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ABSTRACT OF THE DISSERTATION

Statistical Robustness - Distributed Linear Regression, Informative Censoring, Causal
Inference, and Non-Proportional Hazards

by

Jiyu Luo

Doctor of Philosophy in Biostatistics

University of California San Diego, 2023

Professor Ronghui Xu, Chair

Robustness broadly refers to the property of the statistical method being valid even

when some of the model assumptions are violated. We investigate 4 types of statistical

robustness under 4 different problem setups. Firstly, we consider linear regression under

the distributed setting where data are stored in separate machines. When errors are subject

to heavy-tailed and/or asymmetric errors, we develop a tail-robust distributed estimator

that achieves a sub-Gaussian-type deviation bound without pooling all the data together

and without assuming Gaussian errors. Moreover, the algorithm only transfers gradient

in each step and is hence communication efficient. Secondly, we explore the two-group

Cox proportional hazards (PH) model in a randomized study. When the non-informative

xv



censoring assumption no longer holds, the inverse probability of censoring weighting (IPCW)

estimator helps correct the censoring bias by modeling the nuisance function for conditional

censoring survival. To protect against the misspecification of the nuisance function, we

propose an augmented IPCW (AIPCW) estimator which also models conditional failure

survival. The AIPCW estimator is model double robust (DR) in that the estimator will

be consistent and asymptotically normal (CAN) even when one of the root-n nuisance

estimators is wrong. The estimator is also CAN if both nuisance functions are consistently

estimated with their product error rate being faster than root-n. This so-called rate DR

property allows us to make use of machine learning (ML) methods, which directly address

the non-collapsibility of the Cox model. Thirdly, we extend the problem to observational

data with the two-group survival following the marginal structural Cox model. In addition to

the missingness due to censoring, we also need to deal with missingness coming from partial

observations of the potential outcomes. By extending the AIPCW estimator to include the

nuisance propensity score function, we develop an augmented IPW (AIPW) estimator that

is again DR with respect to the models for failure time and for missing mechanisms. Lastly,

we consider the scenario when the PH assumption fails and propose a causal estimand that

is a weighted average of the time-varying log hazards ratio. We show that this estimand

enjoys several desirable properties and can be estimated using the same AIPW estimator we

proposed for the marginal structural Cox model. A method for plotting the time-varying log

hazard ratio under observational data is also proposed.
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Chapter 1

Introduction

In this proposal, we outline the motivation and the statistical background of the

dissertation topic. The proposal focuses on developing statistically robust methods in various

problem domains. Robustness in statistics refers to the ability of a statistical method or

model to produce reliable and stable results even under violation of underlying assumptions.

In this proposal, we investigate 3 types of robustness: tail robustness, model and rate double

robustness (DR), and robustness against violation of proportional hazards. The definition of

these will be made clear later when we discuss each of them in detail.

To begin, we explore in Chapter 2 the linear regression under a distributed setting

where data can only be stored at different locations due to either storage limitations or

privacy concerns. We seek to develop a tail-robust distributed algorithm in that it can achieve

a centralized sub-Gaussian type error bound even when the error is not Gaussian and is

subject to heavy-tailed and/or asymmetric errors with finite second moments. The algorithm

is also communication efficient since it only transfers gradient information during each

update. We then extend our methods to high-dimensional settings and construct robust

confidence intervals. Optimization schemes are proposed that achieve faster computational

speed and these results are tested through numerical studies.

Next, we explore in Chapter 3 the two-group Cox proportional hazards (PH) model

in a randomized trial where the random censoring assumption could be violated. We allow
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the censoring to be informative, where the censoring time and the failure time is only

independent when conditional on additional covariates. Traditionally, inverse probability of

censoring weighting (IPCW) estimator is used, where a conditional model for the censoring

time given covariates needs to be correctly specified. By augmenting the IPCW estimator,

we develop a DR estimator with respect to the censoring model and a conditional outcome

model. Specifically, the augmented IPCW (AIPCW) estimator is model DR in that it is

consistent and asymptotically normal (CAN) as long as one of the two nuisance functions

is correctly estimated at the root-n rate. Moreover, with cross-fitting, the estimator is also

rate DR, making it CAN if both nuisance functions are correctly estimated at an arbitrarily

slow rate as long as their product error rate is faster than root-n. This allows us to apply

slower than root-n ML methods to estimate both nuisance functions, which also meets the

challenge of the non-collapsibility of the Cox model.

In Chapter 4, we extend our model from a study with random treatment assignment to

observational data and assume that the potential failure times follow the marginal structural

Cox model. In addition to dealing with informative censoring, we also simultaneously

address the bias caused by partial observations of the potential outcomes. The common

inverse probability of the treatment weighting approach would be biased if the propensity

score model is misspecified. To protect against this misspecification, we develop a model

and rate DR estimator by augmenting with respect to both treatment and censoring. Here, the

augmented IPW (AIPW) estimator is double robust with respect to the conditional outcome

model and the two models for censoring and treatment estimator. We apply our proposed

methods to a study of Japanese men in Hawaii followed since the 1960s to examine the

effect of mid-life drinking on overall survival.

In Chapter 5, we consider the implications for a potential violation of the PH

assumption models presented in Chapter 4. Although the Cox PH model is one of the most

widely used models, the PH assumption rarely, if ever strictly holds in practice. To this

end, we propose a causal estimand that has the property of being the weighted average of
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the time-varying log hazard ratio. We also show that this estimand recovers the time-fixed

log hazard ratio under the marginal structural Cox model, has a simple relationship with

treatment effects defined through the marginal structural transformation models, and enjoys

the same estimating functions as that used for the marginal structural Cox model. This

property allows us to construct IPW, AIPW, and cross-fitted AIPW estimators for it under

observational data with informative censoring. In particular, the cross-fitted AIPW estimator

enjoys the desirable model and rate DR properties. The time-varying hazard ratio itself

is non-parametric and hard to estimate, but methods for plotting it have been proposed by

Therneau and Grambsch (2000) under the randomization with random censoring setting.

We fill this gap by proposing an AIPW plot that generalizes it to observational data with

informative censoring. Lastly, we apply our proposed method to the International Non-

Hodgkin’s Lymphoma Prognostic Factors Project dataset.
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Chapter 2

Distributed Adaptive Huber Regression

2.1 Abstract

Distributed data naturally arise in scenarios involving multiple sources of obser-

vations, each stored at a different location. Directly pooling all the data together is often

prohibited due to limited bandwidth and storage, or due to privacy protocols. This paper

introduces a new robust distributed algorithm for fitting linear regressions when data are

subject to heavy-tailed and/or asymmetric errors with finite second moments. The algorithm

only communicates gradient information at each iteration, and therefore is communication-

efficient. Statistically, the resulting estimator achieves the centralized nonasymptotic error

bound as if all the data were pooled together and came from a distribution with sub-Gaussian

tails. Under a finite (2+δ)-th moment condition, we derive a Berry-Esseen bound for the

distributed estimator, based on which we construct robust confidence intervals. Numeri-

cal studies further confirm that compared with extant distributed methods, the proposed

methods achieve near-optimal accuracy with low variability and better coverage with tighter

confidence width.
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2.2 Introduction

In many applications, there are a massive number of individual agents/organizations

collecting data independently. Multiple-site research has brought the possibility of studying

rare outcome that require larger sample sizes, accelerating more generalizable findings,

and bringing together investigators with different expertise from various backgrounds

(Sidransky et al., 2009). Due to limited resources, such as bandwidth and storage, or privacy

concerns, researchers across different sites are only allowed to share summary statistics

without allowing collaborating parties to access raw data (Wu et al., 2012). Moreover,

the collected data may often be contaminated by high level of noise, and thus of low

quality. For example, in the context of gene expression data analysis, it has been observed

that some gene expression levels have kurtosis values much larger than 3, despite of the

normalization methods used (Wang et al., 2015). It is therefore important to develop

robust and distributed learning algorithms with controlled communication cost and desirable

statistical performance, measured by both efficiency and robustness.

Distributed learning algorithms have received considerable attention for multi-source

studies in the past decade. Due to privacy concerns, data collected at each source, such as

node, sensor or organization, must remain local. The goal is to develop efficient statistical

learning methods that allow shared analyses or summary statistics without sharing individual

level data. The classical divide-and-conquer principle is based on aggregating local estima-

tors, that is, estimators computed separately on local machines, to form a final estimator; see

for example, Chen and Xie (2014), Li et al. (2013), Zhang et al. (2015), Zhao et al. (2016),

Rosenblatt and Nadler (2016), Lee et al. (2017), Battey et al. (2018) and Volgushev et al.

(2019), among many others. We refer to Huo and Cao (2019) for a more complete literature

review. One-step averaging takes one communication round, and therefore is convenient

and has minimal communication cost. However, in order for the averaging estimator to

achieve to same convergence rate as the centralized estimator, each local machine must have

access to at least
√

N samples, where N is the total sample size. This limits the number of
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machines allowed in the communication network.

To overcome this barrier of one-step averaging, multi-round procedures have been

proposed for distributed data analysis with a large number of local agents (Shamir et al.,

2014; Wang et al., 2017; Jordan et al., 2019; Wang et al., 2019). For linear and generalized

linear models, Wang et al. (2017) and Jordan et al. (2019) proposed multi-round distributed

(penalized) M-estimators that achieve optimal rates of convergence under very mild con-

straints on the number of machines. Chen et al. (2019) studied an iterative algorithm with

proper smoothing for quantile regression under memory constraint, which may also apply

under distributed computing platform. Alternatively, Dobriban and Sheng (2018) proposed

an iterative weighted parameter averaging scheme for distributed linear regression when the

dimension is comparable to the sample size.

For linear models under data parallelism, most of the existing distributed algo-

rithms work with the least squares method, either by (weighted) averaging local least

squares estimators or iteratively minimizing shifted (penalized) least squares loss functions.

From a robustness viewpoint, distributed least squares based method inherits the sensitivity

(non-robustness) of its centralized counterpart to the tails of the error distributions, hence

increasing the variability of the estimator. In this paper, we propose a robust distributed algo-

rithm for linear regression with heavy-tailed errors. Our setup includes the heteroscedastic

linear model with asymmetric errors, to which the least absolute deviation (LAD) regres-

sion does not naturally apply. Following the terminology in Catoni (2012), the type of

“robustness” considered in this paper is quantified by nonasymptotic exponential deviation

of the estimator versus polynomial tail of the error distribution. The ensuing procedure does

sacrifice a fair amount of robustness to adversarial contamination of the data. The motivation

of this work is different from and should not be confused with the classical notion of robust

statistics (Huber and Ronchetti, 2009).

The distributed method is built upon the iterative, multi-round algorithm proposed by

Wang et al. (2017) and Jordan et al. (2019), which only communicates gradient information at
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each round and therefore is communication-efficient. By a delicate choice of local and global

robustifications parameters, the proposed estimator satisfies exponential-type deviation

bounds when the errors only have finite variance. Specifically, we show that the distributed

estimator, obtained by a few rounds of communications, achieves the optimal centralized

deviation bound as if the data were pooled together and subject to sub-Gaussian errors.

The robustification parameters are also self-tuned, making the algorithm computationally

convenient. We further derive a Berry-Esseen bound for the distributed estimator, based on

which we construct robust confidence intervals. Finally, we propose a distributed penalized

adaptive Huber regression estimator for high-dimensional sparse models, and establish its

(near-)optimal theoretical guarantees.

NOTATION: For each integer k ≥ 1, we use Rk to denote the the k-dimensional Euclidean

space. The inner product of two vectors u = (u1, . . . ,uk)
T,v = (v1, . . . ,vk)

T ∈ Rk is defined

by uTv = ⟨u,v⟩= ∑
k
i=1 uivi. We use ∥ ·∥p (1≤ p≤∞) to denote the ℓp-norm in Rk: ∥u∥p =

(∑k
i=1 |ui|p)1/p and ∥u∥∞ = max1≤i≤k |ui|. For any k× k symmetric matrix A ∈ Rk×k, ∥A∥2

is the operator norm of A. For a positive semidefinite matrix A ∈ Rk×k, ∥ · ∥A denotes the

norm induced by A, that is, ∥u∥A = ∥A1/2u∥2, u ∈ Rk. Moreover, we use Sk−1 = {u ∈ Rk :

∥u∥2 = 1} to denote the unit sphere in Rk. For two sequences of non-negative numbers

{an}n≥1 and {bn}n≥1, an ≲ bn indicates that there exists a constant C > 0 independent of n

such that an ≤Cbn; an ≳ bn is equivalent to bn ≲ an; an ≍ bn is equivalent to an ≲ bn and

bn ≲ an.
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2.3 Distributed Adaptive Huber Regression

2.3.1 Distributed Huber regression with adaptive robustification pa-

rameters

Consider a linear regression model

yi = xT
i β
∗+ εi, E(εi|xi) = 0, i = 1, . . . ,N, (2.1)

where xi = (xi1, . . . ,xip)
T with xi1 ≡ 1 is the covariate for the ith individual, and β∗ ∈ Rp is

the underlying coefficient vector. This setting allows conditional heteroscedastic models,

where εi can depend on xi. For example, in a local-scale model we have εi = σ(xi)ei, where

σ(xi) is a function of xi, and ei is independent of xi. In the absence of normality assumption

on the (conditional) error distribution, Huber’s M-estimator (Huber, 1973) is one of the most

widely used robust alternative to the least squares estimator. Given some τ > 0, referred to

as the robustification parameter, Huber’s regression M-estimator for estimating β∗ is defined

as

β̂ = β̂τ ∈ argmin
β∈Rp

L̂τ(β) :=
1
N

N

∑
i=1

ℓτ(yi− xT
i β),

where ℓτ(u) = 0.5u2I(|u| ≤ τ)+(τ|u|−0.5τ2)I(|u|> τ) is the Huber loss. Traditionally, τ is

often chosen to be 1.345σ with σ either determined by a robust scale estimate or simultane-

ously estimated by solving a system of equations, in order to achieve 95% asymptotic relative

efficiency while gaining robustness when there are contaminated or heavy-tailed symmetric

errors (Bickel, 1975; Western, 1995). In the presence of asymmetric heavy-tailed errors,

Fan et al. (2017) and Sun et al. (2020) proposed (regularized) adaptive Huber regression

estimators with τ scaling with the sample size and parametric dimension, and established

exponential-type deviation bounds when εi’s only have finite (1+δ)-th moments for some

0 < δ≤ 1.
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In the linear model (2.1), we allow heteroscedastic errors that are of the form

εi = σ(xi)ei, where σ(·) is an unknown function on Rp and ei is independent of xi. When the

error variables εi are heavy-tailed, asymmetric and have finite variance σ2, Sun et al. (2020)

showed that Huber’s estimator β̂τ with τ≍ σ
√

N/(p+ logN), referred to as the adaptive

Huber regression (AHR) estimator, exhibits sharp finite-sample deviation properties (Catoni,

2012), while the least squares estimator is far less concentrated around β∗. We say εi is

heavy-tailed if it has infinite k-th absolute moment for some k > 2.

In the distributed setting, assume that the overall dataset {(yi,xi)}N
i=1 is stored

on m node machines, one central machine and m− 1 local machines that connected to

the central. For j = 1, . . . ,m, the jth machine stores a subsample of n j observations,

denoted by {(yi,xi)}i∈I j , and I j’s are disjoint index sets that satisfy ∪m
j=1I j = {1, . . . ,N}

and N = ∑
m
j=1 |I j|= ∑

m
j=1 n j. Without loss of generality, we assume n1 = · · ·= n j = n and

N = n ·m is divisible by m. We thus refer to n as the local sample size. When the entire

dataset is available, the optimal τ scales with the total sample size N and dimension p for

optimal bias and robustness tradeoff. With decentralized data, each local machine only has

access to a subsample, so that the “locally optimal” τ depends on the local sample size. This,

however, will lead to sub-optimal bounds for the aggregated estimator because τ is not large

enough to offset the bias. To parallelize AHR in a distributed setting without compromising

statistical optimality, we introduce two robustification parameters τ and κ, referred to as

the global and local robustifiation parameters, and define the global and local Huber loss

functions as L̂τ(β) = (1/N)∑
N
i=1 ℓτ(yi− xT

i β) and L̂ j,κ(β) = (1/n)∑i∈I j ℓκ(yi− xT
i β) for

j = 1, . . . ,m. Using this adaptive robustification procedure, we then extend the approximate

Newton-type method (Shamir et al., 2014; Jordan et al., 2019) to robust regression with

heavy-tailed skewed errors.

Starting with an initial estimator β̃(0) of β∗, we define the shifted adaptive Huber
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loss

L̃(β) = L̂1,κ(β)−
〈
∇L̂1,κ(β̃

(0))−∇L̂τ(β̃
(0)),β

〉
= L̂1,κ(β)−

〈
∇L̂1,κ(β̃

(0))− 1
m

m

∑
j=1

L̂ j,τ(β̃
(0)),β

〉
, β ∈ Rp. (2.2)

Implicitly the shifted loss L̃(·) depends on both local and global robustification parameters κ

and τ. It uses data available only on the first machine, used as the central machine, along with

p-dimensional gradient vectors L̂ j,κ(β̃
(0)) ( j = 2, . . . ,m) that were sent from the remaining

local machines. The ensuing one-step estimator is given by

β̃
(1) = β̃

(1)
κ,τ ∈ argmin

β∈Rp
L̃(β). (2.3)

This procedure requires one communication round of O(pm) bits, and thus is communication-

efficient. To investigate the statistical properties of β̃(1), we impose the following moment

condition on the data generating process.

(C1). The predictor x ∈ Rp is sub-Gaussian: there exists υ1 ≥ (2log2)−1/2 such that

P(|zTu| ≥ υ1t) ≤ 2e−t2/2 for every unit vector u ∈ Sp−1 and t ≥ 0, where z = Σ−1/2x and

Σ = E(xx⊺) is positive definite. Moreover, the regression error ε satisfies E(ε|x) = 0 and

E(ε2|x)≤ σ2 almost surely.

For prespecified parameters r,r∗ > 0, define the events

E0(r) =
{

β̃
(0) ∈Θ(r)

}
and E∗(r∗) =

{
∥∇L̂τ(β

∗)∥Ω ≤ r∗
}
, (2.4)

where Θ(r) := {β ∈ Rp : ∥β−β∗∥Σ ≤ r} and Ω := Σ−1. Here r quantifies the statistical

accuracy of the initial estimator β̃(0), and r∗ determines the estimation error of the cen-

tralized AHR estimator which essentially depends on the score ∇L̂τ(β
∗) with the global

robustification parameter.

Theorem 1. Assume Condition (C1) holds. For any u > 0, let the robustification parameters
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satisfy τ≥ κ≍ σ
√

n/(p+u), and suppose the local sample size satisfies n ≳ p+u. Then,

conditioned on the event E0(r0)∩E∗(r∗) with 8r∗ ≤ r0 ≤ σ, the one-step estimator β̃(1)

defined in (2.3) satisfies

∥β̃(1)−β
∗∥Σ ≲

√
p+u

n
· r0 + r∗ and (2.5)

∥β̃(1)−β
∗+Σ

−1
∇L̂τ(β

∗)∥Σ ≲

√
p+u

n
· r0 (2.6)

with probability at least 1−3e−u.

In the above theorem, the bound (2.5) reflects the delicate dependence of the one-step

error on the initial error r0 as well as the centralized error rate r∗. If we take β̃(0) to be a

local estimator constructed on a single local machine that has access to only n observations,

we may expect a sub-optimal convergence rate r0 ≍ σ
√

p/n. Moreover, it can be shown that

∥∇L̂τ(β
∗)∥Ω ≲ σ

√
p/N +σ2/τ+ τp/N with high probability, up to logarithmic factors;

see Lemma 6 in the Supplementary Material. Hence, the choice of r∗ corresponds to the

optimal rate of convergence when the entire dataset is available and τ≍ σ
√

N/p. Under

the prescribed sample size scaling n ≳ p, the one-step estimator β̃(1) refines the statistical

accuracy of β̃(0) by a factor of order
√

p/n, which is strictly less than 1. We thus expect

the multi-step estimator, with sufficiently many communication rounds, will achieve the

optimal convergence rate obtainable on the entire dataset.

The proposed multi-round procedure for adaptive Huber regression is iterative,

starting at iteration 0 with an initial estimate β̃(0) ∈ Rp. At iteration t ≥ 1, it updates the

estimate β̃(t) by fitting a shifted adaptive Huber regression which leverages global first-order

information, depending on τ, and local higher-order information, depending on κ. The

procedure involves two steps.

1. COMMUNICATING GRADIENT INFORMATION. The central machine broadcasts β̃(t−1) to

every local machine. The jth machine, 1≤ j≤m, computes the gradient ∇L j,τ(β̃
(t−1)), and

sends it back to the central machine. This step requires a communication of 2(m−1)p bits.
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Algorithm 1 Communication-Efficient Adaptive Huber Regression.
Input: data batches {(yi,xi)}i∈I j , j = 1, . . . ,m, stored on m machines, robusti-

fication parameters τ ≥ κ > 0, initialization β̃(0), number of iterations T,g0 =
1.

1: for t = 1,2 . . . ,T do
2: Broadcast β̃(t−1) to all local machines;
3: The jth (1≤ j ≤ m) machine computes ∇L̂ j,τ(β̃

(t−1)), and transmit it to the central
machine;

4: Compute ∇L̂τ(β̃
(t−1)) = (1/m)∑

m
j=1 ∇L̂ j,τ(β̃

(t−1)), ∇L̂1,κ(β̃
(t−1)) and gt =

∥∇L̂τ(β̃
(t−1))∥∞ on the central machine;

5: If gt ≥ gt−1 or gt ≤ 10−5 break ; otherwise, on the central machine, solve the shifted
adaptive Huber regression problem in (2.7) to update the estimate β̃(t);

6: end for
Output: β̃(T ).

2. FITTING LOCAL SHIFTED AHR. The central machine computes the update β̃(t), defined

as a solution to the optimization problem

min
β∈Rp

L̃(t)(β) := L̂1,κ(β)−
〈

∇L̂1,κ(β̃
(t−1))− 1

m

m

∑
j=1

∇L̂ j,τ(β̃
(t−1)),β

〉
, (2.7)

which can be solved by the method of iteratively reweighted least squares or quasi-Newton

methods. Details are given in section 2.5.1. We summarize the procedure, with an early

stopping criterion, in Algorithm 1.

Theorem 2. Assume the same conditions in Theorem 1, and let 8r∗≤ r0≤σ. Conditioned on

event E0(r0)∩E∗(r∗), the distributed AHR estimator β̃(T ) with T ≳ ⌈log(r0/r∗)/ log(n/(p+

u))⌉ satisfies the bounds

∥β̃(T )−β
∗∥Σ ≲ r∗ and ∥β̃(T )−β

∗+Σ
−1

∇L̂τ(β
∗)∥Σ ≲

√
p+u

n
· r∗

with probability at least 1− (2T +1)e−u.

The above result shows that, with proper choices of τ and κ as well as the number of

iterations, the statistical error of the multi-step distributed AHR estimator matches that of

the centralized AHR estimator on the entire dataset.For the initialization, we may take β̃(0)
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to be a local AHR estimator computed on the central machine. With the above preparations,

we are ready to explicitly describe the estimation error and Bahadur linearization error of the

proposed distributed AHR estimator. The result is nonasymptotic, and carefully tracks the

impact of the parametric dimension p, local sample size n and the number of machines m.

Theorem 3. Assume Condition (C1) holds, and suppose the local sample size satisfies

n ≳ p+ logn+ log2 m, where log2 m := log(logm) and m = N/n. Choose the robustification

parameters τ≥ κ> 0 as τ≍ σ
√

N/(p+ logn+ log2 m) and κ≍ σ
√

n/(p+ logn+ log2 m).

Then, starting at iteration 0 with a local AHR estimate β̃(0), the distributed estimator β̃= β̃(T )

with T ≍ ⌈ log(m)
log(n/(p+logn+log2 m))⌉ satisfies

∥β̃−β
∗∥Σ ≲ σ

√
p+ logn+ log2 m

N
and (2.8)∥∥∥∥∥β̃−β

∗−Σ
−1 1

N

N

∑
i=1

ψτ(εi)xi

∥∥∥∥∥
Σ

≲ σ
p+ logn+ log2 m

(nN)1/2 (2.9)

with probability at least 1−Cn−1, where ψτ(u) := ℓ′τ(u) = sign(u)min(|u|,τ).

The above theorem indicates that the multi-step distributed AHR estimator β̃ achieves

the optimal statistical rate of convergence by a delicate combination of the local robustifica-

tion parameter, the global robustification parameter, and number of communication rounds.

The second bound, (2.9), explicitly describes the error term of the Bahadur linearization.

This allows to establish the asymptotic distribution of β̃ when both p,n tend to infinity.

Moreover, to achieve statistical optimality and communication efficiently simultaneously, the

above results impose minimal conditions on the number of machines m. In summary, when

data are heavy-tailed and collected on each machine remain local, the proposed procedure

delivers a statistically optimal estimate by communicating as many as O(pm log(m)) bits.
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2.3.2 Distributed confidence estimation

In this section, we consider uncertainty quantification of the multi-step estimator in

a distributed setting, with a particular focus on statistical confidence estimation. We first

establish a Berry-Esseen bound for linear functionals of the distributed AHR estimator β̃,

which explicitly quantifies the normal approximation error.

Theorem 4. In addition to the conditions in Theorem 3, assume E(ε2|x) = σ2 and

E(|ε|2+δ|x) ≤ v2+δ almost surely for some 0 < δ ≤ 1. Then, the distributed estimator

β̃ = β̃(T ) satisfies

sup
t∈R,a∈Rp

∣∣∣∣∣P
[

N1/2aT(β̃−β∗)√
E{ψτ(ε)aTΣ−1x}2

≤ t

]
−Φ(t)

∣∣∣∣∣
≲

p+ logn+ log2 m
n1/2 +

v2+δ(p+ logn+ log2 m)(1+δ)/2

σ2+δNδ/2 ,

where Φ(·) is the standard normal distribution function. In particular, assume E(|ε|3|x)≤

v3 < ∞ almost surely. Then, under the dimension constraint p+ log2 m = o(n1/2),

N1/2aT(β̃−β∗)√
E{ψτ(ε)aTΣ−1x}2

d−→N (0,1) and
N1/2aT(β̃−β∗)

σ(aTΣ−1a)1/2
d−→N (0,1)

uniformly over a ∈ Rp as n→ ∞.

Let β̃ = (β̃1, . . . , β̃p)
T be the distributed estimator described in the previous sub-

section. Theorem 4 implies that, for each 1 ≤ j ≤ p, N1/2(β̃ j − β∗j) is asymptotically

normal with zero mean and variance (Σ−1E{ψτ(ε)xxT}2Σ−1) j j. Let Σ̂ = (1/N)∑
N
i=1 xixT

i

be the sample version of Σ, and ε̂i = yi− xT
i β̃ be the fitted residuals. It can be shown that

(Σ̂−1N−1
∑

N
i=1 ψ2

τ(εi)xixT
i Σ̂−1) j j provides a consistent estimator of (Σ−1E{ψτ(ε)xxT}2Σ−1) j j.

In a distributed setting, the computation of this variance estimator requires communicating

O(p2m) bits, thus incurring exorbitant communication costs when p is large.

To achieve a tradeoff between communication and statistical efficiencies, we propose

averaging pointwise variance estimators, defined by σ̂2
j := (1/m)∑

m
k=1 σ̂2

jm for j = 1, . . . , p,
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where

σ̂
2
jk = (Σ̂−1

k Λ̂kΣ̂
−1
k ) j j, Λ̂k =

1
n ∑

i∈Ik

ψ
2
τ (̂εi)xixT

i and Σ̂k =
1
n ∑

i∈Ik

xixT
i .

This approach takes one additional round of communication, and is robust against het-

eroscedastic errors that are of the form εi = σ(xi)ei. When εi is independent of xi, the

asymptotic variances reduce to E{ψ2
τ(ε)}(Σ−1) j j, and thus can be consistently estimated

by σ̃2
j := (σ̂2

ε/m)∑
m
k=1(Σ̂

−1
k ) j j, where σ̂2

ε = (N− p)−1
∑

N
i=1 ψ2

τ (̂εi). For α ∈ (0,1), the dis-

tributed 100(1−α)% normal-based confidence intervals for β∗j , j = 1, . . . , p, are given

by [β̃ j− zα/2σ̂ jN−1/2, β̃ j + zα/2σ̂ jN−1/2] or [β̃ j− zα/2σ̃ jN−1/2, β̃ j + zα/2σ̃ jN−1/2], where

zα/2 = Φ−1(1−α/2).

2.4 Distributed Regularized Adaptive Huber Regression

In this section, we consider high-dimensional linear models under sparsity. Specifi-

cally, we allow the parametric dimension p to be much larger than the local sample size n,

and assume β∗ is s-sparse, where s = |S | and S = supp(β∗) = {1≤ j ≤ p : β∗j ̸= 0} denotes

the true active set.

Given independent observations {(yi,xi)}N
i=1 from the linear model (2.1), the cen-

tralized/global ℓ1-penalized Huber regression estimator (ℓ1-Huber) is defined as

β̂ = β̂τ(λ) ∈ argmin
β∈Rp

{
L̂τ(β)+λ∥β∥1

}
, (2.10)

where λ > 0 is a regularization parameter. Statistical properties of ℓ1-penalized Huber

regression have been thoroughly studied by Lambert-Lacroix and Zwald (2011), Fan et al.

(2017), Loh (2017) and Chinot et al. (2020) from different perspectives. To deal with

asymmetric heavy-tailed errors, Fan et al. (2017) established high probability bounds for the

ℓ1-Huber estimator with τ≍ σ
√

N/ log(p) in the high-dimensional regime p≫ n≳ s log(p).

Remark 1. In practice, it is natural to leave the intercept or a given subset of the parameters
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unpenalized in the penalized M-estimation framework (2.10). Denote by R ⊆ {1, . . . , p} the

index set of unpenalized parameters, which is typically user-specified and contains at least

index 1. A more flexible ℓ1-Huber estimator can be obtained by solving minβ∈Rp{L̂τ(β)+

λ∥βR c∥1} = minβ∈Rp{L̂τ(β)+λ∑ j∈R c |β j|}. Similar theoretical analysis can be carried

out with slight modifications, and thus will be omitted.

In a distributed setting, we integrate the ideas of Wang et al. (2017) and Jordan

et al. (2019) with adaptive robustification to parallelize regularized Huber regression with

controlled communication cost and optimal statistical guarantees. As before, let τ and

κ be the global and local robustification parameters. Recall that L̂ j,κ(·), j = 1, . . . ,m,

denote local Huber loss functions. Commenced with a regularized estimator β̃(0), let

L̃(β) = L̂1,κ(β)−⟨∇L̂1,κ(β̃
(0))−∇L̂τ(β̃

(0)),β⟩ be the shifted adaptive Huber loss as in

(2.2). With slight abuse of notation, we define the one-step ℓ1-penalized Huber regression

estimator as

β̃
(1) = β̃

(1)
κ,τ(λ) ∈ argmin

β∈Rp

{
L̃(β)+λ∥β∥1

}
. (2.11)

To assess the statistical properties of the one-step estimator β̃(1), we work under the the

following moment condition on the random covariate vector in high dimensions.

(C2). The covariate vector x = (x1, . . . ,xp)
T ∈ Rp with x1 ≡ 1 has bounded components

and uniformly bounded kurtosis. That is, max1≤ j≤p |x j| ≤ B for some B ≥ 1 and µ4 =

supu∈Sp−1 E(zTu)4 < ∞, where z = Σ−1/2x and Σ = (σ jk)1≤ j,k≤p = E(xxT). Write σu =

max1≤ j≤p σ
1/2
j j and λl = λmin(Σ) > 0. For simplicity, we assume λl = 1. Moreover, the

error variables εi satisfy E(εi|xi) = 0 and E(ε2
i |xi)≤ σ2 almost surely.

As before, we first examine the performance of β̃(1) conditioned on certain “good”

events in regard of the initialization and the centralized ℓ1-Huber estimator. For r0,λ∗ > 0,
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define

E0(r0) =
{

β̃
(0) ∈Θ(r0)∩Λ

}
and E∗(λ∗) =

{
∥∇L̂τ(β

∗)−∇Lτ(β
∗)∥∞ ≤ λ∗

}
,

where Λ := {β ∈ Rp : ∥β−β∗∥1 ≤ 4s1/2∥β−β∗∥Σ} is an ℓ1-cone.

Theorem 5. Assume Condition (C2) holds. Given δ ∈ (0,1) and 0 < r0,λ∗ ≲ σ, let (τ,κ,λ)

satisfy τ≥ κ≍ σ
√

n/ log(p/δ) and λ = 2.5(λ∗+ρ) with

ρ≍max

{
r0

√
s log(p/δ)

n
,s−1/2

σ
2
τ
−1

}
.

Moreover, suppose the local sample size satisfies n ≳ s log(p/δ). Then, conditioned on the

event E0(r0)∩E∗(λ∗), the one-step regularized estimator β̃(1) defined in (2.11) satisfies

β̃(1) ∈ Λ and

∥β̃(1)−β
∗∥Σ ≲ s

√
log(p/δ)

n
· r0 +σ

2
τ
−1 + s1/2

λ∗ (2.12)

with probability at least 1−δ.

Theorem 5 indicates that the one-step procedure is able to reduce the statistical

error of the initial estimator by a factor of s
√

log(p)/n when the local sample size satisfies

n≳ s2 log(p); see the first term on the right-hand of (2.12). The second term, σ2τ−1+s1/2λ∗,

corresponds to the global error rate achievable on the entire dataset. In view of Theorem B.2

(with δ = 1) in Sun et al. (2020), if we take λ∗ ≍ σ
√

log(p)/N and τ ≍ σ
√

N/ log(p),

the centralized ℓ1-Huber estimator given in (2.10) satisfies ∥β̂−β∗∥Σ ≲ σ2τ−1 + s1/2λ∗ ≍

σ
√

s log(p)/N with probability at least 1−Cp−1.

Now we extend the iterative procedure in Section 2.3 to high-dimensional settings,

starting at iteration 0 with an initial estimate β̃(0) ∈ Rp. At iteration t = 1,2, . . ., it proceeds

as follows:

Communicating gradient information. The jth (2≤ j ≤ m) machine receives β̃(t−1) from
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the central machine, computes the local gradient ∇L̂ j,τ(β̃
(t−1)), and sends it back to the

central.

Fitting local regularized AHR: On the central machine, solve minβ∈Rp{L̃(t)(β)+λt∥β∥1} to

obtain β̃(t), where L̃(t)(β) = L̂1,κ(β)−⟨∇L̂1,κ(β̃
(t−1))− (1/m)∑

m
j=1 ∇L̂ j,τ(β̃

(t−1)),β⟩ and

λt > 0 is a regularization parameter.

Computationally, we use a variant of the majorize-minimize algorithm (Lange et al.,

2000), a proximal gradient descent type method, to solve the regularized optimization

problem at each iteration. Details are provided in section 2.5.2. Theorem 6 below describes

the statistical properties of the solution path {β̃(t)}t≥1 conditioned on a prespecified level of

accuracy of the initial estimator.

Theorem 6. Assume Condition (C2) holds. Given δ ∈ (0,1) and 0 < r0,λ∗ ≲ σ, let (τ,κ)

satisfy τ ≥ κ ≍ σ
√

n/ log(p/δ). For t = 1,2, . . ., set λt = 2.5(λ∗+ ρt) > 0 with ρt ≍

s−1/2 max{αtr0,σ
2τ−1} and α ≍ s

√
log(p/δ)/n. Suppose the local sample size satisfies

n ≳ s2 log(p/δ), and let r∗ ≍ σ2τ−1 + s1/2λ∗. Then, conditioned on event E0(r0)∩E∗(λ∗),

the distributed regularized estimator β̃(T ) with T ≍ log(r0/r∗)
log(1/α) satisfies β̃(T ) ∈ Λ and ∥β̃(T )−

β∗∥Σ ≲ r∗ with probability at least 1−T δ.

With sufficiently many samples on the central machine—n ≳ s2 log(p), Theorems 5

and 6 ensure that the initial estimation error, albeit being sub-optimal, can be repeatedly

refined by a factor of order s
√

log(p)/n until it reaches the optimal rate. For simplicity, we

take β̃(0) to be a local ℓ1-penalized AHR estimator, that is, β̃(0) ∈ argminβ∈Rp{L1,κ(β)+

λ0∥β∥1}.

Corollary 1. Assume Condition (C2) holds, and the sample size per machine satisfies

n ≳ s2 log p. Choose the robustification and regularization parameters as τ≍ σ
√

N/ log(p),

κ≍ σ
√

n/ log(p) and

λt ≍ σ

√
log p

N
+σ

(
s2 log p

n

)t/2√
log p

n
, t = 0,1,2, . . . .
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Starting at iteration 0 with a local ℓ1-penalized AHR estimator, the multi-step estimator β̃(T )

after T ≍ ⌈log(m)⌉ rounds of communication satisfies the bounds

∥β̃(T )−β
∗∥Σ ≲ σ

√
s log p

N
and ∥β̃(T )−β

∗∥1 ≲ σs

√
log p

N

with probability at least 1−C log(m)/p.

Corollary 1, along with the global error analysis in Fan et al. (2017) and Loh (2017),

implies the optimality of distributed adaptive Huber regression in terms of the tradeoff

between communication cost and statistical accuracy.

Remark 2. Under light-tailed error distributions (e.g., sub-Gaussian errors), Lee et al.

(2017) and Battey et al. (2018) studied a one-shot approach based on averaging debiased

Lasso estimators (Zhang and Zhang, 2014; van de Geer et al., 2014). Theoretically, averaged

debiased Lasso achieves the optimal error rate when the local size satisfies n ≳ ms2 log(p);

and computationally, each local machine needs to estimate a p× p matrix for debiasing

the Lasso. We may expect the same issues for the robust one-shot method that averages

debiased ℓ1-Huber estimators. The proposed distributed AHR method not only requires the

minimum sample complexity but also is computationally efficient.

2.5 Optimization Methods

2.5.1 Barzilai-Borwein gradient descent for distributed AHR

Let us first recall the multi-round distributed procedure for adaptive Huber regression.

Starting with an initial estimator β̃(0) ∈ Rp, and given robustification parameters τ and κ,

for t = 1, . . . ,T , we update

β̃
(t) ∈ argmin

β∈Rp
L̃(t)(β) = L̂1,κ(β)−

〈
∇L̂1,κ(β̃

(t−1))−∇L̂τ(β̃
(t−1)),β

〉
. (2.13)
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Since L̃(t)(·) is convex, twice-differentiable and provably locally strongly convex, we

propose to use the gradient descent method with a Barzilai-Borwein update step (GD-BB)

(Barzilai and Borwein, 1988) to solve the optimization problem in (2.13). The Barzilai-

Borwein method is motivated by quasi-Newton methods, which avoid calculating the inverse

Hessian at each iteration. The latter is computationally expensive when p is large. To

be specific, let us consider the optimization minβ∈Rp L̃(t)(β) for a fixed t ≥ 1. Starting

with the initialization β̃
(t,0)

= β̃
(t−1)

, at (inner) iteration k = 1,2, ..., compute the update

β̃
(t,k+1)

= β̃
(t,k)
−min{ηk,10}∇L̃(t)(β̃

(t,k)
), where η1 = 1 and for k ≥ 2,

ηk =
⟨β̃(t,k)− β̃(t,k−1), β̃(t,k)− β̃(t,k−1)⟩

⟨β̃(t,k)− β̃(t,k−1),∇L̃(t)(β̃(t,k))−∇L̃(t)(β̃(t,k−1))⟩
(2.14)

or

ηk =
⟨β̃(t,k)− β̃(t,k−1),∇L̃(t)(β̃(t,k))−∇L̃(t)(β̃(t,k−1))⟩

∥∇L̃(t)(β̃(t,k))−∇L̃(t)(β̃(t,k−1))∥2
2

.

In practice, the step size computed in GD-BB may sometimes vibrate to some extent, and

this may cause instability of the algorithm. Therefore, we set a upper bound for the step

sizes by taking min{ηk,10}. This procedure is summarized in Algorithm 2.

2.5.2 Majorize-minimize algorithm for distributed penalized AHR

In the high-dimensional setting, we need to solve ℓ1-penalized shifted Huber loss

minimization problems. With slight abuse of notation, given an initial regularized estimator

β̃(0), at each iteration t = 1,2, . . . ,T , define the update as

β̃
(t) ∈argmin

β∈Rp

{
L̃(t)(β)+λ∥β−∥1 = L̂1,κ(β)

−
〈
∇L̂1,κ(β̃

(t−1))−∇L̂τ(β̃
(t−1)),β

〉
+λ∥β−∥1

}
. (2.15)
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Algorithm 2 Gradient Descent with Barzilai-Borwein stepsize for solving (2.13)

Input: Local data vectors {(yi,xi)}i∈I1 , initial estimator β̂0 = β̃(t−1), gradient
∇L̂1,κ(β̃

(t−1)) and ∇L̂ j,τ(β̃
(t−1)) for j = 1, . . . ,m, and gradient tolerance level δ =

10−4.
1: Compute β̂1← β̂0−∇L̃(t)(β̂0)
2: for k = 1,2 . . . do
3: Compute ηk as defined in (2.14).
4: Update β̂k+1← β̂k−min{ηk,10}∇L̃(t)(β̂k);
5: end for when ∥∇L̃(t)(β̂k)∥∞ ≤ δ

Here we use β− ∈ Rp−1 to denote the subvector of β with its first component removed. To

solve the optimization problem in (2.15), we employ the locally adaptive majorize-minimize

(LAMM) principle Fan et al. (2018), which extends the classical MM algorithm (Hunter and

Lange, 2000) to accommodate ℓ1 penalty. This procedure minimizes a surrogate ℓ1-penalized

isotropic quadratic function at each iteration, thus permitting an analytical solution.

Let L̃(·) be the loss function of interest. For k = 1,2, ..., define

gk(β;β
k−1,φk) = L̃(βk−1)+

〈
∇L̃(βk−1),β−β

k−1〉+ φk

2
∥β−β

k−1∥2
2.

We say gk(β;βk−1,φk) majorizes L̃(β) at βk−1 if

gk(β;β
k−1,φk)≥ L̃(β) ∀β ∈ Rp and gk(β

k−1;β
k−1,φk) = L̃(βk−1). (2.16)

By choosing φk large enough, gk(·;βk−1,φk) is guaranteed to satisfy (2.16). To find

the smallest such φk, we start with φ0 = 0.0001, and repeatedly inflate it by a constant factor,

say 1.1, until (2.16) is satisfied. Finally, we update βk by minimizing

gk(β;β
k−1,φk)+λ∥β−∥1. (2.17)

Due to the isotropic quadratic term in gk(β;βk−1,φk), βk can be obtained by a simple analytic
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Algorithm 3 Local adaptive majorize-minimise (LAMM) algorithm for solving (2.11)

Input: Local data vectors {(yi,xi)}i∈I1 , initial estimator β̂0 = β̃(t−1) gradient vectors
∇L̂1,κ(β̃

(t−1)) and ∇L̂τ(β̃
(t−1)), regularisation parameter λ, initial isotropic parameter φ0

and convergence tolerance δ

1: for k = 1,2 . . . do
2: Setφk←max{φ0,φk−1/1.1}
3: repeat
4: Update β̂k

1← β̂
k−1
1 −φ

−1
k ∇β1L̃(β̂k−1)

5: Update β̂k
j← S(β̂k−1

j −φ
−1
k ∇β j L̃(β̂k−1),φ−1

k λ) for j = 2, . . . , p

6: If gk(β̂
k; β̂k−1,φk)< L̃(β̂k), set φk← 1.1φk

7: until gk(β̂
k; β̂k−1,φk)≥ L̃(β̂k)

8: end for when ∥β̂k− β̂k−1∥2 ≤ δ

formula:  βk
1 = β

k−1
1 −φ

−1
k (∇L̃(βk−1))1

βk
j = S(βk−1

j −φ
−1
k (∇L̃(βk−1)) j,φ

−1
k λ), j = 2, . . . , p,

where S(u,λ) = sign(u)max(|u|−λ,0) denotes the soft-thresholding operator. This algo-

rithm also guarantees a descent in the overall loss function at every iteration, which is a

direct consequence of (2.16) and (2.17):

L̃(βk)+λ∥βk
−∥1 ≤ gk(β

k;β
k−1,φk)+λ∥βk

−∥1

≤ gk(β
k−1;β

k−1,φk)+λ∥βk−1
− ∥1 = L̃(βk−1)+λ∥βk−1

− ∥1.

Algorithm 3 summarizes the LAMM algorithm described above.

2.6 Numerical Studies

In this section, we compare the numerical performance of the proposed method with

several state-of-the-art distributed regression methods in both low and high dimensions.
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2.6.1 Distributed robust regression and inference

In the low-dimensional setting where n≫ p, we consider five distributed regression

methods: (i) the global adaptive Huber regression (AHR) estimator (Sun et al., 2020)

that uses all the available N = mn observations; (ii) divide-and-conquer AHR (DC-AHR)

estimator based on averaging m local AHR estimators; (iii) DC-OLS estimator that averages

m local OLS estimators; (iv) distributed OLS estimator (Shamir et al., 2014); and (v) the

proposed distributed AHR estimator with early stopping.

