eSB

2F1

(
1− k,−2k, 2;

eSBeSA2

eSA1

)
(F.12)

Now let’s look at the odd case. When n = 2k − 1, the sum over permutations is

ODD SUM =
k∑

m=1

To(k,m)
(
eSA1

)2k (eSBeSA2

eSA1

)m
(F.13)

Now the counting function is slightly different. We can derive it as follows: consider a

permutation allowed in the even sum (F.10) with m cycles. The second binomial factor

in (F.11) can morally be thought of as choosing m − 1 distinct elements to belong to

different cycles, while the rest is a symmetry factor that controls the number of non-

crossing permutations modulo that choice. Therefore, one can think of each noncrossing

permutation as living in a “labelled” superselection sector of size
(

2k
m−1

)
. By ignoring

this choice and dividing by this factor, we can find a degenerate set of “unlabelled” non-

crossing permutations. From this set we can remove an element from each cycle, so one

unlabelled permutation in the even sum generates m distinct unlabelled permutations in

the odd sum, which then have to be relabelled to give the correct counting. This strategy
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Figure F.1: The procedure of generating permutations on G(τ,X) for odd n from even
n. We identify even permutations on G(τ,X) which are the same up to the choice of
m− 1 elements. Each of these pieces produces m unlabelled odd pieces by removing
an element, and identifying m − 1 elements again gives us all odd permutations on
G(τ,X).

of unlabelling, removing an element, and relabelling gives us

To(k,m) = m

(
2k−1
m−1

)(
2k
m−1

)Te(k,m) =

(
2k − 1

m− 1

)(
k − 1

m− 1

)
(F.14)

If that was a bit too abstract, we illustrate this procedure in Figure F.1. The sum over

permutations for odd n is now

ODD SUM =
(
eSA1

)2k k∑
m=1

Te(k,m)

(
eSBeSA2

eSA1

)m
=
(
eSA1

)2k−1
eSA2eSB

2F1

(
1− 2k, 1− k, 1;

eSBeSA2

eSA1

)
(F.15)

As a sanity check for our counting functions Te(k,m) and To(k,m), both Te(k, k) and
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To(k, k) are equal to the symmetry factors for the pairwise connected geometries:

Te(k, k) = Ck, To(k, k) = (2k − 1)Ck−1 (F.16)

and Te(k, 1) = To(k, 1) = 1.
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Appendix G

Resolvent for Disorder Averaging

The resolvent matrix Rij(λ) encodes the eigenvalue spectrum given by

R(λ)ij =
1

λ
δij +

∞∑
n=1

1

λn+1
(ρnA)ij (G.1)

or in traced version

R(λ) =
eSA

λ
+

∞∑
n=1

1

λn+1
Tr (ρnA) (G.2)

There is a resolvent equation for the Wick contractions

R(λ)ij =
δij
λ

+
eSB

λ

∞∑
n=1

R(λ)nR(λ)ij (G.3)

We can take the trace and resum this equation:

λR(λ) = eSA +
eSBR(λ)

1−R(λ)
(G.4)
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This is the resolvent equation for the eigenvalues of a Wishart matrix. This equation can

be solved exactly for R(λ). It admits an expansion

R(λ) =
eSA

λ
+
eSB

λ

∞∑
n=1

n∑
k=1

N(n, k)

(
eSA

λ

)n
e(k−1)(SB−SA) (G.5)

where N(n, k) are the Narayana numbers. From this we can read off Tr (ρA)n:

Tr (ρA)n = enSA+SB

n∑
k=1

N(n, k)e(k−1)(SB−SA) (G.6)

This sum has a nice closed form expression

Tr (ρA)n =


eSA+nSB

2F1

(
1− n,−n; 2; eSA−SB

)
, SA < SB

enSA+SB
2F1

(
1− n,−n; 2; eSB−SA

)
, SA > SB

(G.7)

where there are two branches such that the final argument of the hypergeometric always

always lies within the unit circle on the complex plane. A similar resolvent exists for the

disorder averaging over Wick contractions for the partially transposed density matrix

ρT2A1A2
. We work in the regime where SA2 ≪ SA1 + SB. The resolvent equation is [67]

λR(λ)i1i2j1j2
= δi1i2j1j2

+ eSB

(
∞∑
m=1

R(λ)2m−2

e(2m−2)SA2

R(λ)i1i2j1j2
+

∞∑
m=1

R(λ)2m−1

e(2m−2)SA2

R(λ)i1i2j1j2

)
(G.8)

Taking the trace:

λR(λ) = eSA1
+SA2 + eSB

(
∞∑
m=1

R(λ)2m−1(1 +R(λ))

e(2m−2)SA2

)
(G.9)
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and resumming gives the final resolvent equation

λR(λ) = eSA1
+SA2 +

eSB

eSA2

R(λ)(1 +R(λ))

1− e2SA2R(λ)2
(G.10)

We recognize this as the resolvent equation for the moments of a block transposedWishart

matrix. In the case SA2 = 0 this reduces to the resolvent equation for the untransposed

density matrix. This is a cubic equation and can be solved exactly, but the solution is

not enlightening.

