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 I. Introduction 

 Human  beings  have  a  powerful  ability  to  learn  language  implicitly,  through  mere  exposure 

 and  even  without  conscious  effort  or  awareness.  Implicit  language  learning  refers  to  the 

 process  of  learning  a  language  by  being  exposed  to  it  rather  than  a  conscious  effort  to  learn 

 it.  Prior  research  (Saffran,  Aslin,  and  Newport  1996;  Frank,  Tenenbaum,  and  Gibson  2013) 

 have  shown  how  infants  and  adults  are  able  to  identify  words  in  an  artificial  language  after 

 being  exposed  to  it  for  a  short  duration  through  statistical  learning,  a  process  by  which 

 recurring  structures  in  the  language  are  identified  and  stored  in  the  memory.  Such  learning 

 has  also  recently  been  shown  to  occur  outside  of  the  lab,  with  real  languages  (Oh  et  al., 

 2020).  The  work  by  Oh  et  al.  (2020)  showed  that  Non-Māori  Speakers  (NMS)  (–  i.e  New 

 Zealanders  who  don't  speak  Māori  but  are  frequently  exposed  to  it  in  everyday  life  –  ),  have 

 implicit  lexical  and  phonotactic  knowledge.  The  phonotactic  knowledge  was  best  explained 

 by  the  assumption  that  it  derives  from  a  memory  store  of  phoneme  sequences  that  recur  with 

 statistical  regularity  in  the  language,  called  morphs  .  Further,  Panther  et  al.  (2023b)  replicated 

 this  result  with  more  tightly-controlled  stimuli  and  showed  that  an  individual's  lexical  and 

 phonotactic  knowledge  are  correlated,  lending  crucial  empirical  support  to  Oh  et  al.'s 

 assumption  that  phonotactic  knowledge  derives  from  lexical  knowledge.  Panther  et  al. 

 (2023a)  showed  that  NMS  were  able  to  segment  words  into  morphs  more  accurately  than 

 Americans  (who  are  not  exposed  to  Māori)  ie  the  segmentations  made  by  NMS  more  closely 

 mirrored  those  made  by  the  fluent  Māori  speakers,  supporting  the  claim  that  they  have  a 

 memory-store  of  morphs.  Furthermore,  their  segmentations  were  sensitive  to  phonological 

 properties  (such  as  phonotactics  i.e.  phoneme  sequences  which  are  more  likely)  in  similar 

 ways  to  those  of  fluent  speakers,  suggesting  that  the  morphs  learned  by  statistical  learning 
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 align  well  with  the  actual  underlying  morphs  of  the  language.  These  three  works  collectively 

 provide  evidence  for  the  idea  that  non-native  speakers  (NMS)  possess  lexical  and  phonotactic 

 knowledge, and that this knowledge is interconnected. 

 It  has  been  postulated  that  this  knowledge  is  gained  through  statistical  learning,  but 

 relatively  little  is  known  about  the  precise  aspects  of  linguistic  structure  that  facilitate  such 

 learning.  In  this  work  we  aim  to  take  the  first  steps  towards  understanding  this  by  focusing 

 on  two  analyses.  First,  we  compare  the  segmentations  generated  by  Morfessor  (Smit  et  al., 

 2014)  ,  a  naive  unsupervised  morphological  segmentation  model  on  real  Māori  with  the 

 segmentations  produced  by  Non-Māori  speakers  (NMS)  exposed  to  real  Māori.  This 

 comparison  sheds  light  on  the  similarities  and  differences  between  the  statistical  learning 

 processes  employed  by  Morfessor  and  NMS.  Second,  we  investigate  the  performance  of 

 Morfessor  on  actual  Māori  words  compared  to  artificially  generated  Māori-like  language 

 (pseudo  Māori).  Using  artificially  generated  languages  provides  us  the  capability  to  make 

 sure  it  reflects  the  statistics  of  the  language  and  that  it  follows  Morfessor’s  concatenativity 

 assumption  i.e.  that  it  does  not  contain  other  cues  to  morph  boundaries  that  are  in  real  Māori. 

 By  analyzing  the  differences  between  pseudo  and  real  Māori,  we  gain  insights  into  the 

 limitations  and  deficiencies  of  Morfessor  in  capturing  the  complexities  of  real  Māori.  By 

 putting  together  insights  from  these  two  analyses,  we  shed  light  on  the  similarities  and 

 differences  between  the  statistical  learning  processes  employed  by  Morfessor  and  NMS, 

 contributing  to  a  better  understanding  of  implicit  language  learning  through  exposure. 

 Furthermore,  by  examining  Morfessor's  performance  across  these  distinct  analyses,  we  aim 

 to  contribute  to  the  broader  implications  of  it  towards  unsupervised  learning  of 

 morphological structure. 
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 To summarize, the research questions of this work are as follows : 

 1.  What  are  the  similarities  and  differences  between  the  statistical  learning  processes 

 employed by Morfessor and NMS in the context of Māori language segmentation? 

 2.  How  does  the  performance  of  the  Morfessor  algorithm  on  actual  Māori  words 

 compare  to  expectations  derived  from  artificially  generated  Māori-like  language 

 (pseudo  Māori),  and  what  insights  can  this  provide  into  the  limitations  and 

 deficiencies of Morfessor in capturing the complexities of real Māori? 

 3.  What  are  the  implications  for  unsupervised  learning  of  morphological  structure  in 

 segmentation  models,  considering  that  Morfessor  may  perform  differently  in  different 

 subsets  of  data  due  to  its  potential  limitations  and  missed  assumptions?  How  can  the 

 understanding  of  these  implications  contribute  to  a  better  grasp  of  implicit  language 

 learning  through  exposure,  particularly  in  the  context  of  unsupervised  morphological 

 segmentation models when used in languages like Māori? 

 By  addressing  these  research  questions,  the  study  aims  to  uncover  the  potential  and 

 boundaries of statistical learning in implicit language learning . 

 II. Background 

 A.Implicit language learning and Statistical learning 

 How  humans  learn  to  extract  knowledge  from  their  environment  is  one  of  the 

 fundamental  questions  in  cognitive  science.  Statistical  learning  refers  to  the  process  of 
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 extracting  statistical  regularities  from  input  and  adapting  to  them,  based  on  considerations  of 

 frequency,  variability,  distribution,  and  co-occurrence  (Saffran  et  al.,  1996)  .  Humans  are 

 highly  sensitive  to  such  statistical  regularities  and  implicitly  learn  them  from  birth  (Bulf, 

 Johnson, and Valenza 2011; Gervain et al. 2008; Teinonen et al. 2009)  . 

 Implicit  learning  refers  to  the  process  of  learning  without  intention,  and  even  without  the 

 awareness  of  what  has  been  learned  (Williams,  2020)  .  Implicit  learning  plays  a  crucial  role 

 in  human  cognition  as  it  underlies  various  essential  skills  such  as  language  comprehension 

 and production, intuitive decision making, and social interaction  (Rebuschat, 2015)  . 

 A  particularly  prominent  form  of  implicit  learning  is  statistical  learning.  While  early 

 literature  on  statistical  learning  focused  narrowly  on  transition  probabilities,  in  this  work 

 "statistical  learning"  is  being  used  more  broadly  to  capture  the  learning  of  statistical 

 morphological properties. 

