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Abstract: Wearable activity sensors typically count movement quantity, such as the number of steps
taken or the number of upper extremity (UE) counts achieved. However, for some applications, such
as neurologic rehabilitation, it may be of interest to quantify the quality of the movement experience
(QOME), defined, for example, as how diverse or how complex movement epochs are. We previously
found that individuals with UE impairment after stroke exhibited differences in their distributions
of forearm postures across the day and that these differences could be quantified with kurtosis—an
established statistical measure of the peakedness of distributions. In this paper, we describe further
progress toward the goal of providing real-time feedback to try to help people learn to modulate their
movement diversity. We first asked the following: to what extent do different movement activities
induce different values of kurtosis? We recruited seven unimpaired individuals and evaluated a set
of 12 therapeutic activities for their forearm postural diversity using kurtosis. We found that the
different activities produced a wide range of kurtosis values, with conventional rehabilitation therapy
exercises creating the most spread-out distribution and cup stacking the most peaked. Thus, asking
people to attempt different activities can vary movement diversity, as measured with kurtosis. Next,
since kurtosis is a computationally expensive calculation, we derived a novel recursive algorithm that
enables the real-time calculation of kurtosis. We show that the algorithm reduces computation time
by a factor of 200 compared to an optimized kurtosis calculation available in SciPy, across window
sizes. Finally, we embedded the kurtosis algorithm on a commercial smartwatch and validated its
accuracy using a robotic simulator that “wore” the smartwatch, emulating movement activities with
known kurtosis. This work verifies that different movement tasks produce different values of kurtosis
and provides a validated algorithm for the real-time calculation of kurtosis on a smartwatch. These
are needed steps toward testing QOME-focused, wearable rehabilitation.

Keywords: wearable activity sensing; accelerometer; tilt sensing; rehabilitation; upper extremity
movement diversity; kurtosis; rolling statistics

1. Introduction

For people without movement-related disabilities, wearable sensors have proven
useful for promoting physical activity. For example, setting a daily step goal and then
monitoring it with daily step count feedback increases walking activity, thereby improving
difficult-to-change health outcomes such as blood pressure [1]. Unfortunately, the few
research studies that have examined the use of wearable feedback to promote greater
physical activity of either walking or upper extremity (UE) use after stroke have had
limited success (see review [2]). We propose testing a different approach for neurologic
movement rehabilitation: using goal setting and wearable feedback to encourage people to
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explore new (rather than just more of the same) movement patterns, thereby challenging
their motor system [3].

We envision a home rehabilitation scenario in which a person with a neurologic
impairment wears a simple, low-cost sensor on their wrist, hip, or ankle, and that sensor
vibrates when they succeed in moving in new ways, i.e., in ways that are unusual and
challenging for them. The sensor could also keep track of the total minutes per day they
spend exploring. We hypothesize that this would motivate people to set a goal to seek new
movement experiences. We also hypothesize that seeking a greater amount of movement
diversity would help activate forms of neuroplasticity that improve motor control, reduce
impairment, and help people become more active.

Note that the approach we are proposing is different than quantifying the quality of
individual movements. Higher-quality, individual movements have been defined in differ-
ent ways in the context of UE rehabilitation, including movements that are smoother [4],
faster [5], that do not rely on compensatory patterns such as leaning with the trunk [6], and
that do not rely on abnormal synergistic patterns of movement [7]. The approach we call
Quality of Movement Experience (QOME) focuses on the statistical properties of extended
periods of many movements throughout the day (or “movement epochs”), a concept related
to previous work aimed at optimizing movement experiences and exploration in robotic
therapy sessions [8–10].

One possible strategy for quantifying QOME would be to identify different physical
activities when a person tries them, a well-studied strategy that relies on machine learn-
ing [11,12]. We believe this approach is suboptimal because accurate classification requires
using relatively small sets of candidate activities, but, in real life, people can leverage a vast
number of activities to promote physical activity and rehabilitation. We, therefore, propose
to focus instead on more general statistical characteristics of daily UE and lower extremity
(LE) movements that become more prominent as UE and LE impairment decrease. In this
framework, the goal is to motivate people to move more frequently like people who have
experienced incrementally better recovery.

In a previous study from our lab [13] (in press), we tested the feasibility of identifying
such characteristics using raw wrist acceleration data obtained from 22 participants with
a stroke. Table 2 from [13] presents the measures that most effectively distinguished im-
pairment levels when subjects were grouped into severe, moderate, and mild impairment
categories. From a group of 10 candidate statistics, we found that forearm postural diver-
sity (quantified by the kurtosis of the tilt angle distribution) had the strongest power to
distinguish severe and moderate impairment groups (Cohen’s D = 1.1, p = 0.028, indicating
a strong effect size). In addition, in [13], when we plotted kurtosis versus impairment
levels (quantified by the Upper Extremity Fugl-Meyer score [14]) for individuals across all
impairment levels, we found that there was a significant correlation between kurtosis and
impairment level (r = 0.374, p = 0.029). However, kurtosis could not distinguish between
moderate and mild impairment, and instead, Sample Entropy of the tilt angle—a measure
of movement complexity—was most effective (Cohen’s D = 0.99, t-test, p = 0.017). In this
paper, we focus on quantifying movement diversity with kurtosis, and, thus, this work is
most relevant to individuals with severe/moderate impairment after stroke.

It makes sense that individuals with better UE recovery achieve a greater diversity
of forearm postures throughout the day as they engage in a greater variety of physical
activities and/or do the same activities but with improved movement quality, such as a
better range of motion. Kurtosis is a well-established measure that quantifies the sharpness
of the peak of a frequency distribution curve in comparison to the normal distribution (see
Figure 1 [15]). This works well for quantifying diversity—if your arm stays in the same
posture all day long (as can happen after a severe stroke), then the frequency distribution
of forearm posture will be sharply peaked with high kurtosis, consistent with movement
stagnation. More diverse movement experiences will have more flat and distributed
postures, exhibiting low kurtosis.
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Figure 1. (A): The distribution of the device tilt angle and corresponding forearm postures with
respect to gravity. The red, green, and blue lines represent the mean distribution for groups with
varying impairment levels [13]. UEFM stands for the Upper Extremity Fugl-Meyer score [14], a test
of arm impairment that varies from 0 (complete paralysis) to 66 (normal movement). (B): Different
kurtosis values for three distributions: mesokurtic (similar to normal), leptokurtic (more peaked than
normal), and platykurtic (more tailed than normal).