Previously, we saw that the moments of a Wishart matrix are given in closed form by a

sum of Narayana numbers. An equivalent statement is that the inverse Stieltjes transform

of the the resolvent defined by (G.4), a generating function for the Narayana numbers,

gives the eigenvalue spectrum of a Wishart matrix. The inverse Stieltjes transform of the

solution to (G.10), a generating function for the moments of a block transposed Wishart

matrix (“block transposed Narayana numbers”) will produce the eigenvalue spectrum of

a block transposed Wishart matrix (the “negativity spectrum”). The block transposed

Narayana numbers are not known in closed form; see [140] for a recursive definition.

218



Bibliography

[1] K. G. Wilson, “Renormalization group and critical phenomena. 1.
Renormalization group and the Kadanoff scaling picture,” Phys. Rev. B 4 (1971)
3174–3183.

[2] K. G. Wilson, “Renormalization group and critical phenomena. 2. Phase space
cell analysis of critical behavior,” Phys. Rev. B 4 (1971) 3184–3205.

[3] K. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,” Phys.
Rev. Lett. 28 (1972) 240–243.

[4] J. Polchinski, “Renormalization and Effective Lagrangians,” Nucl. Phys. B 231
(1984) 269–295.

[5] X. Fan, T. G. Myers, B. A. D. Sukra, and G. Gabrielse, “Measurement of the
Electron Magnetic Moment,” Phys. Rev. Lett. 130 no. 7, (2023) 071801,
arXiv:2209.13084 [physics.atom-ph].

[6] T. Aoyama, T. Kinoshita, and M. Nio, “Revised and Improved Value of the QED
Tenth-Order Electron Anomalous Magnetic Moment,” Phys. Rev. D 97 no. 3,
(2018) 036001, arXiv:1712.06060 [hep-ph].

[7] D. Rauch et al., “Cosmic Bell Test Using Random Measurement Settings from
High-Redshift Quasars,” Phys. Rev. Lett. 121 no. 8, (2018) 080403,
arXiv:1808.05966 [quant-ph].

[8] S. Storz et al., “Loophole-free Bell inequality violation with superconducting
circuits,” Nature 617 no. 7960, (2023) 265–270.

[9] MICROSCOPE Collaboration, P. Touboul et al., “MICROSCOPE Mission:
Final Results of the Test of the Equivalence Principle,” Phys. Rev. Lett. 129
no. 12, (2022) 121102, arXiv:2209.15487 [gr-qc].

[10] LISA Collaboration, K. G. Arun et al., “New horizons for fundamental physics
with LISA,” Living Rev. Rel. 25 no. 1, (2022) 4, arXiv:2205.01597 [gr-qc].

[11] T. Hartman, “Lectures on Quantum Gravity and Black Holes,” 2015.
http://www.hartmanhep.net/topics2015/gravity-lectures.pdf.

219

http://dx.doi.org/10.1103/PhysRevB.4.3174
http://dx.doi.org/10.1103/PhysRevB.4.3174
http://dx.doi.org/10.1103/PhysRevB.4.3184
http://dx.doi.org/10.1103/PhysRevLett.28.240
http://dx.doi.org/10.1103/PhysRevLett.28.240
http://dx.doi.org/10.1016/0550-3213(84)90287-6
http://dx.doi.org/10.1016/0550-3213(84)90287-6
http://dx.doi.org/10.1103/PhysRevLett.130.071801
http://arxiv.org/abs/2209.13084
http://dx.doi.org/10.1103/PhysRevD.97.036001
http://dx.doi.org/10.1103/PhysRevD.97.036001
http://arxiv.org/abs/1712.06060
http://dx.doi.org/10.1103/PhysRevLett.121.080403
http://arxiv.org/abs/1808.05966
http://dx.doi.org/10.1038/s41586-023-05885-0
http://dx.doi.org/10.1103/PhysRevLett.129.121102
http://dx.doi.org/10.1103/PhysRevLett.129.121102
http://arxiv.org/abs/2209.15487
http://dx.doi.org/10.1007/s41114-022-00036-9
http://arxiv.org/abs/2205.01597
http://www.hartmanhep.net/topics2015/gravity-lectures.pdf


[12] BICEP, Keck Collaboration, P. A. R. Ade et al., “Improved Constraints on
Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck
Observations through the 2018 Observing Season,” Phys. Rev. Lett. 127 no. 15,
(2021) 151301, arXiv:2110.00483 [astro-ph.CO].