 Saffran  et  al.  (1996)  was  the  first  study  that  showed  that  infants  were  able  to  segment 

 segment  a  fluent  speech  stream  of  a  highly  constrained  artificial  language  into  word-like 

 units  after  just  two  minutes  of  exposure  to  the  artificial  language,  thus  showing  how  infants 

 were  performing  word  segmentation  through  statistical  learning  by  being  able  to  track  the 

 transitional  probabilities.  Estes  et  al.  (2007  )  demonstrated  that,  for  infants,  exposure  to  word 

 forms  in  a  statistical  word  segmentation  task  facilitates  subsequent  word  learning,  thus 

 showing the effect of implicit learning in the downstream task of word learning. 

 There  have  been  other  studies  that  have  shown  different  regularities  in  language  learnt 

 through  implicit  statistical  learning  by  children  and  adults.  Saffran  et  al.  (1997)  investigated 

 the  word  segmentation  abilities  of  first-grade  children  and  adults  using  an  incidental 

 language-learning  task.  Incidental-learning  studies  typically  require  that  the  subjects  are 

 4 



 engaged  in  a  non-linguistic  task  while  linguistic  stimuli  play  in  the  background  so  that  the 

 participants  are  not  actively  and  continuously  attending  to  the  linguistic  stimuli.  This  way, 

 any  learning  that  occurred  can  be  concluded  as  completely  incidental,  in  that  the  attention 

 was  not  directed  to  the  language  learning  task  which  they  are  being  tested  for.  The  subjects 

 were  told  that  they  were  participating  in  an  experiment  investigating  the  influence  of  auditory 

 stimuli  on  creativity.  The  experiment  had  adults  and  children  perform  a  coloring  activity  on 

 the  computer  (incidental  task)  while  the  auditory  stimuli  of  artificial  language  with  no  pauses 

 or  any  acoustic  or  prosodic  cues  to  word  boundaries  was  being  played  in  the  background. 

 After  the  20  minute  experiment,  the  participants  were  given  two  sets  of  words  and  asked  to 

 guess  which  one  sounded  like  the  one  that  was  played  in  the  background  during  the 

 experiment.The  results  showed  that  both  age  groups  were  able  to  learn  the  words  of  an 

 artificial  language  presented  in  continuous  speech,  with  children  performing  as  well  as 

 adults. 

 B. Statistical learning in Real world languages 

 As  seen  above,  previous  research  with  artificial  language  learning  paradigms  has 

 shown  that  infants  are  sensitive  to  statistical  cues  to  word  boundaries  and  that  they  can  use 

 these  cues  to  extract  word-like  units  (Saffran,  2001)  .  However,  this  leads  us  to  the  question  of 

 whether  infants  perform  statistical  learning  in  real  languages  they  hear  outside  the  lab?  Do 

 they  use  this  statistical  information  to  construct  word  forms  as  they  do  in  the  artificially 

 created  languages?  Pelucchi,  Hay,  and  Saffran  (2009)  found  that  8-month-old  English 

 learning  infants,  exposed  to  Italian,  were  capable  of  identifying  patterns  of  transitional 
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 probabilities  in  language,  even  when  the  linguistic  input  was  intricate,  naturally  spoken, 

 followed  grammatical  rules,  and  conveyed  meaning.  Demonstration  of  statistical  learning  in 

 a  natural  language  allowed  for  greater  ecological  validity  than  previous  experiments  using 

 artificial  languages.  However,  these  results  tell  us  little  about  the  representations  that  infants 

 formed while listening to the fluent speech. 

 Ngon  et  al.  (2013)  showed  that  11  month  old  French  learning  infants  used  statistical 

 information  to  extract  word  candidates  from  their  input.  Using  nonword  stimuli  matched  with 

 syllabic  structure  of  real  French  words,  the  work  showed  that  infants  listen  longer  to  high 

 frequency  disyllabic  sequences  than  low  frequency  disyllabic  sequences.  This  shows  that 

 infants  are  sensitive  to  the  statistical  property  of  frequency.  Using  another  experiment 

 comparing  high-frequency  nonwords  and  high-frequency  French  words  as  stimuli,  they 

 showed  that  infants  showed  no-difference  between  these  two.  Together  this  work  depicted 

 how  infants,  when  they  haven’t  yet  learnt  to  segment  words  accurately  from  their  input,  are 

 using  the  statistical  recurrence  of  the  units  in  their  input  towards  the  word-finding  process. 

 The  units  that  recur  sufficiently  often  are  extracted  as  morphs  and  stored  in  memory,  in  a 

 proto-lexicon  (Johnson  2016)  .  The  proto-lexicon  is  a  precursor  to  a  fully-fledged  mental 

 lexicon:  it  contains  forms,  but  not  necessarily  associated  meanings,  and  may  contain  morphs 

 corresponding  to  both  words  and  non-words.  From  the  above  experiments,  it  is  evident  that 

 infants,  without  conscious  effort  (implicitly)  are  extracting  statistical  properties  in  the  input 

 they  are  exposed  to  create  their  protolexicon.  Thus  we  can  say  that  the  proto-lexicon  acts  as 

 the seat upon which implicit knowledge of a language is built. 

 Another  crucial  limitation  in  the  above  words  is  that  the  exposure  phase  was 

 performed  in  a  lab  based  setup;  while  the  stimuli  were  designed  to  be  naturalistic,  they  are 
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 still  highly  constrained  with  respect  to  the  number  of  words  they  are  exposed  to. 

 Additionally,  the  infants  were  placed  in  sound  attenuated  booths  and  the  setup  was  such  that 

 the  infants  would  actively  listen  to  the  stimuli  being  presented.  A  crucial  difference  in  the 

 approach  of  the  experiment  involving  non-native  Māori  speakers  (NMS)  as  in  (Oh  et  al., 

 2020)  ,  lies  in  the  type  of  exposure  they  receive  compared  to  this  experiment.  Unlike 

 controlled  experimental  settings  in  a  lab,  their  exposure  occurs  naturally  in  daily  life 

 situations,  spanning  a  prolonged  period.  Additionally,  the  degree  of  engagement  with  the 

 language  varies  among  participants,  reflecting  a  more  organic  and  diverse  range  of 

 interactions with the language, representing implicit learning scenarios in a real world setup. 

 Recent  work  by  Oh  et  al.  (2020  )  showed  that  Non-Māori  speaking  New  Zealanders 

 who  have  been  exposed  to  Māori  develop  a  Māori  proto-lexicon  through  implicit  statistical 

 learning.  Through  a  word  identification  experiment,  the  study  showed  that  New  Zealanders 

 who  are  commonly  surrounded  by  Māori  but  do  not  speak  it  were  able  to  distinguish  real 

 Māori  words  from  word-like  (phonotactically-matched)  nonwords,  thus  demonstrating 

 implicit  lexical  knowledge.  Further,  using  a  wellformedness  rating  experiment,  participants 

 rated  Māori-like  nonwords  for  how  good  they  would  be  as  a  real  Māori  word,  using  a  scale 

 ranging  from  1  (‘Non  Māori-like  non-word’)  to  5  (‘Highly  Māori-like  non-word’).  The 

 words  for  the  stimuli  represent  different  degrees  of  phonotactic  wellformedness  based  on  the 

 statistics  of  the  language.  The  participants  involved  three  groups  -  NMS,  fluent  Māori 

 speakers,  and  non-Māori  speaking  Americans.  The  Fluent  Māori  speakers  provide  us  with  a 

 baseline  metric  given  that  they  have  full  lexicon  and  a  complete  phonotactic  knowledge.  The 

 US  participants  are  at  the  other  end  of  the  comparison,  given  that  they  have  no  lexicon  and 

 almost  no  phonotactic  knowledge  of  the  language.  The  results  showed  that  the  US 
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 participants  showed  only  a  slight  increase  in  their  ratings  across  varying  levels  of  phonotactic 

 probability,  suggesting  they  have  minimal  specific  knowledge  of  Māori  phonotactics.  In 

 contrast,  both  NMS  demonstrated  a  substantial  increase  in  their  ratings  in  line  with 

 phonotactic  probability,  indicating  a  significant  understanding  of  Māori  phonotactics.  This 

 shows  that  the  ratings  provided  by  NMS  is  not  by  mere  guessing,  rather  it  is  a  result  of  their 

 exposure  to  Māori,  indicating  proof  of  non-negligible  phonotactic  knowledge  of  Māori. 