To implement methods (i) and (ii), we use the self-tuning principle proposed by Wang

et al. (2021) which automatically selects the robustification parameter τ. The distributed

procedures (iv) and (v) are iterative, and require a reasonably well initial estimator, say β̃(0).

In our simulations, we take β̃(0) to be either the DC-AHR or the DC-OLS estimator, which

only requires one communication round. When the error distribution is heavy-tailed and

symmetric, DC-AHR often has better finite-sample performance than DC-OLS. However, it

produces biased estimate when the error is asymmetric. In contrast, although the DC-OLS

exhibits larger variability due to heavy-tailedness, it has smaller bias on average. Therefore,

we use DC-OLS estimator as the initialization for both methods (iv) and (v). Recall that

the distributed AHR estimator involves two robustification parameters κ and τ. The local

parameter κ can be automatically obtained by the self-tuning procedure (Wang et al., 2021).

Guided by theoretical orders of (κ,τ) stated in Theorem 3, we choose the global parameter

τ to be cm1/2κ, where c≥ 1 is a numerical constant that can be tuned by the validation set

approach. We suggest to choose c from {1,2,3,4,5}, which suffices to achieve promising

performance in a wide range of simulation settings.

We generate data vectors {(yi,xi)}N
i=1 from a heteroscedastic model yi = xT

i β∗+

c−1(xT
i β∗)2εi, where β∗ = (1.5, . . . ,1.5)T ∈ Rp,xi = (1,xi2, . . . ,xip)

T with xi j ∼N (0,1) for

j = 2, . . . , p and c =
√

3∥β∗∥2
2 that makes E{c−1(xT

i β∗)2}2 = 1. The regression errors εi are

generated from one of the following four distributions (centered if the mean is nonzero): (a)

N (0,1) (standard normal), (b) t2 (t-distribution with 2 degrees of freedom), (c) Par(4,2)–
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Pareto distribution with scale parameter 4 and shape parameter 2, and (d) Burr(1,2,1)–

Burr distribution or the Singh-Maddala distribution (Singh and Maddala, 1976), which is

commonly used to model household income. First, we fix (n, p) = (400,20) and let the

number of machines m increase from 10 to 500. Figure 2.1 plots the ℓ2-error ∥β̂−β∗∥2

versus the number of machines, averaged over 500 replications, for all five methods. The

global and distributed AHR estimators have almost identical performance, thus corroborating

our theoretical results. The DC-AHR estimator only performs well under symmetric errors

and suffers from non-negligible bias if the errors come from asymmetric distributions. This

is largely expected because the robustification parameter for a local AHR estimator is tuned

by a small subset of the data and results in a bias scaling with the local sample size. After

averaging, this bias will not be offset when the number of machines increases. This points

out a key drawback of the one-shot averaging approach when dealing with skewed data

distributed across local machines. The DC-OLS method has decaying estimation error as m

grows, but at a slower rate compared to the global and the distributed AHR estimators. The

boxplots in Figure 2.2 show that the DC-OLS method often produces very poor estimates

with high variability, while the distributed AHR method exhibits high degree of robustness.

Turning to uncertainty quantification, we construct approximate 95% confidence

intervals for the slope coefficients based on distributed OLS and AHR methods. As before,

we set (n, p) = (400,20) and let m increase from 10 to 500. Table 2.1 shows the average

coverage probabilities and widths, with standard errors in parentheses, across all slope

coefficients based on 500 Monte Carlo simulations. Across all the settings, the AHR-

based confidence intervals are consistently accurate with tight width and reliable with high

coverage. In the presence of heavy-tailed errors, the OLS-based confidence intervals tend to

be wider, and standard errors of the interval width are also larger than those of the AHR

method by one order of magnitude.
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2.6.2 Distributed regularized Huber regression

In the high-dimensional setting where the dimension p exceeds the sample size n,

we compare four methods across a range of settings: (1) centralized ℓ1-penalized AHR

estimator; (2) DC ℓ1-penalized AHR estimator; (3) centralized Lasso; and (4) distributed

regularized AHR estimator with T = ⌊log(m)⌋ rounds of communication and with a local

Lasso estimator as the initialization. All four methods involve a regularization parameter

λ, which will be tuned by a held-out validation set of size ⌊0.25N⌋. The robustification

parameter τ in methods (1), (2) and (4) is selected by the self-tuning principle proposed by

Wang et al. (2021).

The simulated data {(yi,xi)}N
i=1 is generated from a heteroscedastic model yi =

xT
i β∗+c−1(xT

i β∗)2εi, where β∗=(1.5,1.5,1.5,1.5,1.5,0, . . . ,0)T ∈Rp, xi =(1,xi2, . . . ,xip)
T

with xi j ∼N (0,1) for j = 2, . . . , p, and c =
√

3∥β∗∥2
2. The regression errors εi are generated

from one of the four distributions considered in Section 2.6.1, which are N (0,1), t2 (heavy-

tailed and symmetric), Par(4,2) and Burr(1,2,1) (heavy-tailed and skewed). We fix (n, p) =

(250,1000) and let m increase from 10 to 50. Figure 2.3 plots the ℓ2 error ∥β̂−β∗∥2 versus

the number of machines m, averaged over 100 replications, for all four methods. The

averaging ℓ1-penalized AHR estimator has a nondecaying estimation error as m increases,

which is expected because of its sub-optimal convergence rate that scales with the local

sample size n. The distributed AHR estimator with T = ⌊log(m)⌋ rounds of communication

performs as good as the centralized AHR on the entire data set, and has much smaller

estimation errors than the centralized Lasso in heavy-tailed cases. Furthermore, from the

boxplots displayed in Figure 2.4 we see that the distributed AHR improves upon centralized

Lasso in terms of both average performance and variability.
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Figure 2.1: Plots of estimation error (under ℓ2-norm) versus number of machines when
(n, p) = (400,20), averaged over 500 replications. Five estimators are presented: global
AHR estimator ( ); DC-AHR estimator ( ); DC-OLS estimator ( ); distributed
OLS estimator ( ); and distributed AHR estimator ( ).
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Figure 2.2: Boxplots of estimation error (under ℓ2-norm) versus the number of machines
when (n, p) = (400,20) for distributed OLS estimator ( ) and distributed AHR estimator ( ),
averaged over 500 replications.
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Figure 2.3: Plots of estimation error (under ℓ2-norm) versus the number of machines,
over 100 replications, under a high-dimensional heteroscedastic model when (n, p,s) =
(250,1000,5). Four estimators are presented: centralized ℓ1-penalized AHR estimator
( ); DC ℓ1-penalized AHR estimator ( ); centralized Lasso estimator ( ); and
proposed distributed regularized AHR estimator ( )
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Table 2.1: Coverage probabilities and widths (with standard errors in parentheses) of
the normal-based CIs (averaged over all slope coefficients) for the distributed OLS and
distributed AHR methods, based on 500 Monte Carlo simulations.

N(0,1) t2 Par(4,2) Burr(1,2,1)
Coverage
mean (sd)

Width
mean (sd)

Coverage
mean (sd)

Width
mean (sd)

Coverage
mean (sd)

Width
mean (sd)

Coverage
mean (sd)

Width
mean (sd)

m = 50
Dist-OLS 0.93(0.011) 0.029(0.001) 0.93(0.011) 0.097(0.056) 0.93(0.012) 0.35(0.420) 0.94(0.011) 0.088(0.068)
Dist-AHR 0.95(0.007) 0.031(0.001) 0.95(0.009) 0.077(0.007) 0.95(0.008) 0.23(0.025) 0.95(0.009) 0.058(0.006)

m = 100
Dist-OLS 0.93(0.012) 0.020(0.000) 0.94(0.010) 0.072(0.056) 0.93(0.012) 0.25(0.220) 0.93(0.008) 0.058(0.021)
Dist-AHR 0.95(0.010) 0.022(0.001) 0.96(0.008) 0.058(0.005) 0.95(0.009) 0.18(0.017) 0.95(0.009) 0.044(0.004)

m = 200
Dist-OLS 0.93(0.011) 0.014(0.000) 0.93(0.013) 0.052(0.031) 0.93(0.010) 0.18(0.095) 0.94(0.015) 0.044(0.021)
Dist-AHR 0.96(0.007) 0.015(0.000) 0.95(0.011) 0.043(0.003) 0.95(0.009) 0.13(0.012) 0.96(0.012) 0.034(0.003)

m = 300
Dist-OLS 0.93(0.013) 0.012(0.000) 0.94(0.011) 0.043(0.022) 0.94(0.011) 0.18(0.820) 0.93(0.008) 0.038(0.020)
Dist-AHR 0.95(0.010) 0.013(0.000) 0.96(0.010) 0.036(0.003) 0.95(0.012) 0.11(0.009) 0.96(0.009) 0.028(0.002)

m = 400
Dist-OLS 0.93(0.010) 0.010(0.000) 0.94(0.011) 0.040(0.046) 0.93(0.008) 0.13(0.071) 0.94(0.010) 0.032(0.014)
Dist-AHR 0.95(0.009) 0.011(0.000) 0.96(0.009) 0.031(0.002) 0.95(0.012) 0.10(0.008) 0.96(0.009) 0.025(0.002)
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Figure 2.4: Boxplots of estimation errors (under ℓ2-norm) versus the number of machines,
over 100 replications, for centralized Lasso ( ) and distributed AHR ( ) under a high-
dimensional heteroscedastic model when (n, p,s) = (250,1000,5).

2.7 Acknowledgement

Chapter 2, in full, is a reprint of the material as it may appear in Luo, Jiyu, Sun,

Qiang; and Zhou, Wen-Xin. (2022). Distributed adaptive Huber regression. Computa-

tional Statistics and Data Analysis, 169, 107419. The dissertation author was the primary

investigator and author of this paper.

27



Chapter 3

Doubly Robust Inference for Hazard

Ratio under Informative Censoring with

Machine Learning

3.1 Abstract

Randomized clinical trials with time-to-event outcomes have traditionally used

the log-rank test followed by the Cox proportional hazards (PH) model to estimate the

hazard ratio between the treatment groups. These are valid under the assumption that the

right-censoring mechanism is non-informative, i.e. independent of the time-to-event of

interest within each treatment group. More generally, the censoring time might depend on

additional covariates, and inverse probability of censoring weighting (IPCW) can be used

to correct for the bias resulting from the informative censoring. IPCW requires a correctly

specified censoring time model conditional on the treatment and the covariates. Doubly

robust inference in this setting has not been plausible previously due to the non-collapsibility

of the Cox model. However, with the recent development of data-adaptive machine learning

methods we derive an augmented IPCW (AIPCW) estimator that has the following doubly

robust (DR) properties: it is model doubly robust, in that it is consistent and asymptotically
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normal (CAN), as long as one of the two models, one for the failure time and one for the

censoring time, is correctly specified; it is also rate doubly robust, in that it is CAN as long

as the product of the estimation error rates under these two models is faster than root-n. We

investigate the AIPCW estimator using extensive simulation in finite samples.

3.2 Introduction

In the analysis of time-to-event data, the Cox proportional hazards (PH) model (Cox,

1972) has been widely used to estimate the hazard ratio (HR) between two treatment groups

in a randomized clinical trial, for example. The validity of the maximum partial likelihood

estimator (MPLE) under the PH model relies on the non-informative censoring assumption

(Fleming and Harrington, 1991); that is, the censoring time random variable is independent

of the failure time random variable within each treatment group. In practice, this assumption

can be violated which leads to informative censoring, and the censoring time may well

depend on additional covariates. This issue was recently highlighted in Van Lancker et al.

(2021), who aimed to develop procedures to select baseline covariates in order to be adjusted

for in the Cox regression model. Such adjustment, however, changes the effect estimand,

making it difficult to compare across different adjustment sets. Alternatively, the crude or

marginal hazard ratio, as it is often referred to in the medical literature, between the two

groups can still be consistently estimated using inverse probability of censoring weighting

(IPCW) under the relaxed censoring assumption that the censoring time and the failure time

are independent given the additional covariates.

IPCW was proposed in Robins and Finkelstein (2000) to correct for bias resulting

from informative censoring of the log-rank test and, prior to that, in Robins (1993). Up

until then, the main body of literature in both applied and theoretical survival analysis had

assumed non-informative censoring, given the predictors in a regression model (Fleming

and Harrington, 1991). A separate line of research where IPCW was called for, was under

violation of the PH assumption, where it was recognized that the MPLE gave rise to a
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population quantity that involved the nuisance censoring distribution (Xu, 1996; Xu and

O’Quigley, 2000). A series of work has since been done to correct for this bias using

IPCW approaches, including Boyd et al. (2012); Hattori and Henmi (2012); Nguyen and

Gillen (2017); Nuño and Gillen (2021). We note that the terminology ‘IPCW’ was not

always mentioned in some of these works, which used the (conditional) survival distribution

increments as weights in each risk set; but these are algebraically equivalent to the inverse

probability of censoring weights.

The censoring distribution used in IPCW is often modeled parametrically or semi-

parametrically, and the resulting IPCW estimator is consistent and asymptotically normal

(CAN) if the model is correctly specified. Nguyen and Gillen (2017) proposed a survival

tree approach to estimate the conditional censoring distribution given the covariates, but

with no theoretical guarantee for inference. In fact, it is known that the resulting estimator is

typically biased (Belloni et al., 2013).

Doubly robust (DR) approaches were developed when handling missing data (Robins,

1993; Robins et al., 1995; Scharfstein et al., 1999; Robins et al., 2000b; Robins and Rotnitzky,

2001; Van der Laan and Robins, 2003; Bang and Robins, 2005; Tsiatis, 2006). It is called

doubly robust because two working models are involved, one for the outcome of interest,

and one for the missing data mechanism, and the estimator is consistent as long as one of the

two working models are correctly specified. When IPW is used to handle the missingness

(referred to as coarsening), this usually comes down to augmentation with the coarsened

data and the resulting DR estimator is an augmented IPW (AIPW) estimator (Tsiatis, 2006).

Since right censoring in survival data may be framed as a type of coarsening (Tsiatis,

2006), Rotnitzky and Robins (2005) developed an augmented IPCW (AIPCW) approach for

censored survival data. For the PH model, however, this approach is not straightforward to

apply to. As will be seen later, this is mainly due to the non-collapsibility of the Cox model

(Martinussen and Vansteelandt, 2013; Tchetgen Tchetgen and Robins, 2012; Rava, 2021).

In this paper, we consider simultaneously the regression parameter and the nuisance
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baseline hazard function under the PH model. This naturally gives rise to full data estimating

equations that are sums of independent and identically distributed (i.i.d.) martingales. The

augmentation leads to working models for the failure time and the censoring time given

the group indicator and the covariates. To specify a conditional failure time model that is

compatible with the original (marginal) PH model given the group membership only, data

adaptive machine learning (ML) or nonparametric methods are needed. With cross-fitting

(Chernozhukov et al., 2018), the resulting AIPCW estimator has doubly robust properties

not only in the classical sense, which is referred to as model doubly robust, but also rate

doubly robust (Smucler et al., 2019; Hou et al., 2021). Here, rate double robustness refers

to an estimator being CAN when the product of the estimation error rates under the two

working models is faster than root-n, while either one of them is allowed to be arbitrarily

slow.

The rest of the paper is organized as follows. In Section 3.2.1, we state the model and

assumption about censoring. In Section 3.3, we take a missing data approach by constructing

the AIPCW score from the full data score, and provide a detailed algorithm for the cross-

fitted AIPCW estimator. Asymptotic properties of the AIPCW estimator are described in

Section 3.4. In Section 3.5, we conduct simulations for the AIPCW estimator using different

nuisance estimators, and also compare them with the IPCW estimators. Finally, we conclude

with discussion in Section 3.6. Additional materials are provided in the Appendix.

3.2.1 Model and assumption

Let T and C be the failure time and the censoring time, respectively. Denote

X = min(T,C), and ∆ = I(T ≤C). Denote also Y (t) = I(X ≥ t) the at-risk process, and

N(t) = I(X ≤ t,∆ = 1) the failure event counting process. We consider the two-group

survival setting where A is a binary group indicator. For a randomized trial, this can be the

treatment groups. Let Z be a p-dimensional vector of baseline covariates. We assume that

the data consist of n independent and identically distributed (i.i.d.) copies of the random
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vectors O = (X ,∆,A,Z).

Assumption 1. (informative censoring) C ⊥ T | (A,Z).

We assume the PH model for the two-group survival:

λ(t|A) = λ0(t)exp(βA), (3.1)

where λ(t|A) denotes the group-specific hazard function of T , β is the log hazard ratio, and

λ0(t) is the baseline hazard function.

3.3 Doubly robust inference

In this section following Tsiatis (2006) we treat right censoring as a coarsened data

problem. We start with a set of full data score functions under the PH model, and show

that when IPCW is applied to this set of full data score functions we obtain the familiar

IPCW estimator under the Cox model (Boyd et al., 2012). We then mimic the approach of

Rotnitzky and Robins (2005) to augment the IPCW score functions and arrive at a doubly

robust AIPCW estimator. Finally, for inference purposes we introduce cross-fitting and

describe the implementation of the cross-fitted AIPCW estimator.

3.3.1 Full data score functions

With the full data vector (T,A,Z), we follow the commonly used NPMLE approach

for the semiparametric PH model and consider simultaneously the log hazard ratio β and

the cumulative baseline hazard Λ0(t) =
∫ t

0 λ0(u)du, which is discretized to jumps at the

observed event times only (Nielsen et al., 1992).

As in Fleming and Harrington (1991), we define the full data counting process
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NT (t) = I(T ≤ t) and the full data at-risk process YT (t) = I(T ≥ t). Let

MT (t;β,Λ0) = NT (t)−
∫ t

0
YT (u)eβAdΛ0(u).

Then MT (t;β,Λ0) is the full data martingale with respect to the full data filtration

F f
t = {NT (u), YT (u+),A;0≤ u≤ t} under model (3.1).

We have the following full data score functions for a single copy of the data:

D f
1(β,Λ0, t) = dMT (t;β,Λ0), (3.2)

D f
2(β,Λ0) =

∫
τ

0
AdMT (t;β,Λ0). (3.3)

where τ is the maximum follow-up time. Note that D f
1(β,Λ0, t) is a martingale increment

that is often used in survival analysis; see for example, Lu and Ying (2004). For each t, the

true values of the parameters β and Λ0 satisfy

E{D f
1(β,Λ0, t)}= 0 and E{D f

2(β,Λ0)}= 0.

3.3.2 IPCW score functions

In survival analysis, it’s common to consider the quantity

M(t) = N(t)−
∫ t

0
Y (u)eβAdΛ0(u),

even though it is not a martingale under informative censoring. We define Sc(t|A,Z) =

P(C ≥ t|a,Z) the conditional survival function of C, ∆̃(t) = I(min(T, t)<C), and denote

dMw(t;β,Λ0,Sc) =Sc(t|A,Z)−1
∆̃(t)dMT (t;β,Λ0)

=Sc(t|A,Z)−1
{

dN(t)−Y (t)eβAdΛ0(t)
}
. (3.4)
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The expression (3.4) then leads to the IPCW score functions:

Dw
1 (β,Λ0, t;Sc) = dMw(t;β,Λ0,Sc), (3.5)

Dw
2 (β,Λ0;Sc) =

∫
τ

0
AdMw(t;β,Λ0,Sc). (3.6)

With n copies of i.i.d. data, this gives the following IPCW weighted estimating

equations:

1
n

n

∑
i=1

Dw
1i(β,Λ, t;Sc) = 0,

1
n

n

∑
i=1

Dw
2i(β,Λ;Sc) = 0,

which after some algebra, can be combined to arrive at the IPCW estimating equation (Boyd

et al., 2012):

n

∑
i=1

∫
τ

0
Ŝc(t|Ai,Zi)

−1

{
Ai−

S̃(1)(β, t; Ŝc)

S̃(0)(β, t; Ŝc)

}
dNi(t) = 0,

where S̃(l)(β, t;Sc) = ∑
n
j=1 Al

jSc(t|A j,Z j)
−1Y j(t)eβA j for l = 0,1, and Ŝc(t|A,Z) is some

consistent estimator of Sc(t|A,Z).

3.3.3 AIPCW score functions

The consistency of the IPCW estimator relies critically on Sc(t|A,Z) being correctly

specified. When it is misspecified, the IPCW estimator is biased. Rotnitzky and Robins

(2005) provides an augmentation approach for an IPCW estimator in survival analysis, so

that it has the doubly robust property to be detailed later. However, their approach cannot be

directly applied because we have not only different weights for different individuals in the

data set, but also different weights for each risk set. To this end, it is helpful to augment the

martingale increment in (3.4) instead.
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Denote Nc(t) = I(X ≤ t,∆ = 0) the counting process for the censoring event, and

Λc(t|A,Z) =
∫ t

0 Sc(u|A,Z)−1d{1− Sc(u|A,Z)} the cumulative hazard function of C given

A,Z. Then Mc(t;Sc) = Nc(t)−
∫ t

0 Y (u)dΛc(u|A,Z) is the martingale corresponding to the

censoring event counting process with respect to its natural history filtration. Also denote

S(t|A,Z) = P(T ≥ t|A,Z). Define

dMaug(t;β,Λ0,S,Sc)

=dMw(t;β,Λ0,Sc)+
∫ t

0
E{dMT (t;β,Λ0)|A,Z,T ≥ u}dMc(u;Sc)

Sc(u|A,Z)
(3.7)

=
dN(t)−Y (t)dΛ0(t)eβA

Sc(t|A,Z)
− J(t;S,Sc)

{
dS(t|A,Z)+S(t|A,Z)eβAdΛ0(t)

}
, (3.8)

where J(t;S,Sc) =
∫ t

0 S(u|A,Z)−1Sc(u|A,Z)−1dMc(u;Sc). The last ‘=’ above used the fact

that, for u≤ t,

E{NT (t)|A,Z,T ≥ u}= P(T ≤ t|A,Z,T ≥ u) = 1− S(t|A,Z)
S(u|A,Z)

, (3.9)

E{YT (t)|A,Z,T ≥ u}= P(T ≥ t|A,Z,T ≥ u) =
S(t|A,Z)
S(u|A,Z)

. (3.10)

The above leads to the AIPCW score functions:

D1(β,Λ0, t;S,Sc) = dMaug(t;β,Λ0,S,Sc), (3.11)

D2(β,Λ0;S,Sc) =
∫

τ

0
A ·dMaug(t;β,Λ0,S,Sc). (3.12)

Assumption 2. S(τ|a,z)> c for a ∈ {0,1},z ∈ Z and some c > 0.

Assumption 3. Sc(τ|a,z)> c for a ∈ {0,1},z ∈ Z and some c > 0.

In Theorem 7 below, we will show that (3.11) and (3.12) are doubly robust score

functions. We use superscript o to denote the truth; for example, So(t|A,Z), So
c(t|A,Z) and

Λo
c(t|A,Z) denote the true S(t|A,Z), Sc(t|A,Z) and Λc(t|A,Z), respectively. Also let βo and

Λo
0 denote the true values of the parameters of interest. We assume the following:
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Theorem 7. Under Assumptions 1-3, if either S = So or Sc = So
c ,

E{D1(β
o,Λo

0, t;S,Sc)}= E{D2(β
o,Λo

0;S,Sc)}= 0.

The above theorem states that the scores (D1,D2) identifies the true parameters

(βo,Λo
0), as long as one of the two survival functions, S(t|A,Z) and Sc(t|A,Z), is true.

Given n i.i.d. data points, we estimate βo,Λo by solving

1
n

n

∑
i=1

D1i(β,Λ0, t;S,Sc) = 0, (3.13)

1
n

n

∑
i=1

D2i(β,Λ0;S,Sc) = 0. (3.14)

Solving for (3.13) gives

Λ̃0(β, t;S,Sc) =
∫ t

0

1
n ∑

n
i=1 Sc(u|Ai,Zi)

−1dNi(u)− Ji(u;S,Sc)dS(u|Ai,Zi)

S (0)(β,u;S,Sc)
, (3.15)

where

S (l)(β, t;S,Sc) =
1
n

n

∑
i=1

Al
ie

βAi{Sc(u|Ai,Zi)
−1Yi(t)+ Ji(t;S,Sc)S(t|Ai,Zi)}

for l = 0,1. Further define Ā(β, t;S,Sc) = S (1)(β, t;S,Sc)/S (0)(β, t;S,Sc). After plugging

(3.15) into (3.14), we have:

U(β;S,Sc)

=
1
n

n

∑
i=1

∫
τ

0
{Sc(t|Ai,Zi)

−1dNi(t)− Ji(u;S,Sc)dS(t|Ai,Zi)}{Ai− Ā(β, t;S,Sc)}= 0.(3.16)

It’s worth noting that like the partial likelihood score equation, (3.16) is not a sum of

i.i.d terms due to Ā(β, t;S,Sc). As seen from the derivation leading to (3.8), the aug-

mentation to the weighted martingale increment, which is linear in N(t) and Y (t), is the
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result of augmentation to the weighted N(t) and Y (t), respectively. It is apparent that

Sc(t|Ai,Zi)
−1dNi(t)− Ji(t;S,Sc)dS(t|Ai,Zi) is the augmented weighted dNi(t), and the aug-

mented weighted Yi(t)’s give rise to the quantities S (l)(·) and Ā(·), which are the analogies

of similar quantities under the usual Cox model. For example, Ā(β, t;S,Sc) corresponds to

the empirical mean of the treatment random variable A among subjects who fail at time t,

which we may denote by ρ(β, t).

The quantity ρ(β, t) was implied in Rotnitzky and Robins (2005), as a nuisance

parameter, based on the partial likelihood score function. It would, however, not be straight-

forward to construct compatible models for ρ(β, t), which is defined on nested risk sets over

time. The set of full data estimating functions we consider here, simultaneously for β and

Λ0, on the other hand, lead naturally to models for S and Sc.

3.3.4 Cross-fitted AIPCW estimator

In practice, both survival functions S(t|A,Z) and Sc(t|A,Z) are unknown and need

to be estimated by some estimator Ŝ(t|A,Z) and Ŝc(t|A,Z). Parametric and semiparametric

models, like the Cox model and the accelerated failure time (AFT) model, are often ap-

plied since their theoretical properties are well-studies and with little requirement on the

computing power. However, these models can be misspecified, especially for S(t|A,Z) due

to the non-collapsibility of the Cox model. ML or nonparametric methods, like splines

(Gray, 1992; Kooperberg et al., 1995a) and random survival forest (Ishwaran et al., 2008),

offer a good alternative. ML or nonparametric estimators, however, do not have root-n

convergence rate, which makes it difficult to conduct inference. We will show that the

asymptotic normality can be established if we also apply cross-fitting, where the entire

sample is first split into k folds, and for each fold, we estimate the nuisance functions using

only the out-of-fold sample. Details of the cross-fitted AIPCW estimator β̂ are described

in Algorithm 4. Heuristically, cross-fitting works by inducing independence between the

nuisance parameter estimators and the rest of the quantities in the scores, thereby allowing
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Algorithm 4 k-fold Cross-fitted AIPCW estimation of β

Input: A sample of n observations that are split into k folds of equal size with index sets
I1,I2, . . . ,Ik.
for each fold indexed by m do

estimate nuisance functions (Ŝ(−m), Ŝ(−m)
c ) using the out-of-fold sample indexed by

I−m := {1, . . . ,n}\ Im to form the following estimating equations

1
|Im|

n

∑
i∈Im

D1i(β,Λ0, t; Ŝ(−m), Ŝ(−m)
c ) = 0, (3.17)

1
|Im|

n

∑
i∈Im

D2i(β,Λ0; Ŝ(−m), Ŝ(−m)
c ) = 0. (3.18)

By first solving for Λ0(t) using (3.17) and plug into (3.18) we get the m-th fold
estimating equation for β as

Um(β; Ŝ(−m), Ŝ(−m)
c )

=
1
|Im| ∑

i∈Im

∫
τ

0

{
dNi(t)

Ŝ(−m)
c (t|Ai,Zi)

− Ji(t; Ŝ(−m), Ŝ(−m)
c )dŜ(−m)(t|Ai,Zi)

}
×{Ai− Ām(β, t; Ŝ(−m), Ŝ(−m)

c )},

where Ām is Ā but evaluated using only data from fold Im.
end for
Output: β̂, the solution to

1
k

k

∑
m=1

Um(β; Ŝ(−m), Ŝ(−m)
c ) = 0.

asymptotic normality to be established (Smucler et al., 2019; Hou et al., 2021). Additional

notations involving cross-fitted quantities are collected in Appendix B.1.

3.4 Asymptotic Properties

Let O† denote a sample of n i.i.d. data vectors {(X†
i ,∆

†
i ,A

†
i ,Z

†
i ), i = 1, . . . ,n} used

for estimating Ŝ and Ŝc. Let (X ,∆,A,Z) be a data vector independent of O† and drawn from
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the same distribution as O†. Define

∥∥∥Ŝ−S∗
∥∥∥= E†

E

{ sup
t∈[0,τ]

∣∣∣Ŝ(t;A,Z)−S∗(t;A,Z)
∣∣∣}2
 ,

∥∥∥Ŝc−S∗c
∥∥∥= E†

E

{ sup
t∈[0,τ]

∣∣∣Ŝc(t;A,Z)−S∗c(t;A,Z)
∣∣∣}2
 ,

where E† denotes expectation taken with respect to O†, and E denotes expectation taken

with respect to O conditional on O†.

Assumption 4 (Uniform Convergence). There exist S∗(t;A,Z) and S∗c(t;A,Z) satisfying

Assumptions 2-3 such that ∥Ŝ−S∗∥= o(1) and ∥Ŝc−S∗c∥= o(1).

Theorem 8. Under Assumptions 1-4 and some regularity conditions, if either S∗ = So or

S∗c = So
c , then β̂

p→ βo.

Following the notation of Wang et al. (2022), we let O denote a sample of n i.i.d

data vectors {(X j,∆ j,A j,Z j), j = 1, . . . ,n} that is independent from O†, and drawn from the

same distribution as O, and define the cross-integral product as

D†(Ŝ, Ŝc;So,So
c)

=E†

{
E

[∣∣∣∣∣
∫

τ

0
{A− Ā(t;β

o,So,So
c)}

∫ t

0

{
dŜ(t;A,Z)

Ŝ(u;A,Z)
− dSo(t;A,Z)

So(u;A,Z)

}

×

{
dMc(u;A,Z, Ŝc)

Ŝc(t;A,Z)
− dMc(u;A,Z,So

c)

So
c(t;A,Z)

}∣∣∣∣∣
]}

+E†

{
E
[

max
l∈{0,1}

∣∣∣∣∫ τ

0
{Ā(t;β

o,So, Ŝc)− Ā(t;β
o,So,So

c)}

× J(t;A,Z,So, Ŝc)
l{dŜ(t;A,Z)−dSo(t;A,Z)}

∣∣∣∣]}.
where with a slight abuse of notation, we use E here to denote the expectation taken with

respect to the sample O with n observations conditional on the sample O†.
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Assumption 5 (Rate Condition). (S∗,S∗c) = (So,So
c) and

∥∥∥Ŝ−So
∥∥∥∥∥∥Ŝc−So

c

∥∥∥+D†(Ŝ, Ŝc;So,So
c) = o(n−1/2).

The rate condition essentially requires that the product of the error rate of Ŝ and Ŝc is

faster than root-n (Smucler et al., 2019). Due to the involvement of the time component in

time-to-event analysis, an integral product of the errors like D†(Ŝ, Ŝc;So,So
c) is also required.

Interested readers can refer to Ying (2023) for a thorough discussion on the role of this

integral product term in survival analysis.

Theorem 9. In addition to Assumptions 1-4 and some regularity conditions, if the rate

condition Assumption 5 hold, we have

σ̂
−1√n(β̂−β

o)
d→ N(0,1),

where the expressions for σ̂2 := σ̂2(β̂) is provided in Appendix B.1.

Theorem 9 establishes the rate DR property. Traditionally, the doubly robust in-

ference is established assuming both working models are parametric or semiparametric

with one of the nuisance estimators converging at the root-n rate, referred to as the model

DR property. Although our estimator is also model DR, it is not helpful here due to the

non-collapsibility of the Cox model. Non-collapsibility implies that any parametric or

semiparametric conditional outcome models we specify will not be correct. To enable the

possible use of ML/non-parametric models, we here establish a rate DR result which states

that if all nuisance estimators converge to the truth and that their cross-product rate is faster

than root-n, the proposed AIPCW estimator is CAN even if one of the nuisance estimators

converges arbitrarily slowly.

Note that under the model DR case, if both nuisance function estimators are of root-n

rate and only one of them is correctly specified, the AIPCW estimator is still CAN, but

the asymptotic variance is rather complicated. In this case, resampling methods such as
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bootstrap (Efron, 1992) may be used to estimate the variance.

In Chapter 4, we will consider an extension of the two-group survival to observational

data, which is more general than the current setting here. The regularity assumptions required

and the proofs of Theorem 8 and 7 are also simplified versions of the assumptions and proofs

we will present in Chapter 4, so we omit those details here.

3.5 Simulation

In this section, we compare the performance of the cross-fitted AIPCW estimators β̂

using different working models, against different IPCW estimators and the MPLE. We con-

sider sample sizes n = 500 and n = 1000, and 1000 data sets are simulated for each setting,

which corresponds to margin of error of about +/−1.35% for the coverage probability of

nominal 95% confidence intervals. Five-fold cross-fitting is used.

For data generation, we first follow the diagram in Figure 3.1(a) and generate

U1 ∼ Unif (-1, 1), A ∼ Bernoulli (0.5), Z1 ∼ N(0.5U1,1), Z2 ∼ N(U2
1 ,0.09), and T =

− log(0.5U1 +0.5)eA. Here, T follows the PH model (3.1) with βo =−1 and λo
0(t) = 1.

We consider two scenarios of data generating process for the censoring time C,

as described in Figure 3.1(b). Both scenarios have around 25% samples administratively

censored at τ = 1, and 40% of the remaining samples censored during follow-up. Note

that administrative censoring works in the same way for T and C, i.e. those events are

consider as ‘censored’ for both the estimation of S and the estimation of Sc. It is obvious

that Scenario 1 can be correctly modeled. Scenario 2 is designed such that most commonly

used semiparametric models fail. As it turns out, under Scenario 2 Sc(τ|A,Z) can be very

close to zero for some values of A and Z, leading to possible violation of Assumptions 2 and

3. This echoes the argument made in D’Amour et al. (2021) that the overlap assumption

needed for DR estimates often fails in practice.

We consider three types of working models: PH model using the R package ‘sur-

vival’; splines (Kooperberg et al., 1995a) using the R package ‘polspline’; and random
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T C

A

ZU1

U2

Scenario Data generating process for C

1: Cox PH λc(t) = exp(−1+2Z2)

2: Mixture

log(U2)∼ N(0,1)

Z1 > 0 : log(C) =−0.2A−2
√
|Z2|+0.3U2

Z1 ≤ 0 : log(C) = 2.4−0.3A+0.5
√
|Z1|

+0.5
√
|Z2|−U2

(a) (b)

Figure 3.1: (a) Variable diagram. (b) Data generating process for C.

survival forest (RSF) (Ishwaran et al., 2008) using the R package ‘randomForestSRC’. We

set splitrule = ’bs.gradient’ for RSF, while keeping all the others settings as default. We study

7 different combinations of working models for the proposed AIPCW estimator: Cox-Cox,

Cox-spline, Cox-RSF, spline-Cox, RSF-Cox, spline-spline, and RSF-RSF, where the first

part in the names denotes the model for S and the second part denotes the model for Sc.

It is worth noting that due to the non-collapsibility of the Cox model, a semiparametric

conditional model for S is almost always misspecified. Therefore the consistency of AIPCW-

Cox-Cox, AIPCW-Cox-spline and AIPCW-Cox-RSF relies on the correct specification of

the censoring model. We also note that the convergence rate of the spline and RSF is largely

unknown, which depends on the choice of tuning parameters. See Discussion for more on

this.

We also investigate the performance of MPLE and various IPCW estimators: IPCW-

Cox, IPCW-spline, IPCW-RSF, IPCW-A and IPCW-1. More specifically, IPCW-A estimates

Sc using the product-limit estimator for each group indicated by A, while IPCW-1 estimates

Sc using the product-limit estimator on the entire sample. Robust variance estimator from

Boyd et al. (2012) is used to estimate the model standard errors of the IPCW estimators.

Standard errors for the cross-fitted AIPCW estimators are estimated using Theorem 9, which

assumes both S and Sc models are correctly specified.

42



To avoid numerical problems, we impose a minimum on Ŝ(−m)(t|A,Z) and

Ŝ(−m)
c (t|A,Z) in the above, so that values below 0.01 are trimmed to be 0.01. Finally, as a

benchmark, we also fit model (3.1) to the full data without censoring.

The simulation results for Scenarios 1 and 2 are reported in Tables 3.1 and 3.2,

respectively. It is immediate that under informative censoring, MPLE, IPCW-1 and IPCW-

A have substantial bias leading to poor coverage of the confidence intervals (CI). Under

Scenario 1 where the censoring model is correctly specified as Cox, the other three IPCW

estimators (-Cox, -spline, -RSF) all appear to perform reasonably well. All seven AIPCW

estimators also perform well under Scenario 1, with AIPCW-Cox-RSF having larger bias

compared to the rest.

Under Scenario 2, IPCW-Cox appears more biased than IPCW-spline and IPCW-

RSF, as expected. But even for the latter two estimators, their SE’s severely under-estimate

the SD’s, leading to poor coverage of the CI’s. This also points to the known fact that

inference is not guaranteed when ML or nonparametric methods are used in IPCW, as

discussed earlier. AIPCW-Cox-Cox also has large bias under Scenario 2, as expected. The

rest six AIPCW’s are less biased. For the larger sample size n = 1000, AIPCW using two

ML or nonparametric methods appears to have the least bias, with close to nominal coverage

probabilities. Finally we note that, under Scenario 2, spline-based AIPCWs tend to have

larger variance. This might be explained by the fact that splines are less stable near the

boundary τ, which under Scenario 2 has small Ŝc(τ|A,Z) for some values of A and Z as

mentioned earlier.
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Table 3.1: Simulation results under Scenario 1. Data are generated following
Figures 3.1(a) and (b) with βo =−1. Red indicates that the model or approach is
invalid.

Sample Size Estimators Bias SD SE CP

n = 500

AIPCW-Cox-Cox 0.002 0.196 0.191 0.94
AIPCW-Cox-spline -0.001 0.198 0.190 0.94
AIPCW-Cox-RSF 0.023 0.197 0.207 0.96
AIPCW-spline-Cox 0.005 0.185 0.177 0.94
AIPCW-RSF-Cox 0.005 0.189 0.178 0.94
AIPCW-spline-spline 0.002 0.185 0.177 0.94
AIPCW-RSF-RSF 0.002 0.192 0.190 0.95
IPCW-Cox -0.006 0.186 0.179 0.94
IPCW-spline -0.005 0.188 0.179 0.94
IPCW-RSF 0.008 0.190 0.177 0.93
IPCW-A -0.221 0.180 0.162 0.70
IPCW-1 -0.221 0.179 0.162 0.70
MPLE -0.205 0.175 0.167 0.76
Full data 0.002 0.103 0.099 0.93

n = 1000

AIPCW-Cox-Cox -0.008 0.137 0.134 0.94
AIPCW-Cox-spline -0.010 0.138 0.133 0.94
AIPCW-Cox-RSF 0.019 0.141 0.153 0.97
AIPCW-spline-Cox 0.001 0.127 0.123 0.94
AIPCW-RSF-Cox 0.002 0.130 0.125 0.94
AIPCW-spline-spline 0.001 0.127 0.123 0.94
AIPCW-RSF-RSF -0.005 0.134 0.134 0.95
IPCW-Cox -0.009 0.130 0.128 0.94
IPCW-spline -0.007 0.135 0.128 0.94
IPCW-RSF 0.011 0.134 0.128 0.95
IPCW-A -0.225 0.126 0.114 0.51
IPCW-1 -0.224 0.126 0.114 0.51
MPLE -0.207 0.122 0.118 0.58
Full data -0.003 0.069 0.07 0.94

SD: standard deviation; SE: standard error; CP: coverage probability of nominal 95% CI
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Table 3.2: Simulation results under Scenario 2. Data are generated following
Figures 3.1(a) and (b) with βo =−1. Red indicates that the model or approach is
invalid.

Sample Size Estimators Bias SD SE CP

n = 500

AIPCW-Cox-Cox -0.129 0.285 0.276 0.93
AIPCW-Cox-spline -0.029 0.604 0.623 0.97
AIPCW-Cox-RSF -0.064 0.249 0.243 0.93
AIPCW-spline-Cox -0.068 0.282 0.256 0.93
AIPCW-RSF-Cox -0.034 0.275 0.250 0.93
AIPCW-spline-spline 0.038 0.578 0.585 0.96
AIPCW-RSF-RSF -0.039 0.264 0.238 0.93
IPCW-Cox -0.114 0.266 0.174 0.77
IPCW-spline -0.046 0.452 0.192 0.68
IPCW-RSF -0.088 0.257 0.179 0.80
IPCW-A -0.227 0.184 0.170 0.74
IPCW-1 -0.226 0.183 0.166 0.72
MPLE -0.216 0.179 0.174 0.77
Full data 0.002 0.103 0.099 0.93

n = 1000

AIPCW-Cox-Cox -0.127 0.195 0.192 0.90
AIPCW-Cox-spline -0.056 0.396 0.367 0.95
AIPCW-Cox-RSF -0.035 0.187 0.189 0.95
AIPCW-spline-Cox -0.056 0.191 0.180 0.93
AIPCW-RSF-Cox -0.021 0.185 0.178 0.92
AIPCW-spline-spline 0.008 0.344 0.332 0.95
AIPCW-RSF-RSF -0.020 0.198 0.179 0.93
IPCW-Cox -0.103 0.204 0.126 0.71
IPCW-spline -0.045 0.377 0.146 0.63
IPCW-RSF -0.047 0.202 0.134 0.78
IPCW-A -0.220 0.127 0.120 0.56
IPCW-1 -0.219 0.127 0.117 0.53
MPLE -0.211 0.123 0.123 0.61
Full data -0.003 0.069 0.07 0.94

SD: standard deviation; SE: standard error; CP: coverage probability of nominal 95% CI
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3.6 Discussion

For the analysis of two-group survival, including for randomized clinical trials,

non-informative censoring is assumed. When the simple PH model (3.1) is used with no

covariates adjusted for, this requires the censoring distribution to be independent of any

covariates. When this assumption is violated, the commonly used MPLE is biased and

typically IPCW is used to correct that bias if the interest remains to estimate the marginal

hazard ratio between the two groups. IPCW, on the other hand, requires modeling the

censoring distribution, which can be wrong unless ML or nonparametric estimates are used.

In this paper we have developed an AIPCW estimator that is both model DR and rate DR.

Rate double robustness allows us to get around the non-collapsibility of the Cox regression

model using more flexible ML or nonparametric methods for the conditional failure time

model demanded by the DR construct, because almost any parametric or semiparametric

would otherwise be invalid.

The theoretical results require certain rate condition of the estimates of the nuisance

parameters. These are not always established for a given ML or nonparametric estimator.

Cui et al. (2022) and Kooperberg et al. (1995b) demonstrated that under certain conditions,

rate better than n1/4 can be achieved for random survival forest and splines. Convergence

rates were also studied for other ML methods. For example, a uniform rate for regression

trees is shown in Wager and Walther (2015), while a root-mean-square rate is derived for

neural networks (Chen and White, 1999). These results suggest that it is entirely possible to

utilize even a slow converging ML method, so long as we use a fast converging ML method

for the other nuisance function to achieve a better than
√

n overall rate. The rates, of course,

depend on the hyper-parameter values. In the simulations we used the default settings for the

spline and the random survival forest. Investigation of other ML or nonparametric methods,

as well as their tuning, in relationship with the performance of DR estimators, remains a

topic of future work.

This work focused on two-group survival and a binary A. Generalization to continu-
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ous and/or multivariate A is conceptually straightforward although different algebra might

be involved. In particular for continuous A, we would no longer have A2 = A and additional

quantities like S (2) need to be introduced.

Finally the models for S and Sc may include additional and different sets of covariates

for these two models, so long as the failure time and the censoring time are independent

given the common covariates Z.