[13] J. Oppenheim, “A Postquantum Theory of Classical Gravity?,” Phys. Rev. X 13
no. 4, (2023) 041040, arXiv:1811.03116 [hep-th].

[14] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string.
Cambridge Monographs on Mathematical Physics. Cambridge University Press,
12, 2007.

[15] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond. Cambridge
Monographs on Mathematical Physics. Cambridge University Press, 2007.

[16] L. Eberhardt, M. R. Gaberdiel, and R. Gopakumar, “The Worldsheet Dual of the
Symmetric Product CFT,” JHEP 04 (2019) 103, arXiv:1812.01007 [hep-th].

[17] L. Eberhardt, M. R. Gaberdiel, and R. Gopakumar, “Deriving the AdS3/CFT2

correspondence,” JHEP 02 (2020) 136, arXiv:1911.00378 [hep-th].

[18] S. Caron-Huot, Z. Komargodski, A. Sever, and A. Zhiboedov, “Strings from
Massive Higher Spins: The Asymptotic Uniqueness of the Veneziano Amplitude,”
JHEP 10 (2017) 026, arXiv:1607.04253 [hep-th].

[19] N. Arkani-Hamed, C. Cheung, C. Figueiredo, and G. N. Remmen, “Multiparticle
Factorization and the Rigidity of String Theory,” Phys. Rev. Lett. 132 no. 9,
(2024) 091601, arXiv:2312.07652 [hep-th].

[20] J. D. Bekenstein, “Black holes and entropy,” Phys.Rev. D7 (1973) 2333–2346.

[21] S. Hawking, “Particle Creation by Black Holes,” Commun.Math.Phys. 43 (1975)
199–220.

[22] D. N. Page, “Information in black hole radiation,” Phys. Rev. Lett. 71 (1993)
3743–3746, arXiv:hep-th/9306083.

[23] D. N. Page, “Average entropy of a subsystem,” Phys. Rev. Lett. 71 (1993)
1291–1294, arXiv:gr-qc/9305007.

[24] D. N. Page, “Time Dependence of Hawking Radiation Entropy,” JCAP 09 (2013)
028, arXiv:1301.4995 [hep-th].

[25] L. Susskind, L. Thorlacius, and J. Uglum, “The Stretched horizon and black hole
complementarity,” Phys. Rev. D 48 (1993) 3743–3761, arXiv:hep-th/9306069.

220

http://dx.doi.org/10.1103/PhysRevLett.127.151301
http://dx.doi.org/10.1103/PhysRevLett.127.151301
http://arxiv.org/abs/2110.00483
http://dx.doi.org/10.1103/PhysRevX.13.041040
http://dx.doi.org/10.1103/PhysRevX.13.041040
http://arxiv.org/abs/1811.03116
http://dx.doi.org/10.1017/CBO9780511816079
http://dx.doi.org/10.1017/CBO9780511618123
http://dx.doi.org/10.1007/JHEP04(2019)103
http://arxiv.org/abs/1812.01007
http://dx.doi.org/10.1007/JHEP02(2020)136
http://arxiv.org/abs/1911.00378
http://dx.doi.org/10.1007/JHEP10(2017)026
http://arxiv.org/abs/1607.04253
http://dx.doi.org/10.1103/PhysRevLett.132.091601
http://dx.doi.org/10.1103/PhysRevLett.132.091601
http://arxiv.org/abs/2312.07652
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevLett.71.3743
http://dx.doi.org/10.1103/PhysRevLett.71.3743
http://arxiv.org/abs/hep-th/9306083
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://arxiv.org/abs/gr-qc/9305007
http://dx.doi.org/10.1088/1475-7516/2013/09/028
http://dx.doi.org/10.1088/1475-7516/2013/09/028
http://arxiv.org/abs/1301.4995
http://dx.doi.org/10.1103/PhysRevD.48.3743
http://arxiv.org/abs/hep-th/9306069


[26] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, “Black Holes:
Complementarity or Firewalls?,” JHEP 02 (2013) 062, arXiv:1207.3123
[hep-th].

[27] D. Marolf and J. Polchinski, “Gauge/Gravity Duality and the Black Hole
Interior,” Phys. Rev. Lett. 111 (2013) 171301, arXiv:1307.4706 [hep-th].

[28] L. Susskind, “The Typical-State Paradox: Diagnosing Horizons with
Complexity,” Fortsch. Phys. 64 (2016) 84–91, arXiv:1507.02287 [hep-th].