 Additionally,  the  performance  of  the  NMS  did  not  significantly  differ  from  that  of  MS,  which 

 shows  that  NMS  have  gained  a  strong  phonotactic  knowledge  of  Māori  which  is  similar  to 

 that of MS. 

 To  analyze  the  source  of  NMS’  phonotactic  knowledge,  simulations  of  proto-lexicon 

 with  varying  vocabulary  sizes  of  Māori  lexicon  were  used  to  predict  NMS’  well-formedness 

 ratings.  The  results  showed  that  the  well-formedness  ratings  of  NMS  participants  can  be 

 adequately  explained  by  assuming  that  their  phonotactic  knowledge  is  based  on  a 

 proto-lexicon  consisting  of  3,000  common  Māori  words.  Further,  the  authors  noted  that  from 

 what  is  known  about  statistical  learning,  it  is  possible  that  the  NMS  proto-lexicon  does  not 

 consist  of  words  at  all,  but  is  rather  made  up  of  morphs,  which  are  phonological 

 (sub)sequences  that  recur  across  different  words.  To  test  the  cognitive  assumption  that  the 

 NMS  proto-lexicon  consists  of  morphs,  phonotactic  probabilities  were  calculated  based  on 

 morphs  (obtained  from  morph  segmentation  of  words  by  a  fluent  Māori  speaker).  Using 

 ordinal  mixed-effects  regression  models,  the  morph-based  phonotactic  probabilities  better 

 predicted  NMS’s  ratings  than  the  word-based  phonotactic  probabilities,  thus  suggesting  that 

 the  NMS’  protolexicon  most  likely  consists  of  morphs.  Using  simulations  of  a  proto-lexicon 

 consisting  of  morphs,  the  work  showed  that  the  NMS  participants'  ratings  can  be  adequately 
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 predicted  by  phonotactic  knowledge  generated  over  a  set  of  approximately  1,500  of  the  most 

 common morphs. 

 Through  modeling  of  these  results,  it  was  concluded  that  the  best  fit  of  the 

 performance  of  these  non-Māori  speakers  in  the  lexical  tasks  is  explained  by  their  statistical 

 learning  of  word  parts  or  morphs,  which  involves  segmenting  words  into  smaller  components 

 and  storing  them  for  future  use.  Building  on  this,  recent  work  Panther  et  al.  (2023a)  showed 

 that  morphological  segmentations  by  Non-Māori  speakers  in  New  Zealand  matches  the 

 segmentations  by  proficient  Māori  speakers,  thus  adding  to  the  literature  that  NMS  are  able 

 to gain speaker-like knowledge through ambient exposure and implicit statistical learning. 

 It  brings  up  the  important  and  interesting  question  of  how  language  structure  affects 

 the  learning  by  non-speakers  of  a  language  to  segment  words  in  a  real  language  and  process 

 morphological  complexities  of  the  language.  Todd  et  al.  (2023)  raise  this  question  in  a 

 replication  of  Oh  et  al.'s  (2020)  work,  targeting  implicit  knowledge  of  Spanish  held  by 

 non-Spanish-speaking  Californians  and  Texans.  In  this  work,  the  authors  showed  that 

 non-Spanish  speakers  in  California  and  Texas  (states  where  Spanish  is  largely  spoken),  have 

 implicit  lexical  and  phonotactic  knowledge  of  Spanish.  However,  it  appears  to  be  weaker 

 than  the  knowledge  of  Māori  held  by  Non-Māori  speakers  in  New  Zealand  studied  by  Oh  et 

 al.  (2020  ).  One  potential  explanation  is  the  structure  of  the  language  ,  morphology  being  a 

 notable  structural  difference  –  Spanish  has  morphological  differences  to  Māori,  such  a  lower 

 use of compounding compared to (inflectional or derivational) affixation. 

 C. Morphological Segmentation 
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 Having  seen  that  adults  use  phonotactic  cues  to  segment  words  from  sentences,  and 

 knowing  that  language  contains  recurring  structures,  it  is  highly  likely  that  learners  are 

 implicitly  learning  these  structures  in  the  process  (  Panther  et  al.,  2023a  )  .  The  literature  on 

 modeling  morphological  segmentation  processes  reinforces  this  perspective,  indicating  that 

 morphological  segmentation  can  be  accomplished  without  relying  on  semantic  knowledge. 

 Various  algorithms  have  been  proposed,  demonstrating  that  recurrent  morphological  patterns 

 can  be  statistically  learned  in  a  bottom-up  manner  solely  from  exposure  to  word  forms 

 (Creutz  and  Lagus,  2007;  Daland  and  Pierrehumbert,  2011)  .  Some  algorithms  like  Morfessor 

 (Creutz  and  Lagus,  2007)  assume  that  segmentations  require  reference  to  an  inventory  of 

 morphs,  so  there  is  an  assumed  proto-lexicon.  Whereas  other  algorithms  such  as  DiBS 

 (  Daland  and  Pierrehumbert,  2011)  assume  that  segmentation  can  occur  based  on 

 phonological  transition  probabilities  alone,  without  the  need  of  a  known  inventory 

 (proto-lexicon). 

 In  morphological  segmentation  the  goal  is  to  identify  boundaries  within  words  by  splitting 

 them  into  morphemes,  the  smallest  meaning-carrying  units.  In  unsupervised  approaches,  the 

 inventory  of  parts  is  inferred  from  the  training  data,  by  identifying  the  morphs  –  sequences  of 

 characters,  phonemes,  or  larger  ‘atoms’  –  that  recur  across  words  with  statistical  regularity. 

 For  this  work  we  use  Morfessor  (Virpioja  et  al.,  2013)  )  as  our  naive  statistical  learner,  a 

 generative  probabilistic  unsupervised  morphological  segmentation  model.  We  chose  to  use 

 Morfessor  due  to  its  simple  assumptions  and  is  often  used  as  a  baseline  among  morphological 

 segmentation models. 
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 Unsupervised  morphological  segmentation  provides  us  an  avenue  to  simulate  implicit 

 statistical  learning  processes.  In  this  work  ,  we  use  Morfessor  ,  which  is  one  of  the  popular 

 unsupervised  morphological  segmentation  models  in  the  field.  Morfessor  operates  within  a 

 Minimum  Description  Length  framework  (Rissanen,  1978)  ,  aiming  to  identify  the  most 

 concise  and  straightforward  set  of  morphs  (the  lexicon)  that  can  generate  the  training  data 

 with  the  highest  probability.  In  this  approach,  the  lexicon  is  treated  as  a  collection  of  morphs, 

 and  during  training,  the  cost  of  adding  a  particular  morph  to  the  lexicon  is  determined  based 

 on  both  its  complexity  and  how  frequently  it  appears  across  words.  The  training  data  are 

 assumed  to  be  generated  from  the  lexicon  by  concatenating  morphs  drawn  independently 

 from  it,  without  considering  any  constraints  related  to  their  position,  sequencing,  or 

 morphosyntactic  category.  Morfessor  is  based  on  the  assumptions  that  words  are  composed 

 of  morphs,  that  frequent  morpheme  sequences  indicate  valid  morphological  units,  and  that 

 language  users  are  capable  of  generating  new  words  through  productive  morphological 

 processes.  This  then  neatly  relates  to  the  assumption  which  was  modeled  in  Oh  et  al.  (2020  ), 

 which  showed  that  NMS’s  phonotactic  knowledge  can  be  best  explained  by  a  protolexicon 

 made  up  of  morphs.  Morfessor  thus  can  be  a  good  candidate  to  understand  the  exact 

 underlying  implicit  learning  processes  used  by  Non-Māori  speakers  (NMS).  By  drawing 

 parallels  between  the  learning  processes  between  NMS  and  Morfessor,  this  work  aims  to 

 look into the extent of statistical learning used by NMS. 