The R codes for the cross-fitted AIPCW estimator as well as the simulation proce-

dures investigated in this work are available online in

http://github.com/charlesluo1002/DR-Cox.
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Chapter 4

Doubly Robust Inference for Cox

Marginal Structural Model with

Informative Censoring

4.1 Abstract

The marginal structural Cox model has been widely used to draw causal inferences

from observational studies with survival outcomes. The typical estimation approach under

the marginal structural Cox model is inverse probability weighting, using a propensity score

model for treatment assignment. Additionally censoring needs to be properly accounted

for, especially when it depends on covariates. This is again typically handled using inverse

probability weighting, with a censoring model given the treatment and covariates. Effort to

protect against model misspecification involves augmentation, which has been a challenge in

the past due to the non-collapsibility of the Cox regression model. In this work we develop

an augmented inverse probability weighted estimator with doubly robust properties including

rate doubly robust, that enables us to use machine learning and a large class of nonparametric

methods, in order to overcome the non-collapsibility challenge. We study both the theoretical

and empirical performance of the augmented inverse probability weighted estimator and
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apply it to the data from a cohort of Japanese men in Hawaii followed since the 1960s in

order to study the effect of mid-life alcohol exposure on late-life mortality.

4.2 Introduction

4.2.1 Background

Marginal structural Cox model (Hernán et al., 2001) has been widely used in obser-

vational studies with survival outcomes to estimate the causal hazard ratio; see for example,

Cole et al. (2003); Feldman et al. (2004); Sterne et al. (2005); Hernán et al. (2006) and

Buchanan et al. (2014), among many others. While the interpretation of the hazard function

for causal inference has been under debate recently (Hernán, 2010; Martinussen et al., 2020),

the Cox model formulation continues to be used broadly. More commonly agreed-upon

interpretable quantities, such as survival probabilities, can also be obtained easily under the

model.

For the definition of causal treatment effects in general, potential or counterfactual

outcomes have often been considered (Neyman, 1923; Rubin, 1974), and marginal structural

models (Robins et al., 2000a, MSM) are defined on the potential outcomes of interest, thereby

providing a causal interpretation of their parameters. Under randomization, the absence

of confounding of the relationship between the treatment and the outcome allows standard

regression methods to consistently estimate the MSM parameters. Without randomization

and in observational studies, under the assumption of no unmeasured confounding, inverse

probability of treatment weighting has been used to estimate the causal parameters under the

MSM (Robins, 1998; Robins et al., 2000a; Robins, 2000; Lunceford and Davidian, 2004;

Hubbard et al., 2000; Hernán et al., 2001; Chen and Tsiatis, 2001; Zhang and Schaubel,

2011). It adjusts for the observed confounders by weighting each observation by the

inverse of its propensity score, that is, the probability of receiving the treatment given the

confounders.
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Survival outcomes are often subject to right censoring. The non-informative censor-

ing assumption is typically needed for the consistency of the (weighted) partial likelihood

estimator under the Cox model (Fleming and Harrington, 1991); that is, the censoring time

random variable should be independent of the failure time random variable within each

treatment group. When the censoring time depends in addition on covariates, informative

censoring occurs, and inverse probability of censoring weighting (IPCW) may be applied

to consistently estimate the hazard ratio of interest. IPCW was proposed in Robins and

Finkelstein (2000) to correct for bias resulting from informative censoring of the log-rank

test and, prior to that, in Robins (1993). A separate line of research where IPCW was called

for, was under violation of the proportional hazards assumption, where it was recognized

that the partial likelihood estimator gave rise to an estimand that involved the nuisance

censoring distribution (Xu, 1996; Xu and O’Quigley, 2000). A series of work has since

been done to correct for this bias using IPCW approaches, including Boyd et al. (2012);

Hattori and Henmi (2012); Nguyen and Gillen (2017); Nuño and Gillen (2021). We note

that the terminology ‘IPCW’ was not always mentioned in some of these works, which used

the (conditional) survival distribution increments as weights in each risk set; but these are

algebraically equivalent to the inverse probability of censoring weights.

Propensity scores are unknown in practice, and similarly, the censoring probabilities

given treatment and covariates. Both of them need to be estimated, and they are subject

to misspecification if modeled parametrically or semiparametrically. Inconsistency in the

estimation of either results in bias in the estimated causal effect of interest. For both the

propensity score and the conditional censoring model, nonparametric or machine learning

methods have also been proposed in the literature (Ridgeway et al., 2022). Nguyen and Gillen

(2017) proposed a survival tree approach to estimate the conditional censoring distribution

given the covariates. However, these approaches are without theoretical guarantees for

statistical inference; in fact, it is known that the resulting estimator is typically biased

(Belloni et al., 2013).
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When the counterfactual outcomes and censoring are seen as missing data, aug-

mented inverse probability weighting (AIPW) methods have been developed in order to

protect against misspecification of the missing data mechanisms (Robins et al., 1995; Scharf-

stein et al., 1999; Robins et al., 2000a; Robins, 2000; Robins et al., 2000b; Robins and

Rotnitzky, 2001; Van der Laan and Robins, 2003; Bang and Robins, 2005; Tsiatis, 2006).

They possess doubly robust (DR) properties in the sense that the resulting estimator is con-

sistent and asymptotically normal (CAN), as long as one of two sets of models is correctly

specified: the missing data model(s) and a conditional outcome model.

For survival outcomes, Rotnitzky and Robins (2005) developed an augmented IPCW

approach for censored survival data. Zhang and Schaubel (2012a), Bai et al. (2017) and

Sjölander and Vansteelandt (2017) derived doubly robust estimators for the treatment effect

defined as a contrast between the expected transformed potential failure times, i.e. the

failure time that would be observed if a subject were treated or untreated, respectively.

Yang et al. (2020) developed a doubly robust estimator for the structural accelerated failure

time models. Petersen et al. (2014) and Zheng et al. (2016) derived targeted maximum

likelihood estimators that are doubly robust after discretizing time and recasting the failure

time as a binary outcome. Dukes et al. (2019) and Hou et al. (2021) proposed doubly

robust estimators for the hazard difference under the additive hazards model in low and high

dimensions, respectively, and Rava and Xu (2023) extended their approaches to competing

risks setting.

In this paper, we consider the marginal structural Cox model. Robins (1998) derived

a generic class of semiparametric estimators for the parameters of MSMs with a focus on

efficiency, and without being robust against possible misspecification of the propensity

score. A main challenge in developing doubly robust estimators under the Cox MSM is

the non-collapsibility of the Cox regression model (Martinussen and Vansteelandt, 2013),

i.e. the Cox model formulation including the proportional hazards assumption typically

no longer holds when a covariate is integrated out from the model, a fact also well-known
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since the 1980s (Lancaster and Nickell, 1980; Gail et al., 1984; Ford et al., 1995; Xu, 1996).

This gives rise to the difficulty of specifying a conditional survival outcome model that is

compatible with the Cox MSM which defines the causal estimand, as illustrated in Tchetgen

Tchetgen and Robins (2012) and also will become clear later in this paper.

4.2.2 Overview of the paper

In the following we derive an AIPW estimator under the Cox MSM, making use of

contemporary machine learning methods that alleviate the compatibility problem described

above. The approach considers simultaneously the log hazard ratio and the nuisance baseline

hazard function under the Cox model. This gives rise to full data estimating equations that

are sums of independent and identically distributed (i.i.d.) martingales. The augmentation

leads to working models for the propensity score, the failure time, and the censoring time

given the treatment and the covariates. To specify a conditional failure time model that

is compatible with the original (marginal) Cox model given treatment only, data-adaptive

machine learning or nonparametric methods can be used. With cross-fitting (Chernozhukov

et al., 2018), the resulting AIPW estimator has doubly robust properties not only in the

classical sense, which is referred to as model doubly robust, but also rate doubly robust

(Rotnitzky et al., 2021; Hou et al., 2021). Here, rate double robustness refers to an estimator

being CAN when the product of the estimation error rates under the two sets of working

models is faster than root-n, while either one of them is allowed to be arbitrarily slow.

In the following after defining the notation, the model, and the assumptions in

Section 4.3, we augment the Cox-IPW estimators in Section 4.4 of both structural parameters,

the log hazard ratio, and the infinite-dimensional baseline hazard function. In Section 4.5,

we establish the estimating equation for the log hazard ratio through cross-fitting. The

asymptotic properties of the AIPW estimator are established in Section 4.6. Through

simulations of Section 4.7, we show that our estimator outperforms the existing Cox-IPW

estimator both in terms of finite sample bias and variance, for different combinations of
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parametric and nonparametric estimators under the propensity score and the conditional

survival model. In Section 4.8 we apply our estimator to data from a cohort of Japanese men

in Hawaii followed since the 1960s in order to study the effect of mid-life alcohol exposure

on late-life mortality. We conclude with a discussion in Section 4.9. The proofs of all the

theoretical results are given in the Supplementary Material.

4.3 Marginal Structural Cox Model

Let A be a binary treatment and let T (0),T (1) be the potential failure time of a

subject if s/he has been untreated or treated, respectively. Let λT (a)(t) denote the hazard

function of the potential failure time T (a), a ∈ {0,1}. The marginal structural Cox model

(Hernán et al., 2001, often referred to as the Cox MSM in the literature) postulates a model

on the potential T (a) by assuming

λT (a)(t) = λ0(t)exp(βa), (4.1)

where λ0(t) is an unknown baseline hazard function, and β = log{λT (1)(t)/λT (0)(t)} is then

the causal log hazard ratio, since it is a contrast between the distributions of the potential

failure time outcomes under a= 1 versus a= 0. As previously mentioned in the Introduction,

the Cox MSM (4.1) has been widely used in applications to estimate the causal hazard ratio,

exp(β). The estimation of β under model (4.1) using inverse probability weighting was

developed in Hernán et al. (2001).

As is typical for time-to-event outcomes, the event times of interest are subject to

possible right censoring. The potential failure times T (1),T (0) are therefore subject to

potential right censoring at times C(1),C(0), respectively. Let ∆(a) = 1{T (a) ≤ C(a)}

denote the potential event indicator and let X(a) = min{T (a),C(a)}. We use T,C,X ,∆ to

indicate the failure, censoring, censored times and event indicator, respectively, once the

treatment is received (as opposed to being counterfactual). We use Z ∈ Rp to denote a vector
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of p-dimensional observed baseline covariates.

We make the following assumptions that are standard in causal inference (Hernán

and Robins, 2020).

Assumption 6 (SUTVA). The potential outcomes of one subject are not affected by the treat-

ment assignment of the other subjects, and there are no hidden versions of the treatments.

Assumption 7 (Consistency). T = AT (1)+(1−A)T (0), and C = AC(1)+(1−A)C(0).

Assumption 8 (Exchangeability). (T (a),C(a))⊥ A | Z, for a = 0,1.

Assumption 9 (Strict Positivity). There exists 0< ε< 1 such that ε<P(A= 1|Z = z)< 1−ε,

P(C > τ|A = a,Z = z)> ε, P(T > τ|A = a,Z = z)> ε for all values of a and z, where τ is a

maximum follow-up time.

Traditionally survival analysis using regression models requires the censoring time

to be conditionally independent of the failure time given the regressors, and this is referred

to as non-informative censoring (Kalbfleisch and Prentice, 2011). Here our model under

consideration is the Cox MSM (4.1), which does not involve the baseline covariates Z.

Nonetheless, in this paper, we make the following informative censoring assumption that

allows the censoring time to depend on the covariates.

Assumption 10 (Informative Censoring). T (a)⊥C(a) | Z, for a = 0,1, where ⊥ indicates

statistical independence.

4.4 Doubly Robust Inference

4.4.1 Full-data Estimating Function

When we consider both the counterfactual outcome and censoring as missing data,

the full data, using the notion in Tsiatis (2006), is (T (0),T (1),Z). From this, we can
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define the full data counting process Na
T (t) = I(T (a)≤ t), and the full data at-risk process

Y a
T (t) = I(T (a)≥ t) for a = 0,1, where I(·) is an indicator function. It can be shown that

Ma
T (t;β,Λ0) = Na

T (t)−
∫ t

0
Y a

T (u)e
βadΛ0(u)

is a full data martingale with respect to the filtration F a
t = {Na

T (u),Y
a
T (u

+) : 0≤ u≤ t}

under model (4.1), for a = 0,1, where Λ0(t) =
∫ t

0 λ0(u)du (Fleming and Harrington, 1991).

We start by constructing a full data estimating function, i.e. an estimating function

we would use if we were able to observe a single copy of the full data. Using the martingale

property, we define full data estimating functions for Λ0(t) and β as follows:

D f
1(t;β,Λ0) = ∑

a=0,1
dMa

T (t;β,Λ0), (4.2)

D f
2(β,Λ0) = ∑

a=0,1

∫
τ

0
a ·dMa

T (t;β,Λ0), (4.3)

where τ is the maximum follow-up time defined before. We note that D f
1(β,Λ0, t) is a

martingale difference function that is often used in survival analysis; see for example, Lu

and Ying (2004). For each t, the true values of β and Λ0(t) satisfy

E{D f
1(t;β,Λ0)}= 0 and E{D f

2(β,Λ0)}= 0.

It can be readily verified that for a sample of size n of independent and identically

distributed (i.i.d.) data, these would give the well-known Breslow’s estimate of Λ0(t), as

well as the partial likelihood score for β.

4.4.2 IPW Estimating Function

The full data are not observed. Instead, we have the observed counting process

N(t)= I(X ≤ t,∆= 1) where ∆= I(T <C), and the observed at-risk process Y (t)= I(X ≥ t).
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Define

M(t;β,Λ0) = N(t)−
∫ t

0
Y (u)eβAdΛ0(u).

We note that M(t;β,Λ0) is generally not a martingale under model (4.1).

In order to bridge the gap between the full data estimating function above with

the observed data, inverse probability weighting is often used. The idea is to weight

an observation by its inverse probability of being sampled from the target population in

general (Horvitz and Thompson, 1952), leading to a pseudo-random sample from the target

population of interest. More specifically, since in observational studies treatment is typically

not randomized, inverse probability of treatment weighting would give rise to a pseudo-

random sample from a target population where the covariates are balanced, thereby giving a

consistent estimate of the causal treatment effect when the observed data is fitted to a model

with such weights (Hernán and Robins, 2020). Similarly, when informative censoring is

present which depends on the covariates, the inverse probability of censoring weighting

would lead to a consistent estimate of the parameter(s) of interest (Hernán et al., 2001).

Let π(z) = P(A = 1|Z = z). The treatment weight is then

A
π(Z)

+
1−A

{1−π(Z)}
=

1
π(Z)A{1−π(Z)}1−A .

In addition, let S(t;a,z) = P(T > t|A = a,Z = z) and Sc(t;a,z) = P(C > t|A = a,Z = z)

denote the conditional survival function of T and C, respectively.

We now have the IPW estimating function:

Dw
1 (t;β,Λ0,π,Sc) =

dM(t;β,Λ0)

π(Z)A{1−π(Z)}1−ASc(t;A,Z)
, (4.4)

Dw
2 (β,Λ0,π,Sc) =

∫
τ

0

A ·dM(t;β,Λ0)

π(Z)A{1−π(Z)}1−ASc(t;A,Z)
. (4.5)

It can also be readily verified that for a sample of i.i.d. observed data, ∑
n
i=1 Dw

1i(t;β,Λ0,π,Sc)=
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0 gives a weighted Breslow’s estimate of Λ0(t) and after profiling out Λ0(t), ∑
n
i=1 Dw

2i(β,Λ0,π,Sc)

gives the weighted partial likelihood score for β.

By Assumption 7, we have S(t;a,Z) = P(T (a) > t|Z) and Sc(t;a,Z) = P(C(a) >

t|Z). For simplicity, we will omit writing out the explicit dependency of M and some future

quantities on A and Z, unless they are needed for clarification.

Denote also ∆a(t) = I{min(T (a), t)≤C(a)} for a = 0,1.

M(t;β,Λ0) =A∆
1(t)M1

T (t;β,Λ0)+(1−A)∆0(t)M0
T (t;β,Λ0), (4.6)

where (4.6) is proved as Lemma 11 in Appendix.

4.4.3 Augmented IPW Estimating Function

The IPW estimating function is unbiased when the weights, or equivalently, π(z) and

Sc(t;a,z) are known (Hernán et al., 2001). In practice, however, these quantities are often

unknown and propensity score models as well as conditional censoring models are often

used for the corresponding conditional distributions. When these models are misspecified,

the resulting estimate of the causal hazard ratio is no longer consistent.

To protect against possible misspecification of the models, semiparametric theory

has been developed to augment the IPW estimating function (Tsiatis, 2006), such that the

resulting AIPW estimating function possesses the so-called doubly robust properties that

will be described in detail later. In particular, Van der Laan and Robins (2003) augmented

the inverse probability of treatment weighted estimating function for a binary treatment,

and Rotnitzky and Robins (2005) augmented the inverse probability of censoring weighted

estimating function for a survival parameter of interest. These approaches have been applied

separately to the full data martingale increments similar to those here, when there is 1)

confounding with non-informative censoring in Rava (2021), and 2) randomization with

informative censoring in Luo and Xu (2022), respectively. In the following, we will combine

the two augmentations and show that the resulting AIPW estimating function is doubly
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robust.

Denote the counting process for censoring events Nc(t) = I(X ≤ t,∆ = 0), and

Λc(t;a,z) =
∫ t

0 Sc(u;a,z)−1d{1− Sc(u;a,z)} the cumulative hazard function of C given

A = a and Z = z. Define Mc(t;a,z,Sc) = Nc(t)−
∫ t

0 Y (u)dΛc(u;a,z), then it is a martingale

with respect to its natural history filtration if Sc is correctly modeled. Following Zhang

and Schaubel (2012b) and Luo and Xu (2022), define also the censor-free failure process

NT (t)= I(T ≤ t), and the corresponding at-risk process YT (t)= I(T ≥ t). Let MT (t;β,Λ0)=

NT (t)−
∫ t

0 YT (u)eβAdΛ0(u).

The augmented IPW estimating function based on (4.4) and (4.5) is:

D1(t;β,Λ0,π,S,Sc) =
dM(t;β,Λ0)

π(Z)A{1−π(Z)}1−ASc(t;A,Z)
− E{dMT (t;β,Λ0)|A,Z}

π(Z)A{1−π(Z)}1−A

+ ∑
a=0,1

E{dMT (t;β,Λ0)|A = a,Z}

+ ∑
a=0,1

Aa(1−A)1−a

π(Z)a{1−π(Z)}1−a

∫ t

0

dMc(u;a,Z,Sc)

Sc(u;a,Z)

×E{dMT (t;β,Λ0)|T ≥ u,A = a,Z},

D2(β,Λ0,π,S,Sc) =
∫

τ

0

[
A ·dM(t;β,Λ0)

π(Z)Sc(t;A,Z)
− A ·E{dMT (t;β,Λ0)|A,Z}

π(Z)

+E{dMT (t;β,Λ0)|A = 1,Z}

+
A

π(Z)

∫ t

0

dMc(u;1,Z,Sc)

Sc(u;1,Z)
E{dMT (t;β,Λ0)|T ≥ u,A = 1,Z}

]
.

The above expectations can be written out explicitly. Using the fact that

E{NT (t)|A,Z}=P(T ≤ t|A,Z) = 1−S(t|A,Z),

E{YT (t)|A,Z}=P(T ≥ t|A,Z) = S(t|A,Z),
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and for t ≥ u,

E{NT (t)|A,Z,T ≥ u}=P(T ≤ t|A,Z,T ≥ u) =
1−S(t|A,Z)

S(u|A,Z)
,

E{YT (t)|A,Z,T ≥ u}=P(T ≥ t|A,Z,T ≥ u) =
S(t|A,Z)
S(u|A,Z)

,

we have

E{dMT (t;β,Λ0)|A,Z}=−dS(t;A,Z)−S(t;A,Z)eβAdΛ0(t),

E{dMT (t;β,Λ0)|T ≥ u,A,Z}=− dS(t;A,Z)+S(t;A,Z)eβAdΛ0(t)
S(u|A,Z)

. (4.7)

This gives the final AIPW estimating function:

D1(t;β,Λ0,π,S,Sc) =dN (0)(t;π,S,Sc)−Γ
(0)(t;β,π,S,Sc)dΛ0(t), (4.8)

D2(β,Λ0,π,S,Sc) =
∫

τ

0
dN (1)(t;π,S,Sc)−Γ

(1)(t;β,π,S,Sc)dΛ0(t), (4.9)

where for l = 0,1,

dN (l)(t;π,S,Sc) =
AldN(t)

π(Z)A{1−π(Z)}1−ASc(t;A,Z)
+

AldS(t;A,Z)
π(Z)A{1−π(Z)}1−A

− ∑
a=0,1

al
{

1+
Aa(1−A)1−a

π(Z)a{1−π(Z)}1−a J(t;a,S,Sc)

}
dS(t;a,Z),

Γ
(l)(t;β,π,S,Sc) =

AlY (t)eβA

π(Z)A{1−π(Z)}1−ASc(t;A,Z)
− AlS(t;A,Z)eβA

π(Z)A{1−π(Z)}1−A

+ ∑
a=0,1

al
{

1+
Aa(1−A)1−a

π(Z)a{1−π(Z)}1−a J(t;a,S,Sc)

}
S(t;a,Z)eβa,

and J(t;a,z,S,Sc) =
∫ t

0 dMc(u;a,z,Sc)/{S(u;a,z)Sc(u;a,z)}.Note that dN (l)(t) can be seen

as augmented weighted AldN(t), and Γ(l)(t) can be seen as augmented weighted AlY (t)eβA.

In this sense the AIPW estimating function (4.8) - (4.9) parallels the original full data

estimating function (4.2) - (4.3).

The following theorem gives the doubly robust property of the AIPW estimating
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function. In the following, the superscript ‘o’ denotes the true value of a parameter.

Theorem 10. Under Assumptions 6-10, if either S = So, or both Sc = So
c and π = πo, then

for all t, E{D1(t;βo,Λo
0,π,S,Sc)}= E{D2(β

o,Λo
0,π,S,Sc)}= 0.

4.5 Estimating Equations and Implementation

Given i.i.d. observations (Xi,∆i,Ai,Zi), i = 1, ...,n, we need to first estimate the

nuisance functions π̂(z), Ŝ(t;a,z) and Ŝc(t;a,z). For example, common choices for the

survival functions S include the Cox PH model or the accelerated failure time model.

However, due to the non-collapsibility (Martinussen and Vansteelandt, 2013; Tchetgen

Tchetgen and Robins, 2012) of the marginal structural Cox model, a conditional model for

S would be misspecified. In fact, it’s often not possible to come up with a parametric/semi-

parametric conditional model for S that is compatible with (4.1). To this end, we need to

resort to ML/non-parametric methods that are much more flexible for consistently estimating

S. On the other hand, these methods usually converge at a slower than root-n rate, so while

the resulting AIPW is still DR-consistent, they are no longer DR-asymptotically normal.

The property of being doubly robust consistent and asymptotically normal (CAN) when

all nuisance functions are estimated with root-n rate is often referred to as the model DR

property. Since we have to work with slower than root-n rate methods, we make use of

cross-fitting, which allows the AIPW estimator to achieve the so-called rate DR property

(Smucler et al., 2019; Hou et al., 2021), in that the estimator is CAN if all nuisance functions

are estimated consistently and that the product error rate between S and (π,Sc) is faster than

root-n. This property allows each of the nuisance functions to converge at an arbitrarily slow

rate as long as their product error rate is fast enough.

Suppose that the n observations are split into k folds of roughly equal size, with
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index sets I1,I2, . . . ,Ik. For each fold m = 1, ...,k, let

S (l)
m (t;β,π,S,Sc) =

1
|Im| ∑

i∈Im

Γ
(l)
i (t;β,π,S,Sc),

Ām(t;β,π,S,Sc) =
S (1)

m (t;β,π,S,Sc)

S (0)
m (t;β,π,S,Sc)

.

Solving for ∑i∈Im D1i(t;β,Λ0,π,S,Sc) = 0, we first obtain

Λ̃0,m(t;β,π,S,Sc) =
1
|Im| ∑

i∈Im

∫ t

0

dN (0)
i (u;π,S,Sc)

S (0)
m (u;β,π,S,Sc)

.

We then plug it into ∑i∈Im D2i(β,Λ0,π,S,Sc) = 0 to obtain

Um(β,π,S,Sc) =
1
|Im| ∑

i∈Im

∫
τ

0

{
dN (1)

i (t;π,S,Sc)− Ām(t;β,π,S,Sc)dN (0)
i (t;π,S,Sc)

}
.

The above can be seen as the ‘augmented’ partial likelihood score. Note that it is important to

do the above ‘profiling’ of Λ0 within the fold, in order to preserve the out-of-fold estimation

of the nuisance parameters later.

The cross-fitted AIPW estimation algorithm is summarized in Algorithm 5.

Algorithm 5 k-fold Cross-fitted AIPW estimation of β

Input: A sample of n observations that are split into k folds with index sets I1,I2, . . . ,Ik.
for each fold indexed by m do

Estimate nuisance functions π̂(−m), Ŝ(−m) and Ŝ(−m)
c ) using the out-of-fold sample

indexed by I−m := {1, . . . ,n}\ Im.
end for
Output: β̂, the solution to

1
k

k

∑
m=1

Um(β, π̂
(−m), Ŝ(−m), Ŝ(−m)

c ) = 0.
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4.6 Asymptotic Properties

Let S∗,S∗c and π∗ be some nuisance functions satisfying Assumption 9. Let O†

denote a sample of n i.i.d. data vectors {(X†
i ,∆

†
i ,A

†
i ,Z

†
i ), i = 1, . . . ,n} used for estimating

π̂, Ŝ and Ŝc. Let (X ,∆,A,Z) be a data vector independent of O† and drawn from the same

distribution as O†. Define

∥π̂−π
∗∥2 = E†

(
E
[
{π̂(Z)−π

∗(Z)}2
])

,

∥∥∥Ŝ−S∗
∥∥∥2

= E†

E

{ sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Z)−S∗(t;a,Z)
∣∣∣}2
 ,

∥∥∥Ŝc−S∗c
∥∥∥2

= E†

E

{ sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝc(t;a,Z)−S∗c(t;a,Z)
∣∣∣}2
 ,

where E† denotes expectation taken with respect to O†, and E denotes expectation taken

with respect to O conditional on O†.

Assumption 11 (Uniform Convergence). There exist π∗(z),S∗(t;a,z) and S∗c(t;a,z) such

that ∥π̂−π∗∥= o(1),
∥∥∥Ŝ−S∗

∥∥∥= o(1) and
∥∥∥Ŝc−S∗c

∥∥∥= o(1).

The uniform convergence Assumption 11 assumes that π̂, Ŝ and Ŝc converge to some

limiting function π∗, S∗ and S∗c that are not necessarily the truth.

Given additional regularity Assumptions 21-23 listed in Supplementary Mate-

rial C.3.1, the asymptotic properties of the cross-fitted AIPW estimator β̂ defined in Algo-

rithm 5 can be summarized in Theorems 11 and 12 below.

Theorem 11. Under Assumptions 6-11 and Assumptions 21-23, if either S∗ = So, or

(π∗,S∗c) = (πo,So
c), then β̂

p→ βo.

For a sample of n i.i.d. observations, we define

S (l)(t;β,π,S,Sc) =
1
n

n

∑
i=1

Γ
(l)
i (t;β,π,S,Sc),
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for l = 0,1, and let Ā(t;β,π,S,Sc) = S (1)(t;β,π,S,Sc)/S (0)(t;β,π,S,Sc). This is a full

sample version of S (l)
m that is much more convenient to work with.

Following the notation of Wang et al. (2022), we let O denote a sample of n i.i.d

data vectors {(X j,∆ j,A j,Z j), j = 1, . . . ,n} that is independent from O†, and drawn from the

same distribution as O, and define the cross-integral product

D†(Ŝ, Ŝc;So,So
c)

=E†

{
E

[
max

a∈{0,1}

∣∣∣∣∣
∫

τ

0
{a− Ā(t;β

o,πo,So,So
c)}

×
∫ t

0

{
dŜ(t;a,Z)

Ŝ(u;a,Z)
− dSo(t;a,Z)

So(u;a,Z)

}{
dMc(u;a,Z, Ŝc)

Ŝc(u;a,Z)
− dMc(u;a,Z,So

c)

So
c(u;a,Z)

}∣∣∣∣∣
]}

+E†

{
E
[

max
a,l∈{0,1}

∣∣∣∣∫ τ

0
{Ā(t;β

o,πo,So, Ŝc)− Ā(t;β
o,πo,So,So

c)}

× J(t;a,Z,So, Ŝc)
l{dŜ(t;a,Z)−dSo(t;a,Z)}

∣∣∣∣]}, (4.10)

where with a slight abuse of notation, we use E here to denote the expectation taken with

respect to the sample O with n observations conditional on the sample O†.

Assumption 12 (Rate Condition). (π∗,S∗,S∗c) = (πo,So,So
c) and

∥∥∥Ŝ−So
∥∥∥(∥π̂−π

o∥+
∥∥∥Ŝc−So

c

∥∥∥)+D†(Ŝ, Ŝc;So,So
c) = o(n−1/2).

Note that on top of the typical product rate condition that are products of error rates

(Chernozhukov et al., 2018; Rotnitzky et al., 2021), we also include an integral cross-product

term. This integral term is not needed for their previous work because at most one of their

nuisance functions involves the time component, which allows them to make use of the

mixed bias property (Rotnitzky et al., 2021) and simplifies the proof. Since we have two

nuisance functions that involve time t, the mixed bias property no longer holds in our case,

so an additional integral term is unavoidable. Similar integral terms in the rate condition

can be found in Wang et al. (2022); Vansteelandt et al. (2022). Ying (2023) also provided a
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more general discussion of these integral remainders.

Theorem 12. In addition to Assumptions 6-11 and Assumptions 21-23, if Assumption 12

holds, we have

σ̂
−1√n(β̂−β

o)
d→ N(0,1),

where the expressions for the asymptotic variance estimator σ̂2 := σ̂2(β̂) is provided in

Supplementary Material C.1.

Theorem 12 establishes the rate double robustness properties. Traditionally, DR

inference only considers parametric/semi-parametric working models that converge at a

root-n rate, which rules out the use of any ML/NP methods. On the other hand, it can

be shown that all doubly robust estimating functions are also Neyman orthogonal scores

(Neyman, 1959), which when combined with cross-fitting, gives root-n consistent estimators,

as long as all nuisance parameters are estimated at n−1/4 rate (Newey, 1994; Rotnitzky et al.,

2021). This n−1/4 rate requirement allows for the use of some ML/NP methods but still

excludes many others. The rate double robustness result established here improves further

upon these results. The estimator β̂ is CAN even if one of Ŝ or (π̂, Ŝc) converge arbitrarily

slow, as long as their product error rate is faster than root-n. So far, there have been very

few results published on the convergence rate of ML methods for time-to-event data, we

will empirically investigate the performance of some ML methods in the simulation section

below.

We also note that due to the non-collapsibility of the Cox model that we discussed

before, if we only use root-n nuisance function estimators, we would get at least one

model wrong, which is why we do not consider it here. If someone insists on using

root-n estimators and manages to get the other model correct, then the AIPW estimator

would still be CAN. However, in this case, the variance estimator would be a lot more

complicated due to the residual terms from the misspecified model, so we recommend the
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use of resampling methods such as bootstrap (Efron, 1992) for the estimation of the variance.

In fact, resampling methods are valid under both model-DR and rate-DR, which we will

investigate further in the simulation Section below.

4.7 Simulation

T (a) C(a)A

ZU

T C

Figure 4.1: DAG for simulation

In this section, we investigate the performance of the AIPW estimator against the

full data estimator that uses (T (1),C(1),T (0),C(0)), a naive Cox estimator that does not

adjust for any covariates, and the IPW estimator. We set n = 1000, p = 3, and τ = 1 for

each dataset that we simulate, and we repeat this process 1000 times, which corresponds

to a margin of errors around +/− 1.35% for the coverage probability of nominal 95%

confidence intervals. Five-fold cross-fitting is applied to all the AIPW estimators that we

consider.

Data generation process is summarized in figure 4.1. We first simulate 3 i.i.d. latent

variables U1 ∼ Unif(−1,1),U2 ∼ Unif(−1,1), and U3 ∼ Unif(−1,1), follwed by Z1 =

0.5U1 +U3, Z2 = U1 + 1.5U2
1 − 0.5, Z3 = U1 +U2 and T (a) = − log(0.5U1 + 0.5)exp(a)

for a = 0,1. This allows T (a) to follow the marginal structural Cox model as defined in

(4.1) with λo
0(t) = 1 and βo = −1. After that, we simulate C(a) and A according to the 4
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scenarios stated in Table 4.1, and set T = AT (1)+(1−A)T (0), C = AC(1)+(1−A)C(0).

As described in Table 4.1, we consider two scenarios for the conditional model

of censoring time C(a) given Z: Cox PH or a mixture of uniform and Cox PH, and two

scenarios for the propensity score model π(z): logistic or soft partition. This gives us

2×2 = 4 scenarios in total. We note that under the marginal structural Cox model (4.1),

any parametric/semi-parametric conditional model of T , including the Cox PH model, is

invalid due to the non-collapsibility of the Cox model that we discussed earlier. While

for each of π and Sc, we consider one simple model that can be consistently estimated

parametric/semi-parametrically, and one complex model that requires ML methods. All 4

Scenarios give around 50% being treated and around 40% being censored due to loss to

follow-up.

For the proposed AIPW estimator, we investigate 2 methods for estimating the

conditional T model: Cox and random survival forest (RSF) (Ishwaran et al., 2008), 2 for

the conditional C model: Cox and RSF, as well as 2 for the propensity score model: logistic

regression and the ’twang’ package in R (Ridgeway et al., 2022), which makes up a total of

8 different AIPW estimators. Note that the conditional censoring model can be fit using the

event time X and the event indicator ∆c = (1−∆) · I(X < τ). We set the splitrule of RSF

to ’bs.gradient’ and kept all other hyperparameters of twang and RSF as the default. For

each simulated data set, we calculate both a model-based standard error (SE) assuming the

conditions for rate DR holds as well as a bootstrapped SE using 100 bootstrap runs for all

the AIPW estimators. Bootstrap SE is more computationally expensive, but it does hold

under the additional setting when all nuisance function estimators are parametric and one of

them is misspecified. Coverage is calculated using normal-based 95% confidence intervals

constructed from both the estimated model SEs and the bootstrap SEs.

We also consider 4 different IPW estimators, again with censoring weights estimated

using Cox or RSF, and propensity score estimated using logistic regression or ’twang’.

Bootstrap SE are calculated for these 4 estimators. As for the naive Cox estimator and the
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full data estimator, we calculate their SEs using the standard robust SE estimators.

To make sure the strict positivity assumption 9 is satisfied, we trim Ŝ(t;a,z), Ŝc(t;a,z)

so that all estimated values below 0.05 are set to 0.05, and we also set all estimated π̂(z)

values that are above 0.9 or below 0.1 to be 0.9 and 0.1.

Figures in 4.2 show the bias, standard deviation (SD), and bootstrap-based coverage

probability of the 12 AIPW and IPW estimators under Scenarios 1-4 respectively. Tables 4.2

and 4.3 provide additional details for all 14 estimators that are considered. We see that

IPW estimators can have small biases when both the censoring working model and the

propensity score working model are correctly specified, but their coverage is often quite

poor, especially in Scenarios 2-4 when all parametric/semi-parametric working models are

invalid. This echoes the challenge of inference for IPW estimators when using ML methods

that we discussed before. When all the working models are correct, AIPW estimators

show very small biases, along with close to 0.95 coverage, across all 4 scenarios. We

also note that the Cox/Cox-logit AIPW estimator, which exclusively uses parametric/semi-

parametric nuisance function estimators, only attains good coverage under Scenario 1, which

corresponds to the model-DR case. The AIPW estimator that uses a mix of parametric

and ML methods, like the RSF/RSF-logit AIPW estimator, can perform well on multiple

scenarios, but still fails when the parametric model fails. Lastly, the RSF/RSF-twang AIPW

estimator that uses all ML methods performs well under all 4 settings. All these findings

support the rate-DR result from Theorem 12.

4.8 Application

Here, we look at data collected from the Honolulu Health Program (HHP) and the

subsequent linked Honolulu-Asia Aging Study (HAAS). HHP is an epidemiological study

started in 1965, that concerns the rates and risk factors for heart disease and stroke in men

of Japanese ancestry living in Oahu and born between 1900 and 1919. In 1991, HAAS

is established as a continuation of the HHP study, which concerns instead brain aging,
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Figure 4.2: Plots of bias, SD, and bootstrap coverage for each of the 4 Scenarios considered
in Simulation. Top-left, top-right, bottom-left, and bottom-right in landscape view corre-
spond to Scenario 1 to Scenario 4, respectively.

68



Table 4.1: Scenarios 1-4 of the simulation. βo =−1, λ0(t) = 1.

Scenario Data-generating mechanism
1 ε∼ Unif(0,1)

Censoring: Cox C(a) =− log(ε)exp(0.5+0.5a−Z2 +0.5Z3)
PS: Logistic logit{π(Z)}= 0.5Z1−0.5Z2−0.5Z3

2 ε∼ Unif(0,1)
Censoring: Cox C(a) =− log(ε)exp(0.5+0.5a−Z2 +0.5Z3)

PS: Soft Partition logit{π(Z)}=−3 ·1{Z2 <−0.5}+3 ·1{−0.5≤ Z2 < 0.5}−3 ·1{Z2 ≥ 0.5}
3 εa ∼ Unif(0,1) for a = 0,1

Censoring: C(0) = 1.05ε0
Uniform-Cox C(1) =− log(ε1)exp(3.3+3.5Z3)
PS: Logistic logit{π(Z)}= 0.5Z1−0.5Z2−0.5Z3

4 εa ∼ Unif(0,1) for a = 0,1
Censoring: C(0) = 1.05ε0

Uniform-Cox C(1) =− log(ε1)exp(3.3+3.5Z3)
PS: Soft Partition logit{π(Z)}=−3 ·1{Z2 <−0.5}+3 ·1{−0.5≤ Z2 < 0.5}−3 ·1{Z2 ≥ 0.5}

Alzheimer’s disease, vascular dementia, other causes of cognitive and motor impairment,

stroke, and the common chronic conditions of late life. In this section, we are particularly

interested in the effect of mid-life alcohol exposures (captured in 1965-1973) on late-life

overall survival (starting in 1991). Alcohol consumption was assessed through self-report

and translated into units per month. Participants are categorized as heavy drinkers if they

were heavy drinkers at some point during mid-life and non-heavy drinkers otherwise. After

removing a few missing observations, we have a total of 2079 patients with 552 of them

being heavy drinkers and 1527 non-heavy drinkers. Time to death is our primary endpoint,

and in addition to mid-life alcohol exposure, we also include 4 covariates that were assessed

at the start of the HHP: age, maximum years of education, systolic blood pressure, and

heart rate in 30 seconds. It’s worth noting that death certificates are available for many

participants which allows us to retrospectively identify the death date, but we will not include

it in our analysis so as to better understand the effect of informative censoring. We set a

maximum follow-up time of 13 years, after which the participants’ outcomes are artificially

censored. This guarantees that the strict positivity assumption 9 is satisfied. The boxplots

of π̂(z), Ŝ(τ;a,z) and Ŝc(τ;a,z) for all 2079 patients are provided in Figure C.1 of the

supplementary material, which verifies that the strict positivity assumption is satisfied with
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Table 4.2: Simulation based on 1000 data sets. (n, p) = (1000,3). βo =−1. Red
indicates that the model or approach is invalid.

Scenario Estimator T/C-PS Models Bias SD SE Coverage
Model/Boot Model/Boot

Scenario 1

AIPW

Cox/Cox-logit 0.002 0.059 0.060/0.059 0.95/0.94
Cox/Cox-twang 0.003 0.058 0.061/0.060 0.96/0.94
Cox/RSF-logit 0.004 0.057 0.060/0.059 0.96/0.96
Cox/RSF-twang 0.003 0.056 0.062/0.060 0.97/0.96
RSF/Cox-logit 0.002 0.053 0.053/0.053 0.95/0.94
RSF/Cox-twang 0.008 0.054 0.054/0.055 0.95/0.95
RSF/RSF-logit 0.005 0.053 0.053/0.054 0.95/0.94
RSF/RSF-twang 0.011 0.054 0.055/0.056 0.95/0.95

IPW

Cox-logit 0.000 0.067 - /0.066 - /0.94
Cox-twang 0.031 0.069 - /0.069 - /0.92
RSF-logit 0.026 0.060 - /0.064 - /0.95
RSF-twang 0.005 0.062 - /0.068 - /0.97

Naive Cox 0.496 0.100 0.100/0.101 0.00/0.00
Full Data 0.001 0.029 0.028/ - 0.95/ -

Scenario 2

AIPW

Cox/Cox-logit 0.260 0.064 0.068/0.066 0.02/0.02
Cox/Cox-twang 0.018 0.086 0.093/0.088 0.96/0.95
Cox/RSF-logit 0.268 0.063 0.069/0.066 0.02/0.02
Cox/RSF-twang 0.033 0.080 0.090/0.084 0.95/0.94
RSF/Cox-logit 0.050 0.071 0.056/0.061 0.80/0.83
RSF/Cox-twang 0.003 0.073 0.073/0.075 0.94/0.94
RSF/RSF-logit 0.052 0.071 0.056/0.061 0.80/0.83
RSF/RSF-twang 0.009 0.073 0.073/0.075 0.95/0.94

IPW

Cox-logit 0.164 0.093 - /0.092 - /0.58
Cox-twang 0.103 0.118 - /0.106 - /0.83
RSF-logit 0.177 0.084 - /0.088 - /0.48
RSF-twang 0.134 0.107 - /0.101 - /0.74

Naive Cox 0.579 0.119 0.125/0.125 0.00/0.00
Full Data 0.001 0.029 0.028/ - 0.95/ -
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Table 4.3: Simulation based on 1000 data sets. (n, p) = (1000,3). βo =−1. Red
indicates that the model or approach is invalid.

Scenario Estimator T/C-PS Models Bias SD SE Coverage
Model/Boot Model/Boot

Scenario 3

AIPW

Cox/Cox-logit 0.146 0.106 0.108/0.109 0.79/0.78
Cox/Cox-twang 0.146 0.108 0.114/0.120 0.81/0.83
Cox/RSF-logit 0.015 0.103 0.122/0.118 0.98/0.97
Cox/RSF-twang 0.014 0.104 0.126/0.125 0.98/0.98
RSF/Cox-logit 0.007 0.092 0.098/0.097 0.95/0.94
RSF/Cox-twang 0.001 0.095 0.101/0.104 0.95/0.95
RSF/RSF-logit 0.019 0.097 0.102/0.104 0.96/0.95
RSF/RSF-twang 0.026 0.098 0.103/0.111 0.96/0.97

IPW

Cox-logit 0.305 0.112 - /0.103 - /0.21
Cox-twang 0.335 0.115 - /0.104 - /0.16
RSF-logit 0.077 0.078 - /0.079 - /0.84
RSF-twang 0.109 0.082 - /0.082 - /0.73

Naive Cox 0.895 0.108 0.110/0.110 0.00/0.00
Full Data 0.001 0.029 0.028/ - 0.95/ -

Scenario 4

AIPW

Cox/Cox-logit 0.347 0.120 0.138/0.143 0.14/0.24
Cox/Cox-twang 0.135 0.131 0.116/0.129 0.72/0.78
Cox/RSF-logit 0.361 0.201 0.343/0.224 0.50/0.71
Cox/RSF-twang 0.084 0.140 0.149/0.157 0.88/0.90
RSF/Cox-logit 0.075 0.107 0.101/0.105 0.89/0.89
RSF/Cox-twang 0.026 0.105 0.096/0.106 0.90/0.92
RSF/RSF-logit 0.143 0.137 0.174/0.155 0.88/0.93
RSF/RSF-twang 0.020 0.124 0.119/0.132 0.94/0.94

IPW

Cox-logit 0.063 0.130 - /0.124 - /0.90
Cox-twang 0.249 0.130 - /0.117 - /0.41
RSF-logit 0.163 0.112 - /0.104 - /0.66
RSF-twang 0.005 0.129 - /0.112 - /0.91

Naive Cox 0.562 0.120 0.132/0.132 0.00/0.00
Full Data 0.001 0.028 0.028/ - 0.95/ -
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our choice of τ. Overall, 47% of the participants died and 21% of the patients are censored

due to loss to follow-up, and the remaining 32% of the participants are administratively

censored at the 13-year mark.

We focus on estimating the log hazard ratio under the marginal structural Cox model

(4.1). To determine whether there are informative censoring and confounding due to the 4

covariates, we look at the univariate association between each of the 4 covariates and the

outcome T , the censoring C and the exposure A in Figure 4.4. From the p-values, we see

that these 4 covariates lead to both informative censoring (covariate associated with both T

and C) and confounding (covariate associated with both T and A). This suggests the need of

considering exchangeability Assumption 8, the informative censoring Assumption 10 and

the use of the proposed AIPW estimators.

We investigated here all 13 estimators that were considered in the simulation. Fig-

ure 4.3 shows the forest plot that provides a point estimate and a 95% bootstrap-based

confidence interval for all 13 estimates and Table 4.5 provides additional details. We can

see that the AIPW estimators, especially those that use ML methods, give visibly smaller

estimates of log hazard ratio compared to the IPW estimates. The IPW estimates themselves

are also smaller than the Naive Cox estimate. This could suggest that while all estimators

agree on the negative impact of mid-life alcohol exposure on overall survival, the extent of

this impact might not be as large as what the Naive Cox estimate suggests once we take

better account of the biases resulting from both informative censoring and the treatment

confounding.