The purpose of this experimental and mathematical study is to present further work
toward the wearable sensing of movement diversity using kurtosis, focusing on three
objectives. First, we consider the objective of determining how to intentionally increase
diversity in daily life. Our ultimate goal is to develop an algorithm for a smartwatch
that informs users when they are moving in more diverse ways (relative to their baseline)
and/or tells them how many minutes they spend moving in new ways each day. The
idea is that, when users receive feedback that their diversity has been high, they will be
motivated to repeat these diversity-enhancing activities. However, the hypothesis that
engaging in different activities can improve diversity, as detected with kurtosis, remains
uncertain. To test this hypothesis, we evaluated a set of 12 activities (including a booklet of
conventional rehabilitation therapy exercises, Cornhole, playing cards, etc.) for the values
of kurtosis they produced.

Second, calculating kurtosis is computationally complex due to its reliance on cal-
culating the fourth moment around the mean, and, to our knowledge, it has only been
calculated offline. A critical aspect of the kurtosis computation is its sequential dependence,
necessitating the prior calculation of both mean and standard deviation. Thus, a second
objective was to develop a novel, recursive kurtosis algorithm to speed up computation
time and reduce battery consumption, suitable for implementation on a smartwatch.

Third, a key problem in implementing wearable sensing algorithms is the difficulty
in assessing ground truth. One can implement a kurtosis algorithm on a smartwatch, but
verifying its correctness remains a challenge. Here, we used a custom-built robotic device
to create movement patterns with known kurtosis values from predefined trajectories. This
allowed us to assess the hypothesis that the novel kurtosis algorithm, as implemented on
a smartwatch, could accurately calculate kurtosis in real time. Thus, we made progress
toward the objective of verifying real-time kurtosis calculations.

In summary, the main aim of this work is to make progress toward the wearable sens-
ing of movement diversity using kurtosis, a need in rehabilitation research to enable testing
of the hypothesis that Quality of Movement Experience (QOME) feedback could improve
recovery. As we will show, we (1) verified that different movement tasks have different
kurtosis values; (2) derived a novel, recursive algorithm that dramatically improves the
computation speed of kurtosis; and (3) used a robot arm to demonstrate that the algorithm
accurately computes kurtosis in real time.
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2. Materials and Methods
2.1. Experiment 1: Do Different Therapeutic Activities Generate Different Values of Kurtosis?

We recruited seven unimpaired individuals (aged 20–25, all male) and evaluated a set
of 12 therapeutic activities for forearm postural diversity. The study was deemed exempt
from IRB review using the UCI IRB exempt self-determination tool under Category 3i:
Behavioral Interventions.

The activities included the following: (a) a set of conventional rehabilitation therapy
exercises for the hand and arm that were described in a booklet (used in a previous clinical
trial of home-based stroke rehabilitation [16]), (b) ping-pong, (c, d) the card games Speed
and Klondike, (e) American Sign Language, (f) Tai-chi, (g) Cornhole, (h, i) Nintendo Switch
sports Chambara and Tennis, (j) balloon volleyball, (k) cup stacking, and (l) FitMi exercises,
where FitMi is a commercial sensor system designed to guide upper extremity rehabilitation
exercises [17]. One participant was unable to complete several experiments (a, c, f, l) due to
an unrelated medical issue. Participants were given a brief introduction to each activity and
allowed to practice for a few minutes to ensure their comfort with the task. They were then
instructed to perform each activity at a self-paced rate for 10 min. For all activities except
ping-pong and cornhole, they were seated. For each activity, we calculated the kurtosis of
tilt angle using a sliding window, where we varied the window size (1 min = 3120 samples,
3 min = 9360 samples, and 5 min = 15,600 samples). We shifted the window with a 1 s stride
(i.e., 52 data samples) and calculated the mean values of kurtosis across the duration of the
activity.

The MiGo contains a six-axis IMU with a sampling frequency of 205 Hz. The device
streamed data at 100 Hz to a receiver (nrf52840, Nordic Semiconductor, Trondheim, Norway)
connected to a PC. We additionally down-sampled the signals from the study with human
subjects from 100 Hz to 52.6 Hz using the scipy.resample_poly function to match the
sampling frequency from a previous pilot study of the effectiveness of hand count feedback
versus conventional home exercise [18]. In previous research in our lab, we had used the
MiGo device to stream accelerometer data at a high rate, and, thus, using the MiGo was
convenient to achieve the goals of the human experiments.

To calculate the kurtosis of forearm postural diversity, we first estimated the tilt angle
θ, defined as the device’s orientation with respect to gravity, as follows ([13,19]).

θ = cos−1

 az√
a2

x + a2
y + a2

z

 (1)

where az is defined as the acceleration in the direction perpendicular to the back of the
forearm. We then calculated kurtosis offline using rolling windows of durations of 1 min,
3 min, and 5 min using the formula for kurtosis. Note that throughout this paper, we will
present “excess kurtosis”, defined as kurtosis minus 3 (i.e., minus the kurtosis of the normal
distribution), but refer to it simply as “kurtosis”.

2.2. Algorithm for Fast Real-Time Calculation of Kurtosis

Calculating the kurtosis of the tilt angle distribution becomes computationally de-
manding as the buffer sample size increases. We desire to be able to perform real-time
kurtosis computation in our application in order to deliver instantaneous feedback after
epochs of higher movement diversity, and this caused us to consider more efficient com-
putation algorithms. Extending the work in [20], we derived a novel kurtosis algorithm
(Equation (4)), which we will refer to as “Rolling Sample Kurtosis” (RSK) because it utilizes
a rolling sample technique, incorporating values from previous iterations with new sensor
data, to enable efficient computation. The real-time computation of kurtosis is performed
at every sample.