 In  the  context  of  our  discussion,  it  is  essential  to  acknowledge  the  inherent  limitations 

 of  Morfessor,  which  arise  from  the  simplifications  entailed  by  its  assumptions.  However,  as 

 we  will  elaborate  in  the  following  section,  the  structural  characteristics  of  the  Māori  language 
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 align  well  with  these  assumptions.  This  alignment  suggests  that  Morfessor  can  be  considered 

 a plausible naive cognitive model for the purposes of our analysis. 

 III. Māori Language 

 Māori,  or  te  reo  Māori,  commonly  shortened  to  te  reo,  is  an  Eastern  Polynesian 

 language  spoken  by  the  Māori  people,  the  indigenous  population  of  mainland  New  Zealand. 

 As  of  the  latest  data  available,  the  2018  New  Zealand  Census  reported  that  there  are  185,955 

 Māori  speakers  which  accounts  for  approximately  3.9%  of  the  total  population  of  New 

 Zealand. 

 The  Māori  phoneme  inventory  consists  of  five  vowel  and  ten  consonant  phonemes  as  show  in 

 Table  1.  The  ten  consonant  phonemes  are  :  /p,  t,  k,  m,  n,  ŋ,  w,  f,  r,  h/  and  the  five  vowels  are 

 /i,  e,  a,  o,  u/.  The  orthography  in  Māori  is  highly  transparent  i.e.  the  written  form  closely 

 resembles  the  spoken  form.  The  consonants  are  represented  by  <p,  t,  k,  m,  n,  ng,  w,  wh,  r,  h>, 

 and  the  vowels  represented  by  <i,  e,  a,  o,  u>  respectively.  Vowel  length  is  phonemic,  and 

 each  vowel  has  a  long  counterpart.  Long  vowels  are  represented  with  a  macron:  <ī,  ē,  ā,  ō, 

 ū>.  Māori  syllables  follow  a  (C)V(V)  template,  with  optional  simplex  onsets  and  no  codas. 

 Māori  also  has  a  transparent  morphological  system,  which  consists  of  little  inflectional  and 

 derivational  morphology,  and  in  which  compounding  is  frequent  (Harlow,  2007).  This  makes 

 it suitable for morphological segmentation models such as Morfessor. 

 In  the  context  of  the  Māori  language,  there  is  not  (yet)  a  consensus  on  what  is  and  is  not  a 

 diphthong,  based  on  phonetic  properties  (e.g.,  the  absence  of  hiatus  as  you  mention)  or 

 phonological  properties  (e.g.,  the  influence  on  stress  assignment).  Furthermore,  the  status  of 
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 a  VV  sequence  as  a  diphthong  or  sequence  of  monophthongs  is  affected  by  morphological 

 structure,  and  it  is  not  yet  clear  the  extent  to  which  diphthongization  across  morpheme 

 boundaries  occurs.  Given  these  outstanding  questions,  we  follow  other  quantitative  work  on 

 Māori in treating all Vs separately. 

 Thus,  for  the  purpose  of  this  study,  we  only  model  CV  and  V  structures.  The  models  hence 

 are  not  particularly  distinguishing  diphthongs  and  sequences  of  monophthong  structures  as  it 

 could lead to ambiguity. The table below (Harlow, 2007) shows the phoneme tables. 

 Table 1. Phonemes in Māori 

 IV. Analysis 1:  Comparing Morfessor and Non-Māori Speaker (NMS) 

 segmentations on real Māori words. 

 Non-Māori  speakers  in  New  Zealand  exposed  to  Māori  are  similar  to  Morfessor  in  the 

 sense  that  both  are  learning  to  segment  the  language  based  on  statistical  patterns  in  the 

 language  they  are  exposed  to  without  getting  feedback  (unsupervised).  In  both  cases  the 

 learners  are  using  recurring  units  to  learn  word  parts  in  order  to  build  their  proto-lexicon.  By 
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 comparing  them,  we  can  understand  how  similar  or  different  these  two  learning  processes  are 

 which  will  help  understand  how  statistical  learning  plays  a  role  in  implicit  language  learning 

 through exposure. 

 A. Data 

 The  dataset  used  here  is  the  NMS  Non-Māori  Speaker  (NMS  )  data  and  the  MS  (Māori 

 Speaker) data  . 

 1.  Non-Māori  Speaker  (NMS  )  data:  Non-speaker  segmented  data  is  used  from  Panther  et 

 al.  (2023a)  where  195  non-Māori  speakers  in  New  Zealand  were  asked  to  segment  Māori 

 words  into  morphs.  During  the  experiment,  the  participants  were  given  multiple  examples  of 

 morphological  complexity  in  English  and  Māori  before  providing  the  task  of  segmenting 

 Māori  words.  The  stimuli  were  presented  orthographically.  They  were  asked  to  click  between 

 any  two  letters  to  assign  a  segmentation  or  to  click  a  box  under  the  word  to  leave  the  word 

 unsegmented.  Each  label  obtained  from  the  participants  indicates  whether  or  not  the 

 participant thought if there was a boundary between the two letters. 

 Aggregating  NMS  data  :  In  order  to  use  the  NMS  data  as  a  comparison  between  Māori 

 Speakers  as  well  as  Morfessor,  it  needed  to  be  aggregated.  For  each  letter  pair  in  each  word, 

 there  were  labels  from  multiple  participants  where  the  labels  indicated  if  each  participant 

 thought  whether  there  was  a  boundary  between  the  two  letters.  To  aggregate  at  the  word 

 level,  the  majority  of  the  labels  at  each  position  were  taken  as  the  final  label  for  each  word. 

 For example, Table 2. below shows the aggregated data for one word ‘hoiho’. 

 Table 2. Example of aggregation of labels from NMS data. 
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 word  true_votes  false_votes  majority  segmentation 

 hoiho  [0, 1, 8, 0]  [11, 10, 3, 11]  [False, False, 
 True, False] 

 hoi+ho 

 The  participant  labels  were  counted  based  on  whether  they  placed  a  boundary  between  each 

 pair  of  letters.  For  the  word  ‘hoiho’,  there  are  4  possible  places  where  they  could  place  a 

 boundary  –  between  the  letters  ‘h’  and  ‘o’,  ‘o’  and  ‘i’,  ‘i’  and  ‘h’,  ‘h’  and  ‘o’.  The  true  votes 

 are  the  counts  of  how  many  participants  placed  a  boundary  in  these  positions  in  the  given 

 order.  Similarly  false  votes  are  the  number  of  participants  who  did  not  place  a  boundary  in 

 that  position.  The  majority  is  taken  between  the  two  sets  of  votes  to  determine  the  aggregated 

 segmentation which is ‘hoi+ho’. There are a total of 4427 words in this dataset. 