To estimate the survival curves P(T (a)> t) = exp{−Λ̂0(t)exp(β̂a)}, we construct

a cross-fitted AIPW estimator for the cumulative baseline hazard function Λ0(t) at each time

t as

Λ̂0(t) =
1
k

k

∑
m=1

Λ̃0,m(t; β̂, π̂(−m), Ŝ(−m), Ŝ(−m)
c ).

Λ̂0(t) estimate is also doubly robust since each of the m-th fold estimates
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Λ̃0,m(t; β̂, π̂(−m), Ŝ(−m), Ŝ(−m)
c ) is DR. By estimating Λ̂0(t) and β̂ using the AIPW:RSF/RSF-

twang method, we obtain average survival curves for the two treatment groups in Figure 4.4.

Moreover, this allows us to estimate the risk difference P(T (1) ≤ t)−P(T (0) ≤ t) and

the risk ratio P(T (1) ≤ t)/P(T (0) ≤ t). Table 4.6 presents the estimated risk difference,

the estimated risk ratio, and their bootstrapped 95% normal-based confidence intervals for

t = 3, . . . ,12 years.

With informative censoring and treatment confounding, most classical methods of

testing proportional hazards fail. Motivated by (Therneau and Grambsch, 2000), we present

In Figure 4.5 a smoothed AIPW β(t) plot using the AIPW:RSF/RSF-twang estimator. It

seems to suggest that the effect of mid-life alcohol consumption on late-life mortality slightly

decreases overtime. More details on this plot will be discussed in Section 5.7.2 of Chapter 5.

Table 4.4: The p-values for the univariate association of each of the 4 covariates in
HAAS data with the outcome T , the censoring time C, and the exposure A. For
T and C, the p-values are calculated using a univariate Cox PH model. For A, the
p-value is from a univariate logistic regression.

Covariate Association with T Association with C Association with A
Age 0.000 0.191 0.526
Education 0.001 0.001 0.000
SystolicBP 0.009 0.668 0.107
HeartRate 0.000 0.062 0.013

4.9 Discussion

We considered the estimation of the log hazard ratio under the marginal structural

Cox model and developed an AIPW estimator under exchangeability and informative

censoring. The proposed estimating functions are doubly robust with respect to possible

misspecification of either the conditional outcome model or the missing data model. In

particular, the AIPW estimator is rate DR, allowing for ML/NP methods for estimating

nuisance functions, thereby meeting the challenge of the non-collapsibility that comes with
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Figure 4.3: Forest plot of the log hazard ratio estimates examining the effect of drinking on
overall survival for the HAAS dataset.

Table 4.5: Estimates of the log hazard ratio using 13 different estimators for
the HAAS dataset, together with the bootstrapped standard errors and the 95%
confidence interval constructed from it.

Estimator Estimate Boot SE 95% Boot CI
DR:Cox/Cox-logit 0.27 0.07 (0.13, 0.40)
DR:Cox/Cox-twang 0.25 0.07 (0.11, 0.38)
DR:Cox/RSF-logit 0.27 0.07 (0.13, 0.40)
DR:Cox/RSF-twang 0.25 0.07 (0.12, 0.39)
DR:RSF/Cox-logit 0.23 0.07 (0.09, 0.36)
DR:RSF/Cox-twang 0.22 0.07 (0.07, 0.36)
DR:RSF/RSF-logit 0.23 0.07 (0.09, 0.37)
DR:RSF/RSF-twang 0.22 0.07 (0.08, 0.37)
IPW:Cox-logit 0.27 0.07 (0.14, 0.40)
IPW:Cox-twang 0.25 0.06 (0.13, 0.38)
IPW:RSF-logit 0.27 0.07 (0.14, 0.40)
IPW:RSF-twang 0.25 0.06 (0.14, 0.37)
Naive Cox 0.30 0.07 (0.17, 0.44)
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Figure 4.4: Estimated survival curves for heavy-drinkers vs non-heavy drinkers based on
the cross-fitted AIPW estimator Λ̂0(t) for the cumulative baseline hazard.

Table 4.6: Estimated risk difference and risk ratio between the mid-life heavy-
drinkers and the non-heavy drinkers along with the bootstrapped 95% confidence
intervals.

Year Risk Difference Risk Ratio
3 0.001 (-0.0001,0.0030) 1.249 (1.0699,1.4291)
4 0.012 (0.0036,0.0207) 1.242 (1.0685,1.4164)
5 0.022 (0.0070,0.0364) 1.236 (1.0670,1.4043)
6 0.033 (0.0109,0.0554) 1.227 (1.0653,1.3879)
7 0.044 (0.0145,0.0727) 1.217 (1.0634,1.3711)
8 0.054 (0.0183,0.0892) 1.207 (1.0610,1.3523)
9 0.062 (0.0210,0.1030) 1.196 (1.0592,1.3337)
10 0.069 (0.0236,0.1144) 1.186 (1.0568,1.3146)
11 0.074 (0.0253,0.1221) 1.177 (1.0548,1.2984)
12 0.078 (0.0270,0.1286) 1.166 (1.0526,1.2795)

75



0.2

0.3

0.4

0.5

0.6

2.5 5.0 7.5 10.0 12.5
Years

A
IP

W
 b

et
a(

t)

Figure 4.5: Smoothed AIPW β(t) plot of the time-varying log hazard ratio for the effect
of mid-life alcohol exposure on late-life mortality based on the AIPW:RSF/RSF-twang
estimator. The red dotted line indicates the AIPW:RSF/RSF-twang estimate for β∗.
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the marginal Cox model.

The marginal structural Cox model is a natural extension of the classical Cox model

to causal inference. However, the use of hazard ratio under causal inference has brought

some criticisms (Hernán, 2010; Martinussen et al., 2020) mainly due to the imbalance

between risk sets post-treatment, while others defended its use (Prentice and Aragaki, 2022;

Ying and Xu, 2023). Specifically, they argue that if there is a non-zero treatment effect, the

two groups are no longer comparable at time t > 0 due to differential survival distributions

between the two groups. On the other hand, the causal hazard ratio is the ratio of the log of

potential survival functions between two groups at all times. Being a contrast of functionals

of the two potential outcome distributions makes it a valid estimand that remains causally

interpretable. Others have studied alternative estimands for time-to-event endpoints. Axelrod

and Nevo (2022) looked at sensitivity analysis for the so-called ’causal HR’ (Martinussen

et al., 2020) that is based on patient groups who would have survived regardless of their

treatment assignment, but this estimand is not even identifiable, which severely limits its

practical use. Vansteelandt et al. (2022) proposed a model-free hazard ratio estimand which

would simplify to the hazard ratio under the Cox model. Its estimation does not rely on

the inverse probability of treatment weighting, which could bring more stability. However,

their estimand explicitly depends on the specific propensity score model involved, and

they require the restrictive assumption that the cumulative hazard is positive at all times.

While researchers persist in their search for alternative causal estimands under time-to-event

studies, we believe the significance of the causal hazard ratio should not be overlooked,

owing to its inherent simplicity, interpretability, and widespread popularity.

In this paper, we implicitly assumed that the three nuisance functions depend on

the same set of covariates. This need not be the case, and they may depend on different

covariates, so long as the exchangeability and informative censoring assumptions are satisfied

for the covariates that we choose to work with.

The proposed AIPW estimator was implemented in R and has been built into the R
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package ’CoxAIPW’, and is available on the comprehensive R archive network (CRAN).
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Chapter 5

Doubly Robust Inference under

Non-Proportional Hazards Model

5.1 abstract

The marginal structural Cox model is commonly used in observational studies

with time-to-event outcomes to draw causal inferences, but the proportional hazards (PH)

assumption it makes often fails in practice. We propose an alternative causal estimand

with clear causal interpretation under the non-PH model. It is a weighted average of the

time-varying causal log hazard ratio, which recovers the time-fixed causal log hazard ratio

under the marginal structural Cox model, and has a simple connection with treatment

effects defined through transformation models. In observational data with time-to-event

outcomes, both confounding and informative censoring occur frequently. They lead to

potential biases in our estimation of the proposed causal estimand and can be accounted

for through inverse probability weighting (IPW) to the full data estimating functions. By

demonstrating the equivalence between its full data estimating functions and that of the

marginal structural Cox model, we further construct an augmented IPW (AIPW) estimator

that protects against misspecification of the working models through the doubly robust

property. With cross-fitting, this AIPW estimator is not only model doubly-robust (DR)
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but also rate DR, which allows for the use of machine learning methods in estimating the

nuisance functions. Classical methods for plotting the time-varying log hazard ratio fail

in the presence of informative censoring or treatment confounding, we propose an AIPW

log hazard ratio plot that also works under observational data. Extensive simulations are

conducted to study the properties of the proposed estimation methods empirically. Lastly,

we apply our proposed method to the International Non-Hodgkin’s Lymphoma Prognostic

Factors Project dataset.

5.2 Introduction

In observational studies with time-to-event data, the marginal structural Cox model

(Hernán et al., 2001) is one of the most commonly used models for drawing causal inference.

When the proportional hazards (PH) assumption is satisfied, the causal hazard ratio is a scalar

causal estimand for the treatment effect of a binary exposure and has been widely applied

(Cole et al., 2003; Feldman et al., 2004; Sterne et al., 2005; Hernán et al., 2006; Buchanan

et al., 2014). However, the PH assumption, which assumes that the ratio of hazards function

between the two groups is constant at all times, is rarely satisfied in practice. This prompts

us to consider the more general marginal structural non-PH model with a time-varying

causal hazard ratio.

Under the marginal structural non-PH model, there have been efforts on developing

a scalar causal estimand that summarizes the time-varying hazard ratio (Martinussen et al.,

2020; Vansteelandt et al., 2022), but they all have their respective limitations, which we

discuss in details later. Motivated by the work of Struthers and Kalbfleisch (1986); Xu and

O’Quigley (2000), we propose a causal estimand β∗ under the marginal structural non-PH

model with the desirable property of being a weighted average of the time-varying log

hazard ratio over time. Moreover, this causal estimand has a simple algebraic relationship

with the treatment effects defined through the marginal structural transformation model.

Under the marginal structural proportional odds model with log-link, which is a special
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case of the marginal structural transformation model, β∗ reduces to exactly the average of

time-varying log hazard ratio over time. Lastly, due to the desirable property of being a

weighted average of time-varying log hazard ratio, it would recover the time-fixed causal

log hazard ratio if the PH assumption is satisfied. This makes β∗ a generalization of the

causal log hazard ratio that carries causal interpretation even when the PH assumption fails.

In observational data that is without randomization, confounding exists that in-

troduces bias. Assuming no unmeasured confounding, inverse probability of treatment

weighting (IPTW) (Robins, 1998; Robins et al., 2000a; Robins, 2000; Lunceford and David-

ian, 2004; Hubbard et al., 2000; Hernán et al., 2001; Chen and Tsiatis, 2001; Zhang and

Schaubel, 2011) can be applied for unbiased estimation of our causal estimand. Time-to-

event data is also commonly associated with right-censoring. If the censoring is informative,

that is, the outcome event time and the censoring time are dependent unless we condition on

additional covariates, then the inverse probability of censoring weighting (Robins, 1993;

Robins and Finkelstein, 2000) can be similarly applied to correct for this bias.

Both the counterfactual outcomes and the censoring mechanisms can be seen as

missing data. IPTW and IPCW require a known or estimated propensity score and censoring

time model, respectively, and methods for protection against these models were developed.

For counterfactual outcomes, augmented inverse probability weighting (AIPW) can be

applied (Robins et al., 1995; Scharfstein et al., 1999; Robins et al., 2000a; Robins, 2000;

Robins et al., 2000b; Robins and Rotnitzky, 2001; Van der Laan and Robins, 2003; Bang

and Robins, 2005; Tsiatis, 2006), which protects against misspecification of the propensity

score model. Rotnitzky and Robins (2005) developed the augmented IPCW approach that

protects against misspecification of the censoring model.

In this paper, we first identify the full data estimating functions for our proposed

causal estimand. By showing its equivalence with the full data estimating functions for the

marginal structural Cox model proposed in Chapter 4, we proceed to develop the IPW and

AIPW estimating functions in the same way. The AIPW estimating functions lead to the
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AIPW estimator involving 3 working models, a conditional outcome model, a propensity

score model, and a censoring time model, the latter two can be seen as the missing data

model. This AIPW estimator is model DR (Rotnitzky et al., 2021) in that it is consistent and

asymptotically normal (CAN) if any of the conditional outcome model or the missing data

model is correctly specified. With the help of cross-fitting (Chernozhukov et al., 2018), the

resulting cross-fitted AIPW estimator is also rate DR, which is CAN when the product of

the estimation error rates under the two sets of working models is faster than root-n, even if

any of them is arbitrarily slow.

We will also show that the proposed causal estimand is the limit of the partial

likelihood (PL) estimator under full data with both potential outcomes and no censoring.

Struthers and Kalbfleisch (1986) studied the limit of the PL estimator under randomization,

Xu and O’Quigley (2000); Boyd et al. (2012); Hattori and Henmi (2012) then looked at the

estimation of this limit under non-informative censoring, which assumes that the outcome

and the censoring time are conditionally independent given treatment assignment. Our

causal estimand can be thought of as an extension of this limit to observational studies and

informative censoring, this motivates us to investigate the bias of the PL estimator when

there is either informative censoring or treatment confounding.

Under randomization and random censoring, a plot of the time-varying log hazard

ratio can be constructed following the approach of Therneau and Grambsch (2000). This

is however biased under observational data without randomization or under informative

censoring. Following our approach for constructing the AIPW estimator, we similarly

propose an AIPW log hazard ratio plot. We then test it on a simulated dataset and compare

it with the truth and the plot obtained using Therneau and Grambsch (2000)’s approach.

Causal inference has received wide interest due to the increasing scale and availability

of observational data. However, we often remain interested in the associational or predictive

effect of exposure on a time-to-event outcome through the likes of regression models. This

leads us to study a non-causal estimand, which is equivalent to the average regression effect
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proposed in Struthers and Kalbfleisch (1986); Xu and O’Quigley (2000). We show that under

randomization but with informative censoring, we can estimate the non-causal estimand

using precisely the method we proposed in Chapter 3. We also discuss the properties of this

estimand and its AIPCW estimator.

The rest of the paper is organized as follows. In Section 5.3, we state the non-PH

model, the assumptions, and introduce a new causal estimand. In Section 5.4, we identify

the full data estimating functions and construct the IPW and AIPW estimating functions.

Implementation of the AIPW estimating equations is described in Section 5.5. Section

5.6 discusses the asymptotic properties of the non-cross-fitted and the cross-fitted AIPW

estimator, including the model DR and rate DR properties. Some miscellaneous results,

including the bias of the PL estimator, the AIPW plot for the time-varying log hazard

ratio, as well as the non-causal estimand, are summarized in Section 5.7. In Section 5.8,

we conduct simulations for our AIPW estimators under various non-PH models as well

as various models for censoring and propensity scores. Lastly, the proposed estimator is

applied to the Non-Hodgkin’s Lymphoma dataset in Section 5.9. Additional materials are

provided in the Supplementary Materials.

5.3 Non-Proportional Hazards Model and Estimand

5.3.1 Randomization

To motivate our estimand, we first consider a study under randomization. In a

two-group study with time-to-event outcomes and without censoring, we observe the full

data vector (T,A) where T is the failure time, and A ∈ {0,1} is the exposure of interest. A

saturated model here is non-PH, which can be expressed as

λ(t;A) = λ0(t)exp{β(t)A}, (5.1)
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where λ(t;A) is the hazard function of T given exposure group A, λ0(t) is the baseline

hazard function, and β(t) is the time-varying log hazard ratio.

Under the non-PH model (5.1), challenges arise regarding both the inference as well

as the interpretation of β(t) due to its infinite-dimensionality. This motivates us to look for a

scalar estimand that can be thought of as a weighted average of β(t) of the form

∫
τ

0 β(t)w(t)dt∫
τ

0 w(t)dt
,

where τ is the maximum follow-up time. Let F(t) denote the cumulative density function of

T . One choice of w(t) with useful interpretations (Struthers and Kalbfleisch, 1986; Xu and

O’Quigley, 2000) arises from the estimating equation

∫
τ

0

{
Eβ(t)(A|T = t)−Eβ(A|T = t)

}
dF(t) = 0, (5.2)

Here, Eβ(t) refers to the expectation taken over the time-varying model 5.1, while Eβ sets

β(t) to be a constant β. We see that the solution β is the fixed log hazard ratio that would

balance E(A) under the non-PH model 5.1. This definition also provides us with other

interesting interpretations which we will discuss later.

5.3.2 Marginal Structural Model

In practice, we are often interested in drawing causal inferences from observational

data which involves confounding. To define a causal estimand, we adopt the counterfactual

framework (Neyman, 1923; Rubin, 1974) and consider the marginal structural non-PH

model, where with a slight abuse of notation, we let

λT (a)(t) = λ0(t)eβ(t)a. (5.3)
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Here, T (a) is the potential survival time under treatment A = a, λT (a)(t) is the hazard

function for T (a), and λ0(t) is the baseline hazard function.

Like most studies of time-to-event outcomes, there is possible right censoring on

the potential failure times T (1),T (0). Denote C(1),C(0) the potential censoring time for

T (1),T (0), respectively. Let ∆(a) = I{T (a)≤C(a)} denote the potential event indicator

and let X(a) = min{T (a),C(a)}. We will use T,C,X ,∆ to indicate the failure, censoring,

censored times, and event indicator, respectively, once the treatment is received. In addition,

we consider observed baseline covariates vector Z ∈ Rp.

Next, we make the following assumptions that are standard in causal inference

(Hernán and Robins, 2020).

Assumption 13 (SUTVA). The potential outcomes of one subject are not affected by

the treatment assignment of the other subjects, and there are no hidden versions of the

treatments.

Assumption 14 (Consistency). T = AT (1)+(1−A)T (0), and C = AC(1)+(1−A)C(0).

Assumption 15 (Exchangeability). (T (a),C(a))⊥ A | Z, for a = 0,1.

Assumption 16 (Strict Positivity). There exists 0 < ε < 1 such that ε < P(A = 1|Z = z)<

1−ε, P(C > τ|A = a,Z = z)> ε, P(T > τ|A = a,Z = z)> ε for all values of a and z, where

τ is a maximum follow-up time.

Non-informative censoring (Kalbfleisch and Prentice, 2011) is often assumed in tra-

ditional survival analysis, which requires the censoring time to be conditionally independent

of the failure time given the regressors. Our model under consideration is the marginal

structural non-PH model, which does not involve the baseline covariates Z. Nonetheless,

we make the following informative censoring assumption that allows the censoring time to

depend on the covariates.

Assumption 17 (Informative Censoring). T (a)⊥C(a) | Z, for a = 0,1, where ⊥ indicates

statistical independence.
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We now propose a new causal estimand β∗ as the solution to (5.2) under 1:1 random-

ization. Under the marginal structural non-PH model (5.3), it can be equivalently defined

using counterfactual quantities in the following Lemma.

Lemma 1. β∗ is the solution to

h(β) =
∫

τ

0

{
∑a=0,1 aeβ(t)aSa(t)

∑a=0,1 eβ(t)aSa(t)
− ∑a=0,1 aeβaSa(t)

∑a=0,1 eβaSa(t)

}
∑

a=0,1
dFa(t) = 0, (5.4)

where Sa(t) = P(T (a)> T ) is the survival function for T (a), fa(t),Fa(t) are the probability

density function and the cumulative density function for T (a) respectively.

Denote

v(β, t) =
d

dβ

[
∑a=0,1 aeβaSa(t)

∑a=0,1 eβaSa(t)

]
=
{∑a=0,1(1−a)eβaSa(t)}{∑a=0,1 aeβaSa(t)}

{∑a=0,1 eβaSa(t)}2 .

Assume fa(t) > 0 for t ∈ [0,τ],a = 0,1. We then have v(β(t), t) > 0 and −dh(β)/dβ =

∑a=0,1
∫

τ

0 v(β, t)dFa(t)> 0, so β∗ is uniquely defined.

Using the mean-value theorem on the integrand of (5.4), we also have

∑a=0,1
∫

τ

0 v(β̃(t), t){β(t)−β∗}dFa(t)= 0, where β̃(t)= β∗+s{β(t)−β∗} for some s∈ [0,1].

β∗ is therefore a weighted average of β(t) with weight w(t) = v(β̃(t), t)∑a=0,1 fa(t).

Lemma 2. Suppose T (a) follows the marginal structural transformation model

g(T (a)) = γa+ ε,

for a = 0,1, where g(t) is any strictly increasing function. ε is a member of the Gρ family

(ρ≥ 0 is known) from Harrington and Fleming (1982), with survival function

P(ε > t) = exp(−et) (ρ = 0),

P(ε > t) = (1+ρet)−1/ρ (ρ > 0).
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If τ is large so that P(T (a)< τ) = 1 for a = 0,1, then

β
∗ =− γ

ρ+1
.

As a special case, if T (a) follows the marginal structural proportional odds model

(ρ = 1) with g(t) = log(t), we also have β∗ = 1
2 ∑a=0,1

∫
τ

0 β(t)dFa(t).

This Lemma generalizes the result in Section 2 of Xu and Harrington (2001) to the

potential outcomes. This simple algebraic relationship above provides a simple estimator

of the contrast γ in the marginal structural transformation model. Moreover, β∗ is precisely

the average of β(t) over time between a = 1 and a = 0 when T (a) follows the marginal

structural proportional odds model with g(t) = log(t). Note that if P(T (a)> τ)> 0, then

the relationship may not be exact.

Lemma 3. If T (a) follows the marginal structural Cox model (Hernán et al., 2001)

λT (a)(t) = λ0(t)eβoa,

for a = 0,1, then β∗ equals the causal log hazard ratio βo. In general, β∗ is also the limit of

the oracle estimator for βo under the non-PH model (5.3).

The marginal structural Cox model is equivalent to setting β(t) in the time-varying

model (5.3) to βo, so it is obvious that β∗ would exactly recover the causal log hazard ratio

under the marginal structural Cox model. The oracle log hazard ratio estimator for βo is the

PL estimator using the full data with both counterfactual outcomes, which is equivalent to

the PL estimator under 1:1 randomization. The second statement of Lemma 3 is therefore a

direct consequence of Struthers and Kalbfleisch (1986) since their result shows that β∗ is the

limit of the PL estimator under 1:1 randomization. This suggests that even under violation

of the PH assumption, the oracle estimator converges to β∗, hence remains interpretable.

In the next section, we study the estimation of β∗ under observational data, which

could be subject to treatment confounding, as well as informative right censoring. Correcting
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for confounding and censoring would require us to build working models for the treatment

assignment and the censoring process, so we will also explore doubly robust estimators that

would be consistent and asymptotically normal even when some of the working models are

misspecified or estimated at a slower rate.

5.4 Doubly Robust Estimating Functions

In this section, we treat both potential outcomes and censoring as missing data and

apply the semiparametric theory (Bickel et al., 1993; Tsiatis, 2006). First, we show that

β∗ can be equivalently defined using a set of i.i.d. full data estimating functions. Next, we

show that the full data estimating functions defined for the marginal structural Cox model

in Chapter 4 is also the full data estimating functions for β∗. This allows us to obtain the

inverse probability weighted (IPW) estimator and the Augmented IPW (AIPW) estimator

for β∗ that is the same as those we derived for the marginal structural Cox model earlier.

5.4.1 Full Data Estimating Function

β∗ is the limit of the full data PL estimator for the hazard ratio from the marginal

structural Cox model. To model a semiparametric marginal structural Cox model, a scalar

parameter β∗ is not sufficient, so it is natural for us to consider an additional parameter

Λ∗(t) that can be thought of as the least false baseline cumulative hazard function from

the misspecified marginal structural Cox model. We require Λ∗(t) to be right-continuous,

non-decreasing with Λ∗(0) = 0 and Λ∗(τ)< ∞. Next, using the counting process notations,

we define the full data counting process Na
T (t) = I(T (a)≤ t), and the full data at-risk process

Y a
T (t) = I(T (a)≥ t) for a = 0,1, where I(·) is an indicator function. Consider

Ma
T (t;β,Λ) = Na

T (t)−
∫ t

0
Y a

T (u)e
βadΛ(u).
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Motivated by the estimating functions (4.2) and (4.3) for the Cox PH model proposed in

Chapter 4, we consider the set of full data estimating functions

D f
1(t;β,Λ) = ∑

a=0,1
dMa

T (t;β,Λ), (5.5)

D f
2(β,Λ) = ∑

a=0,1

∫
τ

0
a ·dMa

T (t;β,Λ). (5.6)

Lemma 4. β∗ and Λ∗(t) solves the set of equations E{D f
1(t;β,Λ)} = 0 for each t, and

E{D f
2(β,Λ)}= 0, where β∗ satisfies (5.4),while

Λ
∗(t) =

∫ t

0

∑a=0,1 dFa(t)

∑a=0,1 Sa(t)eβ∗a
=−

∫ t

0

∑a=0,1 dSa(t)

∑a=0,1 Sa(t)eβ∗a
. (5.7)

Lemma 4 shows that (5.5) and (5.6) indeed are the full data estimating functions for

β∗ and Λ∗(t).

We note that with this formulation, β∗ and Λ∗(t) are also the least false log hazard

ratio and cumulative baseline hazard function that maximizes the pseudo non-parametric

likelihood for the marginal structural Cox model (White, 1982; Li and Duan, 1989; Lin and

Wei, 1989). This can be seen from the fact the pseudo non-parametric likelihood for a single

observation with a fixed hazard ratio β and a cumulative baseline hazard function Λ0(t) with

jumps discretized only at the event times is

∏
a=0,1

{
eβa

λ0{T (a)}
}

exp
{
−
∫ T (a)

0
eβadΛ0(t)

}
= ∏

a=0,1

{
eβa

λ0{t}
}I{t=T (a)}

exp
{
−
∫

τ

0
Y a

T (t)e
βadΛ0(t)

}

and that the full data estimating functions (5.5) and (5.6) can be shown to be the scores of

this likelihood with respect to Λ0(t) and β, respectively.
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5.4.2 IPW Estimating Function

Full data is not available to us in practice, but instead, we have the observed counting

process N(t) = I(X ≤ t,∆ = 1) where ∆ = I(T < C), and the observed at-risk process

Y (t) = I(X ≥ t). Define

M(t;β,Λ) = N(t)−
∫ t

0
Y (u)eβAdΛ(u).

To account for the bias caused by not observing part of the data, we may apply the

inverse probability of censoring weighting. The general idea of weighting an observation

by the inverse of its probability of being sampled dates back to Horvitz and Thompson

(1952). In our case, we first apply the inverse probability of treatment weighting to obtain a

pseudo population from the target population with balanced covariates (Hernán and Robins,

2020). Next, we apply the inverse probability of censoring weighting to similarly account

for informative censoring bias (Hernán et al., 2001). Since the weightings are applied to the

full data estimating functions (5.5) and (5.6), which are the same as those used in Chapter 4,

we also arrive at the same IPW estimating functions

Dw
1 (t;β,Λ,π,Sc) =

dM(t;β,Λ)

π(Z)A{1−π(Z)}1−ASc(t;A,Z)
,

Dw
2 (β,Λ,π,Sc) =

∫
τ

0

A ·dM(t;β,Λ)

π(Z)A{1−π(Z)}1−ASc(t;A,Z)
,

where π(z) = P(A = 1|Z = z) is the propensity score, S(t;a,z) = P(T > t|A = a,Z = z)

and Sc(t;a,z) = P(C > t|A = a,Z = z) are the conditional survival functions of T and C,

respectively.

5.4.3 AIPW Estimating Function

For the IPW estimating functions to be unbiased, both π(z) and Sc(t;a,z) need to be

known (Hernán et al., 2001). However, these quantities are often unknown in practice and
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working models for propensity score and conditional censoring time are used. When these

models are misspecified, the resulting β∗ estimate is no longer consistent.

To protect against possible misspecification of the models, we make use of semi-

parametric theory (Tsiatis, 2006) to augment the IPW estimating function, such that the

resulting AIPW estimating function possesses the so-called doubly robust properties that

will be described later. With identical full data estimating functions, we may augment the

IPW estimating functions using the same approach as that of Chapter 4.

Denote the counting process for censoring events Nc(t) = I(X ≤ t,∆ = 0), and

Λc(t;a,z) =
∫ t

0 Sc(u;a,z)−1d{1− Sc(u;a,z)} the cumulative hazard function of C given

A = a and Z = z. Define Mc(t;a,z,Sc) = Nc(t)−
∫ t

0 Y (u)dΛc(u;a,z), which is a martingale

with respect to its natural history filtration if Sc is correctly modeled. The AIPW estimating

functions are

D1(t;β,Λ,π,S,Sc) = dN (0)(t;π,S,Sc)−Γ
(0)(t;β,π,S,Sc)dΛ(t),

D2(β,Λ,π,S,Sc) =
∫

τ

0
dN (1)(t;π,S,Sc)−Γ

(1)(t;β,π,S,Sc)dΛ(t),

where for l = 0,1,

dN (l)(t;π,S,Sc) =
AldN(t)

π(Z)A{1−π(Z)}1−ASc(t;A,Z)
+

AldS(t;A,Z)
π(Z)A{1−π(Z)}1−A

− ∑
a=0,1

al
{

1+
Aa(1−A)1−a

π(Z)a{1−π(Z)}1−a J(t;a,S,Sc)

}
dS(t;a,Z),

Γ
(l)(t;β,π,S,Sc) =

AlY (t)eβA

π(Z)A{1−π(Z)}1−ASc(t;A,Z)
− AlS(t;A,Z)eβA

π(Z)A{1−π(Z)}1−A

+ ∑
a=0,1

al
{

1+
Aa(1−A)1−a

π(Z)a{1−π(Z)}1−a J(t;a,S,Sc)

}
S(t;a,Z)eβa,

and J(t;a,z,S,Sc) =
∫ t

0 dMc(u;a,z,Sc)/{S(u;a,z)Sc(u;a,z)}.

Let superscript ‘o’ denote the true value of a parameter. The AIPW esti-

mating functions are doubly robust in the sense that when Assumptions 13-17 hold,
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E{D1(t;β∗,Λ∗,S,Sc)} = 0 and E{D2(β
∗,Λ∗,S,Sc)} = 0 for t ∈ [0,τ] if either S = So or

(π,Sc) = (πo,So
c). The proof of this result is the same as that of Theorem 10.

Next, given n i.i.d. data points, we may estimate β∗,Λ∗ by solving

1
n

n

∑
i=1

D1i(t;β,Λ,π,S,Sc) = 0, (5.8)

1
n

n

∑
i=1

D2i(β,Λ,π,S,Sc) = 0. (5.9)

Define

S (l)(t;β,π,S,Sc) =
1
n

n

∑
i=1

Γ
(l)
i (t;β,π,S,Sc)

for l = 0,1, and let Ā(t;β,π,S,Sc) = S (1)(t;β,π,S,Sc)/S (0)(t;β,π,S,Sc), we first profile out

(5.8) to get

Λ̃(t;β,π,S,Sc) =
1
n

n

∑
i=1

∫ t

0

dN (0)
i (u;π,S,Sc)

S (0)(u;β,π,S,Sc)
,

which can be plugged into (5.9) and obtain

U(β,π,S,Sc) =
1
n

n

∑
i=1

∫
τ

0
dN (1)

i (t;π,S,Sc)− Ā(t;β,π,S,Sc)dN (0)
i (t;π,S,Sc) = 0,

5.5 Estimating Equation and Implementation

The three nuisance functions π(z), S(t;a,z) and Sc(t;a,z) are often unknown, which

requires us to construct estimators π̂(z), Ŝ(t;a,z) and Ŝc(t;a,z) in practice. Parametric and

semi-parametric models, like the logistic regression, Cox PH model, and the exponential

model, were commonly used since they require low computing power and converge at root-n

rate, which leads to the AIPW estimator also converging at root-n rate. This leads to the
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AIPW estimator β̂, which solves the equation

U(β, π̂, Ŝ, Ŝc) =
1
n

n

∑
i=1

∫
τ

0
dN (1)

i (t; π̂, Ŝ, Ŝc)− Ā(t;β, π̂, Ŝ, Ŝc)dN (0)
i (t; π̂, Ŝ, Ŝc) = 0.

However, the actual model is likely to be much more complex, this makes

parametric/semi-parametric models prone to model misspecification. On the other hand,

ML methods, like Splines (Gray, 1992; Kooperberg et al., 1995a) and Random Survival

Forest (Ishwaran et al., 2008) are much more flexible and are often able to estimate the

nuisance functions consistently even when they are complex. They were rarely used in

practice mostly because ML estimators do not have root-n error rates, which forbids the

asymptotic normality of β̂ to be established. To this end, we utilize the cross-fitting approach

that helps to address this issue (Chernozhukov et al., 2018). Specifically, cross-fitting cycles

the sample-splitting procedure over the entire samples, where for each sample-spitting

procedure, we use one part of the data to estimate the nuisance functions, while the other

part for constructing the estimating functions.

Suppose we have a sample of n observations that are split into k folds of equal size

with index sets I1,I2, . . . ,Ik, then for each fold m, we may define the m-th fold specific

quantities as:

S (l)
m (t;β,π,S,Sc) =

1
|Im| ∑

i∈Im

Γ
(l)
i (t;β,π,S,Sc),

and Ām(t;β,π,S,Sc) = S (1)
m (t;β,π,S,Sc)/S (0)

m (t;β,π,S,Sc). A sample-splitting procedure

for the m-th fold can be done by first solving for ∑
n
i∈Im

D1i(t;β,Λ,π,S,Sc) = 0 to get

Λ̃m(t;β,π,S,Sc) =
1
|Im| ∑

i∈Im

∫ t

0

dN (0)
i (u;π,S,Sc)

S (0)
m (u;β,π,S,Sc)

,

which can then be plugged into ∑
n
i∈Im

D2i(β,Λ,π,S,Sc) = 0 to obtain the m-th fold estimating
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Algorithm 6 Cross-fitted AIPW estimation for β∗

Input: A sample of n observations that are split into k folds with index sets I1,I2, . . . ,Ik.
for each fold indexed by m do

Obtain estimated nuisance functions π̂(−m), Ŝ(−m) and Ŝ(−m)
c ) using the out-of-fold

sample indexed by I−m := {1, . . . ,n}\ Im.
end for
Output: β̂c f , the solution to

1
k

k

∑
m=1

Um(β, π̂
(−m), Ŝ(−m), Ŝ(−m)

c ) = 0.

equation

Um(β,π,S,Sc) =
1
|Im| ∑

i∈Im

∫
τ

0

{
dN (1)

i (t;π,S,Sc)− Ām(t;β,π,S,Sc)dN (0)
i (t;π,S,Sc)

}
.

Cross-fitting repeats the above sample-splitting procedure for each of the k folds, and its

details are summarized in Algorithm 6.

5.6 Asymptotic Properties

In this section, we discuss the asymptotic properties of the non-cross-fitted AIPW

estimator β̂ and the cross-fitted AIPW estimator β̂c f . Some of the technical assumptions

will be omitted in this section to focus more on the discussion of the DR properties.

First, we look at the non-cross-fitted AIPW estimator β̂.

Assumption 18 (Uniform Convergence). There exist π∗(z), S∗(t;a,z) and S∗c(t;a,z) with

E{|π̂(Z)−π
∗(Z)|2}= o(1),

E

{
sup

t∈[0,τ],a∈{0,1}
|Ŝ(t;a,Z)−S∗(t;a,Z)|2

}
= o(1),

E

{
sup

t∈[0,τ],a∈{0,1}
|Ŝc(t;a,Z)−S∗c(t;a,Z)|2

}
= o(1).

94



Assumption 18 assumes that the nuisance estimators π̂, Ŝ and Ŝc converge to some

limiting functions π∗, S∗ and S∗c that are not necessarily the truth. Under Assumptions

13-18 and some regularity assumptions, the non-cross-fitted AIPW estimator β̂ has the

model double robustness property. That is, if either S∗ = So or (π∗,S∗c) = (πo,So
c), then

β̂
p→ β∗, and if π̂(z), Ŝ(t;a,z) and Ŝ(t;a,z) are regular and asymptotically linear estimators

of π∗(z), S∗(t;a,z) and S∗c(t;a,z), we then have
√

n(β̂−β∗)/σ
d→ N(0,1) for some variance

σ2. When (π∗,S∗,S∗c) = (πo,So,So
c), σ2 can be consistently estimated by σ̂2 := σ̂2(β̂), and

its expression is given in Appendix D.1.

Note that, the condition of regular and asymptotically linear estimators essentially

restricts us to root-n consistent estimators, which include common parametric models like

the exponential model, and semi-parametric models like the Cox PH model. This type of

condition is also what most classical DR literature explicitly or implicitly assumes, and due

to the root-n convergence rates of π̂, Ŝ and Ŝc, we do not need cross-fitting to establish the

asymptotic normality. The classical model DR result is widely studied for many survival

problems, so we omit the proofs and refer readers to similar articles, like Wang et al. (2022),

for details.

The asymptotic variance estimator is established when all nuisance estimators are

root-n consistent. When one of the nuisance function estimators is not consistent, β̂ is still

asymptotically normal, but the variance becomes too complicated to be estimated in close

form. For this reason, we also suggest the use of resampling methods, such as bootstrap

(Efron, 1992) for estimating the asymptotical variance, which works even when one of the

working models is misspecified.

Next, we look at the cross-fitted AIPW estimator β̂c f . Let O† denote a sample of

n i.i.d. data vectors {(X†
i ,∆

†
i ,A

†
i ,Z

†
i ), i = 1, . . . ,n} used for estimating π̂, Ŝ and Ŝc. Let

(X ,∆,A,Z) be a data vector independent of O† and drawn from the same distribution as O†.
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Define

∥π̂−π
∗∥2

† = E†
(

E
[
{π̂(Z)−π

∗(Z)}2
])

,

∥∥∥Ŝ−S∗
∥∥∥2

†
= E†

E

{ sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Z)−S∗(t;a,Z)
∣∣∣}2
 ,

∥∥∥Ŝc−S∗c
∥∥∥2

†
= E†

E

{ sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝc(t;a,Z)−S∗c(t;a,Z)
∣∣∣}2
 ,

where E† denotes expectation taken with respect to (X†,∆†,A†,Z†), and E denotes expecta-

tion taken with respect to O conditional on O†.

Assumption 19 (Uniform Convergence). There exist π∗(z), S∗(t;a,z) and S∗c(t;a,z) such

that ∥π̂−π∗∥† = o(1), ∥Ŝ−S∗∥† = o(1) and ∥Ŝc−S∗c∥† = o(1).

Assumption 20 (Rate Condition). (π∗,S∗,S∗c) = (πo,So,So
c) and

∥∥∥Ŝ−So
∥∥∥

†

(
∥π̂−π

o∥† +
∥∥∥Ŝc−So

c

∥∥∥
†

)
+D†(Ŝ, Ŝc;So,So

c) = o(n−1/2),

where D†(Ŝ, Ŝc;So,So
c) is defined in (4.10).

The rate condition (Smucler et al., 2019) states that the product of the error rate

between the conditional outcome model Ŝ and the model for missing mechanism (π̂, Ŝc) is

faster than root-n. Due to the involvement of the time component in time-to-event analysis,

an integral product error term D†(Ŝ, Ŝc;So,So
c) is also required, which we discussed in

detail in Chapter 4. Under Assumptions 13-17, 19-20 and some regularity assumptions, β̂c f

satisfies the rate double robustness property (Smucler et al., 2019). That is, β̂c f
p→ β∗, and

√
n(β̂c f −β∗)/σ̂c f

d→ N(0,1) for a cross-fitted variance estimator σ̂2
c f := σ̂2

c f (β̂c f ) defined

in (D.2). The proof of the rate DR property as well as some of the additional regularity

conditions required can be found in the proofs of Theorem 11 and Theorem 12 in Chapter 4.

The rate condition is satisfied when we have consistent nuisance estimators Ŝ and

(π̂, Ŝc) with faster than root-n product error rate, even if one of them converges arbitrarily
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slowly. Therefore, in addition to the root-n consistent nuisance function estimators, the rate

DR property also allows for the use of slower than root-n rate estimators. This condition

is a relaxation over the root-n condition from model DR and makes it possible for us to

apply many ML methods. To this day, few convergence rate results exist for ML methods in

survival analysis, so we will empirically investigate the performance of some ML methods

in the simulation section.

5.7 Miscellaneous Results

5.7.1 Bias of the PL Estimator

We showed in Section 5.3.2 that, as a result of (5.4), β∗, which is the limit of the

PL estimator (sometimes called the Naive Cox estimator) under full data is a weighted

average of β(t). Following the derivations in Struthers and Kalbfleisch (1986), we can

similarly show that under observed data, if we have randomization and non-informative

censoring (T (a)⊥C(a)|A), then the limit of the PL estimator is the solution to the equation∫
τ

0 hrandom(t;β)dt = 0 with

hrandom(t;β) =

[
∑a=0,1 aeβ(t)aSa

c(t)pa(1− p)1−a

∑a=0,1 aeβ(t)aSa
c(t)pa(1− p)1−a

− ∑a=0,1 aeβaSa
c(t)pa(1− p)1−a

∑a=0,1 aeβaSa
c(t)pa(1− p)1−a

]

×

{
∑

a=0,1
fa(t)Sa

c(t)pa(1− p)1−a

}
.

where Sa
c(t) = P(C(a) > t) and p = (A = 1). Since hrandom(t;β(t)) = 0, if we apply the

mean-value Theorem on hrandom(t;β), we see that the limit of the PL estimator remains a

weighted average of β(t) under the observed data. This property forces the PL estimate to

be within the range of β(t), which restricts how large the bias can become.

On the other hand, under informative censoring and treatment confounding, the limit
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of the PL estimator is the solution to the equation
∫

τ

0 hgeneral(t;β)dt = 0 with

hgeneral(t;β)

=
∫

τ

0

[
∑a=0,1 aE [ f (t;a,Z)S(t;a,Z)Sc(t;a,Z)P(A = a|Z)]
∑a=0,1 E [ f (t;a,Z)S(t;a,Z)Sc(t;a,Z)P(A = a|Z)]

− ∑a=0,1 aeβaS(t;a,Z)Sc(t;a,Z)P(A = a|Z)
∑a=0,1 eβaS(t;a,Z)Sc(t;a,Z)P(A = a|Z)

]

× ∑
a=0,1

E [ f (t;a,Z)Sc(t;a,Z)P(A = a|Z)]dt. (5.10)

Unlike the special case of randomization and non-informative censoring where

hrandom(t;β(t)) = 0, hgeneral(t;β(t)) is non-zero in general, so applying mean-value Theo-

rem on (5.10) leads to β∗ being a weighted average of β(t) plus a non-zero bias term. In

fact, this non-zero bias term occurs if we have either informative censoring or treatment

confounding. As we will demonstrate in the simulation section, the bias of the PL estimator

can indeed be much larger under informative censoring or treatment confounding, with the

PL estimate much outside the range of β(t).

The dependency of the PL estimator on the censoring distribution and the propensity

score is also a warning against naively reporting the hazard ratio estimate from the PL

estimator, which is ubiquitous in practice. This leads to one of the important advantages

of the proposed causal estimand β∗, which is independent of the study-specific censoring

distribution and treatment assignment process. In particular, informative censoring can

exist in many different situations, even under randomized trials, potentially leading to

uninterpretable results (Nguyen and Gillen, 2017; Nuño and Gillen, 2021). The proposed

causal estimand β∗ allows us to replicate and compare results across studies that come with

potentially different censoring distribution and treatment assignments.
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5.7.2 AIPW Log Hazard Ratio Plot

Our estimand of interest β∗ is a weighted average of β(t). In this section, we look at a

common way of plotting β(t) under randomization and look to generalize it to observational

data with informative censoring. Therneau and Grambsch (2000) showed that if the data

is under randomization and randomly censored, then through Taylor’s expansion, the PL

estimator β̂pl satisfies the approximation

E

{
spl(β̂pl, t)

Vpl(β̂pl, t)

}
+ β̂pl ≈ β(t),

where spl(β̂pl, t) is the Schonfeld residual at event time t, while Vpl(β̂pl, t) is the contribution

of its variance at event time t, making the term inside the expectation a scaled Schoenfeld

residual at an event time t. A smoothed plot of spl(β̂pl, ti)/Vpl(β̂pl, ti) against event time ti

using splines would then lead to a good approximation of β(t). This smoothed β(t) plot is

implemented in the ’cox.zph’ function of the ’survival’ package, which we used to construct

a full data β(t) plot for Scenario 3 and 4 as in Figure 5.3.