We first define Vn and Sn as recursive auxiliary variables, as proposed in [20]. Vn
(Equation (2)) essentially carries the crucial information of the second central moment,
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i.e., ∑n
i=1(xi − xn)

2, and Sn (Equation (3)) carries the crucial information of the third central
moment, i.e., ∑n

i=1(xi − xn)
3.

s2
⌈n⌉k

=
V⌈n⌉k
k−1 , n ≥ k > 1

V⌈n+1⌉k
= V⌈n⌉k

+ (x n+1 − x0

)
×

(
xn+1 + x0 − x⌈n+1⌉k

− x⌈n⌉k
)

(2)

where

• s2
⌈n⌉k

denotes the sample variance of the most recent k observation values, and it can
recursively be updated through its corresponding auxiliary variable V⌈n⌉k

by rolling
the observation window to include new values while removing the oldest ones.

S⌈n⌉k
=

k×S⌈n⌉k
(k−1)(k−2)×s3

⌈n⌉k

, n ≥ k > 2

S⌈n+1⌉k
= S⌈n⌉k

− 3
(

x⌈n+1⌉k
− x⌈n⌉k

)
×V⌈n⌉k

+

(x n+1 − x0
)
×

[(
x0 − x⌈n⌉k

)
×

(
x0 − 2x⌈n+1⌉k

+ x⌈n⌉k

)
+

(
xn+1−x⌈n+1⌉k

)
×

(
xn+1 + xo − 2x⌈n+1⌉k

)] (3)

where

• S⌈n⌉k
represents the sample skewness of the most recent k observation values. When

the observation window keeps rolling forward, the continuous updating of S⌈n⌉k
will

be realized through the recursive calculations of the auxiliary variables V⌈n⌉k
and S⌈n⌉k

.

K⌈n⌉k
= k(k+1)

(k−1)(k−2)(k−3) ×
K⌈n⌉k
s4
⌈n⌉k

, n ≥ k > 3

K⌈n+1⌉k
= K⌈n⌉k

− 4
(

x⌈n+1⌉k
− x⌈n⌉k

)
× S⌈n⌉k

+ 6
(

x⌈n+1⌉k
− x⌈n⌉k

)2
×V⌈n⌉k

+

(xn+1 − x0)

{(
x⌈n+1⌉k

− x⌈n⌉k

)3
+

[(
xn+1 − x⌈n+1⌉k

)2
+

(
x0 − x⌈n+1⌉k

)2
]
×

(
xn+1 + x0 − 2x⌈n+1⌉k

)} (4)

where

• K⌈n⌉k
represents the sample kurtosis of the most recent k observation values xn−k+1,

xn-k+2, . . ., xn. When the observation window keeps rolling forward, the continuous
update of K⌈n⌉k

will be based on the recursive calculations of the auxiliary variables
V⌈n⌉k

, S⌈n⌉k
, and K⌈n⌉k

.
• xo represents the last sensor value from the previous iteration.
• xn+1 represents the new sensor value, which will update the Rolling Sample Kurtosis.
• x⌈n⌉k

stands for the sample mean of the most recent k observation values, while x⌈n+1⌉k
indicates the updated sample mean after rolling the observation window to include
the new value xn+1 while removing the oldest one xo (i.e., xn−k+1).

See Appendix A for the details on the derivation and computational optimization of
Equation (4).

We compared the execution speed of the RSK algorithm to the speed of a conventional
kurtosis calculation, which iterates through the entire buffer, and to an optimized kurtosis
algorithm implemented using Python’s SciPy kurtosis function. The “scipy.stats.kurtosis”
function is optimized through the use of vectorized operations provided by NumPy through
implementation in C and Fortran in combination with Python and through the incorpora-
tion of techniques to ensure numerical stability.

We compared the three methods to calculate kurtosis using Python’s library “timeit”.
The Python “timeit” library is a built-in module that provides a simple way to measure
the execution time of small code snippets or functions. It is especially useful for the
benchmarking and performance testing of Python code since it avoids several common
traps for measuring execution times, and it runs the code multiple times to obtain a more
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accurate estimate of its execution time. Therefore, we ran each one of the three presented
kurtosis methods 100 times to obtain a better estimate of execution time.

For all three methods, the buffer was a list of tilt angles, initialized with None elements,
which are built-in in Python and are faster than using numpy.nan. Moreover, using a list
instead of an array in Python can be slightly more efficient in some cases.

2.3. Experiment 2: Robotic Validation of the Rolling Sample Kurtosis Calculation as Implemented
on a Smartwatch

In the human experiments described above, we used the MiGo device to acquire
accelerometer data. However, MiGo is a research device developed by Flint Rehabilitation
Devices (Flint Rehabilitation Devices, Irvine, CA, USA) [17], and we did not have the
capability of modifying its firmware to implement real-time kurtosis. So, for implementing
and testing real-time kurtosis, we chose the Samsung watch, which has several desirable
features, including a low-power CPU capable of performing real-time data processing,
sophisticated visual display and vibrotactile feedback capabilities, and excellent accessi-
bility and usability. To validate the RSK algorithm, we implemented it on a commercial
smartwatch. We chose the Samsung Galaxy Watch 4 due to its low cost and widespread
accessibility. We developed a Java-based (Version 8 Update 311) kurtosis application for
this Wear OS (API Level 33, Android 13) device using Android Studio.

The sensor event delivery rate, or sampling rate, dictates the frequency at which sensor
data are transmitted to the application through the “onSensorChanged()” callback process.
In this work, we chose a sampling frequency of ~50 Hz to align with previous work [13]
and because it is sufficient to capture human movement [21].