 2.  Māori  Speaker  (MS)  data  :We  use  the  word  segmentation  data  collected  from  a  fluent 

 Māori  expert  speaker  (MS  data)  in  Oh  et  al.  (2020)  .  As  described  in  their  work,  the  initial 

 corpus  consisted  of  19,595  words  from  the  Te  Aka  dictionary  (Moorfield,  2011).  However, 

 since  segmentations  could  reliably  and  straightforwardly  be  inferred  for  some  words  –  either 

 because  they  are  too  short  to  be  complex  or  the  result  of  productive  and  transparent 

 morphological  processes,  these  words  were  excluded  from  the  words  given  to  the  speaker. 

 1,014  words  that  were  identified  as  simplex—bimoraic  or  smaller—were  excluded. 

 Additionally,  34  bimoraic  words  composed  of  a  repeated  syllable  were  selectively  evaluated 

 for  potential  segmentation.  Another  6,360  words  were  held  out  in  order  to  reduce 

 redundancies,  so  that  the  raters  didn't  have  to  rate  more  than  necessary  in  order  to  confidently 

 arrive  at  segmentations  for  all  words  in  the  dictionary.  The  rationale  behind  this  selection  was 
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 that  these  words  were  formed  by  using  a  transparent  morphological  process  to  a  base  stem, 

 which  speakers  were  already  breaking  down  into  segments.  And  once  the  segmentation  of  the 

 stem  were  known,  the  segmentation  of  the  held-out  word  could  be  inferred  from  it.  The 

 remaining 12,221 words were presented to the fluent speaker  for segmentation. 

 For  the  7,374  words  initially  held  out  from  decomposition,  inferences  were  made 

 based  on  the  decompositions  of  related  words  within  the  dictionary.  Specifically,  the  1,014 

 short  words  presumed  to  be  simplex  were  inferred  to  contain  only  a  single  morph.  For  the 

 6,360  words  that  were  likely  products  of  transparent  morphological  processes  using  known 

 stems,  their  decompositions  were  inferred  by  applying  the  known  morphological  rules  to  the 

 identified  stems,  adding  affixes  and  reduplication  where  appropriate.  Words  formed  from 

 stems  that  the  speaker  could  not  recognize  were  marked  as  unknown,  which  accounted  for  71 

 words.  As  a  result,  segmentations  for  a  total  of  19,524  words  were  obtained.  Further 

 methodological details can be found in the supplemental document of Oh et al. (2020). 

 When  comparing  MS  and  NMS  performances,  we  take  a  subset  of  the  data  to  match  the 

 words from the NMS data to calculate the performance metrics. 

 B. Method 

 Morfessor  segmentations  :  Morfessor  was  trained  and  tested  on  the  words  for  which  we 

 have  the  NMS  segmentations  i.e  the  4427  words.  We  obtain  the  segmentations  for  those 

 words  for  which  we  have  the  word  category  information  in  order  to  compare  the  different 

 word categories across the two learners. 
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 The  broad  categories  of  words  in  the  dataset  are  polymoraic  ,  affixation  ,  monomorphemic 

 and  reduplication  . 

 1.  The  polymoraic  words  category  encompasses  terms  that  consist  of  four  or  more  moras; 

 these  words  may  not  display  transparent  morphology  yet  could  possess  complex  structures.  2. 

 Monomorphemic  words consist of a single morpheme. 

 a.  Bimoraic  disyllable  words  are  a  subset  of  monomorphemic  words  that  are 

 composed of two syllables, each typically containing a short vowel. 

 b.  Trimoraic  words,  another  subset,  consist  of  three  moras  and  may  feature 

 different syllabic structures, including long vowels. 

 3.  Affixation  category  words  are  those  that  carry  one  or  more  affixes  and  are  further 

 subdivided into three specific types: 

 a.  Nominal, 

 b.  Passive, and 

 c.  "whaka" prefixed words that typically denote a causative action in the language. 

 4.  The  reduplication  category  involves  words  that  exhibit  repetition  of  word  parts,  either 

 partially or in full. This category itself has several subcategories: 

 a.  partial  reduplication_left  short  where  the  first  mora  (syllable  containing  a  short 

 vowel) is repeated to the left, 

 b.  left-reduplication  where  2  morae  in  a  word  with  more  than  2  morae  are  repeated  to 

 the left, 

 c.  total reduplication where the entire word is duplicated to create a new meaning. 

 d.  partial  reduplication_left  long  which  involves  the  first  syllable  of  the  base  repeated  to 

 the left (and has its vowel lengthened) , and 
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 e.  partial reduplication_right where a portion of the end of the word is repeated. 

 The sub categories of words and their counts are shown in table 2 below. 

 Metrics  :  The  metrics  used  to  compare  performance  are  boundary  precision  and  recall 

 (Stolcke  and  Shriberg,  1996)  .  In  our  use  case  of  identifying  morphological  boundaries  in 

 words,  precision  and  recall  can  be  understood  in  the  context  of  whether  the  boundaries  are 

 identified  correctly  by  the  two  learners  (NMS  and  Morfessor)  compared  to  the  true 

 morphological  boundaries.  It  is  to  be  noted  that  the  "true"  boundaries  are  taken  to  be  those 

 produced  by  the  fluent  speaker  and  we  acknowledge  that  there  might  be  variation  between 

 speakers  for  these  boundaries.  Precision  in  this  context  refers  to  the  proportion  of  the 

 boundaries  identified  by  the  learner  that  are  actually  correct.  Recall  refers  to  the  proportion 

 of  the  true  boundaries  correctly  identified  by  the  learner.  For  example,  if  we  have  a  word  that 

 should  be  segmented  as  A+B+C  and  the  provided  boundary  position  by  NMS  is  A+BC,  then 

 the  precision  in  this  case  would  be  1  or  100%  and  the  recall  would  be  0.5  or  50%  since  the 

 learner  missed  one  boundary.  The  precision  and  recall  is  calculated  at  the  word  level  and 

 averaged for each subcategory. 

 Edge  cases:  In  the  context  of  this  analysis,  we  have  adopted  specific  conventions  to  handle 

 edge cases where traditional precision and recall metrics may not be directly applicable: 

 1.  True  Zero  Boundaries:  If  the  correct  segmentation  contains  no  boundaries,  and  the 

 learner  also  predicts  no  boundaries,  we  define  both  precision  and  recall  as  1.  This 

 reflects  perfect  agreement  between  the  learner's  predictions  and  the  ground  truth,  even 

 in the absence of boundaries to detect. 
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 2.  Missing  Learner  Boundaries:  When  the  true  segmentation  contains  boundaries,  but 

 the  learner  fails  to  predict  any,  traditional  precision  would  be  undefined  due  to  a  zero 

 divisor.  For  the  purposes  of  analysis,  we  will  consider  precision  to  be  0  in  this 

 scenario.  This  decision  aligns  with  the  principle  that  the  learner  has  failed  to  detect 

 any of the true boundaries it was supposed to find. 