Since β∗ is the limit of the PL estimator under full data, we have

E
{

spl(β
∗, t)

Vpl(β∗, t)

}
+β
∗ ≈ β(t),

under full data. It should not come as a surprise that, without randomization and with

informative censoring, this approximation would fail under observational data. To correct

for this bias, we apply AIPW to each of β∗, spl(β
∗, t) and Vpl(β

∗, t). In particular, we replace

β∗ and spl(β
∗, t)/Vpl(β

∗, t) by the cross-fitted AIPW estimator and the cross-fitted AIPW

scaled residual contribution to arrive at the AIPW approximation

E

{
saipw(β̂c f , t)

Vaipw(β̂c f , t)

}
+ β̂c f ≈ β(t). (5.11)

The expression for the cross-fitted scaled AIPW residual saipw(β̂c f , t)/Vaipw(β̂c f , t) is given
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at the end of Appendix D.1.

Figure 5.1 presents the smoothed β(t) plots using Therneau and Grambsch’s method

and our proposed AIPW β(t) plot fitted using the observed data simulated according to

Scenario 4 of the Simulation Section 5.8, as well as the true β(t) plot generated using full

data. The β(t) from Therneau and Grambsch were generated using 1 million observed data

points, while for the AIPW β(t) plot, we can not train using 1 million observations in one go,

so we follow our simulation approach to combine outputs from 1000 simulation runs, each

with 1000 observations. We can see that under the observed data, Therneau and Grambsch’s

β(t) plot shows significant bias compared to the truth, while the AIPW β(t) plot closely

follows the truth, except at the tails where the spline is known to be unstable.

5.7.3 A Non-Causal Estimand and Its Properties

In this paper, we primarily focused on the causal estimand β∗ due to its broader

application in observational studies. However, we are sometimes more interested in the

associative relationship between the exposure and the outcome, which can be characterized

by a regression model. For example, this could happen when our exposure of interest

can not be applied or acted, which fails to satisfy the definition of treatment in causal

inference (Hernán and Robins, 2020). This motivates us to consider the study of a non-

causal β∗, which can be readily defined as the solution to the estimating equation (5.2). We

note that this non-causal β∗ is also equivalent to the average regression effect defined in

Xu and O’Quigley (2000), and the estimation of this non-causal β∗ are studied in Boyd

et al. (2012); Hattori and Henmi (2012) where they assumed non-informative censoring

(T ⊥C|A). Assuming randomization and informative censoring C ⊥ T |A,Z, the non-causal

β∗ has similar properties as the causal β∗ that we studied, and we can estimate it using

AIPCW approaches proposed in Chapter 3. We now summarize the properties and the

estimation of β∗ without going into too much detail.

The non-causal β∗ is a weighted average of the non-causal β(t) where β(t) is the log
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Figure 5.1: Smoothed β(t) plot using 1 million observations from Scenario 4 in the Simula-
tion Section 5.8.
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hazard ratio from the non-causal non-PH model (5.1). It has a simple algebraic relationship

with the parameters from the transformation model. It is also the limit of the PL estimator

under the full data, where the full data here refers to observations with randomization without

censoring. This last property again allows us to construct full data estimating function for

it, which is the same as (3.2) and (3.3) we derived in Chapter 3. To correct for informative

censoring, we similarly construct IPCW estimating functions (3.5) and (3.6). Then we

augment the IPCW estimating functions to obtain AIPCW estimating functions (3.11) and

(3.12). A Cross-fitted AIPCW estimating equation can be obtained following Algorithm 4.

The non-cross-fitted AIPCW estimator also has the model DR property in that it

is CAN if one of the outcome and the censoring models is correctly specified. The cross-

fitted AIPCW estimator would additionally have the rate DR property. Moreover, as we

demonstrated, even if the treatment is randomized, if there is censoring, the bias of the PL

estimator could potentially be large and outside the range of the β(t). We can also construct

AIPCW β(t) plot for the non-causal β(t).

Next, we conduct numerical studies on the estimation of the causal β∗ where we

compare our proposed AIPW estimator against other extant estimators. The performance of

the AIPCW estimator under the non-causal setting is largely similar, which we omit.

5.8 Simulation

In this section, we compare the performance of the AIPW estimators β̂ and the

cross-fitted AIPW estimators β̂ using different working models, against different IPW

estimators, a Naive Cox estimator that does not adjust for any covariates, and a full data

estimator that have access to full potential outcomes. For each simulated dataset, we set the

number of observations to n = 1000. We also consider multiple scenarios for the underlying

data-generating processes of T and π,C, and simulate 1000 datasets for each scenario,

which corresponds to a margin of error of about +/−1.35% for the coverage probability of

nominal 95% confidence intervals. Five-fold cross-fitting is used.
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The data generation process is summarized in figure 5.2. We set τ = 1 and simulate

first the covariate Z1 ∼ 0.5U1 + 0.5U2, where U1,U2 ∼ Unif(−1,1). Then we simulate

T (a) and {C(a),A} conditional on the covariate Z1 under 4 different scenarios according

to Table 5.1. In half of the scenarios, T (a) follows the Cox PH distribution that can be

estimated using semi-parametric models, while in the other half T (a) follows a mixture of

distributions that would require ML methods to consistently estimate. This is the same for

the model of missing mechanisms (π,Sc). After simulating the potential outcomes and A,

we obtain the observed failure and censoring times by setting T = AT (1)+ (1−A)T (0),

C = AC(1)+(1−A)C(0).

All 4 scenarios have a 30− 50% event rate as well as a 30− 50% censoring rate

and a 10−30% administrate censoring rate, where administrative censoring happens when

X > τ. True β∗ is 1.014 and 0.503 when T follows the Cox PH distribution and the Mixture

distribution, respectively. Since there is no analytical solution for β∗, this is calculated from

fitting a PL estimator on a simulated sample of one million full data observations. Figure 5.3

demonstrates a smoothed plot of how β(t) changes across time for the mixture model of T

which is highly non-PH. The plot is created using the ’cox.zph’ function from the ’survival’

package and is valid when applied to full data. More discussion on this smoothed β(t) plot,

as well as a proposed AIPW β(t) plot applicable for observational data, can be found in

Section 5.7.2 below.

For the AIPW estimator, we consider 2 types of working models for T and C: Cox

PH model using the R package ‘survival’ and random survival forest (RSF) (Ishwaran

et al., 2008) using the R package ‘randomForestSRC’ where we set splitrule = ’bs.gradient’,

nodesize = 50 and mtry = 2. For π, we consider the logistic regression model and the

’twang’ package in R (Ridgeway et al., 2022). Mix and match 3 pairs of working models, we

have a total of 8 AIPW estimators with different T/C-PS models: Cox/Cox-logit, Cox/Cox-

twang, Cox/RSF-logit, Cox/RSF-twang, RSF/Cox-logit, RSF/Cox-twang, RSF/RSF-logit,

RSF/RSF-twang. Note that the convergence rate of RSF and twang are largely unknown
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but slower than root-n, while the Cox PH model and the logistic regression converges at a

root-n rate. This allows AIPW with Cox/Cox-logit to satisfy the conditions for model DR

if either one of the working models for T and (C,π) is correctly specified. Therefore, we

do not apply cross-fitting to AIPW with Cox/Cox-logit, while cross-fitting the remaining 7

AIPW estimators. Model-based standard errors (SE) for non-cross-fitted and cross-fitted

AIPW estimators are estimated using (D.1) and (D.2) respectively, where we assume that all

nuisance function estimators are consistent. We also consider 4 different IPW estimators,

where the C-PS models are Cox-logit, Cox-twang, RSF-logit, RSF-twang, respectively. The

bootstrap SE estimates for AIPW estimators and IPW estimators are reported where each

dataset uses 100 bootstrap runs, and for the Naive Cox and the full data estimator, we report

the robust variance estimator. Note that we also clustered each pair of potential outcomes

when running the full data estimator to account for the dependence between potential

outcomes. Coverage probability is then calculated using normal-based 95% confidence

intervals constructed from both the estimated model SEs and the bootstrap SEs.

To avoid numerical problems, we trim Ŝ(t;a,z), Ŝc(t;a,z) so that all estimated values

below 0.05 are set to 0.05, and we also set all estimated π̂(z) values that are above 0.9 or

below 0.1 to be 0.9 and 0.1. From our experience, trimming with a small threshold is able

to guarantee successful convergence while introducing little bias.

Figures 5.4 show the bias, standard deviation (SD), and bootstrap-based coverage

probability of the AIPW and IPW estimators under Scenarios 1-4 respectively. Additional

details for all 14 estimators are provided in Tables 5.2 and 5.3. IPW:Cox-logit performs

well when C-PS models are correct but performs poorly when the working models are

incorrect. IPW estimators with partly ML methods seem to perform slightly better than

IPW:Cox-logit when C-PS are correct, but still fails hard when the working models are

incorrect. This shows that although ML methods can be mostly consistent, if the parametric

model is incorrect, the entire missing data model is still incorrect, causing the IPW estimator

to be biased. The IPW:RSF-twang has smaller biases for all 4 scenarios, but due to its
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slower than root-n convergence rate, the coverage is quite poor. AIPW:Cox/Cox-logit’s

performance reflects the classical DR result, showing small bias, and great coverage when

at least one working model is correct but fails badly when they are all wrong. The AIPW

estimator that uses partly parametric and partly ML methods, like AIPW:RSF/Cox-logit,

performs well when all 3 working models are correct but often shows larger biases or poor

coverage when some of the working models are incorrect. AIPW:RSF/RSF-twang estimator

that uses all ML methods has low biases under all 4 scenarios along with excellent model

coverage and bootstrap coverage. Lastly, it’s worth noting that in all 4 scenarios, the naive

Cox estimates are way outside the range of the true β(t) plot from Figure 5.3. This finding

agrees with what we discussed in Section 5.7.1, and highlights the importance of controlling

for treatment confounding and informative censoring.

The performance of the AIPCW estimator under the non-causal setting is largely

similar, so we omit them here.

T (a) C(a)

A

Z

T C

Figure 5.2: DAG for simulation

5.9 Application

We apply the proposed estimator to the International Non-Hodgkin’s Lymphoma

Prognostic Factors Project (Shipp, 1993). In this project, 5 risk factors deemed predictive of
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Figure 5.3: True β(t) plot when T follows a Mixture model. True β∗ is also shown in red.
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Figure 5.4: Plots of bias, bootstrap SD and bootstrap coverage for all 4 scenarios in simula-
tion. Top-left, top-right, bottom-left, and bottom-right in the landscape view correspond to
Scenario 1 to Scenario 4, respectively.
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Table 5.1: Scenarios of data generating processes for T,C and π considered in the simulation.

Scenario T /C Distributions Data-generating mechanism

1
T (a): Cox PH λT (a)(t;Z1) = exp(2−1.12a−2Z1).
C(a): Cox PH λC(a)(t;Z1) = exp(3.5−2a−2.5Z1).
π: Logistic logit{π(Z1)}= 2Z1

2
T (a): Cox PH λT (a)(t;Z1) = exp(2−1.12a−2Z1).

C(a): Mixture
Z1 ≤ 0: λC(a)(t;Z1) = exp(3.5−3a−0.5Z1),
Z1 > 0: C(a)∼ Unif(0,1.05).

π: Soft Partition logit{π(Z1)}= 2 ·1{Z1 <−1/3}−2 ·1{−1/3≤ Z1 < 1/3}
+ 2 ·1{Z1 ≥ 1/3}

3
T (a): Mixture

Z1 ≤ 0: λT (a)(t;Z1) = exp(5−3.4a+2.5Z1),
Z1 > 0: T ∼ Unif(0,1.05).

C(a): Cox PH λC(a)(t;Z1) = exp(3.5−2a−2.5Z1).
π: Logistic logit{π(Z1)}= 2Z1

4
T (a): Mixture

Z1 ≤ 0: λT (a)(t;Z1) = exp(5−3.4a+2.5Z1),
Z1 > 0: T (a)∼ Unif(0,1.05).

C(a): Mixture
Z1 ≤ 0: λC(a)(t;Z1) = exp(3.5−3a−0.5Z1),
Z1 > 0: C(a)∼ Unif(0,1.05).

π: Soft Partition logit{π(Z1)}= 2 ·1{Z1 <−1/3}−2 ·1{−1/3≤ Z1 < 1/3}
+ 2 ·1{Z1 ≥ 1/3}

overall survival were evaluated for patients with aggressive non-Hodgkin’s lymphoma from

16 institutions and cooperative groups in the US, Europe, and Canada who were treated

between 1982 and 1987 with combination-chemotherapy regimes containing doxorubicin.

After removing observations with missing covariates, we obtained a total of 1968 patients

with 628 (28.4%) events. Here we focus on the predictive effect of the Ann Arbor stage

(STAGE) on overall survival, with the exposure groups defined as Ann Arbor stage III or IV

(1251 patients) and the comparison group as Ann Arbor stage I or II (717 patients). 36.7%

of the patients classified as STAGE III or IV experienced events during the follow-up, while

13.9% of the patients with STAGE I or II experienced events. We also include 4 binary

covariates: Age > 60 (AGE), the number of extra-nodal disease sites ≥ 2 (XTRA), serum

lactate dehydrogenase > 1.5× normal (LDH), and ECOG performance status > 1 (PS). To

ensure the positivity assumption is satisfied, we apply administrative censoring at τ = 4

years. Overall, 39.2% of the patients was censored due to lost to follow-up, and 32% was

administratively censored. Figure 5.5 shows the plot of log negative log survival against

log years for the 2 groups, where parallel lines would indicate PH. The figure indicates that
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Table 5.2: Simulation based on 1000 data sets for Scenarios 1 and 2, each with
1000 observations. True β∗ = 1.014. Red indicates that the working model or the
approach is invalid.

Scenario Estimator T/C-PS Models Bias SD SE Coverage
Model/Boot Model/Boot

Scenario 1

AIPW

Cox/Cox-logit 0.002 0.151 0.151/0.151 0.95/0.95
Cox/Cox-twang 0.002 0.157 0.164/0.168 0.95/0.96
Cox/RSF-logit 0.001 0.151 0.154/0.157 0.95/0.95
Cox/RSF-twang 0.003 0.156 0.165/0.167 0.96/0.96
RSF/Cox-logit 0.000 0.154 0.155/0.159 0.95/0.96
RSF/Cox-twang 0.000 0.156 0.166/0.175 0.96/0.97
RSF/RSF-logit 0.004 0.153 0.156/0.159 0.95/0.95
RSF/RSF-twang 0.004 0.155 0.167/0.175 0.96/0.97

IPW

Cox-logit 0.002 0.155 - /0.153 - /0.95
Cox-twang 0.040 0.155 - /0.144 - /0.92
RSF-logit 0.001 0.154 - /0.153 - /0.94
RSF-twang 0.039 0.154 - /0.144 - /0.92

Naive Cox 0.470 0.152 0.151/0.151 0.11/0.11
Full Data 0.001 0.061 0.063/0.063 0.96/0.96

Scenario 2

AIPW

Cox/Cox-logit 0.009 0.188 0.175/0.189 0.94/0.95
Cox/Cox-twang 0.023 0.338 0.314/0.338 0.94/0.96
Cox/RSF-logit 0.008 0.205 0.189/0.209 0.93/0.96
Cox/RSF-twang 0.017 0.320 0.308/0.318 0.96/0.95
RSF/Cox-logit 0.145 0.250 0.176/0.208 0.74/0.81
RSF/Cox-twang 0.028 0.366 0.337/0.373 0.91/0.94
RSF/RSF-logit 0.152 0.258 0.189/0.219 0.76/0.83
RSF/RSF-twang 0.040 0.365 0.352/0.390 0.94/0.95

IPW

Cox-logit 0.494 0.181 - /0.180 - /0.20
Cox-twang 0.170 0.302 - /0.227 - /0.79
RSF-logit 0.269 0.184 - /0.181 - /0.67
RSF-twang 0.052 0.280 - /0.223 - /0.89

Naive Cox 0.245 0.164 0.167/0.166 0.71/0.70
Full Data 0.001 0.061 0.063/0.063 0.96/0.96
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Table 5.3: Simulation based on 1000 data sets for Scenarios 3 and 4, each with
1000 observations. True β∗ = 0.503. Red indicates that the working model or the
approach is invalid.

Scenario Estimator T/C-PS Models Bias SD SE Coverage
Model/Boot Model/Boot

Scenario 3

AIPW

Cox/Cox-logit 0.001 0.082 0.086/0.083 0.96/0.96
Cox/Cox-twang 0.012 0.077 0.094/0.088 0.98/0.98
Cox/RSF-logit 0.005 0.085 0.089/0.091 0.96/0.96
Cox/RSF-twang 0.010 0.078 0.095/0.089 0.98/0.97
RSF/Cox-logit 0.004 0.071 0.072/0.074 0.95/0.95
RSF/Cox-twang 0.010 0.073 0.077/0.081 0.96/0.96
RSF/RSF-logit 0.007 0.072 0.074/0.076 0.95/0.96
RSF/RSF-twang 0.013 0.075 0.079/0.083 0.96/0.97

IPW

Cox-logit 0.001 0.081 - /0.082 - /0.95
Cox-twang 0.021 0.074 - /0.070 - /0.93
RSF-logit 0.022 0.088 - /0.085 - /0.93
RSF-twang 0.001 0.081 - /0.073 - /0.93

Naive Cox 0.518 0.097 0.099/0.099 0.00/0.00
Full Data 0.001 0.035 0.034/0.034 0.95/0.94

Scenario 4

AIPW

Cox/Cox-logit 0.469 0.125 0.110/0.117 0.02/0.03
Cox/Cox-twang 0.224 0.157 0.154/0.153 0.70/0.70
Cox/RSF-logit 0.180 0.138 0.180/0.183 0.83/0.92
Cox/RSF-twang 0.010 0.210 0.276/0.218 0.97/0.97
RSF/Cox-logit 0.044 0.085 0.077/0.085 0.88/0.92
RSF/Cox-twang 0.010 0.113 0.104/0.112 0.94/0.95
RSF/RSF-logit 0.036 0.116 0.116/0.130 0.94/0.97
RSF/RSF-twang 0.008 0.156 0.160/0.177 0.94/0.97

IPW

Cox-logit 0.592 0.119 - /0.112 - /0.00
Cox-twang 0.308 0.159 - /0.131 - /0.37
RSF-logit 0.218 0.105 - /0.105 - /0.44
RSF-twang 0.047 0.152 - /0.127 - /0.89

Naive Cox 0.431 0.117 0.111/0.112 0.03/0.03
Full Data 0.001 0.035 0.035/0.035 0.94/0.94
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the 2 group survival does not seem to satisfy the PH assumption, which agrees with the

findings in Xu and Adak (2002). Moreover, the STAGE variable is not a treatment that can

be applied but a risk factor, so we consider the estimation of the non-causal β∗. Figure 5.6

shows the product-limit estimator of the survival functions for the censoring time for each

of the 4 covariates, along with the p-values from the log-rank test. Note that the p-value

from the log-rank test is not valid when the PH assumption is violated, like in the case of

the covariate PS. We can see that the censoring time clearly differs among levels of the

covariates. Xu and Adak (2002) also demonstrated that the failure time differs among levels

of covariates, confirming the presence of informative censoring and the need to control for

it.

We present in Figure 5.7 the β∗ estimates for STAGE along with their 95% bootstrap-

based confidence intervals. Since we are estimating the non-causal β∗, we considered

the estimators that are studied in the Simulation Section of Chapter 3. A complete table

of estimates, standard errors, and 95% bootstrap-based confidence intervals is given in

Table 5.4. From Figure 5.7, we see that AIPCW-Cox-RSF, AIPCW-RSF-Cox, and AIPCW-

RSF-RSF give much smaller β∗ estimates than the PL estimator, which could suggest that the

β∗ estimate using the PL estimator is overestimating the true β∗ due to informative censoring.

IPCW-RSF involves a non-parametric nuisance estimator, which is typically biased Belloni

et al. (2013), potentially resulting in its large estimate here. AIPCW-Cox-Cox also gives

larger β∗ estimates compared to the other AIPCW estimators, which could signal that none

of the underlying distributions for T and C is PH. Therefore, we plot the standardized score

residuals of the fitted conditional Cox PH Model for T against time in Figure 5.8, and for C

in Figure 5.9. The standardized score converges to a Brownian bridge, so values outside of

the blue lines indicate a violation of the PH assumption at the 5% significance level. This

violation is observed in almost all the plots, confirming our hypothesis that neither T nor C

follows a conditional Cox PH model. Lastly, Figure 5.10 presents the smoothed AIPCW

β(t) using the AIPCW:RSF-RSF estimator, which demonstrates that the effect of STAGE
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on survival is rapidly decaying towards zero as time increases. Admittedly, this data set is

not collected from a randomized clinical trial, which limits its interpretation. Nevertheless,

the comparison demonstrates the robustness of β∗ when the PH assumption is violated. It

also shows the importance of accounting for the biases resulting from informative censoring

as well as the flexibility of the ML methods in practice.
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Figure 5.5: Log negative log of the survival curves against log years for STAGE III-IV vs
STAGE I-II. Since parallel lines indicates PH, the figure shows that the two groups’ survival
does not seem to satisfy the PH assumption.
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Figure 5.6: Product-limit estimators of the censoring survival curve for each of the 4
covariates. P-value is generated using the log-rank test, which is only valid under the PH
assumption.
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Figure 5.7: Forest plot of the β∗ estimates examining the effect of STAGE on survival for
patients with non-Hodgkin’s lymphoma.

Table 5.4: β∗ estimates for the effect of STAGE on overall survival in the Non-
Hodgkin’s Lymphoma dataset, together with the bootstrapped standard errors and
the 95% constructed from it.

Estimator Estimate Boot SE 95% Boot CI
DR:Cox-Cox 1.14 0.11 (0.92, 1.37)
DR:Cox-RSF 0.96 0.11 (0.74, 1.19)
DR:RSF-Cox 0.97 0.12 (0.74, 1.19)
DR:RSF-RSF 0.96 0.12 (0.74, 1.19)
IPCW:Cox 1.14 0.11 (0.92, 1.37)
IPCW:RSF 1.14 0.11 (0.91, 1.36)
IPCW:A 1.13 0.11 (0.9, 1.35)
IPCW:1 1.13 0.11 (0.9, 1.35)
PL 1.14 0.11 (0.92, 1.36)
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Figure 5.8: Standardized score residuals for the exposure and each of the covariates under
the fitted conditional Cox PH model for T given exposure and covariates. Blue lines
represent the significance level of the formal test for PH assumption.
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Figure 5.9: Standardized score residuals for the exposure and each of the covariates under
the fitted conditional Cox PH model for C given exposure and covariates. Blue lines
represent the significance level of the formal test for PH assumption.
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Figure 5.10: Smoothed AIPCW β(t) plot for the effect of STAGE based on the AIPCW:RSF-
RSF estimator in the Non-Hodgkin’s Lymphoma dataset. The red dotted line indicates the
AIPCW:RSF-RSF estimate for β∗.
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5.10 Discussion

The marginal structural Cox PH model is most commonly used in the causal analysis

of two-group survival, which assumes the PH assumption. When the PH assumption is

violated, the saturated model is the marginal structural non-PH model (5.3). Under this

model, we proposed and studied the estimation of a causal estimand β∗ that is a weighted

average of the causal log hazard ratio. β∗ is also the limit of the oracle log hazard ratio

estimator under full data.

By showing that β∗ can be estimated using full data estimating functions that are

identical to those for the marginal structural Cox model, we proceed to construct IPW, AIPW,

and cross-fitted AIPW estimator for β∗ using the results we already derived in Chapter 4.

The cross-fitted AIPW estimator is again model and rate DR, which allows the use of more

flexible ML methods for estimating the nuisance functions. Moreover, we demonstrated

that without accounting for either treatment confounding or informative censoring, the

naive PL estimator is no longer a weighted average of β(t) and can result in bias of much

larger magnitude. An AIPW β(t) plot that works under observational data is also proposed

and studied. The AIPW estimate for β∗ converges to the causal log hazard ratio when the

PH assumption holds, and by accounting for both treatment confounding and informative

censoring, the estimate also carries causal interpretation when the PH assumption is violated.

These developments suggest the potential for the causal estimand β∗ to be more widely

reported.

The causal hazard ratio used in our study has not been without criticism (Hernán,

2010; Martinussen et al., 2020), particularly regarding concerns about the potential im-

balance between risk sets post-treatment. However, arguments made by the proponents

also should not be overlooked (Prentice and Aragaki, 2022; Ying and Xu, 2023). They

argue that although the comparability between the two groups is compromised at time

t > 0 due to differential survival distributions, the causal hazard ratio still represents the

ratio of the logarithm of potential survival functions between the two groups at all times.
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This characteristic alone makes it a valid causal estimand with causal interpretability, as

it contrasts the functionals of the two potential outcome distributions. Some researchers

have explored alternative hazard ratio estimands for time-to-event endpoints. Axelrod and

Nevo (2022) conducted sensitivity analysis for the so-called ’causal HR’ (Martinussen

et al., 2020), which is based on patient groups that would have survived regardless of their

treatment assignment. However, the estimand itself is not identifiable, severely limiting its

practical use. Another proposal by Vansteelandt et al. (2022) introduced a model-free hazard

ratio estimand that simplifies to the hazard ratio under the Cox model. This approach does

not rely on the inverse probability of treatment weighting, potentially leading to increased

stability. However, it explicitly depends on the model for treatment assignment and requires

the restrictive assumption that the cumulative hazard is positive at all times. Therefore,

despite the ongoing quest for alternative causal estimands in time-to-event studies, we

believe the causal hazard ratio should continue to play a central role due to its inherent

simplicity, interpretability, and widespread popularity in the field.
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Appendix A

Supplementary Materials for Chapter 2

A.1 Preliminaries

For any convex function ψ : Rk→ R, define the corresponding Bregman divergence

Dψ(w′,w) = ψ(w′)−ψ(w)−⟨∇ψ(w),w′−w⟩ and its symmetrized version

Dψ(w,w′) = Dψ(w,w′)+Dψ(w′,w) =
〈
∇ψ(w)−∇ψ(w′),w−w′

〉
, w,w′ ∈ Rk.

Let z = Σ−1/2x ∈ Rp be the standardized vector of covariates such that E(zzT) = Ip,

and define µk = supu∈Sp−1 E|zTu|k for k≥ 1. In particular, µ2 = 1. For every δ∈ (0,1], define

ηδ = inf

{
η > 0 : sup

u∈Sp−1
E
{
(zTu)2

1(|zTu|> η)
}
≤ δ

}
.

Under Condition (C1), ηδ depends only on δ and υ1, and the map δ 7→ ηδ is non-

increasing with ηδ ↓ 0 as δ→ 1. A crude bound for ηδ, as a function of δ, is ηδ ≤ (µ4/δ)1/2.

In Lemmas 5 and 6 below, we provide a lower bound on the symmetrized Bregman

divergence and an upper bound on the score, respectively. The former is a direct consequence

of Lemmas C.3 and C.4 in Sun et al. (2020) with slight modifications, and the latter combines

Lemmas C.5 and C.6 in Sun et al. (2020) with δ = 1. For the shifted Huber loss L̃(·), note
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that

DL̃(β,β
∗) =

〈
∇L̂1,κ(β)−∇L̂1,κ(β

∗),β−β
∗〉.

Moreover, define the ℓ1-cone

Λ =
{

β ∈ Rp : ∥β−β
∗∥1 ≤ 4s1/2∥β−β

∗∥Σ

}
.

Lemma 5. Let κ,r > 0 satisfy κ≥ 4max(η0.25r,σ).

(i) Condition (C1) ensures that, with probability at least 1− e−u,

DL̃(β,β
∗)≥ 1

4
∥β−β

∗∥2
Σ holds uniformly over β ∈Θ(r)

as long as n ≳ (κ/r)2(p+u).

(ii) Condition (C2) ensures that, with probability at least 1− e−u,

DL̃(β,β
∗)≥ 1

4
∥β−β

∗∥2
Σ holds uniformly over β ∈Θ(r)∩Λ (A.1)

as long as n ≳ (κ/r)2(s log p+u).

Proof. Without loss of generality, assume I1 = {1, . . . ,n}. It suffices to prove (A.1) under

Condition (C2). Following the proof of Lemma C.4 in Sun et al. (2020), the key is to

upper bound the expected value of the maximum ∥(1/n)∑
n
i=1 eixi∥∞, where e1, . . . ,en are

independent Rademacher random variables. Let Ee be the expectation with respect to

e1, . . . ,en conditional on the remaining variables. By Hoeffding’s moment inequality,

Ee

∥∥∥∥∥1
n

n

∑
i=1

eixi

∥∥∥∥∥
∞

≤ max
1≤ j≤p

(
1
n

n

∑
i=1

x2
i j

)1/2√
2log(2p)

n
≤ B

√
2log(2p)

n
,

which in turns implies E∥(1/n)∑
n
i=1 eixi∥∞ ≤ B

√
2log(2p)/n. Keep the rest of the proof
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the same proves the claimed bound.

Consider the gradient ∇L̂τ(·) evaluated at β∗, namely,

∇L̂τ(β
∗) =− 1

N

N

∑
i=1

ψτ(εi)xi,

where ψτ(u) = ℓ′τ(u). The following lemma provides high probability bounds on both ℓ2-

and ℓ∞-norms of ∇L̂τ(β
∗). Recall that Ω = Σ−1.

Lemma 6. Let u > 0 and write Lτ(·) = EL̂τ(·).

(i) Condition (C1) ensures that, with probability at least 1− e−u,

∥∇L̂τ(β
∗)−∇Lτ(β

∗)∥Σ−1 ≤C0

{
σ
√
(p+u)/N + τ(p+u)/N

}
, (A.2)

where C0 > 0 is a constant depending only on υ1. Moreover, ∥∇Lτ(β
∗)∥Ω ≤ σ2/τ.

(ii) Condition (C2) ensures that, with probability at least 1− e−u,

∥∇L̂τ(β
∗)−∇Lτ(β

∗)∥∞ ≤ σσu

√
2{log(2p)+u}

N
+

Bτ

3
log(2p)+u

N
. (A.3)

Proof. The bound (A.2) is an immediate consequence of Lemma C.3 in Sun et al. (2020). It

suffices to prove (A.3) under Condition (C2). Note that

∥∇L̂τ(β
∗)−∇Lτ(β

∗)∥∞ = max
1≤ j≤p

∣∣∣∣∣ 1
N

N

∑
i=1

(1−E)ξixi j

∣∣∣∣∣,
where ξi := ψτ(εi) satisfy |ξi| ≤ τ and E(ξ2

i |xi) ≤ E(ε2
i |xi) ≤ σ2. For any 1 ≤ j ≤ p and

z≥ 0, applying Bernstein’s inequality yields that with probability at least 1−2e−z,

∣∣∣∣∣ 1
N

N

∑
i=1

(1−E)ξixi j

∣∣∣∣∣≤ σ
1/2
j j σ

√
2z
N

+
Bτ

3
z
N
.

Taking z = log(2p)+u, the claimed bound (A.3) then follows from the union bound.
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A.2 Proof of Main Results

A.2.1 Proof of Theorem 1

PROOF OF (2.5). For simplicity, we write β̃ = β̃(1), which minimizes the shifted Huber

loss L̃(·) and thus satisfies the first-order condition ∇L̃(β̃) = 0. Throughout the proof we

assume the event E0(r0)∩E∗(r∗) occurs. In view of Lemma 5, we consider a local region

Θ(rloc) with rloc = κ/(4η0.25), and define an intermediate estimator β̃c = (1− c)β∗+ cβ̃,

where

c := sup
{

u ∈ [0,1] : (1−u)β∗+uβ̃ ∈Θ(rloc)
}

= 1 if β̃ ∈Θ(rloc),

∈ (0,1) otherwise.

By construction, β̃c ∈ Θ(rloc). In particular, if β̃ /∈ Θ(rloc), we must have β̃c lying on the

boundary of Θ(rloc), i.e. ∥β̃c−β∗∥Σ = rloc.

Applying Lemma C.1 in Sun et al. (2020), we see that the three points β̃, β̃c

and β∗ satisfy DL̃(β̃c,β
∗)≤ cDL̃(β̃,β

∗), where DL̃(β,β
∗) = ⟨∇L̃(β)−∇L̃(β∗),β−β∗⟩=

⟨∇L̂1,κ(β)−∇L̂1,κ(β
∗),β−β∗⟩. Together with the first-order condition ∇L̃(β̃) = 0, this

implies

DL̃(β̃c,β
∗)≤−c

〈
∇L̃(β∗), β̃−β

∗〉≤ ∥∇L̃(β∗)∥Ω · ∥β̃c−β
∗∥Σ. (A.4)

For the left-hand side of (A.4), applying Lemma 5 with r = rloc and the fact β̃c ∈ Θ(rloc)

yields that with probability at least 1− e−u,

DL̃(β̃c,β
∗)≥ 1

4
∥β̃c−β

∗∥2
Σ (A.5)

as long as n ≳ p+u.
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To bound the right-hand side of (A.4), we define vector-valued random processes


∆1(β) = Σ−1/2{∇L̂1,κ(β)−∇L̂1,κ(β

∗)
}
−Σ1/2(β−β∗),

∆(β) = Σ−1/2{∇L̂τ(β)−∇L̂τ(β
∗)
}
−Σ1/2(β−β∗),

(A.6)

Let 0 < r0 ≤ σ. Following the proof of Theorem B.1 in the supplement of Sun et al. (2020),

it can be similarly shown that, with probability at least 1−2e−u,

sup
β∈Θ(r0)

∥∆1(β)∥2 ≤C1

(√
p+u

n
+

σ2

κ2

)
r0 and sup

β∈Θ(r0)

∥∆(β)∥2 ≤C1

(√
p+u

N
+

σ2

τ2

)
r0

(A.7)

as long as n ≳ p + u, where C1 > 0 is a constant depending only on υ1. Recall that

τ≥ κ≍ σ
√

n/(p+u). Conditioned on event E0(r0)∩E∗(r∗), it follows that

∥∇L̃(β∗)∥Ω = ∥∆(β̃(0))−∆1(β̃
(0))+Σ

−1/2
∇L̂τ(β

∗)∥2

≤ ∥∆(β̃(0))−∆1(β̃
(0))∥2 +∥∇L̂τ(β

∗)∥Ω

≤C2r0

√
p+u

n
+ r∗. (A.8)

Together, the bounds (A.4), (A.5) and (A.8) imply that, conditioning on E0(r0)∩

E∗(r∗),

∥β̃c−β
∗∥Σ ≤ 4∥∇L̃(β∗)∥Ω ≤ 4

(
C2r0

√
p+u

n
+ r∗

)
(A.9)

with probability at least 1− 3e−u. Provided that the sample size is sufficiently large—

n ≳ p+u, the right-hand side of the above inequality is strictly less than rloc = κ/(4η0.25)

with κ≍ σ
√

n/(p+u). As a result, the intermediate estimator β̃c falls into the interior of

Θ(rloc) with high probability conditioned on E0(r0)∩E∗(r∗). Via proof by contradiction,

we must have β̃ ∈Θ(rloc) and hence β̃ = β̃c; otherwise if β̃ /∈Θ(rloc), we have demonstrated

that β̃c must lie on the boundary of Θ(rloc), which is a contradiction. Consequently, the
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bound (A.9) also applies to β̃, as claimed.

PROOF OF (2.6). To establish the Bahadur representation, note that the random process

∆1(·) defined in (A.6) can be written as ∆1(β) = Σ−1/2{∇L̃(β)−∇L̃(β∗)}−Σ1/2(β−β∗).

Moreover, note that

∇L̃(β∗) = ∇L̂1,κ(β
∗)−∇L̂1,κ(β̃

(0))+∇L̂τ(β̃
(0))−∇L̂τ(β

∗)+∇L̂τ(β
∗),

which in turn implies

∥∇L̃(β∗)−∇L̂τ(β
∗)∥Ω ≤ ∥∆1(β̃

(0))∥2 +∥∆(β̃(0))∥2.

Recall that ∇L̃(β̃) = 0, and by (A.9), ∥β̃−β∗∥Σ ≤ r1 := 4C2r0
√

(p+u)/n+4r∗ with high

probability conditioned on E0(r0)∩E∗(r∗). For r0 ≥ 8r∗, we have r1 ≤ r0/2+ r0/2 = r0 as

long as n ≳ p+u, and hence β̃ ∈Θ(r0). Applying the bounds in (A.7) again, we obtain that

conditioned on E0(r0)∩E∗(r∗),

∥Σ1/2(β̃−β
∗)+Σ

−1/2
∇L̂τ(β

∗)∥2

= ∥∆1(β̃)+Σ
−1/2

∇L̃(β∗)−Σ
−1/2

∇L̂τ(β
∗)∥2

≤ ∥∆1(β̃)∥2 +∥∆1(β̃
(0))∥2 +∥∆(β̃(0))∥2

≤ 2 sup
β∈Θ(r0)

∥∆1(β)∥2 + sup
β∈Θ(r0)

∥∆(β)∥2

≲

√
p+u

n
· r0

with probability at least 1−3e−u. This completes the proof.
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A.2.2 Proof of Theorem 2

Given a sequence of iterates {β̃(t)}t=0,1,...,T , we define “good” events

Et(rt) =
{

β̃
(t) ∈Θ(rt)

}
, t = 0, . . . ,T,

for some sequence of radii r0 ≥ r1 ≥ ·· · ≥ rT > 0 to be determined. Examine the proof

of Theorem 1, we see that the statistical properties of β̃(t) depends on both first-order and

second-order information of the loss function L̃(t)(·), namely, the ℓ2-norm of the gradient

∇L̃(t)(β∗) and the (symmetrized) Bregman divergence of L̃(t)(·). For the former, we have

∇L̃(t)(β∗) = ∇L̂1,κ(β
∗)−∇L̂1,κ(β̃

(t−1))+∇L̂τ(β̃
(t−1)). (A.10)

Let ∆1(·) and ∆(·) be the random processes defined in (A.6), and observe that

Σ−1/2∇L̃(t)(β∗) = ∆(β̃(t−1))−∆1(β̃
(t−1))+Σ−1/2∇L̂τ(β

∗). By the triangle inequality,

∥∇L̃(t)(β∗)∥Ω ≤ ∥∆(β̃(t−1))∥2 +∥∆1(β̃
(t−1))∥2 +∥∇L̂τ(β

∗)∥Ω. (A.11)

On the other hand, note that the shifted Huber losses L̃(t)(·) have the same Bregman

divergence, denoted by

D(β1,β2) = ⟨∇L̃(t)(β1)−∇L̃(t)(β2),β1−β2⟩= ⟨∇L̃1,κ(β1)−∇L̃1,κ(β2),β1−β2⟩.

Define the local radius rloc = κ/(4η0.25). Then, applying Lemma 5 with r = rloc yields that,

with probability at least 1− e−u,

D(β,β∗)≥ 1
4
∥β−β

∗∥2
Σ (A.12)

holds uniformly over β∈Θ(rloc). Let Elsc be the event that the local strong convexity (A.12)

holds.
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With the above preparations, we are ready to extend the argument in the proof of

Theorem 1 to deal with β̃(t) sequentially. At each iteration, we construct an intermediate

estimator β̃
(t)
imd—a convex combination of β̃(t) and β∗—which falls in Θ(rloc) and satisfies

D(β̃
(t)
imd,β

∗)≤ ∥∇L̃(t)(β∗)∥Ω · ∥β̃
(t)
imd−β

∗∥Σ.

If event E∗(r∗)∩Elsc occurs, the bounds (A.11) and (A.12) imply

∥β̃(t)
imd−β

∗∥Σ ≤ 4
{
∥∆1(β̃

(t−1))∥2 +∥∆(β̃(t−1))∥2
}
+4r∗. (A.13)

Moreover, it follows from (A.10) and the first-order condition ∇L̃(t)(β̃(t)) = 0 that

∥Σ1/2(β̃(t)−β
∗)+Σ

−1/2
∇L̂τ(β

∗)∥2

= ∥Σ−1/2{∇L̃(t)(β̃(t))−∇L̃(t)(β∗)}−Σ
1/2(β̃(t)−β

∗)+Σ
−1/2{∇L̃(t)(β∗)−∇L̂τ(β

∗)}∥2

≤ ∥∆1(β̃
(t))∥2 +∥∆1(β̃

(t−1))∥2 +∥∆(β̃(t−1))∥2. (A.14)

In view of the bounds in (A.7), for every 0 < r ≤ σ we define the event

F (r) =

{
sup

β∈Θ(r)

{
∥∆1(β)∥2 +∥∆(β)∥2

}
≤ γ(u) · r

}
(A.15)

with γ(u) =C
√

(p+u)/n for some C > 0, which satisfies P{F (r)} ≥ 1−2e−u.

Let 8r∗ ≤ r0 ≤ σ. In the following, we assume the event E0(r0)∩E∗(r∗)∩Elsc

occurs, and deal with {(β̃(t)
imd, β̃

(t)), t = 1,2, . . . ,T} sequentially. At iteration 1, it follows

from (A.13) that, conditioned on F (r0),

∥β̃(1)
imd−β

∗∥Σ ≤ r1 := 4γ(u) · r0 +4r∗.

Provided that n ≳ p+u, we have 4γ(u)≤ 1/2 < 1 and r1 ≤ r0 < rloc = κ/(4η0.25), so that
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β̃
(1)
imd ∈Θ(r1)⊆ int(Θ(rloc)). Via proof by contradiction, we must have β̃(1) = β̃

(1)
imd ∈Θ(rloc),

which in turns certifies event E(r1). Combining this with (A.14), we see that conditioned

on F (r0), the event E1(r1) mush happen and hence


∥ β̃(1)−β∗ ∥Σ ≤ r1 = 4γ(u) · r0 +4r∗ ≤ r0,

∥ β̃(1)−β∗+Σ−1∇L̂τ(β
∗)∥Σ ≤ 2γ(u) · r0.

Now assume that for some t ≥ 1, β̃(t) ∈Θ(rt) with rt = 4γ(u) ·rt−1+4r∗≤ rt−1 < rloc.

At (t+1)-th iteration, applying (A.13) again yields that, conditioned on event Et(rt)∩F (rt),

∥β̃(t+1)
imd −β

∗∥Σ ≤ rt+1 := 4γ(u) · rt +4r∗.

By induction, rt ≤ rt−1 < rloc so that rt+1 ≤ 4γ(u) · rt−1 +4r∗ = rt < rloc. This implies that

β̃
(t+1)
imd falls into the interior of Θ(rloc), which enforces β̃(t+1) = β̃

(t+1)
imd ∈ Θ(rt+1) and thus

certifies event Et+1(rt+1). Combining this with the bound (A.14), we find that


∥ β̃(t+1)−β∗ ∥Σ ≤ rt+1 = 4γ(u) · rt +4r∗ ≤ rt ,

∥ β̃(t+1)−β∗+Σ−1∇L̂τ(β
∗)∥Σ ≤ 2γ(u) · rt .

Repeat the above argument until we obtain β̃(T ). We have shown that conditioned on

E∗(r∗)∩Elsc∩Et−1(rt−1)∩F (rt−1) for every 0≤ t ≤ T −1, the event Et(rt) must occur.

Therefore, conditioned on E∗(r∗)∩Elsc∩E0(r0)∩{∩T−1
t=0 F (rt)}, β̃(T ) satisfies the bounds


∥ β̃(T )−β∗ ∥Σ ≤ rT = 4γ(u) · rT−1 +4r∗,

∥ β̃(T )−β∗+Σ−1∇L̂τ(β
∗)∥Σ ≤ 2γ(u) · rT−1.

(A.16)

Observe that rt = {4γ(u)}tr0 +
1−{4γ(u)}t

1−4γ(u) 4r∗ for t = 1, . . . ,T . We choose T to be the small-

est integer such that {4γ(u)}T−1r0 ≤ r∗, that is, T = ⌈log(r0/r∗)/ log(1/{4γ(u)})⌉+ 1.
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Consequently, the bounds in (A.16) become


∥ β̃(T )−β∗ ∥Σ ≤

{
γ(u)+ 1

1−4γ(u)

}
4r∗ ≤ {4γ(u)+8}r∗,

∥ β̃(T )−β∗+Σ−1∇L̂τ(β
∗)∥Σ ≤ 18γ(u) · r∗.

(A.17)

Finally, it suffices to show that the event Elsc ∩ {∩T−1
t=0 F (rt)} occurs with high

probability. Recall from (A.12) and (A.15) that P(Elsc)≥ 1−e−u and P{F (rt)} ≥ 1−2e−u

for every t = 0,1, . . . ,T − 1. The claimed result then follows from (A.17) and the union

bound.

A.2.3 Proof of Theorem 3

Let u > 0. Applying Theorem B.1 in Sun et al. (2020) with a robustification pa-

rameter κ ≍ σ
√

n/(p+u) yields that with probability at least 1− 2e−u, ∥β̃(0)−β∗∥Σ ≤

r0 ≍ σ
√
(p+u)/n as long as n ≳ p + u. For event E∗(r∗) defined in (2.4), we take

r∗ ≍ σ
√
(p+u)/N+τ(p+u)/N+σ2/τ in Lemma 6 and obtain that P{E∗(r∗)} ≥ 1−e−u.