For the validation experiments, we strapped the Samsung watch to the wrist of a
custom-built, three-degree-of-freedom (DOF) robot arm that allowed us to create human-
like movements with pre-specified levels of movement diversity. The robot was intended
to simulate human forearm biomechanics when the elbow is resting on a table or an
armrest, or, equivalently, when the translation of the elbow is small during arm use. The
three revolute joints imitate the effect of shoulder internal/external rotation (“rot”), elbow
extension/flexion (“ext”), and forearm supination/pronation (“sup”) (Figure 2).
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We printed the robot parts using a 3D printer (Bambu Lab X1-Carbon Combo 3D
Printer, Bambulab USA Inc., Austin, TX, USA). We used two high-torque stepper motors
(STEPPERONLINE 19:1 NEMA17, STEPPERONLINE Inc., New York, NY, USA) with
drivers (TB6600 Stepper Motor Drivers, SZCY LLC, Maoming, China) equipped with a 19:1
gearbox to control the “rot” and “ext” with a step resolution of 0.094◦. For slow speeds,
the “rot” and “ext” steppers were configured to a 1/16th step size, achieving a maximum
speed of 15◦/s and an acceleration of 15◦/s2. For fast speeds, these steppers were set to a
1/4th step size, reaching a peak speed of 90◦/s with an acceleration of 90◦/s2.

A Nema17 stepper motor (STEPPERONLINE Nema 17, STEPPERONLINE Inc., New
York, NY, USA), also with a TB6600 driver, was used for the “sup” DOF, with a step
resolution of 1.8◦ and drivers set at a 1/32nd step size both for the slow and fast speeds. At
slow speeds, the motor achieved 30◦/s with an acceleration of 30◦/s2 while at fast speeds,
it reached up to 180◦/s with 180◦/s2.

We used relative encoders (CUI Devices AMT102-V, AutomationDirect.com, Atlanta,
GA, USA) to detect the angular position of each joint and a microcontroller (Arduino Mega,
Arduino S.R.L, Torino, Italy) as the controller and data acquisition system.

We used the Unified Robotics Description Format (URDF) [22] to model the robot
and to represent its kinematic structure and visual appearance. We used the Robotics
Toolbox (RTB10.4) from Peter Corke [23] to describe the robot as a serial-link arm-type robot
using the Denavit–Hartenberg parameters (Table 1). The joint variables were numbered
progressively starting from 4 since the robot resembles a spherical wrist, which is typically
thought of as mounted on a three-DOF arm of a six-DOF manipulator [24].

Table 1. The robot defined with the Denavit–Hartenberg parameters.

Link i ai αi di qi

4 0 −pi/2 0.056 q4
5 0 pi/2 0.000 q5
6 0 0 0.300 q6

The complete forward kinematics model T for this robot is:

T =


c4 × c5 × c6 − s4 × s6 −c6 × s4 − c4 × c5 × s6 c4 × s5 d6 × c4 × s5
c4 × s6 + c5 × c6 × s4 c4 × c6 − c5 × s4 × s6 s4 × s5 d6 × s4 × s5

−c6 × s5 s5 × s6 c5 d4 + d6 × c5
0 0 0 1

 (5)

The upper left 3 × 3 array of (5), i.e., T(1:3, 1:3), represents the rotation matrix R with
respect to the origin frame, and the first three elements of the last column, i.e., T(1:3, 4),
give us the position of the end-effector in x-y-z. We calculated the ground truth sensor tilt
angles from the end-effector’s pose, applying the rotation matrix R to

→
a home = [1; 0; 0] to

estimate the watch’s tilt angle θ for every possible configuration of joint positions.
We used the robot to implement six movement trajectories with known values of

forearm postural kurtosis (see Appendix B). We chose four of these trajectories to roughly
mirror human forearm motions during simple activities and thus named them: shuf-
fling cards, cup stacking, arm wrestling, and handshaking. The fifth trajectory, named
exploration, was devised to encompass the full range of joint positions by driving each
motor to its maximum extent. The final trajectory, referred to as simulated normal, was
crafted to exhibit a distribution of tilt angles with a kurtosis value closely matching a
mesokurtic distribution.

The microcontroller dispatched the predefined trajectories to the stepper motors via
the Arduino AccelStepper library (1.64.0). Each trajectory was simulated fifteen times, and
the experimental kurtosis was calculated as the average of these runs. The Samsung watch
recorded the resulting tilt angle values within its internal storage, utilizing an SQL database.
At the same time, a secondary board (Arduino MEGA) saved the encoder values from
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each robot’s joint to a .txt file using CoolTerm (2.2.0), a Software for communicating with
serial devices via USB serial communication. The Arduino Mega does not support parallel
programming since its microcontroller is single-core and can only execute one instruction
at a time; however, we needed to run three tasks in parallel, one for each encoder. Thus,
we used a class of RTOS (Real-Time Operating System) called FreeRTOS, which can be run
on 8/16-bit microcontrollers such as Arduino. RTOS is designed to run applications with
very precise timing and a high degree of reliability, and it also helps in multi-tasking with a
single core, allowing us to run the three encoder functions/tasks concurrently. Additionally,
we used Semaphores and Mutex for synchronization, resource management, and protecting
resources from corruption.

As the robot moved, it “wore” the Samsung smartwatch on its wrist. We filtered the
measured acceleration with a Fast Fourier Transform (FFT)-based, low-pass filter with a
cutoff frequency of 1 Hz and used the tilt angle estimation approach shown in Equation (1)
as input into the kurtosis algorithm.

To align the watch and robot data, the following procedure was used. At the beginning
of each movement, the robot was positioned in its home position, as shown in Figure 2B.
When in the home position, the watch began saving data. Subsequently, the robot started
its movement. We aligned the watch’s data to the robot data by identifying the start of the
movement in the watch data.