 3.  Incorrect  Learner  Boundaries:  In  the  case  where  the  true  segmentation  has  no 

 boundaries  (e.g.,  mono-morphemic  words)  but  the  learner  incorrectly  predicts 

 boundaries,  recall  would  traditionally  be  undefined.  Again,  for  the  sake  of 

 consistency  in  analysis,  we  will  treat  recall  here  as  0.  This  reflects  the  learner's  error 

 in predicting boundaries where there should be none. 

 While  these  conventions  might  affect  the  interpretation  of  the  results,  they  are  necessary  to 

 ensure  that  the  analysis  remains  coherent  and  can  accommodate  all  possible  scenarios.  We 

 want  to  note  that  we  are  aware  of  the  limitations  inherent  in  this  approach  during 

 interpretation  of  overall  results.  By  following  up  with  an  error  analysis  alongside  our 

 quantitative  measures,  we  aim  to  address  these  limitations  and  provide  a  more 

 comprehensive understanding of the learner's performance in this context. 

 Table 3. Precision, recall for each of the word categories 

 category  morf_prec  NMS_prec  morf_rec  NMS_rec 

 polymoraic  0.70  0.8  1  0.88  0.82 

 monomorphemic  0.26  0.71  0.28  0.72 

 affixation  0.72  0.72  0.86  0.72 
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 reduplication  0.61  0.77  0.83  0.79 

 C. Results 

 Table  3.  shows  the  comparison  of  average  precision,  recall  for  Morfessor  and  NMS  for  each 

 of  the  four  categories  of  words.  Overall  the  NMS  speakers  seem  to  be  performing  better  than 

 Morfessor  in  all  categories  in  terms  of  precision  with  the  affixation  category  performance 

 being  equal  to  Morfessor.  NMS  precision  is  the  highest  in  the  polymoraic  category  followed 

 by  reduplication,  affixation  and  monomorphemic  categories.  However,  with  Morfessor,  the 

 highest  precision  is  obtained  in  the  affixation  category  followed  by  polymoraic,  reduplication 

 and  monomorphemic  categories.  The  recall  metric  however  has  a  different  trend  from  the 

 precision.  Morfessor  seems  to  consistently  have  a  higher  recall  in  all  the  categories,  the 

 highest  being  in  polymoraic  category.  This  could  be  due  to  over  segmentation  by  Morfessor. 

 NMS  has  the  highest  recall  in  the  polymoraic  category  as  well.  NMS  recall  is  the  lowest  in 

 the  monomorphemic  and  affixation  categories.  We  will  dive  deep  into  the  results  of  each  of 

 these  categories  and  subcategories  next.  Table  4  below  shows  the  sub-category  of  words  and 

 their respective precision,recall metrics. 

 Table  4.  Precision,  recall  and  average  frequency  of  the  morphs  each  learner  is  exposed  to 

 for each category. 

 category 
 sub 

 category  morf_prec  morf_rec  NMS_prec  NMS_rec 
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 monomorph 
 emic 

 bimoraic_di 
 syllable  0.21  0.21  0.88  0.88 

 trimoraic  0.31  0.35  0.54  0.55 

 affixation 

 nominal  0.71  0.84  0.66  0.67 

 passive  0.67  0.77  0.56  0.56 

 whaka  0.77  0.97  0.95  0.93 

 reduplicatio 
 n 

 total_redup  0.55  0.88  0.95  0.97 

 partial_redu 
 p_left_long  0.69  0.95  0.8  0.82 

 partial_redu 
 p_left_short  0.45  0.6  0.55  0.59 

 partial_redu 
 p_right  0.76  0.88  0.78  0.77 

 polymoraic  polymoraic  0.7  0.88  0.81  0.82 

 Monomorphemic  words  :  Any  word  with  three  or  fewer  morae  is  monomorphemic. 

 Monomorphemic  words  as  mentioned  can  be  either  bimoraic_disyllable  or  trimoraic.  For 

 example  ‘pewa’  is  a  bimoraic_disyllable.  NMS  predicted  ‘pewa’  with  no  boundaries,  while 

 Morfessor  predicted  ‘pe+wa’.  While  both  the  learners  seem  to  be  struggling,  Morfessor  is 

 better  in  the  trimoraic  category  than  the  bimoraic  disyllable,  whereas  NMS  appears  to  be 

 performing  substantially  better  than  Morfessor  in  both  the  categories,  bimoraic  di_syllable 

 being its highest in both precision and recall. 

 Affixation  :  Within  the  affixation  category,  both  Morfessor  and  NMS  struggle  the  most  with 

 nominal  subcategory  and  perform  the  best  in  whaka,  although  the  Morfessor  outperforms 

 NMS  in  the  nominal  and  passive  categories.  This  can  be  attributed  to  the  fact  that  “whaka” 

 contains  the  most  common  prefix,  and  so  it  should  be  easily  extracted  by  both  Morfessor  and 

 human  learners.  To  understand  the  performances  in  nominal  and  passive  categories,  we  need 
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 a  fine  grained  analysis  of  the  default  and  non-default  sub  categories  within  these  affix 

 categories.  Table  7  below  shows  the  split  of  default  and  non-default  affixes  in  the  nominal 

 and  passive  categories.  The  nominal  category  has  ‘haNa’  and  ‘taNa’  as  the  default 

 allomorphs  of  the  -Canga  affix.  The  non-default  variants  of  it  are  'aNa',  'Na',  'kaNa',  'maNa', 

 'raNa',  'faNa'.  Similarly  the  passive  category  has  ‘tia’  and  ‘hia’  in  the  default  allomorphs  of  the 

 -Cia  affix  category  and  has  variants  of  the  non-default  category:  ‘Nia',  'a',  'ia',  'ina',  'kia',  'mia', 

 'na','Na', 'ria', 'fia', 'fina', 'kina'. 

 To  compare  how  the  statistical  recurrence  of  default  and  non-default  affixes  in  the 

 input  affects  the  performance  of  these  learners  in  each  of  the  word  categories,  we  create  the 

 average morph frequency and affix accuracy metric. 

 Average  frequency  :  The  average  morph  frequency  metric  is  designed  to  quantify  the 

 exposure  frequency  of  various  morphs  to  learners.  For  Morfessor,  the  average  morph 

 frequency  calculation  is  based  on  the  morphs  present  in  the  word  types  that  are  input  into  the 

 model,  with  a  reference  to  the  segmentation  provided  by  an  expert  Māori  Speaker  (MS).  In 

 the  case  of  NMS,  the  average  morph  frequency  metric  is  derived  from  their  exposure  to  the 

 morphs  present  in  the  word  types  in  the  Te  Aka  dictionary  (Moorfield,  2011).  It  was 

 calculated  by  dividing  the  total  number  of  word  types  each  morph  occurred  in  by  the  sum  of 

 all  such  counts  for  all  the  morphs.  This  acts  as  a  proxy  for  the  linguistic  input  available  to 

 NMS. 

 The  average  morph  frequency  at  the  word  level  is  calculated  by  taking  the  average  of 

 the  corresponding  morph  frequencies  contained  in  the  word.  This  process  essentially 

 provides  a  measure  of  how  frequently  Morfessor  and  NMS  encounter  specific  morphs  in  the 

 language  across  different  word  categories.  By  comparing  these  frequencies,  we  can  gain 
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 insights  into  the  differences  in  morph  frequencies  in  relation  to  their  morphological 

 segmentation  process.  Removing  the  stem  and  looking  at  the  affix  frequency  alone  can  give 

 us  a  better  idea  to  interpret  the  results  of  the  different  sub  categories.  To  understand  the  effect 

 of  affix  segmentation  alone,  we  created  an  affix_acc  metric  to  calculate  the  accuracy  of 

 segmentation  of  the  affix  in  each  category  as  shown  in  the  table  5  below.  The  affix_acc 

 ranges  from  0  to  1.  The  Figure  1  below  shows  the  distribution  of  default  and  non-default 

 allomorphs for the different affix categories. 