[29] D. Stanford and Z. Yang, “Firewalls from wormholes,” arXiv:2208.01625

[hep-th].

[30] L. V. Iliesiu, A. Levine, H. W. Lin, H. Maxfield, and M. Mezei, “On the
non-perturbative bulk Hilbert space of JT gravity,” arXiv:2403.08696

[hep-th].

[31] A. Blommaert, C.-H. Chen, and Y. Nomura, “Firewalls at exponentially late
times,” arXiv:2403.07049 [hep-th].

[32] J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Adv.Theor.Math.Phys. 2 (1998) 231–252, arXiv:hep-th/9711200
[hep-th].

[33] S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from
noncritical string theory,” Phys.Lett. B428 (1998) 105–114,
arXiv:hep-th/9802109 [hep-th].

[34] E. Witten, “Anti-de Sitter space and holography,” Adv.Theor.Math.Phys. 2
(1998) 253–291, arXiv:hep-th/9802150 [hep-th].

[35] G. ’t Hooft, “Dimensional reduction in quantum gravity,” Conf. Proc. C 930308
(1993) 284–296, arXiv:gr-qc/9310026.

[36] L. Susskind, “The World as a hologram,” J. Math. Phys. 36 (1995) 6377–6396,
arXiv:hep-th/9409089 [hep-th].

[37] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field
theories, string theory and gravity,” Phys. Rept. 323 (2000) 183–386,
arXiv:hep-th/9905111 [hep-th].

[38] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from
AdS/CFT,” Phys.Rev.Lett. 96 (2006) 181602, arXiv:hep-th/0603001 [hep-th].

[39] S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,”
JHEP 08 (2006) 045, arXiv:hep-th/0605073 [hep-th].

221

http://dx.doi.org/10.1007/JHEP02(2013)062
http://arxiv.org/abs/1207.3123
http://arxiv.org/abs/1207.3123
http://dx.doi.org/10.1103/PhysRevLett.111.171301
http://arxiv.org/abs/1307.4706
http://dx.doi.org/10.1002/prop.201500091
http://arxiv.org/abs/1507.02287
http://arxiv.org/abs/2208.01625
http://arxiv.org/abs/2208.01625
http://arxiv.org/abs/2403.08696
http://arxiv.org/abs/2403.08696
http://arxiv.org/abs/2403.07049
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/gr-qc/9310026
http://dx.doi.org/10.1063/1.531249
http://arxiv.org/abs/hep-th/9409089
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073


[40] A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,” JHEP 08
(2013) 090, arXiv:1304.4926 [hep-th].

[41] V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A Covariant holographic
entanglement entropy proposal,” JHEP 07 (2007) 062, arXiv:0705.0016
[hep-th].

[42] X. Dong, A. Lewkowycz, and M. Rangamani, “Deriving covariant holographic
entanglement,” JHEP 11 (2016) 028, arXiv:1607.07506 [hep-th].

[43] T. Faulkner, A. Lewkowycz, and J. Maldacena, “Quantum corrections to
holographic entanglement entropy,” JHEP 11 (2013) 074, arXiv:1307.2892
[hep-th].

[44] N. Engelhardt and A. C. Wall, “Quantum Extremal Surfaces: Holographic
Entanglement Entropy beyond the Classical Regime,” JHEP 01 (2015) 073,
arXiv:1408.3203 [hep-th].

[45] X. Dong and A. Lewkowycz, “Entropy, Extremality, Euclidean Variations, and
the Equations of Motion,” JHEP 01 (2018) 081, arXiv:1705.08453 [hep-th].

[46] J. D. Bekenstein, “Generalized second law of thermodynamics in black hole
physics,” Phys. Rev. D 9 (1974) 3292–3300.

[47] S. Leutheusser and H. Liu, “Causal connectability between quantum systems and
the black hole interior in holographic duality,” Phys. Rev. D 108 no. 8, (2023)
086019, arXiv:2110.05497 [hep-th].

[48] S. A. W. Leutheusser, “Emergent Times in Holographic Duality,” Phys. Rev. D
108 no. 8, (2023) 086020, arXiv:2112.12156 [hep-th].

[49] E. Witten, “Gravity and the crossed product,” JHEP 10 (2022) 008,
arXiv:2112.12828 [hep-th].

[50] V. Chandrasekaran, R. Longo, G. Penington, and E. Witten, “An algebra of
observables for de Sitter space,” JHEP 02 (2023) 082, arXiv:2206.10780
[hep-th].

[51] V. Chandrasekaran, G. Penington, and E. Witten, “Large N algebras and
generalized entropy,” arXiv:2209.10454 [hep-th].
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