3. Results
3.1. Different Therapeutic Activities Generated a Wide Range of Kurtosis Values

A group of seven unimpaired individuals performed 12 activities, similar to what
might be used for upper extremity rehabilitation or during recreational activities after
neurologic injury (Figure 3). We found that the activities produced median kurtosis values
that ranged between −0.39 and 2.77 for the 5 min analysis window (Figure 3). Using
shorter windows of 1 and 3 min had only a small effect on the measured kurtosis (Figure 3).
This indicates that different activities produced more tailed (k < 0) or more peaked (k > 0)
distributions than the normal distribution (k = 0).
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Figure 3. Kurtosis of tilt angle for 12 different tasks at 0.5, 1, 3, and 5 min time windows across
participants. The box color represents the window size: white (30 s), light gray (1 min), gray (3 min),
and dark gray (5 min). The solid black line within each box represents the median value, while the
whiskers extend to the minimum and maximum values within 1.5 times the interquartile range.

The activity that yielded the lowest value for kurtosis was the book of rehabilitation
exercises. That is, this activity had the least peaked forearm posture distribution and,
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thus, the greatest diversity of forearm posture, as defined using kurtosis. The activity that
yielded the highest value for kurtosis was cup stacking since the distribution of tilt angles
was highly peaked for this activity, consistent with a narrow angular range of forearm
movement. In general, there was relatively small intersubject variability in kurtosis for each
activity, except for Switch sports (Tennis and Chambara) and cup stacking, which displayed
a larger interquartile range, indicating higher, cross-subject variability in the data.

3.2. The Rolling Sample Kurtosis (RSK) Algorithm Accelerated Computation Speed

We executed the kurtosis computation 100 times in Python using the “timeit” function
on varying sample buffers of size n for three calculation methods: standard kurtosis
formula, SciPy kurtosis function, and RSK (Figure 4). RSK accelerated the computation. For
example, when applied to a sample window of n = 5000, the average execution time for the
standard kurtosis formula was 9.5 s, compared to 2.28 s for the SciPy kurtosis function and
7.77 ms for the Rolling Sample Kurtosis method. Across buffer sizes, the saving compared
to the optimized SciPy kurtosis function was ~200-fold for sample sizes < 3000. Due to the
recursive nature of the algorithm, the RSK computational time increased more slowly with
buffer size as well, reaching a ~300-fold gain against the SciPy approach at a buffer size of
5000 (Figure 4).

Sensors 2024, 24, 5266 9 of 21 
 

 

3.2. The Rolling Sample Kurtosis (RSK) Algorithm Accelerated Computation Speed 
We executed the kurtosis computation 100 times in Python using the “timeit” 

function on varying sample buffers of size n for three calculation methods: standard 
kurtosis formula, SciPy kurtosis function, and RSK (Figure 4). RSK accelerated the 
computation. For example, when applied to a sample window of n = 5000, the average 
execution time for the standard kurtosis formula was 9.5 s, compared to 2.28 s for the SciPy 
kurtosis function and 7.77 ms for the Rolling Sample Kurtosis method. Across buffer sizes, 
the saving compared to the optimized SciPy kurtosis function was ~200-fold for sample 
sizes < 3000. Due to the recursive nature of the algorithm, the RSK computational time 
increased more slowly with buffer size as well, reaching a ~300-fold gain against the SciPy 
approach at a buffer size of 5000 (Figure 4). 

 

Figure 4. (A): Increasing the window size n increases the execution time. We fitted a 2nd-order 
polynomial to the data, resulting in an equation for standard kurtosis of (3.7280 × 10−5x2 + 0.0016x + 
0.8461), for the SciPy function (3.3760 × 10−6x2 + 0.0288x − 0.3913), and for the Rolling Sample Kurtosis 
(−8.0800 × 10−9x2 + 0.0002x − 0.0062). (B): Logarithmic plot of the same execution times. (C): The ratio 
of execution speed vs. buffer size when comparing the Rolling Sample Kurtosis approach against 
the standard method (green) and the SciPy function (in orange). 

3.3. Robotic Validation of the Rolling Sample Kurtosis Calculation as Implemented on a 
Smartwatch 

We implemented six movement sequences with varying expected values of kurtosis 
using the custom-built robot. The robot “wore” a smartwatch on its wrist during these 
movements, and the smartwatch calculated kurtosis using the RSK algorithm. 

First, we observed that the distribution of tilt angles measured with the smartwatch 
was comparable with the distribution of tilt angles calculated from the robot trajectories 
(Figure 5), both for slow and faster speeds, although there were some errors. Second, we 
observed that kurtosis calculated from the smartwatch-estimated tilt angles using the RSK 
algorithm was highly correlated with planned kurtosis for the trajectories for slow motor 
speeds (r2 = 0.99, p = 0.0001; Figure 6) and for faster speeds (r2 = 0.86, p = 0.0078; Figure 6), 
although the slope was under 1 for the faster speeds, indicating that we underestimated 
kurtosis as faster speeds. 

Figure 4. (A): Increasing the window size n increases the execution time. We fitted a 2nd-order polyno-
mial to the data, resulting in an equation for standard kurtosis of (3.7280 × 10−5x2 + 0.0016x + 0.8461),
for the SciPy function (3.3760 × 10−6x2 + 0.0288x − 0.3913), and for the Rolling Sample Kurtosis
(−8.0800 × 10−9x2 + 0.0002x − 0.0062). (B): Logarithmic plot of the same execution times. (C): The
ratio of execution speed vs. buffer size when comparing the Rolling Sample Kurtosis approach
against the standard method (green) and the SciPy function (in orange).

3.3. Robotic Validation of the Rolling Sample Kurtosis Calculation as Implemented on
a Smartwatch

We implemented six movement sequences with varying expected values of kurtosis
using the custom-built robot. The robot “wore” a smartwatch on its wrist during these
movements, and the smartwatch calculated kurtosis using the RSK algorithm.