 Average  affix  accuracy  :  This  metric  is  based  on  the  accuracy  of  getting  the  affix 

 segmentation  correct.  Irrespective  of  the  remaining  morphs  in  the  words,  the  affix  accuracy 

 for  a  word  is  1  if  the  affix  has  been  correctly  segmented.  The  average  of  the  affix  accuracies 

 for all the words in the category is presented as the value for each category in Table 5. 

 Figure  1.  Distribution  of  non-default  and  default  affix  categories  among  nominal,  passive  and 

 whaka affix categories. 

 Table 5. Affix segmentation accuracy and frequencies for Morfessor and NMS 
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 Morfessor  NMS 

 category  affix_type  affixes  affix_acc 
 affix_frequ 

 ency  affix_acc 
 affix_freq 

 uency 

 nominal 

 default  haNa','taNa'  1.00  0.97  0.89  0.77 

 non-default 

 aNa', 'Na', 
 'kaNa', 
 'maNa', 
 'raNa', 'faNa'  0.88  1.15  0.53  0.66 

 passive 

 default  tia','hia'  1.00  1.58  0.72  3.86 

 non-default 

 Nia', 'a', 'ia', 
 'ina', 'kia', 
 'mia', 
 'na','Na', 'ria', 
 'fia', 'fina', 
 'kina'  0.77  0.63  0.34  0.79 

 whaka  default  whaka  1.00  3.61  0.98  6.88 

 Nominal Category: 

 ●  Default  Affixes  :  In  nominals,  it  looks  like  within  the  default  affix  category  both 

 Morfessor  and  NMS  are  doing  relatively  well.  The  high  affix  frequency  of  1  in 

 Morfessor  and  0.89  in  NMS  attests  to  this.  This  could  be  due  to  the  fewer  items  of 

 affixes  in  this  category  along  with  the  fact  that  the  affix  frequency  is  high  for  this 

 category. 

 ●  Non-Default  Affixes  :  Here  ,the  performance  drops  for  both  Morfessor  and  NMS,  with 

 Morfessor  maintaining  a  lead.  Although  the  mean  affix  frequency  for  this  category  is 

 higher,  the  greater  variation  could  be  the  reason  behind  the  drop  in  affix  accuracy  in 

 Morfessor.  In  the  case  of  NMS,  the  affix  frequency  drops  which,  along  with  the 
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 multiple  variations  could  cause  the  lower  affix  accuracy.  This  suggests  that  the  lower 

 frequency  and  greater  variation  in  non-default  affixes  pose  challenges  to  effective 

 segmentation  in  both  learners.  In  the  case  of  Morfessor,  the  recall  is  high,  which  can 

 be  attributed  to  the  over  segmentation  behavior.  One  possible  explanation  for  the  low 

 performance  by  NMS  can  be  that  the  affix  frequencies  haven’t  reached  a  threshold  for 

 them to confidently identify the different templates needed. 

 Passive Category: 

 ●  Default  Affixes  :  Similar  to  the  nominal  category,  default  affixes  see  better 

 performance  compared  to  non-default  categories.  Morfessor  has  a  high  affix 

 frequency  within  this  category  which  could  be  the  reason  underlying  the  high 

 accuracy  in  segmenting  these  default  affixes.  NMS  on  the  other  hand,  has  a  relatively 

 high  affix  frequency  although  this  is  not  leading  to  the  same  increase  in  its  affix 

 accuracy.  Further  fine  grained  analysis  of  the  individual  affix  performance  might  shed 

 light on this behavior. 

 ●  Non-Default  Affixes  :  Both  Morfessor  and  NMs  have  the  lowest  affix  accuracy  in  this 

 category.  NMS  appears  to  be  struggling  more  than  Morfessor.  The  complexity  of  the 

 multiple  allomorphs  could  be  an  important  contributing  factor.  Similar  to  the 

 non-default  category  in  the  nominal  affixes,  the  low  performance  by  NMS  can  be  that 

 the  affix  frequencies  haven’t  reached  a  threshold  for  them  to  confidently  identify  the 

 different templates needed. 
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 'Whaka'  Category:  The  whaka  category  results  seem  to  be  straightforward.  Both  NMS  and 

 Morfessor  have  a  high  frequency  of  whaka  in  their  input  which  could  result  in  the  correct 

 segmentation  of  the  affix  in  almost  all  the  words  (accuracy  of  1  and  0.98  in  Morfessor  and 

 NMS respectively). 

 While  there  are  some  similar  trends  across  the  subcategories,  NMS  and  Morfessor  seem  to  be 

 learning  through  different  processes  by  using  the  statistical  regularities  in  distinct  ways 

 which  needs  further  analysis  by  breaking  down  each  of  the  non-default  affix  performances  as 

 well. 

 Reduplication  :  Morfessor  is  not  able  to  learn  patterns  like  humans.  NMS  speakers  are  able 

 to  identify  reduplicated  patterns  and  so  have  a  much  higher  precision  compared  to  Morfessor. 

 Within  reduplication  subcategories,  it  is  interesting  to  see  how  the  total_redup  frequencies 

 are  the  lowest  for  Morfessor  and  NMS  within  this  subcategory,  but  NMS  seem  to  be  having 

 the  highest  precision  in  total_redup,  indicating  an  intuitive  process  which  seems  to  be  helping 

 NMS  segment  these  words.  However,  for  Morfessor,  which  depends  on  the  distributional 

 properties of morphs, doesn’t seem to be picking up on recurrent patterns. 

 We  can  see  that  partial_redup_left_short  (Leftward  Redup  with  short  vowel)  is  the 

 hardest  for  both  Morfessor  and  NMS  in  terms  of  precision.  Morfessor  seems  to  be 

 performing  better  in  the  partial_redup_right  than  in  the  partial_redup_left_long,  even  though 

 the  average  frequency  is  higher  in  the  later  category.  Further  analysis  on  the  different  patterns 

 within  this  category  might  help  shed  light  on  this  behavior.  NMS  on  the  other  hand  ,  have  a 

 better precision for partial_redup_left_long than partial_redup_right. 
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 Polymoraic  :  These  are  words  which  contain  four  or  more  moras  and  are  the  class  of  words 

 without  transparent  morphology.  These  are  the  categories  of  words  that  don’t  contain 

 reduplication  nor  affixations.  Overall,  It  appears  that  NMS  are  performing  relatively  better 

 than  Morfessor  in  terms  of  precision(prec_Morfessor  =  0.70,  prec_NMS  =  0.81)  whereas 

 Morfessor’s  recall  is  better  than  NMS  (prec_Morfessor  =  0.82,  prec_NMS  =  0.88).  While  it 

 has  a  lower  precision,  it  has  a  high  recall  which  could  be  due  to  Morfessor  oversimplifying 

 the  segmentations  by  either  over-segmenting  or  mis-segmenting.  The  error  analysis  in  the 

 next  section  shows  the  distribution  of  over-segmentation,  mis-segmentation  and 

 under-segmentation by Morfessor and NMS for the Polymoraic category. 

 Polymoraic  words  error  analysis  :  Figure  2  shows  the  errors  for  the  polymoraic  word 

 category. 