Putting together the pieces, we conclude that event E0(r0)∩E∗(r∗) occurs with probability

at least 1−3e−u, provided that n ≳ p+u.

Set u = logn+ log2 m. Since τ≍ σ
√

N/(p+ logn+ log2 m), we see that

r0 ≍ σ

√
p+ logn+ log2 m

n
and r∗ ≍ σ

√
p+ logn+ log2 m

N
,

and hence r0/r∗ ≍
√

m. Finally, applying Theorem 2 yields the claimed bounds (2.8) and

(2.9).

A.2.4 Proof of Theorem 4

For simplicity, we write q = p+ logn+ log2 m throughout the proof. For every

vector a ∈ Rp, define Sa = N−1/2
∑

N
i=1 ξiwi and S0

a = Sa−ESa, where ξi = ψτ(εi) and

wi = aTΣ−1xi. Under the moment condition E(|ε|2+δ|x)≤ v2+δ, using Markov’s inequality
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yields |E(ξi|xi)| ≤ τ−1−δE(|εi|1+δ|xi) ≤ v2+δτ−1−δ. Hence, |E(ξiwi)| ≤ v2+δ∥a∥Ω · τ−1−δ

and |ESa| ≤ v2+δ∥a∥Ω ·N1/2τ−1−δ.

With the above preparations, we are ready to prove the normal approximation for β̃.

Note that

|N1/2aT(β̃−β
∗)−S0

a|

≤ N1/2

∣∣∣∣∣
〈

Σ
−1/2a,Σ1/2(β̃−β

∗)−Σ
−1/2 1

N

N

∑
i=1

ψτ(εi)xi

〉∣∣∣∣∣+ |ESa|

≤ N1/2∥a∥Ω ·

∥∥∥∥∥β̃−β
∗−Σ

−1 1
N

N

∑
i=1

ψτ(εi)xi

∥∥∥∥∥
Σ

+ v2+δ∥a∥Ω ·N1/2
τ
−1−δ.

Applying (2.9) in Theorem 3, we find that with probability at least 1−Cn−1,

|N1/2aT(β̃−β
∗)−S0

a| ≤C1∥a∥Ω ·
(
σqn−1/2 +N1/2v2+δτ

−1−δ
)
, (A.18)

where C1 > 0 is a constant independent of (N,n, p).

For the centered partial sum S0
a, it follows from the Berry-Esseen inequality (see, e.g.

Theorem 2.1 in Chen and Shao (2001)) that

sup
t∈R

∣∣P{S0
a ≤ var(S0

a)
1/2t
}
−Φ(t)

∣∣≤ 4.1
E|ξw−E(ξw)|2+δ

var(ξw)1+δ/2Nδ/2 , (A.19)

where ξ = ψτ(ε) and w = aTΣ−1x. Recall that τ ≍ σ
√

N/q, and write σ2
τ,a =

E(ξw)2. By Proposition A.2 in Zhou et al. (2018), |E(ξ2|x)− σ2| ≤ 2δ−1v2+δτ−δ ≍

δ−1v2+δσ−δ(q/N)δ/2, and hence

∣∣σ2
τ,a/(σ∥a∥Ω)

2−1
∣∣≲ v2+δ

δσ2+δ

(
q
N

)δ/2

. (A.20)

Moreover, E|ξw|2+δ ≤ E|εw|2+δ ≤ µ2+δ∥a∥2+δ

Ω
v2+δ, where µ2+δ := supu∈Sp−1 E|zTu|2+δ
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depends only on υ1 under Condition (C1). Substituting these bounds into (A.19) yields

sup
t∈R

∣∣P{S0
a ≤ var(S0

a)
1/2t
}
−Φ(t)

∣∣≤C2
v2+δ

σ2+δNδ/2 , (A.21)

provided that N ≳ q. For the variance term, the bound |E(ξ|x)| ≤ σ2τ−1 guarantees that

E(ξw)2 ≥ var(S0
a) = E(ξw)2− (Eξw)2 ≥ E(ξw)2− (σ∥a∥Ω)

2 ·σ2
τ
−2.

Combined with (A.20), this implies |var(S0
a)/σ2

τ,a−1|≲ σ2τ−2, from which it follows that

sup
t∈R

∣∣Φ(t/var(S0
a)

1/2)−Φ(t/στ,a)
∣∣≤C3

σ2

τ2 . (A.22)

Let G∼N (0,1) and t ∈ R. Combining the bounds (A.18), (A.21) and (A.22), we

obtain

P
{

N1/2aT(β̃−β
∗)≤ t

}
≤ P

{
S0

a ≤ x+C1∥a∥Ω ·
(
σqn−1/2 +N1/2v2+δτ

−1−δ
)}

+Cn−1

≤ P
{

var(S0
a)

1/2G≤ t +C1∥a∥Ω ·
(
σqn−1/2 +N1/2v2+δτ

−1−δ
)}

+Cn−1 +C2
v2+δ

σ2+δNδ/2

≤ P
{

στ,aG≤ t +C1∥a∥Ω ·
(
σqn−1/2 +N1/2v2+δτ

−1−δ
)}

+C2
v2+δ

σ2+δNδ/2 +C3
σ2

τ2

≤ P
(
στ,aG≤ t

)
+Cn−1 +C1(2π)−1/2(qn−1/2 +N1/2v2+δσ

−1
τ
−1−δ

)
+C2

v2+δ

σ2+δNδ/2

+C3
σ2

τ2 .

A similar argument leads to a series of reverse inequalities, and thus completes the proof.

A.2.5 Proof of Theorem 5

As before, we assume without loss of generality that I1 = {1, . . . ,n}. Write β̃ = β̃(1)

for simplicity, and let g = β̃−β∗ be the error vector. By the first-order optimality condition,
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there exists a subgradient g ∈ ∂∥β̃∥1 such that gTβ̃ = ∥β̃∥1 and ∇L̃(β̃)+λ ·g = 0. Moreover,

the convexity of L̃(·) implies

0≤ DL̃(β̃,β
∗) = gT

{
∇L̃(β̃)−∇L̃(β∗)

}
=−λ ·gTg−gT

∇L̃(β∗).

Recall the true active set S = supp(β∗)⊆ {1, . . . , p}, we have

−gTg≤ ∥β∗∥1−∥β̃∥1 = ∥β∗S∥1−∥gS c∥1−∥gS +βS∥1 ≤ ∥gS∥1−∥gS c∥1.

Together, the above two displays yield

0≤ DL̃(β̃,β
∗)≤ λ

(
∥gS∥1−∥gS c∥1

)
−gT

∇L̃(β∗). (A.23)

To deal with ∇L̃(β∗) = ∇L̂1,κ(β
∗)−∇L̂1,κ(β̃

(0))+∇L̂τ(β̃
(0)), we define random

processes

D̂1(β) = ∇L̂1,κ(β)−∇L̂1,κ(β
∗), D̂(β) = ∇L̂τ(β)−∇L̂τ(β

∗),

and write D1(β) = ED̂1(β) and D(β) = ED̂(β). The gradient ∇L̃(β∗) can thus be written as

{
D̂(β)−D(β)

}∣∣∣
β=β̃(0)

+
{

D1(β)− D̂1(β)
}∣∣∣

β=β̃(0)
+∇L̂τ(β

∗)−∇Lτ(β
∗)

+
{

D(β)−D1(β)
}∣∣∣

β=β̃(0)
+∇Lτ(β

∗).

For any r > 0, define

∆1(r) = sup
β∈Θ(r)∩Λ

∥D̂1(β)−D1(β)∥∞, ∆(r) = sup
β∈Θ(r)∩Λ

∥D̂(β)−D(β)∥∞, (A.24)

δ(r) = sup
β∈Θ(r)

∥D1(β)−D(β)∥Ω and b∗ = ∥∇Lτ(β
∗)∥Ω. (A.25)

The quantity b∗ can be viewed as the robustification bias and by Lemma 6, b∗ ≤ σ2τ−1.
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Back to the right-hand of (A.23), conditioning on the event E0(r0)∩E∗(λ∗), it

follows from Hölder’s inequality that

|gT
∇L̃(β∗)| ≤

{
∆(r0)+∆1(r0)+λ∗

}
∥g∥1 +{δ(r0)+b∗

}
∥g∥Σ. (A.26)

Let λ = 2.5(λ∗+ρ) for some ρ > 0. Provided that

ρ≥max
[
∆(r0)+∆1(r0),s−1/2{

δ(r0)+b∗
}]
, (A.27)

we have |gT ∇L̃(β∗)| ≤ 0.4λ∥g∥1 +0.4s1/2λ∥g∥Σ. Combined with (A.23), this yields 0 ≤

1.4∥gS∥1−0.6∥gS c∥1 +0.4s1/2∥g∥Σ. Consequently, ∥g∥1 ≤ (10/3)∥gS∥1 +(2/3)s1/2∥g∥Σ

≤ 4s1/2∥g∥Σ, and hence β̃ ∈ Λ. Throughout the rest of the proof, we assume that the

constraint (A.27) holds.

Next, we apply Lemma 5 to bound the left-hand side of (A.23) from below. As in

the proof of Theorem 1, we set rloc = κ/(4η0.25) and define β̃c = (1−c)β∗+cβ̃, where c =

sup{u∈ [0,1] : (1−u)β∗+uβ̃∈Θ(rloc)}. The same argument therein implies DL̃(β̃c,β
∗)≤

cDL̃(β̃,β
∗). Recall that conditioned on E0(r0)∩E∗(λ∗), β̃ falls in the ℓ1-cone Λ and thus

so does β̃c. Moreover, β̃c ∈ Θ(rloc) by construction. Then it follows from Lemma 5 that,

with probability at least 1− e−u,

DL̃(β̃c,β
∗)≥ 1

4
∥β̃c−β

∗∥2
Σ

as long as n ≳ s log p+u. Combining this with (A.23), (A.26) and (A.27), we obtain that

1
4
∥β̃c−β

∗∥2
Σ ≤ cλ

(
1.4∥gS∥1 +0.4s1/2∥g∥Σ

)
≤ 1.8s1/2

λ∥β̃c−β
∗∥Σ.

Canceling ∥β̃c−β∗∥Σ on both sides yields

∥β̃c−β
∗∥Σ ≤ 7.2s1/2

λ. (A.28)
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Provided that κ > 28.8η0.25s1/2λ, the right-hand side is strictly less than rloc. Via proof by

contradiction, we must have β̃ = β̃c ∈Θ(rloc), and hence the bound (A.28) also applies to β̃.

It remains to choose ρ properly so that the constraint (A.27) holds with high prob-

ability. Recall from Lemma 6 that b∗ ≤ σ2τ−1. The following two lemmas provide upper

bounds on the suprema ∆(r0), ∆1(r0) and δ(r0) defined in (A.24) and (A.25).

Lemma 7. Assume Condition (C2) holds. Then, for any r,u > 0,

∆(r)≤C1B2r

{√
s log(2p)

N
+ s1/2 log(2p)+u

N

}
+C2(σuµ4)

1/2r

√
log(2p)+u

N

with probability at least 1− e−u, where C1,C2 > 0 are absolute constants. The same bound,

with N replaced by n, holds for ∆1(r).

Lemma 8. Condition (C2) guarantees δ(r)≤ κ−2r(σ2 +µ4r2/3) for any r > 0.

Let 0 < r0 ≲ σ and set δ = 2e−u, so that log p+u≍ log(p/δ). Suppose the sample

size per machine satisfies n ≳ s log(p/δ). Then, in view of Lemmas 7 and 8, a sufficiently

large ρ, which is of order

ρ≍max

{
r0

√
s log(p/δ)

n
,s−1/2

σ
2(κ−2r0 + τ

−1)

}
,

guarantees that (A.27) holds with probability at least 1− δ/2. With this choice of ρ,

we see that the right-hand of (A.28) is strictly less than rloc as long as κ ≳ s1/2{λ∗+

r0
√

s log(p/δ)/n}+σ2(κ−2r0+τ−1). Since κ≍ σ
√

n/ log(p/δ), this holds trivially under

the assumed sample size scaling, and thus completes the proof.

We end this subsection with the proofs of Lemmas 7 and 8.
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Proof of Lemma 7

For any r1,r2, define the ℓ1/ℓ2-ball B(r1,r2). Consider the change of variable v =

β−β∗, so that v ∈ B(4s1/2r,r) for β ∈Θ(r)∩Λ. It follows that

sup
β∈Θ(r)∩Λ

∥D̂(β)−D(β)∥∞

≤ max
1≤ j≤p

sup
v∈B(4s1/2r,r)

∣∣∣∣∣ 1
N

N

∑
i=1

(1−E)
{

ψτ(εi− xT
i v)−ψτ(εi)

}
xi j︸ ︷︷ ︸

=:φi j(v)

∣∣∣∣∣= max
1≤ j≤p

Φ j,

where Φ j := supv∈B(4s1/2r,r) |(1/N)∑
N
i=1(1−E)φi j(v)| and ψτ(u) = sign(u)min(|u|,τ). By

the Lipschitz continuity of ψτ(·), supv∈B(4s1/2r,r) |φi j(v)| ≤ supv∈B(4s1/2r,r) |xT
i v| · |xi j| ≤

4B2s1/2r and, for each v ∈ B(4s1/2r,r),

Eφ
2
i j(v) = E{x2

i j(x
T
i v)2} ≤

(
Ex4

i j
)1/2{E(xT

i v)4}1/2 ≤ σ j jµ4 · r2.

We then apply Bousquet’s version of Talagrand’s inequality (Bousquet, 2003) and obtain

that, for any z > 0,

Φ j ≤ EΦ j + sup
v∈B(4s1/2r,r)

{
Eφ

2
i j(v)

}1/2
√

2z
N

+4
√
EΦ j ·B2s1/2r

z
N
+(4/3)B2s1/2r

z
N
(A.29)

≤ EΦ j +(2σ j jµ4)
1/2r
√

z
N
+4
√

EΦ j ·B2s1/2r
z
N
+(4/3)B2s1/2r

z
N

with probability at least 1−2e−z. For the expected value EΦ j, by Rademacher symmetriza-

tion we have

EΦ j ≤ 2E sup
v∈B(4s1/2r,r)

∣∣∣∣∣ 1
N

N

∑
i=1

eiφi j(v)

∣∣∣∣∣= 2E

{
Ee sup

v∈B(4s1/2r,r)

∣∣∣∣∣ 1
N

N

∑
i=1

eiφi j(v)

∣∣∣∣∣
}
,

where e1, . . . ,eN are independent Rademacher random variables. For each i, write φi j(v) =

φ j(xT
i v), where φ j(·) is such that φ j(0) = 0 and |φ j(u)−φ j(v)| ≤ |xi j| · |u− v| ≤ B|u− v|. It
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thus follows from Talagrand’s contraction principle that

Ee sup
v∈B(4s1/2r,r)

∣∣∣∣∣ 1
N

N

∑
i=1

eiφi j(v)

∣∣∣∣∣≤ 2B ·Ee sup
v∈B(4s1/2r,r)

∣∣∣∣∣ 1
N

N

∑
i=1

eixT
i v

∣∣∣∣∣≤ 8Bs1/2r ·Ee

∥∥∥∥∥ 1
N

N

∑
i=1

eixi

∥∥∥∥∥
∞

.

Again, applying Hoeffding’s moment inequality yields Ee∥(1/N)∑
N
i=1 eixi∥∞ ≤

B
√

2log(2p)/N. Putting together the pieces, we conclude that, for j = 1, . . . , p,

EΦ j ≤ 16B2r

√
2s log(2p)

N
.

Finally, taking z = log(2p)+u in (A.29), the claimed bound follows from the union

bound.

Proof of Lemma 8

Let Lτ(β) = EL̂τ(β) be the population loss, so that

D1(β) = ∇Lκ(β)−∇Lκ(β
∗) and D(β) = ∇Lτ(β)−∇Lτ(β

∗).

Starting with D1(β), consider the change of variable v = Σ1/2(β−β∗). Then, by the mean

value theorem for vector-valued functions,

Σ
−1/2D1(β)−Σ

1/2(β−β
∗)

= Σ
−1/2E

∫ 1

0
∇

2Lτ

(
(1− t)β∗+ tβ

)
dt Σ

−1/2 · v− v

=−
∫ 1

0
E
{
P
(
|ε− tzTv|> κ|x

)
zzT
}

dt · v.

Similarly, it can be obtained that

Σ
−1/2D(β)−Σ

1/2(β−β
∗) =−

∫ 1

0
E
{
P
(
|ε− tzTv|> τ|x

)
zzT
}

dt · v.
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Recall that τ≥ κ > 0. We have

Σ
−1/2{D1(β)−D(β)}=−

∫ 1

0
E
{
P
(
κ < |ε− tzTv| ≤ τ|x

)
zzT
}

dt · v

By Markov’s inequality and the fact that E(ε|x) = 0, P(|ε− tzTv|> κ|x)≤ κ−2{E(ε2|x)+

t2(zTv)2} ≤ κ−2{σ2 + t2(zTv)2}. Substituting this into the above bound yields

sup
β∈Θ(r)

∥D1(β)−D(β)∥Ω ≤ κ
−2r
(
σ

2 +µ4r2/3
)
,

as desired.

A.2.6 Proof of Theorem 6

The proof will be carried out conditioning on the “good event” E0(r0)∩E∗(λ∗)

for some predetermined 0 < r0,λ∗ ≲ σ. Given δ ∈ (0,1), let the robustification param-

eters satisfy τ ≥ κ ≍ σ
√

n/ log(p/δ). Theorem 5 implies that the first iterate β̃(1) ∈

argminβ∈Rp{L̃(1)(β)+λ1∥β∥1} with

λ1 = 2.5(λ∗+ρ1) and ρ1 ≍max

{
r0

√
s log(p/δ)

n
,s−1/2

σ
2
τ
−1

}

satisfies the cone property β̃(1) ∈ Λ and the error bound

∥β̃(1)−β
∗∥Σ ≤C1s

√
log(p/δ)/n · r0 +C2(σ

2
τ
−1 + s1/2

λ∗) =: r1 (A.30)

with probability at least 1−δ. In (A.30), we set α = α(s, p,n,δ) =C1s
√

log(p/δ)/n and

r∗ = C2(σ
2τ−1 + s1/2λ∗), so that r1 = αr0 + r∗. Provided the sample size per machine is

sufficiently large, namely, n ≳ s2 log(p/δ), the contraction factor α is strictly less than 1,

and hence the initial estimation error r0 is reduced by a factor of α after one round of

communication.
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For t = 2,3, . . . ,T , define the events Et(rt) = {β̃(t) ∈Θ(rt)∩Λ} and radius parame-

ters

rt = αrt−1 + r∗ = α
2rt−2 +(1+α)r∗ = · · ·= α

tr0 +
1−αt

1−α
r∗.

In the t-th iteration, we choose the regularization parameter λt = 2.5(λ∗+ρt) with

ρt ≍max

{
rt−1

√
s log(p/δ)

n
,s−1/2

σ
2
τ
−1

}
≍ s−1/2 max

{
α

tr0,σ
2
τ
−1}.

Commenced with β̃(t−1) at iteration t ≥ 2, we apply Theorem 5 to obtain that conditioned

on event Et−1(rt−1)∩E∗(λ∗),

β̃
(t) ∈ Λ and ∥β̃(t)−β

∗∥Σ ≤ αrt−1 + r∗ = rt (A.31)

with probability at least 1−δ. In other words, event Et(rt) occurs with probability at least

1−δ conditioned on Et−1(rt−1)∩E∗(λ∗).

Finally, we choose T = ⌈log(r0/r∗)/ log(1/α)⌉ so that αT r0 ≤ r∗. Then, applying

(A.30), (A.31) and the union bound over t = 1, . . . ,T yields that, conditioned on E0(r0)∩

E∗(r∗), the T -th iterate β̃(T ) falls into the cone Λ and satisfies the error bound

∥β̃(T )−β
∗∥Σ ≤ rT ≍ r∗

with probability at least 1−T δ. This completes the proof of the theorem.
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Appendix B

Supplementary Materials for Chapter 3

B.1 Notation and Expressions

We define or repeat some of the important quantities that will be used in the proofs.

For i in 1, . . . ,n,

Mci(t;Sc) = I(Xi ≤ t,∆i = 0)−
∫ t

0
I(Xi ≥ u)dΛc(u;Ai,Zi),

Ji(t;S,Sc) =
∫ t

0

dMc(u;Sc)

S(u;Ai,Zi)Sc(u;Ai,Zi)
,

dNi(t;S,Sc) =
dNi(t)

Sc(t;Ai,Zi)
− Ji(t;S,Sc)dS(t;Ai,Zi),

dMi(t;β,Λ,S,Sc) = dNi(t;S,Sc)−
{

Yi(t)
Sc(t;Ai,Zi)

+ Ji(t;S,Sc)S(t;Ai,Zi)

}
eβAidΛ(t),

S (l)(t;β,S,Sc) =
1
n

n

∑
i=1

Γ
(l)
i (t;β,S,Sc),

Ā(t;β,S,Sc) =
S (1)(t;β,S,Sc)

S (0)(t;β,S,Sc)
,

V (t;β,S,Sc) = Ā(t;β,S,Sc)− Ā(t;β,S,Sc)
2,

Λ̃(t;β,S,Sc) =
1
n

n

∑
i=1

∫ t

0

dNi(u;S,Sc)

S (0)(u;β,S,Sc)
,

ψ̃i(β,Λ,S,Sc) =
∫

τ

0
{Ai− Ā(t;β,S,Sc)}dMi(t;β,Λ,S,Sc),
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where Λc(t;A,Z) =
∫ t

0 λc(t;A,Z)du and F(t;A,Z) = 1−S(t;A,Z).

Next, for each fold m, we define the fold-specific quantities:

S (l)
m (t;β,S,Sc) =

1
|Im| ∑

i∈Im

Γ
(l)
i (t;β,S,Sc),

Ām(t;β,S,Sc) =
S (1)

m (t;β,S,Sc)

S (0)
m (t;β,S,Sc)

,

Vm(t;β,S,Sc) = Ām(t;β,S,Sc)− Ām(t;β,S,Sc)
2,

Λ̃m(t;β,S,Sc) =
1
|Im| ∑

i∈Im

∫ t

0

dNi(u;S,Sc)

S (0)
m (u;β,S,Sc)

,

ψ̃m,i(β,Λ,S,Sc) =
∫

τ

0
{Ai− Ām(t;β,S,Sc)}dMi(t;β,Λ,S,Sc).

The cross-fitted variance estimator of β̂ form Theorem 9 is defined as

σ̂
2
c f (β) =

1
n ∑

k
m=1 ∑i∈Im ψ̃m,i(β, Λ̃m(·;β, Ŝ(−m), Ŝ(−m)

c ), Ŝ(−m), Ŝ(−m)
c )2{

1
n ∑

k
m=1 ∑i∈Im

∫
τ

0 Vm(t;β, Ŝ(−m), Ŝ(−m)
c )dNi(t; Ŝ(−m), Ŝ(−m)

c )
}2 ,

where Ŝ(−m) and Ŝ(−m)
c are estimated using the out of m-th fold data.
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B.2 Proof of Double Robustness

Lemma 9. For any Sc(t|A,Z) with its corresponding censoring specific martingale Mc(t;Sc),

∫ t

0

dMc(u;Sc)

Sc(u|A,Z)
= 1− Y (t)

Sc(t|A,Z)
− N(t−)

Sc(X |A,Z)
, (B.1)

where N(t−) = I(X < t,T ≤C).

Note, this can be seen as a continuous version of Lemma 10.4 in Tsiatis (2006).

Proof

First note that

∫ t

0

dNc(u)
Sc(u|A,Z)

=
Nc(t−)

Sc(X |A,Z)
, (B.2)

where NC(t−) = I(X < t,T >C). Next, since Sc(u|A,Z) = exp{−Λc(u|A,Z)},

∫ t

0

−Y (u)dΛc(u|A,Z)
Sc(u|A,Z)

= I(X ≥ t)
∫ t

0

dSc(u|A,Z)
Sc(u|A,Z)2 + I(X < t)

∫ X

0

dSc(u|A,Z)
Sc(u|A,Z)2

= I(X ≥ t){−Sc(u|A,Z)−1}|u=t
u=0 + I(X < t){−Sc(u|A,Z)−1}|u=X

u=0

= 1− Y (t)
Sc(t|A,Z)

− I(X < t)
Sc(X |A,Z)

. (B.3)

Since I(X < t) = N(t−)+Nc(t−), (B.2) + (B.3) then gives the lemma.

Proof of Theorem 7

Recall that

dMaug(t;β,Λ0,S,Sc) = dMw(t;β,Λ0,Sc)− J(t;S,Sc)
{

dS(t|A,Z)+S(t|A,Z)eβAdΛ0(t)
}
,
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where J(t;S,Sc) is also included in Appendix B.1.

a) Assume Sc = So
c .

We first consider dMw(t;βo,Λo
0,S

o
c). For h(A) = 1 or A,

E {h(A)dMw(t;β
o,Λo

0,S
o
c)}

=E
{

h(A)So
c(t|A,Z)−1 [dE{I(T ≤ t)I(C ≥ t)|T,A,Z}

−E{I(T ≥ t)I(C ≥ t)|T,A,Z} · eβoAdΛ
o
0(t)
]}

=E[h(A)So
c(t|A,Z)−1{dI(T ≤ t)P(C ≥ t|A,Z)

− I(T ≥ t)P(C ≥ t|A,Z) · eβoAdΛ
o
0(t)}]

=E{h(A)dMT (t;β
o,Λo

0)}

=E[h(A)dE{MT (t;β
o,Λo

0)|A}]

=0,

where the second ‘=’ above uses the informative censoring Assumption 1, and the second

last ‘=’ above uses the martingale property of MT (t;βo,Λo
0).

Next we consider J(t;S,Sc){dS(t|A,Z)+S(t|A,Z)eβoAdΛo
0(t)}. Its expectation be-

ing zero follows immediately from the fact that Mc(t;So
c) is a martingale.

b) Assume S = So.

Noting that YT (t)N(t−) = N(t−)dNT (t) = 0 and Y (t)dNT (t) = dN(t), we multiply

(B.1) by
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dMT (t) = dNT (t)−YT (t)eβoAdΛ0(t) giving:

dMT (t;β
o,Λo

0)
∫ t

0

dMc(u;Sc)

Sc(u|A,Z)

=dNT (t)
∫ t

0

dMc(u;Sc)

Sc(u|A,Z)
−YT (t)eβoAdΛ

o
0(t)

∫ t

0

dMc(u;Sc)

Sc(u|A,Z)

=dNT (t)−
dNT (t)Y (t)
Sc(t|A,Z)

− dNT (t)N(t−)
Sc(X |A,Z)

−YT (t)eβoAdΛ
o
0(t)+

+
Y (t)eβoAdΛo

0(t)
Sc(t|A,Z)

+
YT (t)N(t−)eβoAdΛo

0(t)
Sc(X |A,Z)

=dMT (t)−dMw(t).

Therefore

dMw(t;β
o,Λo

0) = dMT (t;β
o,Λo

0)−dMT (t;β
o,Λo

0)
∫ t

0

dMc(u;Sc)

Sc(u|A,Z)
.
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We note that (3.9) and (3.10) hold when S = So. From (3.7) then we have

E{dMaug(t;β
o,Λo

0,S
o,Sc)}

=E
[

dMw(t;β
o,Λo

0,Sc)+
∫ t

0
E{dMT (t;β

o,Λo
0)|A,Z,T ≥ u}dMc(u;Sc)

Sc(u|A,Z)

]
=E
[

dMT (t;β
o,Λo

0)−dMT (t;β
o,Λo

0)
∫ t

0

dMc(u;Sc)

Sc(u|A,Z)

+
∫ t

0
E{dMT (t;β

o,Λo
0)|A,Z,T ≥ u}dMc(u;Sc)

Sc(u|A,Z)

]
=E
{∫ t

0

[
E{dMT (t;β

o,Λo
0)|A,Z,T ≥ u}−dMT (t;β

o,Λo
0)
]dMc(u;Sc)

Sc(u|A,Z)

}
=E
[

E
{∫ t

0

[
E{dMT (t;β

o,Λo
0)|A,Z,T ≥ u}−dMT (t;β

o,Λo
0)
]

× dNc(u)
Sc(u|A,Z)

∣∣∣A,Z,T ≥ u,C = u
}]

−E
[

E
{∫ t

0

[
E{dMT (t;β

o,Λo
0)|A,Z,T ≥ u}−dMT (t;β

o,Λo
0)
]

× Y (u)dΛc(u)
Sc(u|A,Z)

∣∣∣A,Z,T ≥ u,C ≥ u
}]

=E
{∫ t

0

dNc(u)
Sc(u|A,Z)

[
E{dMT (t;β

o,Λo
0)|A,Z,T ≥ u,C = u}

−E{dMT (t;β
o,Λo

0)|A,Z,T ≥ u,C = u}
]}

−E
{∫ t

0

Y (u)dΛc(u)
Sc(u|A,Z)

[
E{dMT (t;β

o,Λo
0)|A,Z,T ≥ u,C ≥ u}

−E{dMT (t;β
o,Λo

0)|A,Z,T ≥ u,C ≥ u}
]}

=0,

where in the 3rd line above E{dMT (t;βo,Λo
0)}= 0 because MT (t;βo,Λo

0) is a martingale.

The above also gives

E
{∫ t

0
AdMaug(t;β

o,Λo
0,S

o,Sc)

}
= 0.
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Appendix C

Supplementary Materials for Chapter 4

C.1 Notation and Expressions

Throughout the Supplementary Material, we omit the notational dependencies of

most quantities on A and Z, unless it requires clarification. For any random quantities a and

b, we will use a ≲ b to denote a is less than or equal to b up to a constant factor.

Suppose we are given n i.i.d. data points, with i ∈ {1, . . . ,n}, that can be split into

k equal-sized folds I1, . . . ,Ik, we first collect notations that will be used repeatedly in the
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proofs. For a = 0,1, l = 0,1 and for each i,

NTi(t) = I(Ti ≤ t), YTi(t) = I(Ti ≥ t),

MTi(t;β,Λ0) = NTi(t)−
∫ t

0
YTi(u)eβAidΛ0(u),

Nci(t) = I(Xi ≤ t,∆i = 0), Yi(t) = I(Xi ≥ t),

Mci(t;a,Sc) = Nci(t)−
∫ t

0
Yi(u)dΛc(u;a,Zi),

Na(t) = I{X(a)≤ t,T (a)≤C(a)}, Y a(t) = I{X(a)≥ t}

Na
c (t) = I{X(a)≤ t,T (a)>C(a)}, ∆

a(t) = I{min(T (a), t)≤C(a)},

Ji(t;a,S,Sc) =
∫ t

0

dMci(u;a,Sc)

S(u;a,Zi)Sc(u;a,Zi)
,

Dw
1i(t;β,Λ0,π,Sc) =

dMi(t;β,Λ0)

π(Zi)
A
i {1−π(Zi)}1−AiSc(t;Ai,Zi)

dN (l)
i (t;π,S,Sc) =

Al
idNi(t)

π(Zi)Ai{1−π(Zi)}1−AiSc(t;Ai,Zi)
+

Al
idS(t;Ai,Zi)

π(Zi)Ai{1−π(Zi)}1−Ai

− ∑
a=0,1

al
{

1+
Aa

i (1−Ai)
1−a

π(Zi)a{1−π(Zi)}1−a Ji(t;a,S,Sc)

}
dS(t;a,Zi),

Γ
(l)
i (t;β,π,S,Sc) =

Al
iYi(t)eβAi

π(Zi)Ai{1−π(Zi)}1−AiSc(t;Ai,Zi)
−

Al
iS(t;Ai,Zi)eβAi

π(Zi)Ai{1−π(Zi)}1−Ai

+ ∑
a=0,1

al
{

1+
Aa

i (1−Ai)
1−a

π(Zi)a{1−π(Zi)}1−a Ji(t;a,S,Sc)

}
S(t;a,Zi)eβa,

D1i(t;β,Λ0,π,S,Sc) = dN (0)
i (t;π,S,Sc)−Γ

(0)
i (t;β,π,S,Sc)dΛ0(t),

D2i(β,Λ0,π,S,Sc) =
∫

τ

0
dN (1)

i (t;π,S,Sc)−Γ
(1)
i (t;β,π,S,Sc)dΛ0(t),

s (1)(t;β,π,S,Sc) =
∂

∂β
s (0)(t;β,π,S,Sc) =

∂2

∂β2 s (0)(t;β,π,S,Sc),

ᾱ(t;β,π,S,Sc) =
s (1)(t;β,π,S,Sc)

s (0)(t;β,π,S,Sc)
,

v(t;β,π,S,Sc) = ᾱ(t;β,π,S,Sc)− ᾱ(t;β,π,S,Sc)
2,

ν(β,π,S,Sc) =
∫

τ

0
v(t;β,π,S,Sc)s (0)(t;β

o,π,S,Sc)dΛ
o
0(t)

µ(β,π,S,Sc) =
∫

τ

0
{ᾱ(t;β

o,π,S,Sc)− ᾱ(t;β,π,S,Sc)}s (0)(t;β
o,π,S,Sc)dΛ

o
0(t).
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Note that the quantities in the last 4 lines are defined in the Additional Assumptions Section

C.3.1 for the Proof of Asymptotics Results later.

Next, we define quantities evaluated over the entire sample of n observations:

S (l)(t;β,π,S,Sc) =
1
n

n

∑
i=1

Γ
(l)
i (t;β,π,S,Sc), s (l)(t;β,π,S,Sc) = E{S (l)(t;β,π,S,Sc)}

Ā(t;β,π,S,Sc) =
S (1)(t;β,π,S,Sc)

S (0)(t;β,π,S,Sc)
,

V (t;β,π,S,Sc) = Ā(t;β,π,S,Sc)− Ā(t;β,π,S,Sc)
2,

Λ̃0(t;β,π,S,Sc) =
1
n

n

∑
i=1

∫ t

0

dNi(u;π,S,Sc)

S (0)(u;β,π,S,Sc)
,

U(β,π,S,Sc) =
1
n

n

∑
i=1

∫
τ

0
dN (1)

i (t;π,S,Sc)− Ā(t;β,π,S,Sc)dN (0)
i (t;π,S,Sc).

Analogous to the quantities above, for each fold m, we define the fold-specific quantities

S (l)
m (t;β,π,S,Sc), Ām(t;β,π,S,Sc), Vm(t;β,π,S,Sc), Λ̃0,m(t;β,π,S,Sc), and Um(β,π,S,Sc).

For example,

S (l)
m (t;β,π,S,Sc) =

1
|Im| ∑

i∈Im

Γ
(l)
i (t;β,π,S,Sc).

We will now denote the cross-fitted AIPW estimating equation as

Uc f (β) =
1
k

k

∑
m=1

Um(β, π̂
(−m), Ŝ(−m), Ŝ(−m)

c ) = 0.

The asymptotic variance of β̂ in Theorems 12 is defined as

σ
2 = E{ψ(βo,Λo

0,π
o,So,So

c)
2}/ν

2(βo,πo,So,So
c),

where

ψ(βo,Λ0,π,S,Sc) = D2(β,Λ0,π,S,Sc)−
∫

τ

0
ᾱ(t;β,π,S,Sc)D1(t;β,Λ0,π,S,Sc).
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The asymptotic variance σ2 can be consistently estimated using

σ̂
2(β̂) =

1
n ∑

k
m=1 ∑i∈Im ψ̃m,i(β̂, Λ̃0,m(·; β̂, π̂(−m), Ŝ(−m), Ŝ(−m)

c ), π̂(−m), Ŝ(−m), Ŝ(−m)
c )2{

1
n ∑

k
m=1 ∑i∈Im

∫
τ

0 Vm(t; β̂, π̂(−m), Ŝ(−m), Ŝ(−m)
c )dN (0)

i (t; π̂(−m), Ŝ(−m), Ŝ(−m)
c )

}2 ,

where

ψ̃m,i(β
o,Λ0,π,S,Sc) =D2i(t;β,Λ0,π,S,Sc)−

∫
τ

0
Ām(t;β,π,S,Sc)D1i(t;β,Λ0,π,S,Sc)
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C.2 Proof of Double Robustness

We first state and prove some lemmas we will use in the proofs of the Double

Robustness Theorem.

Lemma 10. For any real-valued functions g and h, we have

E{g(A,Z)h(T,C,A,Z)}= ∑
a=0,1

E
[
g(a,Z)πo(Z)a{(1−π

o(Z)}1−aE{h(T,C,A,Z)|A = a,Z}
]

Proof

By the law of total expectation we have

E{g(A,Z)h(T,C,A,Z)}

=E[E{g(A,Z)h(T,C,A,Z)|A,Z}]

=E

[
∑

a=0,1
E{g(A,Z)h(T,C,A,Z)|A = a,Z}πo(Z)a{1−π

o(Z)}1−a

]

= ∑
a=0,1

E
[
g(a,Z)πo(Z)a{(1−π

o(Z)}1−aE{h(T,C,A,Z)|A = a,Z}
]

Lemma 11.

M(t;β,Λ0) = A∆
1(t)M1

T (t;β,Λ0)+(1−A)∆0(t)M0
T (t;β,Λ0).

Proof

We prove the result for a = 1, the same arguments can be made for a = 0.

The following is a potential outcome version of Lemma 1 from Luo and Xu (2022).
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Note that

∫ t

0

dN1
c (u)

Sc(u;1,Z)
=

N1
c (t−)

Sc(X ;1,Z)
. (C.1)

Since Λc(u;1,Z) =− log{Sc(u;1,Z)},

∫ t

0

−Y 1(u)dΛc(u;1,Z)
Sc(u;1,Z)

=I{X(1)≥ t}
∫ t

0

dSc(u;1,Z)
Sc(u;1,Z)2 + I{X(1)< t}

∫ X(1)

0

dSc(u;1,Z)
Sc(u;1,Z)2

=I{X(1)≥ t}{−Sc(u;1,Z)−1}|u=t
u=0 + I{X(1)< t}{−Sc(u;1,Z)−1}|u=X(1)

u=0

=
I{X(1)≥ t}
Sc(0;1,Z)

+
I{X(1)< t}
Sc(0;1,Z)

− I{X(1)≥ t}
Sc(t;1,Z)

− I(X(1)< t)
Sc(X(1);1,Z)

,

=1− Y 1(t)
Sc(t;1,Z)

− I(X(1)< t)
Sc(X(1);1,Z)

. (C.2)

Since I(X(1)< t) = N1(t−)+N1
c (t−), (C.1) + (C.2) gives

∫ t

0

dMc(u;1,Sc)

Sc(u;1,Z)
= 1− Y 1(t)

Sc(t;1,Z)
− N1(t−)

Sc(X(1);1,Z)
, (C.3)

The rest of the proof is analogous to part (b) of the proof of Theorem 1 from Luo

and Xu (2022) . Noting that Y 1(t)dN1
T (t) = dN1(t) and dN1

T (t)N
1(t−) =Y 1

T (t)N
1(t−) = 0,
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we multiply (C.3) by dM1
T (t;β,Λ0) = dN1

T (t)−Y 1
T (t)e

βdΛ0(t) giving:

dM1
T (t;β,Λ0)

∫ t

0

dMc(u;1,Sc)

Sc(u;1,Z)

=dN1
T (t)

∫ t

0

dMc(u;1,Sc)

Sc(u;1,Z)
−Y 1

T (t)e
βdΛ0(t)

∫ t

0

dMc(u;1,Sc)

Sc(u;1,Z)

=dN1
T (t)−

dN1
T (t)Y

1(t)
Sc(t;1,Z)

− dN1
T (t)N

1(t−)
Sc(X(1);1,Z)

−Y 1
T (t)e

βdΛ0(t)+
Y 1(t)eβdΛ0(t)

Sc(t;1,Z)
+

Y 1
T (t)N

1(t−)eβo
dΛo

0(t)
Sc(X(1);1,Z)

.

=dN1
T (t)−Y 1

T (t)e
βdΛ0(t)−

dN1(t)
Sc(t;1,Z)

+
Y 1(t)eβdΛ0(t)

Sc(t;1,Z)

=dM1
T (t;β,Λ0)−

dN1(t)−Y 1(t)eβdΛ0(t)
Sc(t;1,Z)

=dM1
T (t;β,Λ0)−

∆1(t)dN1
T (t)−∆1(t)Y 1

T (t)e
βdΛ0(t)

Sc(t;1,Z)

=dM1
T (t;β,Λ0)−

∆1(t)dM1
T (t;β,Λ0)

Sc(t;1,Z)
.

Lemma 12.

∆a(t)dMa
T (t;β,Λ0)

Sc(t;a,Z)
= dMa

T (t;β,Λ0)−dMa
T (t;β,Λ0)

∫ t

0

dMc(u;a,Sc)

Sc(u;a,Z)

for a = 0,1.

Proof

By definition Na(t) = I{T (a)≤C(a)}I{T (a)≤ t}. Meanwhile

Na
T (t)∆

a(t) = I{T (a) ≤ t}I{min(T (a), t) ≤C(a)} = I{T (a) ≤ t}I{T (a) ≤C(a)}. There-

fore

Na(t) = Na
T (t)∆

a(t).

In addition, Y a
T (t)∆

a(t) = I(T (a) ≥ t)I{min(T (a), t) ≤ C(a)} = I(T (a) ≥

t)I{C(a)≥ t}

= I(X(a)≥ t) = Y a(t).
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Then by the consistency Assumption 7, we have

N(t) = AN1(t)+(1−A)N0(t)

= AN1
T (t)∆

1(t)+(1−A)N0
T (t)∆

0(t). (C.4)

Similarly,

Y (t) = AY 1
T (t)∆

1(t)+(1−A)Y 0
T (t)∆

0(t). (C.5)

We may then combine (C.4) and (C.5) to get

M(t;β,Λ0) = N(t)−
∫ t

0
Y (u)eβAdΛ0(u)

= A∆
1(t)M1

T (t;β,Λ0)+(1−A)∆0(t)M0
T (t;β,Λ0).

Proof of Theorem 10

Note that

D1(t;β
o,Λo

0,π,S,Sc) = dN (0)
i (t;π,S,Sc)−Γ

(0)
i (t;β

o,π,S,Sc)dΛ
o
0(t),

D2(β
o,Λo

0,π,S,Sc) =
∫

τ

0
dN (1)

i (t;π,S,Sc)−Γ
(1)
i (t;β

o,π,S,Sc)dΛ
o
0(t).

.

By Assumptions 9-10, D2 is absolutely integrable, so Fubini’s theorem gives ED2 =

E{
∫

τ

0 dN (1)
i (t)− Γ

(1)
i (t)dΛo

0(t)} =
∫

τ

0 E{
∫

τ

0 dN (1)
i (t)− Γ

(1)
i (t)dΛo

0(t)}. So it suffices to

show that E{dN (l)
i (t)−Γ

(l)
i (t)dΛo

0(t)}= 0 for l = 0,1 and for any t ∈ [0,τ].

a) Assume (π,Sc) = (πo,So
c). For simplicity, we omit the dependency on all the
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arguments l and write E{dN (l)
i (t)−Γ

(l)
i (t)dΛo

0(t)}= R1 +R2−R3, where

R1 = E

[
AldM(t;βo,Λo

0)

πo(Z)A{1−πo(Z)}1−ASo
c(t;A,Z)

]
,

R2 = E

[
Al{dS(t;A,Z)+S(t;A,Z)eβoAdΛo

0(t)}
πo(Z)A{1−πo(Z)}1−A − ∑

a=0,1
al{dS(t;a,Z)+S(t;a,Z)eβoadΛ

o
0(t)}

]
,

R3 = E

[
∑

a=0,1
al Aa(1−A)1−a

πo(Z)a{1−πo(Z)}1−a J(t;a,S,So
c){dS(t;a,Z)+S(t;a,Z)eβoadΛ

o
0(t)}

]
.

Using Lemma 10 and Lemma 11, we then have

R1 = ∑
a=0,1

E
[

al

So
c(t;a,Z)

E {dM(t;β
o,Λo

0)|A = a,Z}
]

= ∑
a=0,1

E
[

al

So
c(t;a,Z)

E {∆a(t)dMa
T (t;β

o,Λo
0)|Z}

]
= ∑

a=0,1
E
(

al

So
c(t;a,Z)

E [E {∆a(t)dMa
T (t;β

o,Λo
0)|T (a) = t,Z}|Z]

)
= ∑

a=0,1
E
{

al

So
c(t;a,Z)

E
(

E
[
{dNa

T (t)I(C(a)≥ t)−Y a
T (t)I(C(a)≥ t)eβoadΛ

o
0(t)}|T (a) = t,Z

]∣∣∣Z)}

= ∑
a=0,1

E
{

alE{I(C(a)≥ t)|Z}
So

c(t;a,Z)
E
(

E
[
{dNa

T (t)−Y a
T (t)e

βoadΛ
o
0(t)}|T (a) = t,Z

]∣∣∣Z)}
(C.6)

= ∑
a=0,1

aldE{Ma
T (t;β

o,Λo
0)} (C.7)

=0,

where (C.6) makes use of the informative censoring Assumption 10, and (C.7) uses the

consistency Assumption 7 and the tower property.
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Applying Lemma 10 to R2, we have

R2 =E

[
∑

a=0,1
al{dS(t;a,Z)+S(t;a,Z)eβoadΛ

o
0(t)}− ∑

a=0,1
al{dS(t;a,Z)+S(t;a,Z)eβoadΛ

o
0(t)}

]

=0.