First, we observed that the distribution of tilt angles measured with the smartwatch
was comparable with the distribution of tilt angles calculated from the robot trajectories
(Figure 5), both for slow and faster speeds, although there were some errors. Second, we
observed that kurtosis calculated from the smartwatch-estimated tilt angles using the RSK
algorithm was highly correlated with planned kurtosis for the trajectories for slow motor
speeds (r2 = 0.99, p = 0.0001; Figure 6) and for faster speeds (r2 = 0.86, p = 0.0078; Figure 6),
although the slope was under 1 for the faster speeds, indicating that we underestimated
kurtosis as faster speeds.



Sensors 2024, 24, 5266 10 of 20
Sensors 2024, 24, 5266 10 of 21 
 

 

 
Figure 5. Histograms of smartwatch tilt angles representing the six tested trajectories with different 
values of kurtosis. Shown are the ground truth (calculated directly from the trajectories) and the 
estimated tilt angle (from the smartwatch) at two motor speeds. Refer to Appendix C for an 
explanation of the peaks at 0° and 180° in plots A and C. Please note that the ground truth values 
for slow and fast speeds are nearly identical in each pair, with the exception of plot D—
handshaking. In this particular plot, the trajectory at fast speeds deviates slightly from that at slow 
speeds; thus, the ground truths are different. This was due to a speed limitation in the supination 
motor for the fast speeds. 

 

Figure 6. Planned and measured kurtosis of the different trajectories. A normal distribution has a 
kurtosis of K = 0 and values lower than 0 indicate a more spread-out distribution. The thin, black 
line has a slope of 1. The planned kurtosis value for the “handshaking” fast movement (1.62) was 
lower than for the slow movement (4.19) due to a speed limitation in the supination motor for the 
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Figure 5. Histograms of smartwatch tilt angles representing the six tested trajectories with different
values of kurtosis. Shown are the ground truth (calculated directly from the trajectories) and the esti-
mated tilt angle (from the smartwatch) at two motor speeds. Refer to Appendix C for an explanation
of the peaks at 0◦ and 180◦ in plots A and C. Please note that the ground truth values for slow and fast
speeds are nearly identical in each pair, with the exception of plot D—handshaking. In this particular
plot, the trajectory at fast speeds deviates slightly from that at slow speeds; thus, the ground truths
are different. This was due to a speed limitation in the supination motor for the fast speeds.
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Figure 6. Planned and measured kurtosis of the different trajectories. A normal distribution has a
kurtosis of K = 0 and values lower than 0 indicate a more spread-out distribution. The thin, black
line has a slope of 1. The planned kurtosis value for the “handshaking” fast movement (1.62) was
lower than for the slow movement (4.19) due to a speed limitation in the supination motor for the
fast movement.
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Finally, an interesting observation from the experiment with human participants
described above is that the kurtosis estimate remained approximately constant for windows
of 1, 3, and 5 min. To determine what window size is adequate for accurately estimating
the kurtosis of epochs of human-like movement trajectories during repeated activities,
we repeated the experiment with the data from the robot. Due to the cyclic nature of the
trajectories, we expected that the kurtosis values would stabilize after a certain period.
We plotted the kurtosis as a function of the window size, determined the envelope of the
resulting function, and fitted an exponential decay model to this envelope. Using the decay
parameter derived from this model, we estimated the time required for the kurtosis to
diminish to a specified percentage of its initial value. As illustrated in Figure 7, the kurtosis
computed with RSK converged to 2% of the planned kurtosis value of each experiment
within less than 100 s for lower speeds and under 70 s for higher speeds. When an activity
is repeated, then the kurtosis converges in a few minutes.
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4. Discussion

These results represent needed steps toward the goal of providing wearable feedback
about QOME (i.e., the quality of the movement experience). First, in an experimental study
with young, unimpaired adults, we verified that different movement tasks produce a range
of forearm tilt angle kurtosis values. Thus, asking people to seek out and perform different
movement tasks can theoretically serve as a means to increase daily UE movement diversity,
as measured with kurtosis. Second, we derived a recursive algorithm (Rolling Sample
Kurtosis—RSK) for the real-time calculation of kurtosis on a smartwatch and verified that
it dramatically improves computation speed. Third, we embedded the RSK algorithm on a
commercial smartwatch and validated its accuracy using a robotic simulator that “wore”
the smartwatch. We now discuss these results and then study limitations and directions for
future research.

4.1. Daily Activities and Forearm Postural Kurtosis

In a previous study with persons with UE impairment after stroke, we found that
individuals with severe movement impairment displayed lower levels of forearm postural
diversity, as quantified with kurtosis [13]. This observation has motivated us to work
toward the goal of providing a wearable sensing tool for individuals post-stroke that they
can use to encourage forearm postural diversity in home rehabilitation. The present study
indicates that engaging in different activities can potentially improve diversity, as detected
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with kurtosis—the range of activities we tested had a wide range of forearm postural
kurtosis. Further, it was interesting to us that engaging in a typical home rehabilitation
program produced the most UE movement diversity as quantified by kurtosis. This
provides a unique validation of the conventional approach to home rehabilitation in terms
of verifying its value for promoting movement diversity, at least when those tasks are
performed by unimpaired individuals. Future research should confirm that different
activities modulate kurtosis in the case where those activities are performed by people with
movement impairment after a stroke.

Notably, kurtosis values remained relatively stable across the 1, 3, and 5 min windows
for the tasks we studied, indicating that these metrics can be effectively captured even
within short periods for repetitive daily activities. Our follow-up experiment with the
robotic arm that simulated different movement trajectories also confirmed that kurtosis
estimates can converge in approximately ~1 min for repetitive movement tasks. Incorporat-
ing additional data points into the distribution enhances the smoothness of the kurtosis
estimate by improving the stability of the statistical estimates. This is achieved by averaging
out anomalies and yielding a distribution that more accurately reflects the true population.
Nevertheless, reasonable accuracy is possible with 1 min windows. We found that kurtosis
converges in a few minutes when a movement activity is repeated.

Knowing this convergence rate is helpful, as many daily work, leisure, and exercise
activities are repetitive in nature. Our future goal is to provide feedback to participants
wearing the watch when an activity they are engaging in is more diverse. For example,
one could potentially have a smartwatch vibrate after it observes a movement epoch of
approximately 1 min with unusually low kurtosis. These vibrations could serve to notify
the user that they are “doing something desirable” in terms of exploring new movements.
To achieve this, we need to specify a sample window size that allows us to calculate kurtosis
and deliver feedback as promptly as possible. But we do not want to deliver feedback so
fast that it is confusing to the individual concerning what triggered the feedback. Knowing
the convergence time is approximately 1 min for repetitive activities gives an idea of an
appropriate window size for many of our daily work, leisure, and exercise activities. We
note, however, that if activities are not being repeated, it is unlikely kurtosis will converge
as demonstrated here.

4.2. Recursive Algorithm Accelerates Computation Speed

Providing real-time, wearable feedback about kurtosis requires being able to imple-
ment the computation on a smartwatch. We derived a novel, recursive algorithm for
calculating kurtosis, the Rolling Sample Kurtosis method. RSK sped up kurtosis computa-
tion by a factor of ~200 compared to the SciPy function on an average basis for window
sizes < 3000. Since the RSK algorithm operates more quickly, it potentially allows for a
higher sampling frequency to be utilized, which could improve estimation accuracy. As a
side note, other sensing applications besides QOME-based movement rehabilitation may
find the RSK algorithm useful for computing these higher-order moments of statistical
distributions, which is a need, for example, in machine learning for IoT devices [20].

4.3. Robotic Validation of Smartwatch Algorithms

A key problem in implementing wearable sensing algorithms is the difficulty in
assessing ground truth. Implementing a kurtosis algorithm on a smartwatch is feasible;
however, ensuring its accuracy is challenging. We previously used a simple robotic device
to evaluate an algorithm for detecting finger movement using a wearable, magnetic sensing
system [18]. Here, we followed a similar methodology, using a custom-built robotic
device that mimics the human forearm to create movement patterns with known kurtosis
values. This allowed us to verify the accuracy of the RSK algorithm as implemented on
a smartwatch.

The kurtosis estimate was less accurate at faster robot speeds, generally tending to
underestimate the actual kurtosis. We speculate this is due to a greater error in estimating
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tilt angle at higher speeds. Thus, an important direction for future research is the issue
of how tilt angle estimation affects kurtosis estimates. The method we used to estimate
forearm tilt angle is computationally simple and widely used [19] but it assumes the
accelerometer is not moving, as it is based solely on estimating the gravity vector orientation
in static conditions. When the accelerometer moves, it will introduce errors into the estimate,
with errors increasing at higher speeds. We tested two movement speeds with the robot (a
baseline slow speed at ~0.06 Hz and the faster movements at ~0.18 Hz), finding excellent
kurtosis estimation accuracy for both. However, these speeds are in the lower range of
human UE movement speeds. According to the study in [25], the frequency spectral
analysis of wrist movements during activities of daily living revealed that the predominant
frequency components ranged from 0.48 to 2.47 Hz, with a mean value of 1 Hz, a finding
consistent with the observation that power in a UE tracking task was mostly found up to
1 Hz [26]. Additionally, research by the authors of [27] on UE reaching after stroke found
predominant power in the movement signal up to ~0.5 Hz. Future work will use a robot
capable of higher movement speeds to understand the effect of speed on tilt angle and
kurtosis estimation. Other tilt angle estimation approaches are possible [28].

4.4. Toward Clinical Application of QOME-Based Feedback

Exploration and challenge are fundamental principles of both motor learning and
rehabilitation, yet existing wearable sensors simply count the quantity of movement. Fu-
ture work should test the hypothesis that quantitative assessments of the quality of the
movement experience—as captured, for example, by forearm posture diversity—are bene-
ficial in designing wearable feedback systems for post-stroke rehabilitation because they
can encourage patients to practice specific exercises or activities that challenge the patient
in a desirable way. For example, with a real-time measure of QOME implemented on a
smartwatch, it would be possible to test if the smartwatch-based feedback of QOME could
be used to encourage people to explore new movement patterns, thereby challenging their
motor system and promoting movement recovery. The results presented in this paper move
us a step closer to implementing a clinical trial that tests this possibility.

4.5. Other Potential Uses of Kurtosis

By definition, in statistics, kurtosis is a powerful tool together with skewness to mea-
sure the normality of datasets [29]. Naturally, kurtosis has been employed for application-
agnostic research on investigating the characteristics of real-world data samples [30]. In
practice, the kurtosis-based data characterization has shown its unique value in a wide
range of application domains. For example, kurtosis is proposed as a better indicator
to overcome the problem of galaxy biasing in large-scale cosmic fields [31]; systematic
kurtosis is incorporated into an asset pricing model to estimate the investment risks and
returns [32]; mean kurtosis offers an improved sensitivity in detecting developmental
and pathological changes in neural tissues as compared to conventional diffusion tensor
imaging [33]; diffusional kurtosis is investigated as a potential metric for clinical stroke
evaluation [34]; and in fact, diffusion kurtosis imaging (DKI) has been developed as a novel
technique for evaluating pathology throughout the body in various clinical settings [35]. In
these various applications, the real-time implementation of kurtosis derived here could
possibly find use.

4.6. Limitations

Limitations of the current study include the following. First, as mentioned in the
Introduction, the kurtosis of forearm tilt can distinguish persons with severe and moderate
impairment after stroke but not persons with moderate and mild impairment. Thus,
other measures of the QOME for less impaired individuals besides kurtosis are likely
needed. Second, we studied unimpaired participants in the experimental study of how
different activities affect kurtosis. Impaired persons may have greater difficulty varying
forearm tilt diversity during different activities. Future work should study this issue in
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people with a range of impairment levels. Third, our estimates for convergence time for
estimating kurtosis are for repetitive activities, but not all movement activities are repetitive.
Fourth, the robot we developed could only move at slow speeds. Investigating the effect of
higher movement speed on kurtosis calculation is an important future direction and will
likely depend on implementing more sophisticated forearm posture estimation algorithms.
Finally, the ultimate validation of QOME feedback will require a randomized controlled
clinical trial.