Finally, again applying Lemma 10, we have

R3 = ∑
a=0,1

∑
α=0,1

alE
[

αa(1−α)1−aπo(Z)α{(1−πo(Z)}1−α

πo(Z)a{1−πo(Z)}1−a {dS(t;a,Z)+S(t;a,Z)eβoadΛ
o
0(t)}

×E{J(t;a,S,So
c)|A = α,Z}

]
= ∑

a=0,1
alE

[
{dS(t;a,Z)+S(t;a,Z)eβoadΛ

o
0(t)}E{J(t;a,S,So

c)|A = a,Z}
]

(C.8)

= ∑
a=0,1

alE
[
{dS(t;a,Z)+S(t;a,Z)eβoadΛ

o
0(t)}

∫ t

0

dE{Mc(u;a,So
c)|A = a,Z}

S(u;a,Z)So
c(u;a,Z)

]
=0, (C.9)

where (C.8) comes from αa(1−α)1−a = I(a = α), and (C.9) uses the fact that for each

A = a, Mc(t;a,So
c) given Z is a martingale when Sc = So

c .

b) Assume S = So. We have E{dN (l)
i (t)−Γ

(l)
i (t)dΛo

0(t)}= R4 +R5 +R6, where

R4 =E
[

AldM(t;βo,Λo
0)

π(Z)A{1−π(Z)}1−ASc(t;A,Z)

− ∑
a=0,1

al Aa(1−A)1−a

π(Z)a{1−π(Z)}1−a J(t;a,So,Sc){dSo(t;a,Z)+So(t;a,Z)eβoadΛ
o
0(t)}

]
,

R5 =E

[
Al{dSo(t;A,Z)+So(t;A,Z)eβoAdΛo

0(t)}
π(Z)A{1−π(Z)}1−A

]
,

R6 =− ∑
a=0,1

alE{dSo(t;a,Z)+So(t;a,Z)eβoadΛ
o
0(t)},
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We first make use of the fact that (4.7) holds under S = So to get

R4 =E
[

AldM(t;βo,Λo
0)

π(Z)A{1−π(Z)}1−ASc(t;A,Z)
(C.10)

+ ∑
a=0,1

al Aa(1−A)1−a

π(Z)a{1−π(Z)}1−a

∫ t

0

dMc(u;a,Sc)

Sc(u;a,Z)
E{dMT (t;β

o,Λo
0)|T ≥ u,A = a,Z}

]
.

(C.11)

Applying Lemma 10 to both (C.10) and (C.11), we have

R4 = ∑
a=0,1

alE
[

πo(Z)a{1−πo(Z)}1−a

π(Z)a{1−π(Z)}1−a
E{dM(t;βo,Λo

0)|A = a,Z}
Sc(t;a,Z)

]
+ ∑

a=0,1
∑

α=0,1
alE
(

αa(1−α)1−aπo(Z)α{1−πo(Z)}1−α

π(Z)a{1−π(Z)}1−a

×E
[∫ t

0

dMc(u;a,Sc)

Sc(u;a,Z)
E{dMT (t;β

o,Λo
0)|T ≥ u,A = a,Z}

∣∣∣A = α,Z
])

= ∑
a=0,1

alE
[

πo(Z)a{1−πo(Z)}1−a

π(Z)a{1−π(Z)}1−a
∆a(t)dMa

T (t;βo,Λo
0)

Sc(t;a,Z)

]
(C.12)

+ ∑
a=0,1

alE
(

πo(Z)a{1−πo(Z)}1−a

π(Z)a{1−π(Z)}1−a

×E
[∫ t

0

dMc(u;a,Sc)

Sc(u;a,Z)
E{dMa

T (t;β
o,Λo

0)|T (a)≥ u,A = a,Z}
∣∣∣∣A = a,Z

])
(C.13)

= ∑
a=0,1

alE
[

πo(Z)a{1−πo(Z)}1−a

π(Z)a{1−π(Z)}1−a

(
∆a(t)dMa

T (t;βo,Λo
0)

Sc(t;a,Z)

+E
[∫ t

0

dMc(u;a,Sc)

Sc(u;a,Z)
E{dMa

T (t;β
o,Λo

0)|T (a)≥ u,A = a,Z}
∣∣∣∣A = a,Z

])]
= ∑

a=0,1
alE

[
πo(Z)a{1−πo(Z)}1−a

π(Z)a{1−π(Z)}1−a dMa
T (t;β

o,Λo
0)

]
(C.14)

+R7,
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where

R7

= ∑
a=0,1

alE
[

πo(Z)a{1−πo(Z)}1−a

π(Z)a{1−π(Z)}1−a

×
{

E
[∫ t

0

dMc(u;a,Sc)

Sc(u;a,Z)
E{dMa

T (t;β
o,Λo

0)|T (a)≥ u,A = a,Z}
∣∣∣∣A = a,Z

]
−

∫ t

0

dMc(u;a,Sc)

Sc(u;a,Z)
dMa

T (t;β
o,Λo

0)

}]
= ∑

a=0,1
alE
[

πo(Z)a{1−πo(Z)}1−a

π(Z)a{1−π(Z)}1−a

×E
{∫ t

0

dMc(u;a,Sc)

Sc(u;a,Z)
[E{dMa

T (t;β
o,Λo

0)|T (a)≥ u,A = a,Z}−dMa
T (t;β

o,Λo
0)]

∣∣∣∣A = a,Z
}]

,

(C.12) uses Lemma 11 and the tower property, (C.13) makes use of αa(1−α)1−a = I(a = α)

and the consistency Assumption 7, while (C.14) makes use of Lemma 12. Next, we show
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R7 = 0 by showing the inner conditional expectation is 0:

E
{∫ t

0

dMc(u;a,Sc)

Sc(u;a,Z)
[E{dMa

T (t;β
o,Λo

0)|T (a)≥ u,A = a,Z}−dMa
T (t;β

o,Λo
0)]

∣∣∣∣A = a,Z
}

=E
[

E
{∫ t

0

dNc(u)
Sc(u;a,Z)

× [E{dMa
T (t;β

o,Λo
0)|T (a)≥ u,A = a,Z}−dMa

T (t;β
o,Λo

0)]

∣∣∣∣A = a,Z,T ≥ u,C = u
}∣∣∣∣A = a,Z

]

−E
[

E
{∫ t

0

Y (u)dΛc(u;a,Z)
Sc(u;a,Z)

× [E{dMa
T (t;β

o,Λo
0)|T (a)≥ u,A = a,Z}−dMa

T (t;β
o,Λo

0)]

∣∣∣∣A = a,Z,T ≥ u,C = u
}∣∣∣∣A = a,Z

]

=E
{∫ t

0

dNa
c (u)

Sc(u;a,Z)

×
[
E{dMa

T (t;β
o,Λo

0)|T (a)≥ u,A = a,Z}−E{dMa
T (t;β

o,Λo
0)|T (a)≥ u,A = a,Z}

]∣∣∣∣A = a,Z
}

(C.15)

−E
{∫ t

0

Y a(u)dΛc(u;a,Z)
Sc(u;a,Z)

×
[
E{dMa

T (t;β
o,Λo

0)|T (a)≥ u,A = a,Z}−E{dMa
T (t;β

o,Λo
0)|T (a)≥ u,A = a,Z}

]∣∣∣∣A = a,Z
}

(C.16)

=0,

where (C.15) and (C.16) uses consistency and informative censoring from Assumptions 7

and 10.
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Next, using Lemma 10, we have

R5 = ∑
a=0,1

alE
[

πo(Z)a{1−πo(Z)}1−a

π(Z)a{1−π(Z)}1−a {dSo(t;a,Z)+So(t;a,Z)eβoadΛ
o
0(t)}

]
= ∑

a=0,1
alE

[
πo(Z)a{1−πo(Z)}1−a

π(Z)a{1−π(Z)}1−a E{−dNa
T (t)+Y a

T (t)e
βoadΛ

o
0(t)|Z}

]
=− ∑

a=0,1
alE

[
E
{

πo(Z)a{1−πo(Z)}1−a

π(Z)a{1−π(Z)}1−a dMa
T (t;β

o,Λo
0)
∣∣∣Z}]

=− ∑
a=0,1

alE
[

πo(Z)a{1−πo(Z)}1−a

π(Z)a{1−π(Z)}1−a dMa
T (t;β

o,Λo
0)

]
.

Lastly,

R6 =− ∑
a=0,1

alE(E[{dSo(t;a,Z)+So(t;a,Z)eβoadΛ
o
0(t)}|Z])

=− ∑
a=0,1

alE(E[{−dNa
T (t)+Y a

T (t)e
βoadΛ

o
0(t)}|Z])

= ∑
a=0,1

alE{dMa
T (t;β

o,Λo
0)}

=0.

The above gives R4 +R5 +R6 = 0 as desired.

C.3 Proof of Asymptotic Results

C.3.1 Additional Assumptions

Without loss of generality, we assume that the nuisance function estimates π̂, Ŝ, Ŝc

and their limits π∗,S∗,S∗c only take value in [0,1]. Moreover, the survival functions S∗(t;a,z)

and S∗c(t;a,z) and their estimates are non-increasing in t.

Assumption 21. There exists a neighbourhood B of βo such that

supt∈[0,τ],β∈B |S (l)(t;β,π∗,S∗,S∗c)− s (l)(t;β,π∗,S∗,S∗c)| = op(1).
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Assumption 22. For l = 0,1, s (l)(t;β,π∗,S∗,S∗c) are continuous functions of β ∈ B , uni-

formly in t ∈ [0,τ] and are bounded on B× [0,τ]. s (0)(t;β,π∗,S∗,S∗c) is bounded away from

zero on B× [0,τ]. For all β ∈ B , t ∈ [0,τ]:

s (1)(t;β,π,S,Sc) =
∂

∂β
s (0)(t;β,π,S,Sc) =

∂2

∂β2 s (0)(t;β,π,S,Sc).

In addition, let ᾱ = s (1)/s (0) and v = ᾱ− ᾱ2. We have

ν(βo,π∗,S∗,S∗c) =
∫

τ

0
v(t;β

o,π∗,S∗,S∗c)s (0)(t;β
o,π∗,S∗,S∗c)dΛ

o
0(t)> 0.

Assumptions 21 and 22 are the typical regularity assumptions that are made under

the Cox PH models (Andersen and Gill, 1982).

Assumption 23. For π = π̂ or π∗, S = Ŝ or S∗, and Sc = Ŝc or S∗c , where π̂, Ŝ and Ŝc are

estimated using an independent sample, we have

E


[

sup
t∈[0,τ]

∣∣∣∣s (l)(t;β,π,S,Sc)− s (l)(t;β,π∗,S∗,S∗c)
∣∣∣∣
]2
= o(1), (C.17)

and

sup
t∈[0,τ]

|S (l)(t;β,π,S,Sc)− s (l)(t;β,π,S,Sc)|= Op(n−1/2), (C.18)

for β ∈ B and l = 0,1. Moreover,

∫
τ

0
{Ā(t;β

o,π,S,Sc)− ᾱ(t;β
o,π,S,Sc)} ·

1√
n

n

∑
i=1

D1i(t;β
o,Λo

0,π
o,So,So

c) = op(1).(C.19)

Assumption 23 is required due to the involvement of the time-dependent nuisance

functions as well as the risk sets that are specific to the Cox MSM. Condition (C.17) simply

states that the convergence of π̂, Ŝ, Ŝc carries over to s (l)(t;βo,π,S,Sc). Condition (C.18)

should hold for most functions with simple structures even though the estimates of the
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nuisance function may converge at a slower than root-n rate. For example, if we have

G(t;h) = n−1
∑

n
i=1 Ai/h(t) and its limit g(t;h) = E(A)/h(t), then

sup
t∈[0,τ]

|G(t; ĥ)−g(t; ĥ)| ≤

∣∣∣∣∣1n n

∑
i=1

Ai−E(A)

∣∣∣∣∣ · sup
t∈[0,τ]

∣∣∣∣∣ 1

ĥ(t)

∣∣∣∣∣= Op(n−1/2)

for any out-of-sample estimates ĥ(t) that are bounded away from zero. Condition (C.19)

is required for the same reason the integral term D†(Ŝ, Ŝc;So,So
c) in Assumption 12 is

required. Although we have
√

n{Ā(t;βo,π,S,Sc)− ᾱ(t;βo,π,S,Sc)} = Op(1) from

(C.18), and n−1
∑

n
i=1

∫
τ

0 D1i(t;βo,Λo
0,π

o,So,So
c) = o(1) from Theorem 10 and the law of

large numbers, no existing tools allow us to generalize this product rate to increments within

an integral, which is specific to our problem.

C.3.2 Proof of Main Results

We prove in this section the consistency and asymptotic normality of the cross-fitted

AIPW estimator β̂. The proof of the main results is intentionally kept short and easy to

follow, while the tedious details are put into the Lemmas 14 and 15. The proof of Lemma 14

involves standard convergence in probability arguments, regardless of whether we use cross-

fitting or not. On the other hand, the proof of Lemma 15 makes use of the independence

induced by cross-fitting and the rate condition Assumption 12, which we will elaborate on

in more detail later.

Here, we first state Lemma 5.10 from Van der Vaart (2000), which will be used in

the consistency proof.

Lemma 13. Let Θ be a subset of the real line and let Ψn be random functions and Ψ a

fixed function of θ such that Ψn(θ)→Ψ(θ) in probability for every θ. Assume that each

map θ→ Ψn(θ) is continuous and has exactly one zero θ̂n, or is non-decreasing with

Ψn(θ̂n) = op(1). Let θ0 be a point such that Ψ(θ0− ε) < 0 < Ψ(θ0 + ε) for every ε > 0.

Then θ̂n
p→ θ0.

160



Lemma 14. Under Assumptions 9, 11 and 21-23, if either S∗ = So or (π∗,S∗c) = (πo,So
c),

then for β ∈ B ,

Uc f (β)
p→ µ(β,π∗,S∗,S∗c), (C.20)

∂

∂β
Uc f (β)

p→−ν(β,π∗,S∗,S∗c), (C.21)

where

µ(β,π,S,Sc) =
∫

τ

0
{ᾱ(t;β

o,π,S,Sc)− ᾱ(t;β,π,S,Sc)}s (0)(t;β
o,π,S,Sc)dΛ

o
0(t),

ν(β,π,S,Sc) =
∫

τ

0
v(t;β,π,S,Sc)s (0)(t;β

o,π,S,Sc)dΛ
o
0(t).

Lemma 15. Under Assumptions 9, 11-12 and 21-23,

√
nUc f (β

o) =
1√
n

n

∑
i=1

ψi(β
o,Λo

0,π
o,So,So

c)+op(1).

Proof of Theorem 11

To show consistency, we make use of Lemma 13. Equation (C.20) of Lemma 14

states that

Uc f (β)
p→ µ(β,π∗,S∗,S∗c),

for β in a neighbourhood B of βo.

Next, we assume that β̂ is a unique zero of Uc f (β) and βo is a unique

zero of µ(β,π∗,S∗,S∗c). Using Assumption 22, we have ∂µ(β,π∗,S∗,S∗c)/∂β|β=βo =

−ν(βo,π∗,S∗,S∗c) < 0, and that µ(β,π∗,S∗,S∗c) is continuous for β ∈ B . These conditions

together imply that

µ(β− ε,π∗,S∗,S∗c)> 0 > µ(β+ ε,π∗,S∗,S∗c)
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for any ε > 0.

Lastly, by noting that Uc f (β) is also continuous in β, we have β̂
p→ βo from applying

Lemma 13.

Proof of Theorem 12

Applying the mean value theorem to Uc f (β
o) around βo, we have

√
n(β̂−β

o) =
−
√

nUc f (β
o)

∂

∂β
Uc f (β̃)

,

where β̃ is some value between β̂ and βo. To show the asymptotic linearity, we find the

limit of ∂Uc f (β̃)/∂β, and write the asymptotic expansions of
√

nUc f (β
o) as averages of i.i.d.

terms.

By (C.21) of Lemma 14, we have ∂Uc f (β
o)/∂β

p→−ν(βo,πo,So,So
c). Using the same

arguments as that used in Lemma 14, we also have ∂Uc f (β̃)/∂β−∂Uc f (β
o)/∂β = op(1), so

∂

∂β
Uc f (β̃)

p→−ν(βo,πo,So,So
c).

The asymptotic expansion of
√

nUc f (β
o) is derived in Lemma 15:

√
nUc f (β

o) =
1√
n

n

∑
i=1

ψi(β
o,Λo

0,π
o,So,So

c)+op(1).

By Assumptions 9 and 22, it’s easy to see that |ψ(βo,Λo
0,π

o,So,So
c)| is bounded a.s., so by

the central limit theorem,

√
nUc f (β

o)
d→ N(0,E{ψ(βo,Λo

0,π
o,So,So

c)
2}).
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Applying Slutsky’s Theorem, we therefore have

√
n(β̂−β

o)
d→ N(0,σ2),

where σ2 = E{ψ(βo,Λo
0,π

o,So,So
c)

2}/ν2(βo,πo,So,So
c).

Lastly, to show that σ̂2 is a consistent estimator of σ2, we show separately the

convergence of its numerator and its denominator in probability:

1
n

k

∑
m=1

∑
i∈Ik

ψ̃m,i(β̂, Λ̃0,m(·; β̂, π̂(−m), Ŝ(−m), Ŝ(−m)
c ), π̂(−m), Ŝ(−m), Ŝ(−m)

c )2 p→ E{ψ(βo,Λo
0,π

o,So,So
c)

2},{
1
n

k

∑
m=1

∑
i∈Ik

∫
τ

0
Vm(t; β̂, π̂(−m), Ŝ(−m), Ŝ(−m)

c )dNi(t; π̂
(−m), Ŝ(−m), Ŝ(−m)

c )

}2
p→ ν

2(βo,πo,So,So
c).

These can be shown using the same arguments as used in Lemma 14, so we omit the proof

here. Applying Slutsky’s theorem again, we have

σ̂
−1√n(β̂−β

o)
d→ N(0,1).

C.3.3 Proof of lemmas

Since the number of folds k is fixed as n→ ∞, to show that results in Lemma 14

hold for the cross-fitted estimating equations Uc f , it is sufficient to show that they hold for

sample-splitting. Therefore, in the proof of Lemma 14 below, we will show

U(β, π̂, Ŝ, Ŝc)
p→ µ(β,π∗,S∗,S∗c),

∂

∂β
U(β, π̂, Ŝ, Ŝc)

p→−ν(β,π∗,S∗,S∗c),

where with a slight abuse of notation, we let π̂, Ŝ, Ŝc denote nuisance functions estimated

using a different set of data independent from but with the same distribution as the dataset
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that U is evaluated on. Similarly, in the proof of Lemma 15 below, we will show

√
nU(βo, π̂, Ŝ, Ŝc) =

1√
n

n

∑
i=1

ψi(β
o,Λo

0,π
o,So,So

c)+op(1).

Before we begin the proof of the lemmas, note from the strict positivity Assump-

tion 9 that S∗(t;a,z) is bounded away from zero. By the uniform convergence Assump-

tion 11, Ŝ(t;a,z) converges to S∗(t;a,z) in probability uniformly in t, so the probability

that Ŝ(t;a,z) is bounded away from zero goes to one. Same argument also applies to

Ŝc(t;a,z), π̂(z), and 1− π̂(z). We can also derive from (C.17) and (C.18) of Assumption 23

that for nuisance functions π,S,Sc that are either the estimates π̂, Ŝ, Ŝc or their limits, and

for β ∈ B , S (l)(t;β,π,S,Sc) converges to s (l)(t;β,π∗,S∗,S∗c) in probability uniformly in t.

Since assumption 22 states that s (l)(t;β,π∗,S∗,S∗c) and 1/s (0)(t;β,π∗,S∗,S∗c) are bounded,

so S (l)(t;β,π,S,Sc) and 1/S (0)(t;β,π,S,Sc) are bounded with probability going to one. In

the following to simplify the proofs, we will assume WLOG that the quantities are bounded

almost surely, and this is due to the conditioning event argument below.

Both Lemmas 14 and 15 claim convergence in probability results. To prove them,

we want to show that for some random quantity (i.e. remainder term) Xn and for any ε > 0,

P(|Xn|< ε)→ 1 as n→ ∞. Let Gn denote the event that all those terms above are bounded.

From Assumptions 9, 11, 22, and 23, we showed earlier that P(Gn)→ 1 as n→ ∞. In our

approach we first show that E(|Xn| |Gn)→ 0 as n→∞, which by Markov’ inequality implies

that

P(|Xn|< ε |Gn)> 1− E(|Xn| |Gn)

ε
→ 1

as n→ ∞. This leads to

P(|Xn|< ε) =P(|Xn|< ε∩Gn)+P(|Xn|< ε∩Gc
n)≥ P(|Xn|< ε∩Gn)

=P(|Xn|< ε |Gn)P(Gn)→ 1
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as n→ ∞.

Proof of Lemma 14

First, we have

U(β, π̂, Ŝ, Ŝc) =U(β,π∗,S∗,S∗c)+Q1 +Q2 +Q3,

where

Q1 =U(β, π̂, Ŝ, Ŝc)−U(β,π∗, Ŝ, Ŝc)

Q2 =U(β,π∗, Ŝ, Ŝc)−U(β,π∗,S∗, Ŝc)

Q3 =U(β,π∗,S∗, Ŝc)−U(β,π∗,S∗,S∗c).

We now show that Q1,Q2, and Q3 are op(1).

Consider Q1. We write

Q1 = Q11−Q12−Q13

Q11 =
1
n

n

∑
i=1

∫
τ

0
dN (1)

i (t; π̂, Ŝ, Ŝc)−dN (1)
i (t;π

∗, Ŝ, Ŝc)

Q12 =
1
n

n

∑
i=1

∫
τ

0

{
Ā(t;β, π̂, Ŝ, Ŝc)− Ā(t;β,π∗, Ŝ, Ŝc)

}
dN (0)

i (t; π̂, Ŝ, Ŝc)

Q13 =
1
n

n

∑
i=1

∫
τ

0
Ā(t;β,π∗, Ŝ, Ŝc)

{
dN (0)

i (t; π̂, Ŝ, Ŝc)−dN (0)
i (t;π

∗, Ŝ, Ŝc)
}
.

First, we note that dN (1)
i (t;π,S,Sc) is a sum of several terms, each term is a product

of a term that is bounded a.s. and an increment of a monotone function. Specifically, we
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have

Q11 =
1
n

n

∑
i=1

[
1

π̂(Zi)Ai{1− π̂(Zi)}1−Ai
− 1

π∗(Zi)Ai{1−π∗(Zi)}1−Ai

]∫
τ

0

Ai

Ŝc(t;Ai,Zi)
dNi(t)

+
1
n

n

∑
i=1

[
1

π̂(Zi)Ai{1− π̂(Zi)}1−Ai
− 1

π∗(Zi)Ai{1−π∗(Zi)}1−Ai

]∫
τ

0
AidŜ(t;Ai,Zi)

− 1
n

n

∑
i=1

Ai

{
1

π̂(Zi)
− 1

π∗(Zi)

}∫
τ

0
Ji(t;1, Ŝ, Ŝc)dŜ(t;1,Zi).

This allows us to make use of the following property: for any function f (t), and any

monotone function G(t) defined on [a,b], we have

∣∣∣∣∫ b

a
f (t)dG(t)

∣∣∣∣≤ sup
t∈[a,b]

| f (t)| · |G(b)−G(a)|. (C.22)

Since N(t) and Ŝ(t;a,z) are monotone in t, we apply (C.22) to each of the 3 terms in Q11
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above and have

|Q11|

≤1
n

n

∑
i=1

∣∣∣∣ 1
π̂(Zi)Ai{1− π̂(Zi)}1−Ai

− 1
π∗(Zi)Ai{1−π∗(Zi)}1−Ai

∣∣∣∣ · sup
t∈[0,τ]

∣∣∣∣∣ Ai

Ŝc(t;Ai,Zi)

∣∣∣∣∣ · |Ni(τ)−Ni(0)|

+
1
n

n

∑
i=1

∣∣∣∣ 1
π̂(Zi)Ai{1− π̂(Zi)}1−Ai

− 1
π∗(Zi)Ai{1−π∗(Zi)}1−Ai

∣∣∣∣ · |Ai| ·
∣∣∣Ŝ(τ;Ai,Zi)− Ŝ(0;Ai,Zi)

∣∣∣

+
1
n

n

∑
i=1
|Ai|
∣∣∣∣ 1
π̂(Zi)

− 1
π∗(Zi)

∣∣∣∣ · sup
t∈[0,τ]

∣∣∣Ji(t;1, Ŝ, Ŝc)
∣∣∣ · ∣∣∣Ŝ(τ;1,Zi)− Ŝ(0;1,Zi)

∣∣∣ .
≤1

n

n

∑
i=1

|π̂(Zi)−π∗(Zi)|
|{π̂(Zi)π∗(Zi)}Ai[{1− π̂(Zi)}{1−π∗(Zi)}]1−Ai|

· sup
t∈[0,τ]

∣∣∣∣∣ Ai

Ŝc(t;Ai,Zi)

∣∣∣∣∣ · |Ni(τ)−Ni(0)|

+
1
n

n

∑
i=1

|π̂(Zi)−π∗(Zi)|
|{π̂(Zi)π∗(Zi)}Ai[{1− π̂(Zi)}{1−π∗(Zi)}]1−Ai|

· |Ai| ·
∣∣∣Ŝ(τ;Ai,Zi)− Ŝ(0;Ai,Zi)

∣∣∣

+
1
n

n

∑
i=1
|Ai|
|π̂(Zi)−π∗(Zi)|
|π̂(Zi)π∗(Zi)|

· sup
t∈[0,τ]

∣∣∣Ji(t;1, Ŝ, Ŝc)
∣∣∣ · ∣∣∣Ŝ(τ;1,Zi)− Ŝ(0;1,Zi)

∣∣∣ .
Since Ŝ(t;a,z) and Ŝc(t;a,z) are bounded away from zero a.s., we can again apply (C.22) to

Ji(t;1, Ŝ, Ŝc) =
∫ t

0

dNci(u)+Yi(u)d log{Ŝc(u;1,Zi)}
Ŝ(u;1,Zi)Ŝc(u;1,Zi)

,

and have

sup
t∈[0,τ]

∣∣∣Ji(t;1, Ŝ, Ŝc)
∣∣∣≤ sup

t∈[0,τ]

{
sup

u∈[0,t]

∣∣∣∣ 1

Ŝ(u;1,Zi)Ŝc(u;1,Zi)

∣∣∣∣ · |Nci(t)−Nci(0)|

}

+ sup
t∈[0,τ]

{
sup

u∈[0,t]

∣∣∣∣ Yi(u)

Ŝ(u;1,Zi)Ŝc(u;1,Zi)

∣∣∣∣ · ∣∣∣log{Ŝc(t;1,Zi)}− log{Ŝc(0;1,Zi)}
∣∣∣}

≲ 1. (C.23)
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In addition, since π̂(z) and 1− π̂(z) are bounded away from zero a.s., we have

|Q11|≲
1
n

n

∑
i=1
|π̂(Zi)−π

∗(Zi)|.

As a reminder, E† denotes expectations taken with respect to a sample O† of n

observations, and E denotes expectations taken with respect to an independent data O

conditional on O†. O is used for constructing U , while O† is used to estimate (π̂, Ŝ, Ŝc).

Using this notation, we have

E(|Q11|)≲E† [E {|π̂(Z)−π
∗(Z)|}]≤ ∥π̂−π

∗∥= o(1),

where the last inequality follows from Jensen’s inequality, and the last equality follows from

Assumption 11. So we have Q11 = op(1) from Markov’s inequality.

Consider Q12. We again break dN (0)
i (t;π,S,Sc) into a sum of terms, each being a

product of a term that is bounded a.s. and an increment of a monotone function.

Q12 =
1
n

n

∑
i=1

∫
τ

0

{
Ā(t;β, π̂, Ŝ, Ŝc)− Ā(t;β,π∗, Ŝ, Ŝc)

}
· 1

π̂(Zi)Ai{1− π̂(Zi)}1−Ai Ŝc(t;Ai,Zi)
dNi(t)

+
1
n

n

∑
i=1

∫
τ

0

{
Ā(t;β, π̂, Ŝ, Ŝc)− Ā(t;β,π∗, Ŝ, Ŝc)

}
· 1

π̂(Zi)Ai{1− π̂(Zi)}1−Ai
dŜ(t;Ai,Zi)

− 1
n

n

∑
i=1

∫
τ

0

{
Ā(t;β, π̂, Ŝ, Ŝc)− Ā(t;β,π∗, Ŝ, Ŝc)

}
· ∑

a=0,1

{
1+

Aa
i (1−Ai)

1−a

π̂(Zi)a{1− π̂(Zi)}1−a Ji(t;a, Ŝ, Ŝc)

}
dŜ(t;a,Zi).

Applying (C.22) and similar arguments as the above, also recall that S (0)(t;β, π̂, Ŝ, Ŝc) and

S (0)(t;β,π∗, Ŝ, Ŝc) are bounded away from zero a.s. and S (l)(t;β, π̂, Ŝ, Ŝc) is bounded a.s.,
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we have

|Q12|≲ sup
t∈[0,τ]

∣∣∣Ā(t;β, π̂, Ŝ, Ŝc)− Ā(t;β,π∗, Ŝ, Ŝc)
∣∣∣

= sup
t∈[0,τ]

∣∣∣∣∣S (0)(t;β, π̂, Ŝ, Ŝc)S (1)(t;β,π∗, Ŝ, Ŝc)−S (1)(t;β, π̂, Ŝ, Ŝc)S (0)(t;β,π∗, Ŝ, Ŝc)

S (0)(t;β, π̂, Ŝ, Ŝc)S (0)(t;β,π∗, Ŝ, Ŝc)

∣∣∣∣∣
≲ sup

t∈[0,τ]

∣∣∣S (0)(t;β, π̂, Ŝ, Ŝc)S (1)(t;β,π∗, Ŝ, Ŝc)−S (1)(t;β, π̂, Ŝ, Ŝc)S (0)(t;β,π∗, Ŝ, Ŝc)
∣∣∣

≤ sup
t∈[0,τ]

∣∣∣S (0)(t;β, π̂, Ŝ, Ŝc){S (1)(t;β,π∗, Ŝ, Ŝc)−S (1)(t;β, π̂, Ŝ, Ŝc)}
∣∣∣

+ sup
t∈[0,τ]

∣∣∣S (1)(t;β, π̂, Ŝ, Ŝc){S (0)(t;β,π∗, Ŝ, Ŝc)−S (0)(t;β, π̂, Ŝ, Ŝc)}
∣∣∣

≲ ∑
l=0,1

sup
t∈[0,τ]

∣∣∣S (l)(t;β, π̂, Ŝ, Ŝc)−S (l)(t;β,π∗, Ŝ, Ŝc)
∣∣∣

≤ ∑
l=0,1
·1
n

n

∑
i=1

sup
t∈[0,τ]

∣∣∣Γ(l)
i (t;β, π̂, Ŝ, Ŝc)−Γ

(l)
i (t;β,π∗, Ŝ, Ŝc)

∣∣∣
≲ ∑

l=0,1
·1
n

n

∑
i=1

∣∣∣∣ 1
π̂(Zi)Ai{1− π̂(Zi)}1−Ai

− 1
π∗(Zi)Ai{1−π∗(Zi)}1−Ai

∣∣∣∣
+ ∑

l=0,1
·1
n

n

∑
i=1

∑
a=0,1

al
∣∣∣∣ 1
π̂(Zi)a{1− π̂(Zi)}1−a −

1
π∗(Zi)a{1−π∗(Zi)}1−a

∣∣∣∣ (C.24)

≲
1
n

n

∑
i=1
|π̂(Zi)−π

∗(Zi)|,

where (C.24) follows since Ŝc(t;Ai,Zi) is bounded away from zero a.s. and Ji(t;a, Ŝ, Ŝc) is

bounded a.s. following (C.23). Therefore, we again have E(|Q12|) = o(1) from Assump-

tion 11, so Q12 = op(1) by Markov’s inequality.

Q13 = op(1) can be shown using exactly the same arguments. We therefore have

Q1 = op(1).

Next, we show Q2 = op(1). First, we write

Q2 = Q21−Q22−Q23
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where

Q21 =
1
n

n

∑
i=1

∫
τ

0
dN (1)

i (t;π
∗, Ŝ, Ŝc)−dN (1)

i (t;π
∗,S∗, Ŝc)

Q22 =
1
n

n

∑
i=1

∫
τ

0

{
Ā(t;β,π∗, Ŝ, Ŝc)− Ā(t;β,π∗,S∗, Ŝc)

}
dN (0)

i (t;π
∗, Ŝ, Ŝc)

Q23 =
1
n

n

∑
i=1

∫
τ

0
Ā(t;β,π∗,S∗, Ŝc)

{
dN (0)

i (t;π
∗, Ŝ, Ŝc)−dN (0)

i (t;π
∗,S∗, Ŝc)

}
.

Consider Q21. We have

Q21 = Q211−Q212−Q213,

where

Q211 =
1
n

n

∑
i=1

Ai{Ŝ(τ;Ai,Zi)−S∗(τ;Ai,Zi)}
π∗(Zi)Ai{1−π∗(Zi)}1−Ai

+
1
n

n

∑
i=1

∑
a=0,1

a{Ŝ(τ;a,Zi)−S∗(τ;a,Zi)},

Q212 =
1
n

n

∑
i=1

∑
a=0,1

aAa
i (1−Ai)

1−a

π∗(Zi)a{1−π∗(Zi)}1−a

∫
τ

0
Ji(t;a, Ŝ, Ŝc){dŜ(t;a,Zi)−dS∗(t;a,Zi)},

Q213 =
1
n

n

∑
i=1

∑
a=0,1

aAa
i (1−Ai)

1−a

π∗(Zi)a{1−π∗(Zi)}1−a

×
∫

τ

0

[∫ t

0

{
1

Ŝ(u;a,Zi)
− 1

S∗(u;a,Zi)

}
dMci(u;a, Ŝc)

Ŝc(u;a,Zi)

]
dS∗(t;a,Zi).

For Q211, we can easily see that

|Q211|≲
1
n

n

∑
i=1

∑
a=0,1

|{Ŝ(τ;a,Zi)−S∗(τ;a,Zi)}|≲
1
n

n

∑
i=1

sup
t∈[0,τ],a∈{0,1}

∣∣∣{Ŝ(t;a,Zi)−S∗(t;a,Zi)}
∣∣∣ ,

so E(|Q211|) = o(1) by Assumption 11 and Q211 = op(1) by Markov’s inequality.

Term Q212 involves a difference in increments dŜ(t;a,Zi)−dS∗(t;a,Zi). Applying
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integration by parts to the integral term we have

∫
τ

0
Ji(t;a, Ŝ, Ŝc){dŜ(t;a,Zi)−dS∗(t;a,Zi)}

=
[
Ji(t;a, Ŝ, Ŝc){Ŝ(t;a,Zi)−S∗(t;a,Zi)}

]∣∣∣∣τ
0
−

∫
τ

0

{Ŝ(t;a,Zi)−S∗(t;a,Zi)}dMci(t;a, Ŝc)

Ŝ(t;a,Zi)Ŝc(t;a,Zi)
,

(C.25)

So

Q212 =
1
n

n

∑
i=1

∑
a=0,1

aAa
i (1−Ai)

1−a

π∗(Zi)a{1−π∗(Zi)}1−a

[
Ji(t;a, Ŝ, Ŝc){Ŝ(t;a,Zi)−S∗(t;a,Zi)}

]∣∣∣∣τ
0

− 1
n

n

∑
i=1

∑
a=0,1

aAa
i (1−Ai)

1−a

π∗(Zi)a{1−π∗(Zi)}1−a

∫
τ

0

{Ŝ(t;a,Zi)−S∗(t;a,Zi)}dMci(t;a, Ŝc)

Ŝ(t;a,Zi)Ŝc(t;a,Zi)
.

Note that dMci(t;a, Ŝc) = dNci(t)−Yi(t)dΛ̂c(t;a,Zi). Since both Nci(t) and Λ̂c(t;a,Zi) are

monotone functions, we may again apply (C.22) on the second term above. The nuisance

functions are bounded away from zero a.s., so we have

|Q212|≲
1
n

n

∑
i=1

sup
t∈[0,τ],a∈{0,1}

∣∣∣{Ŝ(t;a,Zi)−S∗(t;a,Zi)}
∣∣∣ ,

so E(|Q212|) = o(1) from Assumption 11 and Q212 = op(1) by Markov’s inequality.

By applying (C.22) twice on each of the double integrals in Q213, we can show

Q213 = op(1) in exactly the same way.

Same approach used for Q21 also gives Q22 = op(1) and Q23 = op(1). We hence

have Q2 = op(1).

Q3 = op(1) can again be shown using the same techniques we use for Q2, so we

omit the details.

Lastly, we show that U(β,π∗,S∗,S∗c) = µ(β,π∗,S∗,S∗c)+op(1) for β ∈ B .

From the definition of the AIPW estimating functions D1i(t;βo,Λo
0,π,S,Sc) and
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D2i(β
o,Λo

0,π,S,Sc), we have

dN (0)
i (t;π,S,Sc) = D1i(t;β

o,Λo
0,π,S,Sc)+Γ

(0)
i (t;β

o,π,S,Sc)dΛ
o
0(t),∫

τ

0
dN (1)

i (t;π,S,Sc) = D2i(β
o,Λo

0,π,S,Sc)+
∫

τ

0
Γ
(1)
i (t;β

o,π,S,Sc)dΛ
o
0(t).

For β ∈ B , we apply this to U(β,π∗,S∗,S∗c) and have

U(β,π∗,S∗,S∗c)

=
1
n

n

∑
i=1

∫
τ

0
dN (1)

i (t;π
∗,S∗,S∗c)− Ā(t;β,π∗,S∗,S∗c)dN (0)

i (t;π
∗,S∗,S∗c)

=
1
n

n

∑
i=1

[
D2i(β

o,Λo
0,π
∗,S∗,S∗c)+

∫
τ

0
Γ
(1)
i (t;β

o,π∗,S∗,S∗c)dΛ
o
0(t)

−
∫

τ

0
Ā(t;β,π∗,S∗,S∗c){Γ

(0)
i (t;β

o,π∗,S∗,S∗c)dΛ
o
0(t)+D1i(t;β

o,Λo
0,π
∗,S∗,S∗c)}

]
=
∫

τ

0

1
n

n

∑
i=1
{Γ(1)

i (t;β
o,π∗,S∗,S∗c)− Ā(t;β,π∗,S∗,S∗c)Γ

(0)
i (t;β

o,π∗,S∗,S∗c)}dΛ
o
0(t)

+
1
n

n

∑
i=1

D2i(β
o,Λo

0,π
∗,S∗,S∗c)

− 1
n

n

∑
i=1

∫
τ

0
Ā(t;β,π∗,S∗,S∗c)D1i(t;β

o,Λo
0,π
∗,S∗,S∗c)

=
∫

τ

0
{S (1)(t;β

o,π∗,S∗,S∗c)− Ā(t;β,π∗,S∗,S∗c)S (0)(t;β
o,π∗,S∗,S∗c)}dΛ

o
0(t)

+
1
n

n

∑
i=1

D2i(β
o,Λo

0,π
∗,S∗,S∗c)

− 1
n

n

∑
i=1

∫
τ

0
Ā(t;β,π∗,S∗,S∗c)D1i(t;β

o,Λo
0,π
∗,S∗,S∗c)

=
∫

τ

0

{
Ā(t;β

o,π∗,S∗,S∗c)− Ā(t;β,π∗,S∗,S∗c)
}

S (0)(t;β
o,π∗,S∗,S∗c)dΛ

o
0(t)

+
1
n

n

∑
i=1

D2i(β
o,Λo

0,π
∗,S∗,S∗c)

− 1
n

n

∑
i=1

∫
τ

0
Ā(t;β,π∗,S∗,S∗c)D1i(t;β

o,Λo
0,π
∗,S∗,S∗c).
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Next, for each of Ā and S (0), we add and subtract its limits and have

U(β,π∗,S∗,S∗c)

= µ(βo,π∗,S∗,S∗c)

+
∫

τ

0
{Ā(t;β

o,π∗,S∗,S∗c)− Ā(t;β,π∗,S∗,S∗c)− ᾱ(t;β
o,π∗,S∗,S∗c)+ ᾱ(t;β,π∗,S∗,S∗c)}

×S (0)(t;β
o,π∗,S∗,S∗c)dΛ

o
0(t) (C.26)

+
∫

τ

0
{ᾱ(t;β

o,π∗,S∗,S∗c)− ᾱ(t;β,π∗,S∗,S∗c)}

×{S (0)(t;β
o,π∗,S∗,S∗c)− s (0)(t;β

o,π∗,S∗,S∗c)}dΛ
o
0(t) (C.27)

+
1
n

n

∑
i=1

D2i(β
o,Λo

0,π
∗,S∗,S∗c) (C.28)

− 1
n

n

∑
i=1

∫
τ

0
ᾱ(t;β,π∗,S∗,S∗c)D1i(t;β

o,Λo
0,π
∗,S∗,S∗c) (C.29)

+
1
n

n

∑
i=1

∫
τ

0
{ᾱ(t;β,π∗,S∗,S∗c)− Ā(t;β,π∗,S∗,S∗c)}D1i(t;β

o,Λo
0,π
∗,S∗,S∗c). (C.30)

For (C.26), since Λo
0(t) is an increasing function and S (0)(t;βo,π∗,S∗,S∗c) is bounded a.s.,

we can apply (C.22) to it and have

∣∣∣∣∫ τ

0
{Ā(t;β

o,π∗,S∗,S∗c)− Ā(t;β,π∗,S∗,S∗c)− ᾱ(t;β
o,π∗,S∗,S∗c)+ ᾱ(t;β,π∗,S∗,S∗c)}

×S (0)(t;β
o,π∗,S∗,S∗c)dΛ

o
0(t)
∣∣∣∣

≲ sup
t∈[0,τ]

∣∣Ā(t;β
o,π∗,S∗,S∗c)− Ā(t;β,π∗,S∗,S∗c)− ᾱ(t;β

o,π∗,S∗,S∗c)+ ᾱ(t;β,π∗,S∗,S∗c)
∣∣ ,

which is op(1) from Assumption 21. Similarly, (C.27) is op(1).

Next, we note that the increments in D1i(t;βo,Λo
0,π
∗,S∗,S∗c) are dNi(t), dS∗(t;Ai,Zi),

dS∗(t;a,Zi) and dΛ0(t), all of which are increments of monotone functions. So similar to

(C.26) and (C.27), we can apply (C.22), the strict positivity Assumptions 9 and Assump-

tion 21 to show that (C.30) is op(1).

Since we have S∗ = So or (π∗,S∗c) = (πo,So
c), Theorem 10 gives that both (C.28)
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and (C.29) are sums of i.i.d. mean zero terms. The strict positivity Assumption 9 ensures

that these i.i.d. mean zero terms are also bounded, hence having bounded variance. So

(C.28) = op(1) and (C.29) = op(1) by the weak law of large numbers.

The second part of the Lemma,

∂

∂β
U(β, π̂, Ŝ, Ŝc)

p→−ν(β,π∗,S∗,S∗c),

can be shown using exactly the same arguments as how we proved U(β, π̂, Ŝ, Ŝc)
p→

µ(β,π∗,S∗,S∗c) above, which completes the proof.

Proof of Lemma 15

First, write

√
nU(βo, π̂, Ŝ, Ŝc) =

√
nU(βo,πo,So,So

c)+Q4 +Q5 +Q6,

where

Q4 =
√

n{U(βo, π̂, Ŝ, Ŝc)−U(βo,πo, Ŝ,So
c)}−

√
n{U(βo, π̂,So, Ŝc)−U(βo,πoSo,So

c)},

Q5 =
√

n{U(βo, π̂,So, Ŝc)−U(βo,πo,So,So
c)},

Q6 =
√

n{U(βo,πo, Ŝ,So
c)−U(βo,πo,So,So

c)}.