5. Conclusions

This study found that different movement tasks have different kurtosis values; derived
a novel, recursive algorithm that dramatically improves the computation speed of kurtosis;
and used a robot arm to demonstrate that the algorithm accurately computes kurtosis
in real time. We are moving forward now to using the real-time kurtosis algorithm on a
commercial smartwatch to provide QOME feedback for stroke rehabilitation.
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Appendix A

The Rolling Sample Kurtosis (Equation (4)) implements the following concepts to
improve performance:

• The maximization of the usage of intermediate results to avoid repeating the same cal-
culations.

• The minimization of the multiplication operations to reduce the calculation overhead,
e.g., (xn+1 + x0 -2x⌈n+1⌉k

) in (2) should be calculated in the way of [(xn+1 − x⌈n+1⌉k
)

+ (x0 − x⌈n+1⌉k
)], which also maximizes the usage of intermediate results if (xn+1 −

x⌈n+1⌉k
) and (x0 − x⌈n+1⌉k

) are already calculated beforehand.
• The avoidance of exponential calculations. For example, we can use a temporary

variable to save the intermediate result, e.g., dif = (x⌈n+1⌉k
− x⌈n⌉k

). As such, (x⌈n+1⌉k

− x⌈n⌉k
)2 can be calculated as dif2 = dif*dif, and (x⌈n+1⌉k

− x⌈n⌉k
)3 can be calculated

as dif3 = dif*dif2.

https://github.com/gcornella/RealTime-Kurtosis
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Algorithm A1. Rolling Sample Kurtosis

Input: The most recent tilt angle calculated at every sensor event using the accelerometer values (newValue—Equation (1)), the
previously deleted tilt angle (poppedValue), the buffer index counter (i), and the previous results from the last iteration (oldMean,
oldM2, oldM3, oldM4, and oldKurtosis)
Output: The newly updated results (newMean, newM2, newM3, newM4, and newKurtosis)

newValue → a new tilt angle is generated
if (i == 1 and poppedValue == −1) then → when receiving the first calculated tilt angle

newMean = newValue → update the mean
newM2 = newM3 = newM4 = newKurtosis = 0 → initialize variables

else if (poppedValue == −1) then → Incremental approach (the buffer is not full yet)
delta = newValue - oldMean
delta_n = delta/i
delta_n2 = delta_n*delta_n
term1 = delta * delta_n * (i − 1)
newMean = oldMean + delta_n → Cumulative Sample Mean (CSM)
dif1 = newValue – newMean → Intermediate assignations
dif2 = newMean − oldMean
newM2 = oldM2 + dif1*(_newValue - oldMean) → Cumulative Sample Variance (CSV)
newM3 = oldM3 − 3*dif2*oldM2 + (newM2 − oldM2)*(dif1 − dif2) → Cumulative Sample Skewness (CSS)
newM4 = oldM4 + term1 * delta_n2 *(i*i − 3*i + 3) +

6*delta_n2*oldM2 - 4*delta_n*oldM3
→ Cumulative Sample Kurtosis (CSK)

newKurtosis = i * newM4 / (newM2 *newM2) → Kurtosis
else → Rolling approach (the buffer is full)

dif3 = newValue - poppedValue → Intermediate assignations
newMean = oldMean + dif3/MAX_SIZE → Rolling Sample Mean (RSM)
dif4 = poppedValue − newMean → Intermediate assignations
dif5 = newValue − newMean
dif6 = newMean − oldMean
dif7 = _poppedValue − oldMean
sum1 = dif4 + dif5
newM2 = oldM2 + dif3*(dif5 + dif7) → Rolling Sample Variance (RSV)
newM3 = oldM3 − 3*dif6*oldM2 + dif3*(dif7*(dif4 − dif6) +

dif5*sum1)
→ Rolling Sample Skewness (RSS)

dif6_2 = dif6*dif6 → to avoid exponential calculations
newM4 = oldM4 − 4*dif6*oldM3 + 6*dif6_2*oldM2 +

dif3*(dif6*dif6_2 + sum1*(dif5*dif5 + dif4*dif4))
→ Rolling Sample Kurtosis

newKurtosis = MAX_SIZE * newM4 / (newM2 * newM2) → Kurtosis
end if
_mean = newMean
_M2 = newM2
_M3 = newM3
_M4 = newM4
_kurtosis = newKurtosis

→ update the old values with the new ones

return newMean, newM2, newM3, newM4, newKurtosis

Appendix B

For all trajectories, the robot’s “rot” joint was allowed to vary between 0◦ and 90◦ to
align with the human right forearm’s motion range. Similarly, the “ext” spanned from 0
to −90◦, and the “sup” was modulated from 0◦ to 180◦, to closely replicate the entirety of
possible movements.
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Appendix C

Notice that the experimental tilt angles calculated by the watch display a higher
frequency of values around the minimum (0◦) and maximum (180◦) ranges (Figure A3).
This occurs primarily because the robot, which is built with stepper motors, cannot change
direction immediately, and the watch records more points at the extremes. Additionally,
the applied filtering smooths the signal at its peaks, leading to a histogram plot with more
values at these extremes, as illustrated by the peaks in Figure 5A.
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Figure A4. The tilt angles from the first 5 repetitions of the arm wrestling activity. The slow speed is
indicated in red, and the faster speed is represented in blue. “GT” denotes ground truth.

Appendix D

The following figures illustrate the convergence of kurtosis over time. As the time
window extends, the kurtosis values tend to stabilize. The upper subplots (slow speed)
and mid subplots (fast speed) present exponential fits (green lines) to the envelopes (ma-
genta lines) of the real-time measured kurtosis. The bottom subplots display the decay of
measured kurtosis for each experiment over time, with the slow speed shown in red and
the fast speed shown in blue.
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