The structure of the proof goes as follows: we first show using the rate condition

Assumption 12 among other assumptions that Q4, which is a difference in differences, is

op(1). Next, we show that Q5 and Q6 are op(1), which uses, among other assumptions, the

independence between in-fold and out-of-fold data induced by cross-fitting. Finally, we

show that
√

nU(βo,πo,So,So
c) is asymptotically equivalent to a sum of i.i.d. terms.
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We first show that Q4 = op(1). For any fixed nuisance function S, we have

√
n{U1(β

o, π̂,S, Ŝc)−U1(β
o,πo,S,So

c)}

=
1√
n

n

∑
i=1

∫
τ

0
dN (1)

i (t; π̂,S, Ŝc)−dN (1)
i (t;π

o,S,So
c)

− 1√
n

n

∑
i=1

∫
τ

0
Ā(t;β

o,πo,S,So
c){dN (0)

i (t; π̂,S, Ŝc)−dN (0)
i (t;π

o,S,So
c)}

− 1√
n

n

∑
i=1

∫
τ

0
{Ā(t;β

o, π̂,S, Ŝc)− Ā(t;β
o,πo,S,So

c)}dN (0)
i (t; π̂,S, Ŝc).

So we can write

Q4 = Q41−Q42−Q43−Q44,

where

Q41 =
1√
n

n

∑
i=1

∫
τ

0
dN (1)

i (t; π̂, Ŝ, Ŝc)−dN (1)
i (t;π

o, Ŝ,So
c)−dN (1)

i (t; π̂,So, Ŝc)+dN (1)
i (t;π

o,So,So
c)

− 1√
n

n

∑
i=1

∫
τ

0
Ā(t;β

o,πo,So,So
c)

×{dN (0)
i (t; π̂, Ŝ, Ŝc)−dN (0)

i (t;π
o, Ŝ,So

c)−dN (0)
i (t; π̂,So, Ŝc)+dN (0)

i (t;π
o,So,So

c)}

Q42 =
1√
n

n

∑
i=1

∫
τ

0
{Ā(t;β

o, π̂,So, Ŝc)− Ā(t;β
o,πo,So,So

c)}{dN (0)
i (t; π̂, Ŝ, Ŝc)−dN (0)

i (t; π̂,So, Ŝc)}

Q43 =
1√
n

n

∑
i=1

∫
τ

0
{Ā(t;β

o,πo, Ŝ,So
c)− Ā(t;β

o,πo,So,So
c)}{dN (0)

i (t; π̂, Ŝ, Ŝc)−dN (0)
i (t;π

o, Ŝ,So
c)}

Q44 =
1√
n

n

∑
i=1

∫
τ

0
dN (0)

i (t; π̂, Ŝ, Ŝc)

×{Ā(t;β
o, π̂, Ŝ, Ŝc)− Ā(t;β

o,πo, Ŝ,So
c)− Ā(t;β

o, π̂,So, Ŝc)+ Ā(t;β
o,πo,So,So

c)}.
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Consider Q41, which can be written as Q41 =−Q411 +Q412−Q413−Q414, where

Q411 =
1√
n

n

∑
i=1

∑
a=0,1

Aa
i (1−Ai)

1−a

πo(Zi)a{1−πo(Zi)}1−a

∫
τ

0

[
{a− Ā(t;β

o,πo,So,So
c)}

×
∫ t

0

{
dŜ(t;a,Zi)

Ŝ(u;a,Zi)
− dSo(t;a,Zi)

So(u;a,Zi)

}{
dMci(u;a, Ŝc)

Ŝc(u;a,Zi)
− dMci(u;a,So

c)

So
c(u;a,Zi)

}]
(C.31)

Q412 =
1√
n

n

∑
i=1
{Ai− Ā(τ;β

o,πo,So,So
c)}
{

1
π̂(Zi)Ai{1− π̂(Zi)}1−Ai

− 1
πo(Zi)Ai{1−πo(Zi)}1−Ai

}

×
{

Ŝ(τ;Ai,Zi)−So(τ;Ai,Zi)
}

Q413 =
1√
n

n

∑
i=1

∑
a=0,1

Aa
i (1−Ai)

1−a
{

1
π̂(Zi)a{1− π̂(Zi)}1−a −

1
πo(Zi)a{1−πo(Zi)}1−a

}

×
∫

τ

0
dSo(t;a,Zi){a− Ā(t;β

o,πo,So,So
c)}

∫ t

0

{
1

Ŝ(u;a,Zi)
− 1

So(u;a,Zi)

}
dMci(u;a, Ŝc)

Ŝc(u;a,Zi)

Q414 =
1√
n

n

∑
i=1

∑
a=0,1

Aa
i (1−Ai)

1−a
{

1
π̂(Zi)a{1− π̂(Zi)}1−a −

1
πo(Zi)a{1−πo(Zi)}1−a

}
×

∫
τ

0
{dŜ(t;a,Zi)−dSo(t;a,Zi)}{a− Ā(t;β

o,πo,So,So
c)}Ji(t;a, Ŝ, Ŝc).

Recall that D†(Ŝ, Ŝc;So,So
c) defined in Assumption 12 is made up of two terms,

which we will denote as D†(Ŝ, Ŝc;So,So
c) = D†

1 +D†
2 , where

D†
1 =E†

{
E

[
max

a∈{0,1}

∣∣∣∣∣
∫

τ

0
{a− Ā(t;β

o,πo,So,So
c)}

×
∫ t

0

{
dŜ(t;a,Z)

Ŝ(u;a,Z)
− dSo(t;a,Z)

So(u;a,Z)

}{
dMc(u;a,Z, Ŝc)

Ŝc(u;a,Z)
− dMc(u;a,Z,So

c)

So
c(u;a,Z)

}∣∣∣∣∣
]}

D†
2 =E†

{
E
[

max
a,l∈{0,1}

∣∣∣∣∫ τ

0
{Ā(t;β

o,πo,So, Ŝc)− Ā(t;β
o,πo,So,So

c)}

× J(t;a,Z,So, Ŝc)
l{dŜ(t;a,Z)−dSo(t;a,Z)}

∣∣∣∣]}.
For Q411, we first notice that by the strict positivity Assumption 9, Aa

i (1 −
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Ai)
1−a/{πo(Zi)

a{1−πo(Zi)}1−a} is bounded a.s.. The expectation of the absolute value of

the double integral in Q411 can be bounded directly using D†
1 , which leads to

E(|Q411|)≲
√

nD†
1 = o(1),

where the last equality follows from rate condition Assumption 12.

Integral remainders D†
1 is specific to our case because both nuisance functions

S(t;a,z) and Sc(t;a,z) are time-dependent, which can lead to a product between the dif-

ferences Ŝc−Sc and differences of increments dŜ−dSo, like in (C.31). To the best of our

knowledge, remainder terms like this can not be sufficiently controlled using existing tools,

which requires us to make additional assumptions, such as D†(Ŝ, Ŝc;So,So
c) = o(n−1/2) in

the rate condition Assumption 12. More discussion and references on this can be found in

Section 4.6

For Q412, recall that Ai− Ā(τ;βo,πo,So,So
c) is bounded a.s. and π̂(Zi), πo(Zi), 1−

π̂(Zi) and 1−πo(Zi) are bounded away from zero a.s., so we have

|Q412| ≤
1√
n

n

∑
i=1
|Ai− Ā(τ;β

o,πo,So,So
c)| ·

|π̂(Zi)−πo(Zi)| ·
∣∣∣Ŝ(τ;Ai,Zi)−So(τ;Ai,Zi)

∣∣∣
|π̂(Zi)Ai{1− π̂(Zi)}1−Aiπo(Zi)Ai{1−πo(Zi)}1−Ai|

≲
1√
n

n

∑
i=1
|π̂(Zi)−π

o(Zi)| · sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Zi)−So(t;a,Zi)
∣∣∣ .

Therefore

E(|Q412|)≲
√

nE†

{
E

[
|π̂(Z)−π

o(Z)| · sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Z)−So(t;a,Z)
∣∣∣]}

≤
√

n∥π̂−π
o∥ ·
∥∥∥Ŝ−So

∥∥∥ (C.32)

=o(1), (C.33)

where (C.32) follows from the Cauchy-Schwartz inequality |E(AB)|2 ≤ E(A2)E(B2), while
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(C.33) uses the rate condition Assumption 12.

Q413 can be bounded similarly with the help of (C.22). First we note that So(t;a,Zi) is

a monotone function by assumption. Recall that dMci(u;a, Ŝc)= dNci(u)−Yi(u)dΛ̂c(u;a,Zi)

is also a sum of two terms, each being the product of a term bounded a.s. and an increment

of a monotone function. We therefore apply (C.22) twice to each of the double integral in

Q413 and have

|Q413|≲
1√
n

n

∑
i=1

∑
a=0,1

|π̂(Zi)−πo(Zi)|
|π̂(Zi)a{1− π̂(Zi)}1−aπo(Zi)a{1−πo(Zi)}1−a|

× sup
t∈[0,τ]

∣∣∣∣∣{a− Ā(t;β
o,πo,So,So

c)}
∫ t

0

{
1

Ŝ(u;a,Zi)
− 1

So(u;a,Zi)

}
dMci(u;a, Ŝc)

Ŝc(u;a,Zi)

∣∣∣∣∣
≲

1√
n

n

∑
i=1
|π̂(Zi)−π

o(Zi)|

× sup
t∈[0,τ],a∈{0,1}

{
sup

u∈[0,t]

∣∣∣∣∣ Ŝ(u;a,Zi)−So(u;a,Zi)

Ŝ(u;a,Zi)So(u;a,Zi)Ŝc(u;a,Zi)

∣∣∣∣∣
}

≲
1√
n

n

∑
i=1
|π̂(Zi)−π

o(Zi)| · sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Zi)−So(t;a,Zi)
∣∣∣ .

So we again have

E(|Q413|)≲
√

nE†

{
E

[
|π̂(Z)−π

o(Z)| · sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Z)−So(t;a,Z)
∣∣∣]}

≤
√

n∥π̂−π
o∥ ·
∥∥∥Ŝ−So

∥∥∥
=o(1)

from the Cauchy-Schwartz inequality and the rate condition Assumption 12.

The integral in Q414 involves a difference in increments dŜ(t;a,Zi)−dSo(t;a,Zi),
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so we apply integration by parts and have

∫
τ

0
{dŜ(t;a,Zi)−dSo(t;a,Zi)}{a− Ā(t;β

o,πo,So,So
c)}Ji(t;a, Ŝ, Ŝc)

=
[
{Ŝ(t;a,Zi)−So(t;a,Zi)}{a− Ā(t;β

o,πo,So,So
c)}Ji(t;a, Ŝ, Ŝc)

]∣∣∣∣τ
0

−
∫

τ

0
{Ŝ(t;a,Zi)−So(t;a,Zi)}

∂

∂t

[
{a− Ā(t;β

o,πo,So,So
c)}Ji(t;a, Ŝ, Ŝc)

]
={Ŝ(τ;a,Zi)−So(τ;a,Zi)}{a− Ā(τ;β

o,πo,So,So
c)}Ji(τ;a, Ŝ, Ŝc)

−
∫

τ

0
{Ŝ(t;a,Zi)−So(t;a,Zi)}{a− Ā(t;β

o,πo,So,So
c)} ·

dMci(t;a, Ŝc)

Ŝ(t;a,Zi)Ŝc(t;a,Zi)

+
∫

τ

0
{Ŝ(t;a,Zi)−So(t;a,Zi)}

∂

∂t

[
S (1)(t;βo,πo,So,So

c)

S (0)(t;βo,πo,So,So
c)

]
· Ji(t;a, Ŝ, Ŝc)

={Ŝ(τ;a,Zi)−So(τ;a,Zi)}{a− Ā(τ;β
o,πo,So,So

c)}Ji(τ;a, Ŝ, Ŝc)∫
τ

0
{Ŝ(t;a,Zi)−So(t;a,Zi)}{a− Ā(t;β

o,πo,So,So
c)} ·

dMci(t;a, Ŝc)

Ŝ(t;a,Zi)Ŝc(t;a,Zi)

+
∫

τ

0
{Ŝ(t;a,Zi)−So(t;a,Zi)}Ji(t;a, Ŝ, Ŝc)

1
S (0)(t;βo,πo,So,So

c)
· 1

n

n

∑
j=1

dΓ
(1)
j (t;β

o,πo,So,So
c)

−
∫

τ

0
{Ŝ(t;a,Zi)−So(t;a,Zi)}Ji(t;a, Ŝ, Ŝc)

S (1)(t;βo,πo,So,So
c)

S (0)(t;βo,πo,So,So
c)

2
· 1

n

n

∑
j=1

dΓ
(0)
j (t;β

o,πo,So,So
c),

(C.34)

where the last two equalities follow from the product rule. For l = 0,1, we again apply the
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product rule and have

dΓ
(l)
j (t;β

o,πo,So,So
c) (C.35)

=
Al

je
βoA j

πo(Z j)A j{1−πo(Z j)}1−A jSo
c(t;A j,Z j)

dYj(t)

−
Al

jYj(t)eβoA j

πo(Z j)A j{1−πo(Z j)}1−A jSo
c(t;A j,Z j)2

dSo
c(t;A j,Z j)

−
Al

je
βoA j

πo(Z j)A j{1−πo(Z j)}1−A j
dSo(t;A j,Z j)

+ ∑
a=0,1

al

{
1+

Aa
j(1−A j)

1−a

πo(Z j)a{1−πo(Z j)}1−a J j(t;a,So,So
c)

}
eβoadSo(t;a,Z j)

+ ∑
a=0,1

al Aa
j(1−A j)

1−a

πo(Z j)a{1−πo(Z j)}1−a
So(t;a,Z j)eβoa

So(t;a,Z j)So
c(t;a,Z j)

dMc j(u;a,So
c).

Since dMc j(u;a,So
c) = dNc j(u) − Yj(u)dΛo

c(u;a,Z j), we can now see that

dΓ
(l)
j (t;βo,πo,So,So

c) is once again a sum of terms, each being a product between a

term that is bounded a.s. and an increment of a monotone function. Therefore, applying

(C.22), we have

∣∣∣∣∫ τ

0
{dŜ(t;a,Zi)−dSo(t;a,Zi)}{a− Ā(t;β

o,πo,So,So
c)}Ji(t;a, Ŝ, Ŝc)

∣∣∣∣
≲|Ŝ(τ;a,Zi)−So(τ;a,Zi)|

+ sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Zi)−So(t;a,Zi)
∣∣∣

+
1
n

n

∑
j=1

sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Zi)−So(t;a,Zi)
∣∣∣

+
1
n

n

∑
j=1

sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Zi)−So(t;a,Zi)
∣∣∣

≲ sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Zi)−So(t;a,Zi)
∣∣∣ .
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So

|Q414|≲
1√
n

n

∑
i=1
|π̂(Zi)−π

o(Zi)| · sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Zi)−So(t;a,Zi)
∣∣∣ ,

and we again have

E(|Q414|)≲
√

nE†

{
E

[
|π̂(Z)−π

o(Z)| · sup
t∈[0,τ],a∈{0,1}

∣∣∣Ŝ(t;a,Z)−So(t;a,Z)
∣∣∣]}

≤
√

n∥π̂−π
o∥ ·
∥∥∥Ŝ−So

∥∥∥
=o(1),

from the Cauchy-Schwartz inequality and the rate condition Assumption 12.

Therefore, we have

E(|Q41|)≤ E(|Q411|)+E(|Q412|)+E(|Q413|)+E(|Q414|)≲ o(1),

so Q41 = op(1) by Markov’s inequality.

Next, we bound Q42, which involves the use of D†
2 . First, we let Q42 = Q421 +Q422,

where

Q421 =
1√
n

n

∑
i=1

∫
τ

0
{Ā(t;β

o, π̂,So, Ŝc)− Ā(t;β
o,πo,So, Ŝc)}

×{dN (0)
i (t; π̂, Ŝ, Ŝc)−dN (0)

i (t; π̂,So, Ŝc)}

Q422 =
1√
n

n

∑
i=1

∫
τ

0
{Ā(t;β

o,πo,So, Ŝc)− Ā(t;β
o,πo,So,So

c)}

×{dN (0)
i (t; π̂, Ŝ, Ŝc)−dN (0)

i (t; π̂,So, Ŝc)}.
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Note that like how we bounded |Q12| earlier, we also have

Ā(t;β
o, π̂,So, Ŝc)− Ā(t;β

o,πo,So, Ŝc)

=
S (1)(t;βo, π̂,So, Ŝc)S (0)(t;βo,πo,So, Ŝc)−S (1)(t;βo,πo,So, Ŝc)S (0)(t;βo, π̂,So, Ŝc)

S (0)(t;βo, π̂,So, Ŝc)S (0)(t;βo,πo,So, Ŝc)

=
{S (1)(t;βo, π̂,So, Ŝc)−S (1)(t;βo,πo,So, Ŝc)}S (0)(t;βo,πo,So, Ŝc)

S (0)(t;βo, π̂,So, Ŝc)S (0)(t;βo,πo,So, Ŝc)

− S (1)(t;βo,πo,So, Ŝc){S (0)(t;βo, π̂,So, Ŝc)−S (0)(t;βo,πo,So, Ŝc)}
S (0)(t;βo, π̂,So, Ŝc)S (0)(t;βo,πo,So, Ŝc)

=
S (0)(t;βo,πo,So, Ŝc)

S (0)(t;βo, π̂,So, Ŝc)S (0)(t;βo,πo,So, Ŝc)
· 1

n

n

∑
j=1
{Γ(1)

j (t;β
o, π̂,So, Ŝc)−Γ

(1)
j (t;β

o,πo,So, Ŝc)}

− S (1)(t;βo,πo,So, Ŝc)

S (0)(t;βo, π̂,So, Ŝc)S (0)(t;βo,πo,So, Ŝc)
· 1

n

n

∑
j=1
{Γ(0)

j (t;β
o, π̂,So, Ŝc)−Γ

(0)
j (t;β

o,πo,So, Ŝc)}

=
1
n

n

∑
j=1

C j(t){π̂(Z j)−π
o(Z j)},

where C j(t) are some functions bounded a.s.. Similarly, we have

{Ā(t;β
o,πo,So, Ŝc)− Ā(t;β

o,πo,So,So
c)}=

1
n

n

∑
j=1

C′j(t){Ŝc(t;a,Zi)−So
c(t;a,Zi)},(C.36)

where C′j(t) are some other functions bounded a.s..

Next, let dN (0)
i (t; π̂, Ŝ, Ŝc)−dN (0)

i (t; π̂,So, Ŝc) = K1i +K2i, where

K1i =
dŜ(t;Ai,Zi)−dSo(t;Ai,Zi)

π̂(Zi)Ai{1− π̂(Zi)}1−Ai

− ∑
a=0,1

{
1+

Aa
i (1−Ai)

1−a

π̂(Zi)a{1− π̂(Zi)}1−a Ji(t;a,So, Ŝc)

}
{dŜ(t;a,Zi)−dSo(t;a,Zi)}

K2i =− ∑
a=0,1

Aa
i (1−Ai)

1−a

π̂(Zi)a{1− π̂(Zi)}1−a

∫ t

0

{
1

Ŝ(u;a,Zi)
− 1

So(u;a,Zi)

}
dMci(u;a,Zi)

Ŝc(u;a,Zi)
·dŜ(t;a,Zi).
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We now have Q421 = Q4211 +Q4212, where

Q4211 =
1

n3/2

n

∑
i=1

n

∑
j=1
{π̂(Z j)−π

o(Z j)}
∫

τ

0
C j(t)K1i

Q4212 =
1

n3/2

n

∑
i=1

n

∑
j=1
{π̂(Z j)−π

o(Z j)}
∫

τ

0
C j(t)K2i.

For Q4212, we can apply (C.22), the rate Condition Assumption 12 and the boundedness of

appropriate terms to show that

E(|Q4212|)≲
√

n∥π̂−π
o∥ ·
∥∥∥Ŝ−So

∥∥∥= o(1).

∫
τ

0 C j(t)K1i in Q4211 involves stochastic differences dŜ(t;a,Zi)−dSo(t;a,Zi), so like

in (C.25) and (C.34) we first apply integration by parts to turn dŜ−dSo into Ŝ−So. Like

(C.35), the dC j(t) term we have as a result of integration by parts can again be shown to be a

sum of terms, each being a product between a term that is bounded a.s. and an increment of

a monotone function. This allows us to apply (C.22), the rate Condition Assumption 12 and

the boundedness of appropriate terms, which leads to E(|Q4211|)≲
√

n∥π̂−πo∥·
∥∥∥Ŝ−So

∥∥∥=
o(1). We therefore have E(|Q421|) = o(1) and Q421 = op(1) by Markov’s inequality.

For term Q422, we make use of (C.36) and write Q422 = Q4221 +Q4222, where

Q4221 =
1

n3/2

n

∑
i=1

n

∑
j=1

∫
τ

0
C′j(t){Ŝc(t;a,Zi)−So

c(t;a,Zi)}K1i,

Q4222 =
1

n3/2

n

∑
i=1

n

∑
j=1

∫
τ

0
C′j(t){Ŝc(t;a,Zi)−So

c(t;a,Zi)}K2i.

By again applying (C.22), the rate condition Assumption 12 and the boundedness of appro-

priate terms to Q4222, we have

E(|Q4222|)≲
√

n
∥∥∥Ŝc−So

c

∥∥∥ ·∥∥∥Ŝ−So
∥∥∥= o(1).

E(|Q4221|) involves a product between dŜ(t;a,Zi)− dSo(t;a,Zi) and Ŝc(t;a,Zi)−
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So
c(t;a,Zi), which can not be bounded using any existing tools we have. Therefore, we

directly bound

Q4221 =
1√
n

n

∑
i=1

∫
τ

0
{Ā(t;β

o,πo,So, Ŝc)− Ā(t;β
o,πo,So,So

c)}K1i

using D†
2 in Assumption 12, which gives

E(|Q4221|)≲
√

nD†
2 = o(1).

Therefore, E(|Q422|) = o(1) from rate condition Assumption 12.

Combining our results, we have

E(|Q42|)≤ E(|Q421|)+E(|Q422|) = o(1).

Using the same techniques we used for Q41 and Q42 above, with the rate condition

Assumption 12 and without using D†, we can show that E(|Q43|) = o(1) and E(|Q44|) =

o(1).

Hence we conclude that E(|Q4|) ≤ E(|Q41|)+E(|Q42|)+E(|Q43|)+E(|Q44|) =

o(1). Then by Markov’s inequality, Q4 = op(1).

Next, we show that Q5 = op(1).

Using the definition of D1i(β,Λ0,π,S,Sc),D2i(β,Λ0,π,S,Sc) defined in Supplemen-

tary Material C.1, it can be verified that

U(βo,π,S,Sc) =
1
n

n

∑
i=1

[
D2i(β

o,Λo
0,π,S,Sc)−

∫
τ

0
Ā(t;β

o,π,S,Sc)D1i(t;β
o,Λo

0,π,S,Sc)

]
.(C.37)
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So we have Q5 = Q51−Q52−Q53−Q54, where

Q51 =
1√
n

n

∑
i=1
{D2i(β

o,Λo
0, π̂,S

o, Ŝc)−D2i(β
o,Λo

0,π
o,So,So

c)}

Q52 =
1√
n

n

∑
i=1

∫
τ

0
ᾱ(t;β

o, π̂,So, Ŝc){D1i(t;β
o,Λo

0, π̂,S
o, Ŝc)−D1i(t;β

o,Λo
0,π

o,So,So
c)}

Q53 =
1√
n

n

∑
i=1

∫
τ

0
{Ā(t;β

o, π̂,So, Ŝc)− ᾱ(t;β
o, π̂,So, Ŝc)}

×{D1i(t;β
o,Λo

0, π̂,S
o, Ŝc)−D1i(t;β

o,Λo
0,π

o,So,So
c)}

Q54 =
∫

τ

0
{Ā(t;β

o, π̂,So, Ŝc)− Ā(t;β
o,πo,So,So

c)} ·
1√
n

n

∑
i=1

D1i(t;β
o,Λo

0,π
o,So,So

c).

First, consider Q51. By the law of total variance, we have

Var(Q51) = Var{E(Q51|O†)}+E{Var(Q51|O†)}.

We note from Theorem 10 that E{D2i(β
o,Λo

0, π̂,S
o, Ŝc)−D2i(β

o,Λo
0,π

o,So,So
c)|O†}= 0 for

each i, where O† is the sample independent from O that is used for estimating the nuisance

functions, so E(Q51|O†) = 0. Moreover, when conditional on O†, Q51 is a sample average

of mean-zero i.i.d terms, so we have

Var(Q51|O†) =
n
n

E
[
{D2(β

o,Λo
0, π̂,S

o, Ŝc)−D2(β
o,Λo

0,π
o,So,So

c)}2|O†
]
.
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Expand D2(β
o,Λo

0, π̂,S
o, Ŝc)−D2(β

o,Λo
0,π

o,So,So
c), we have

D2(β
o,Λo

0, π̂,S
o, Ŝc)−D2(β

o,Λo
0,π

o,So,So
c) (C.38)

=−
∫

τ

0

A{π̂(Z)−πo(Z)}
π̂(Z)πo(Z)

· {dSo(t;A,Z)+So(t;A,Z)eβoAdΛ
o
0(t)}

+
∫

τ

0

ASo
c(t;A,Z){πo(Z)− π̂(Z)}

π̂(Z)So
c(t;A,Z)Ŝc(t;A,Z)πo(Z)A{1−πo(Z)}1−A

· {dN(t)−Y (t)eβo
dΛ

o
0(t)}

+
∫

τ

0

Aπ̂(Z){So
c(t;A,Z)− Ŝc(t;A,Z)}

π̂(Z)So
c(t;A,Z)Ŝc(t;A,Z)πo(Z)A{1−πo(Z)}1−A

· {dN(t)−Y (t)eβo
dΛ

o
0(t)}

−
∫

τ

0

AJ(t;1,So,So
c){π̂(Z)−πo(Z)}}

π̂(Z)πo(Z)
· {dSo(t;1,Z)+So(t;1,Z)eβo

dΛ
o
0(t)}

+
∫

τ

0

A{J(t;1,So, Ŝc)− J(t;1,So,So
c)}

π̂(Z)
· {dSo(t;1,Z)+So(t;1,Z)eβo

dΛ
o
0(t)}.

We now see that D2(β
o,Λo

0, π̂,S
o, Ŝc)−D2(β

o,Λo
0,π

o,So,So
c) consists of several terms, where

each term is an integral of a difference in nuisance functions with respect to a monotone

function. This allows us to apply (C.22) to each of the terms and have

|D2(β
o,Λo

0, π̂,S
o, Ŝc)−D2(β

o,Λo
0,π

o,So,So
c)|≲|π̂(Z)−π

o(Z)|

+ sup
t∈[0,τ],a∈{0,1}

|So
c(t;a,Z)− Ŝc(t;a,Z)|.

From the inequality (a+b)2 ≤ 2a2 +2b2, we have

Var(Q51|O†)≲E

(|π̂(Z)−π
o(Z)|+ sup

t∈[0,τ],a∈{0,1}
|So

c(t;a,Z)− Ŝc(t;a,Z)|

)2 ∣∣∣∣O†


≤2E[{π̂(Z)−π

o(Z)}2|O†]

+2E

{ sup
t∈[0,τ],a∈{0,1}

|So
c(t;a,Z)− Ŝc(t;a,Z)|

}2 ∣∣∣∣O†

 .
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So

Var(Q51)

=Var†{E(Q51|O†)}+E†{Var(Q51|O†)}

≲0+E†(E[{π̂(Z)−π
o(Z)}2|O†])

+E†

E

{ sup
t∈[0,τ],a∈{0,1}

|So
c(t;a,Z)− Ŝc(t;a,Z)|

}2 ∣∣∣∣O†


=∥π̂−π

o∥2 +∥Ŝc−So
c∥2

=o(1).

Therefore, Q51 = op(1) by Chebyshev’s inequality.

Conditional on O†, we also have from Theorem 10 that E{D1i(t;βo,Λo
0, π̂,S

o, Ŝc)−

D1i(t;βo,Λo
0,π

o,So,So
c)|O†}= 0 for each t and i, so Q52 is again a sample average of i.i.d.

mean-zero terms when conditional on O†, and we can show Q52 = op(1) in the same way

as for Q51 above.

Consider Q53. Just like the expansion of D2(β
o,Λo

0, π̂,S
o, Ŝc)−D2(β

o,Λo
0,π

o,So,So
c)

in (C.38) above, we also have D1i(t;βo,Λo
0, π̂,S

o, Ŝc)−D1i(t;βo,Λo
0,π

o,So,So
c) as a sum of

terms, where each term is a product between a difference in nuisance functions and an

increment of a monotone function. So same as in Q51, we apply (C.22) to each of the terms

and have

|Q53|≲
√

n sup
t∈[0,τ]

∣∣∣Ā(t;β
o, π̂,So, Ŝc)− ᾱ(t;β

o, π̂,So, Ŝc)
∣∣∣

·

{
1
n

n

∑
i=1
|π̂(Zi)−π

o(Zi)|+
1
n

n

∑
i=1

sup
t∈[0,τ],a∈{0,1}

|So
c(t;a,Zi)− Ŝc(t;a,Zi)|

}
.

From the uniform convergence Assumption 11 and the Markov’s inequality, we have

1
n

n

∑
i=1
|π̂(Zi)−π

o(Zi)|+
1
n

n

∑
i=1

sup
t∈[0,τ],a∈{0,1}

∣∣∣So
c(t;a,Zi)− Ŝc(t;a,Zi)

∣∣∣= op(1).
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From (C.18) of Assumption 23, we have

√
n sup

t∈[0,τ]

∣∣∣Ā(t;β
o, π̂,So, Ŝc)− ᾱ(t;β

o, π̂,So, Ŝc)
∣∣∣= Op(1).

We therefore have Q53 = op(1).

For Q54, we have Q54 = Q541−Q542 +Q543, where

Q541 =
∫

τ

0
{Ā(t;β

o, π̂,So, Ŝc)− ᾱ(t;β
o, π̂,So, Ŝc)} ·

1√
n

n

∑
i=1

D1i(t;β
o,Λo

0,π
o,So,So

c),

Q542 =
∫

τ

0
{Ā(t;β

o,πo,So,So
c)− ᾱ(t;β

o,πo,So,So
c)} ·

1√
n

n

∑
i=1

D1i(t;β
o,Λo

0,π
o,So,So

c),

Q543 =
1√
n

n

∑
i=1

∫
τ

0
{ᾱ(t;β

o, π̂,So, Ŝc)− ᾱ(t;β
o,πo,So,So

c)}D1i(t;β
o,Λo

0,π
o,So,So

c)

By (C.19) of Assumption 23, we have Q541 = op(1) and Q542 = op(1). Q543 is again a

sample average of i.i.d. terms when conditional on O†, and each of the increments in

D1i(t;βo,Λo
0,π

o,So,So
c) is an increment of a monotone function. So like Q51, we apply

(C.22), followed by the law of total variance and have

Var(Q543)≲ 0+
n
n

E†

E

{ sup
t∈[0,τ]

∣∣∣ᾱ(t;β
o, π̂,So, Ŝc)− ᾱ(t;β

o,πo,So,So
c)
∣∣∣}2
= o(1),

where o(1) follows from (C.17) of Assumption 23. Therefore, Q543 = op(1) by Chebyshev’s

inequality and Q54 = op(1).

Combining our results on Q51 to Q54 ,we have Q5 = op(1).

Same as how we dealt with Q5, we can decompose Q6 in a similar way and show

that each of the terms is op(1), so we omit the details here.
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Lastly, we consider
√

nU(βo,πo,So,So
c). Using (C.37), we have

√
nU(βo,πo,So,So

c)

=
1√
n

n

∑
i=1

[
D2i(β

o,Λo
0,π

o,So,So
c)−

∫
τ

0
Ā(t;β

o,πo,So,So
c)D1i(t;β

o,Λo
0,π

o,So,So
c)

]
=

1√
n

n

∑
i=1

ψi(β
o,Λo

0,π
o,So,So

c)

+
∫

τ

0
{ᾱ(t;β

o,πo,So,So
c)− Ā(t;β

o,πo,So,So
c)} ·

1√
n

n

∑
i=1

D1i(t;β
o,Λo

0,π
o,So,So

c).(C.39)

From (C.19) of Assumption 23, we have (C.39) = op(1), so we have

√
nU(βo,πo,So,So

c) =
1√
n

n

∑
i=1

ψi(β
o,Λo

0,π
o,So,So

c)+op(1).

C.4 Application

Here, we present the boxplot of the π(z), S(τ;a,z) and Sc(τ;a,z) for each of the 2079

patients in HAAS study, where τ = 13 is the maximum follow-up time that we set to ensure

the strict positivity assumption is satisfied for S and Sc.

189



PS S Sc

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

ba
bi

lit
y

0.116

0.019

0.262

0.58

Figure C.1: Boxplot of the π(z), S(τ;a,z) and Sc(τ;a,z) for all the patients in the HAAS
dataset.
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Supplementary Materials for Chapter 5

D.1 Quantities and Notations

We define or repeat some of the important quantities that will be used later. For i in

1, . . . ,n,

Mci(t;a,Sc) = I(Xi ≤ t,∆i = 0)−
∫ t

0
I(Xi ≥ u)dΛc(u;a,Zi),

Ji(t;a,S,Sc) =
∫ t

0

dMci(u;a,Sc)

S(u;a,Zi)Sc(u;a,Zi)
,

dN (l)
i (t;π,S,Sc) =

Al
idNi(t)

π(Zi)Ai{1−π(Zi)}1−AiSc(t;Ai,Zi)
+

Al
idS(t;Ai,Zi)

π(Zi)Ai{1−π(Zi)}1−Ai

− ∑
a=0,1

al
{

1+
Aa

i (1−Ai)
1−a

π(Zi)a{1−π(Zi)}1−a Ji(t;a,S,Sc)

}
dS(t;a,Zi),

Γ
(l)
i (t;β,π,S,Sc) =

Al
iYi(t)eβAi

π(Zi)Ai{1−π(Zi)}1−AiSc(t;Ai,Zi)
−

Al
iS(t;Ai,Zi)eβAi

π(Zi)Ai{1−π(Zi)}1−Ai

+ ∑
a=0,1

al
{

1+
Aa

i (1−Ai)
1−a

π(Zi)a{1−π(Zi)}1−a Ji(t;a,S,Sc)

}
S(t;a,Zi)eβa,

S (l)(t;β,π,S,Sc) =
1
n

n

∑
i=1

Γ
(l)
i (t;β,π,S,Sc),

Ā(t;β,π,S,Sc) =
S (1)(t;β,π,S,Sc)

S (0)(t;β,π,S,Sc)
,

V (t;β,π,S,Sc) = Ā(t;β,π,S,Sc)− Ā(t;β,π,S,Sc)
2,

Λ̃(t;β,π,S,Sc) =
1
n

n

∑
i=1

∫ t

0

dNi(u;π,S,Sc)

S (0)(u;β,π,S,Sc)
,

ψ̃i(β,Λ,π,S,Sc) = D2i(t;β,Λ,π,S,Sc)−
∫

τ

0
Ā(t;β,π,S,Sc)D1i(t;β,Λ,π,S,Sc).

The variance estimator of β̂ with model DR is defined as

σ̂
2(β) =

1
n ∑

n
i=1 ψ̃i(β, Λ̃(·;β, π̂, Ŝ, Ŝc), π̂, Ŝ, Ŝc)

2{
1
n ∑

n
i=1

∫
τ

0 V (t;β, π̂, Ŝ, Ŝc)dN (0)
i (t; π̂, Ŝ, Ŝc)

}2 , (D.1)
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where π̂, Ŝ and Ŝc are estimated using the same sample of n observations.

Next, for each fold m, we may define the fold-specific quantities:

S (l)
m (t;β,π,S,Sc) =

1
|Im| ∑

i∈Im

Γ
(l)
i (t;β,π,S,Sc),

Ām(t;β,π,S,Sc) =
S (1)

m (t;β,π,S,Sc)

S (0)
m (t;β,π,S,Sc)

,

Vm(t;β,π,S,Sc) = Ām(t;β,π,S,Sc)− Ām(t;β,π,S,Sc)
2,

Λ̃m(t;β,π,S,Sc) =
1
|Im| ∑

i∈Im

∫ t

0

dN (0)
i (u;π,S,Sc)

S (0)
m (u;β,π,S,Sc)

,

ψ̃m,i(β
o,Λ0,π,S,Sc) = D2i(t;β,Λ,π,S,Sc)−

∫
τ

0
Ām(t;β,π,S,Sc)D1i(t;β,Λ,π,S,Sc),

η̃m,i(t;β,Λ,π,S,Sc) = dN (1)
i (t;π,S,Sc)−Γ

(1)
i (t;β,π,S,Sc)dΛ(t)

− Ām(t;β,π,S,Sc)D1i(t;β,Λ,π,S,Sc).

The variance estimator σ̂2
c f for the cross-fitted AIPW estimator β̂c f is defined as

σ̂
2
c f (β̂c f ) =

1
n ∑

k
m=1 ∑i∈Im ψ̃m,i(β̂c f , Λ̃m(·; β̂c f , π̂

(−m), Ŝ(−m), Ŝ(−m)
c ), π̂(−m), Ŝ(−m), Ŝ(−m)

c )2{
1
n ∑

k
m=1 ∑i∈Im

∫
τ

0 Vm(t; β̂c f , π̂(−m), Ŝ(−m), Ŝ(−m)
c )dN (0)

i (t; π̂(−m), Ŝ(−m), Ŝ(−m)
c )

}2 .

(D.2)

The cross-fitted standardized AIPW score saipw(β̂c f , t)/Vaipw(β̂c f , t) that is used in

the AIPW β(t) approximation (5.11) can be thought of as taking the differentials of the

square root of both the numerator and denominator of (D.2), and is expressed as

1
n ∑

k
m=1 ∑i∈Im η̃m,i(t; β̂c f ,Λ(·; β̂c f , π̂

(−m), Ŝ(−m), Ŝ(−m)
c ), π̂(−m), Ŝ(−m), Ŝ(−m)

c ))

1
n ∑

k
m=1 ∑i∈Im Vm(t; β̂c f , π̂(−m), Ŝ(−m), Ŝ(−m)

c )dN (0)
i (t; π̂(−m), Ŝ(−m), Ŝ(−m)

c )
.
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D.2 Proof of the Lemmas

We let F(t) and f (t) denote the marginal cumulative distribution and density of T ,

F(t;a) and f (t;a) denote the cumulative distribution and density of T conditional on A = a,

while F(t;z,z) and f (t;a,z) denote the cumulative distribution and density of T conditional

on A = a and Z = z. We define S(t;a) and S(t;a,z) in similar fashion, where S = 1−F .

D.2.1 Proof of Lemma 1

By conditional probability and consistency, we have

f (t) = P(A = 1) f (t;A = 1)+P(A = 0) f (t;A = 0) =
1
2
{ f1(t)+ f0(t)}.

Bayes’ Theorem on two random variables X ,Y states that

E(X |Y = y) =
E{X fY |X(y|X)}

fY (y)
.

Applying this to Eβ(t)(A|T = t), where the expectation is taken assuming the true non-PH

model 5.3, we have

Eβ(t)(A|T = t) =
E{A f (t;A)}

f (t)

=
1
2 ∑a=0,1 a fa(t)
1
2 ∑a=0,1 fa(t)

=
∑a=0,1 aλT (a)(t)Sa(t)

∑a=0,1 λT (a)(t)Sa(t)

=
∑a=0,1 aΛ(t)eβ(t)aSa(t)

∑a=0,1 Λ(t)eβ(t)aSa(t)

=
∑a=0,1 aeβ(t)aSa(t)

∑a=0,1 eβ(t)aSa(t)
(D.3)

Similarly, replace β(t) in λ(t;A) with a fixed β while keeping everything else the same, we
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have

Eβ(A|T = t) =
∑a=0,1 aeβaSa(t)

∑a=0,1 eβaSa(t)
(D.4)

Substituting (D.3) and (D.4) into (5.2), we therefore have

∫
τ

0

{
∑a=0,1 aeβ(t)aSa(t)

∑a=0,1 eβ(t)aSa(t)
− ∑a=0,1 aeβaSa(t)

∑a=0,1 eβaSa(t)

}
∑

a=0,1
dFa(t) = 0.

D.2.2 Proof of Lemma 4

First, we solve E{D f
1(t;β,Λ)}= 0. The two limits of the integral from the expecta-

tion are constants, so by Leibniz integral rule, we may exchange the order of differentiation

and integral and have

dΛ(t;β) =
∑a=0,1 dE{I{T (a)< t}}
∑a=0,1 eβaE [I{T (a)≥ t}]

=
∑a=0,1 dFa(t)

∑a=0,1 eβaSa(t)

=− ∑a=0,1 dSa(t)

∑a=0,1 eβaSa(t)

(D.5)
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Plugging it into E{D f
2(β,Λ)}= 0, we have

0 =
∫

τ

0
∑

a=0,1
a ·dE[I{T (a)< t}]− ∑a=0,1 aeβaE [I{T (a)≥ t}] ·∑a=0,1 dFa(t)

∑a=0,1 eβaSa(t)

=
∫

τ

0
∑

a=0,1
a · fa(t)dt− ∑a=0,1 aeβaSa(t)

∑a=0,1 eβaSa(t)
∑

a=0,1
fa(t)dt,

=
∫

τ

0

{
∑a=0,1 a · fa(t)

∑a=0,1 fa(t)
− ∑a=0,1 aeβaSa(t)

∑a=0,1 eβaSa(t)

}
∑

a=0,1
fa(t)dt

=
∫

τ

0

{
∑a=0,1 a ·Λ(t)eβ(t)aSa(t)

∑a=0,1 Λ(t)eβ(t)aSa(t)
− ∑a=0,1 aeβaSa(t)

∑a=0,1 eβaSa(t)

}
∑

a=0,1
fa(t)dt

=
∫

τ

0

{
∑a=0,1 aeβ(t)aSa(t)

∑a=0,1 eβ(t)aSa(t)
− ∑a=0,1 aeβaSa(t)

∑a=0,1 eβaSa(t)

}
∑

a=0,1
fa(t)dt,

which is equivalent to the definition of β∗ defined in (5.4). Therefore β∗ is the unique

solution to β in the full data estimating functions. Plugging β∗ into (D.5), we also see that

Λ∗(t) as defined in (5.7) is also the solution to Λ(t) in the full data estimating functions.

196



Bibliography

Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: a

large sample study. The Annals of Statistics, 10:1100–1120.

Axelrod, R. and Nevo, D. (2022). A sensitivity analysis approach for the causal hazard ratio

in randomized and observational studies. Biometrics.

Bai, X., Tsiatis, A. A., Lu, W., and Song, R. (2017). Optimal treatment regimes for

survival endpoints using a locally-efficient doubly-robust estimator from a classification

perspective. Lifetime Data Analysis, 23(4):585–604.

Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal

inference models. Biometrics, 61(4):962–973.

Barzilai, J. and Borwein, J. M. (1988). Two-point step size gradient methods. IMA journal

of numerical analysis, 8(1):141–148.

Battey, H., Fan, J., Liu, H., Lu, J., and Zhu, Z. (2018). Distributed testing and estimation

under sparse high dimensional models. The Annals of Statistics, 46(3):1352–1382.

Belloni, A., Chernozhukov, V., and Hansen, C. (2013). Inference on treatment effects

after selection among high-dimensional controls†. The Review of Economic Studies,

81(2):608–650.

Bickel, P. J. (1975). One-step huber estimates in the linear model. Journal of the American

Statistical Association, 70(350):428–434.

197



Bickel, P. J., Klaassen, C. A., Ritov, Y., and Wellner, J. A. (1993). Efficient and adaptive

estimation for semiparametric models, volume 4. Johns Hopkins University Press, Balti-

more.

Bousquet, O. (2003). Concentration inequalities for sub-additive functions using the entropy

method. In Stochastic inequalities and applications, pages 213–247. Springer.

Boyd, A. P., Kittelson, J. M., and Gillen, D. L. (2012). Estimation of treatment effect under

non-proportional hazards and conditionally independent censoring. Statistics in medicine,

31(28):3504–3515.

Buchanan, A. L., Hudgens, M. G., Cole, S. R., Lau, B., Adimora, A. A., and Women’s

Interagency HIV Study (2014). Worth the weight: using inverse probability weighted Cox

models in AIDS research. AIDS research and human retroviruses, 30(12):1170–1177.

Catoni, O. (2012). Challenging the empirical mean and empirical variance: a deviation

study. Annales de l’IHP Probabilités et statistiques, 48(4):1148–1185.

Chen, L. H. and Shao, Q.-M. (2001). A non-uniform berry-esseen bound via stein’s method.

Probability theory and related fields, 120:236–254.

Chen, P.-Y. and Tsiatis, A. A. (2001). Causal inference on the difference of the restricted

mean lifetime between two groups. Biometrics, 57(4):1030–1038.

Chen, X., Liu, W., and Zhang, Y. (2019). Quantile regression under memory constraint. The

Annals of Statistics, 47(6):3244–3273.

Chen, X. and White, H. (1999). Improved rates and asymptotic normality for nonparametric

neural network estimators. IEEE Transactions on Information Theory, 45(2):682–691.

Chen, X. and Xie, M.-g. (2014). A split-and-conquer approach for analysis of extraordinarily

large data. Statistica Sinica, pages 1655–1684.

198



Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and

Robins, J. (2018). Double/debiased machine learning for treatment and structural parame-

ters. The Econometrics Journal, 21(1):C1–C68.
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