 Table 6. Error analysis on polymoraic words 

 Incorrect 
 (n) 

 Mis-segmentat 
 ion % 

 Over-segmentation %  Under-segmentation % 

 Partially 
 correct  Errors 

 Partially 
 correct  Errors 

 Morfessor  639  1.56  74.80  18.15  0.63  4.85 

 NMS  290  11.03  11.38  18.97  9.31  49.31 
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 Figure  2.  The  distribution  of  correct  splits  vs  the  splits  made  by  the  learners  categorized  as 

 correct  segmentations,  over,  under,  partially  correct  and  mis  segmentations  in  polymoraic 

 words. 

 The  figure  shows  a  visual  representation  of  the  different  kinds  of  errors  made  by  the  learners 

 while  the  table  shows  the  quantitative  analysis  of  the  error  types.  We  analyze  the  errors 

 drawing  from  these  two  representations.  We  define  partially  correct  over-segmentations  to 

 see  if  at  least  part  of  the  oversegmentations  contain  actual  correct  morphs  ie  even  though  the 

 boundaries  are  not  placed  in  the  correct  positions,  we  check  if  there  is  a  subset  of  correct 

 morphs  with  the  provided  boundaries  Similarly,  we  check  if  there  is  a  subset  of  correct 

 morphs  in  the  over  segmentation  cases,  which  we  define  as  partially  correct  over 

 segmentations.  This  gives  us  an  idea  that  while  the  entire  word  was  not  correctly  segmented 

 in all the positions, a part of the segmentations were indeed correct. 
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 Table  6.  shows  the  error  analysis  on  the  polymoraic  words.  Morfessor,  tends  to  have  a 

 significant  number  of  over-segmentations,  accounting  for  approximately  92.96%  of  the 

 errors.  However,  a  large  majority  of  it  (74.80%)  consists  of  partially  correct  segmentations  i.e 

 out  of  the  oversegmentations,  some  of  the  boundaries  are  being  placed  in  the  correct 

 positions.  Over-segmentation  occurs  when  Morfessor  divides  words  into  smaller  units  or 

 morphemes  more  frequently  than  necessary.  This  high  rate  of  over-segmentation  contributes 

 to  the  high  recall,  as  Morfessor  captures  a  large  portion  of  the  true  morphs  in  the  words. 

 However, it also introduces incorrect morphs thus affecting the precision as seen above. 

 The  next  category  of  errors  made  by  Morfessor  is  under-segmentation,  which 

 accounts  for  around  5.48%  of  the  errors.  Out  of  these,  a  small  percentage  do  contain  partially 

 correct  morphs  (0.63%).  Under-segmentation  occurs  when  Morfessor  fails  to  identify  an 

 adequate  number  of  morphemes  within  a  word.  This  can  happen  due  to  various  reasons,  such 

 as  infrequent  occurrence  of  individual  morphemes  or  the  limitations  in  Morfessor's 

 assumptions  about  the  structure  of  the  language  or  corpus  which  we  analyze  to  some  extent 

 using the next analysis. 

 Mis-segmentations  are  the  least  common  type  of  error  made  by  Morfessor, 

 representing  approximately  1.56%  of  the  errors.  Mis-segmentation  refers  to  cases  where 

 Morfessor  incorrectly  splits  a  word  into  morphs,  resulting  in  incorrect  boundaries  between 

 them. 

 On  the  other  hand,  the  most  common  error  made  by  NMS  is  under-segmentation, 

 accounting  for  around  58.62%  of  the  errors  with  9.31%  of  them  containing  partially  correct 

 morphs.  This  suggests  that  the  NMS  have  difficulty  identifying  an  adequate  number  of 

 morphs  in  the  words,  possibly  due  to  having  a  high  threshold  of  confidence  required  before 
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 they  commit  to  a  boundary  being  present.  The  second  most  common  error  made  by  NMS  is 

 over-segmentation,  representing  approximately  30.34%  of  the  errors  with  11.38%  being 

 partially  correct.  It  is  worth  noting  that  both  Morfessor  and  NMS  exhibit  fewer  errors  in  the 

 mis-segmentation  category.  NMS  have  a  higher  error  rate  of  11.03%  compared  to  the  1.56% 

 by Morfessor. 

 To  summarize,  Morfessor  tends  to  have  a  higher  rate  of  over-segmentation  errors, 

 followed  by  under-segmentation  and  mis-segmentation  errors.  In  contrast,  the  NMS  show  a 

 higher  rate  of  under-segmentation  errors,  followed  by  over-segmentation  and 

 mis-segmentation  errors.  These  findings  provide  some  initial  insights  into  the  strengths  of  the 

 processes each takes in identifying morphs and where they lack. 

 Findings  from  the  above  results  exemplify  how  two  learners  that  are  similar  in  their 

 learning  processes  show  significant  differences  between  them  in  their  performances.  Results 

 from  Analysis  1  indicate  that  overall  NMS  are  better  than  Morfessor  in  the  morphological 

 segmentation  task.  It  seems  like  there  are  cues  to  morphological  segmentations  in  Māori 

 which  NMS  are  using,  that  go  beyond  simple  recurrence  statistics  as  utilized  by  Morfessor, 

 e.g  knowledge  of  affixation  and  reduplication  templates.  If  this  is  the  case,  then  we  expect 

 that  Morfessor  would  do  much  better  on  a  language  that  followed  exactly  the  same 

 morphological  statistics  as  Māori  but  lacked  sensitivity  to  these  other  cues.  To  verify  this 

 assumption,  we  create  artificial  languages  resembling  Māori  but  adhering  strictly  to 

 Morfessor's  assumed  language  structure.  If  Morfessor  is  able  to  perform  well  on 

 pseudo-Māori,  then  it  suggests  that  the  learning  mechanisms  NMS  use  are  far  more  complex 

 than the one used by Morfessor. 
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 V. Analysis 2 : Morfessor performance on pseudo-Māori polymoraic words 

 From  Analysis  1,  it  appears  that  NMS  are  utilizing  cues  for  morphological  segmentation  in 

 the  Māori  language  that  extend  beyond  the  basic  recurrence  statistics  employed  by 

 Morfessor.  These  cues  might  include  factors  like  specific  patterns  such  as  the  reduplication 

 templates.  Given  this  observation,  it's  reasonable  to  hypothesize  that  Morfessor  would 

 perform  more  effectively  with  a  language  that  has  morphological  statistics  identical  to  Māori 

 but  does  not  require  sensitivity  to  these  additional  cues.  We  test  this  hypothesis  by  generating 

 pseudo-Māori  words  which  are  highly  constrained  to  follow  the  morphological  statistical 

 properties of real Māori words. 

 From  the  different  word  categories,  we  create  pseudo-Māori  words  only  for  the  polymoraic 

 category  in  this  analysis  since  the  polymoraic  category  most  neatly  fits  the  generative  process 

 that  Morfessor  assumes.  Each  other  category  has  some  limitation  that  makes  it  ill-suited  to 

 this  analysis.  For  instance,  the  reduplication  category  of  words,  as  seen  from  Todd  et  al. 

 (2022  ),  would  benefit  from  Morfessor  having  reduplication  templates  (which  we  are  not 

 using  in  the  current  analysis).  The  Affixation  category  would  need  some  way  to  inform 

 Morfessor  about  the  allomorphy  i.e  the  fact  that  there  are  multiple  variants  of  the  same  affix. 

 Monomorphemic  words,  by  definition,  have  no  boundaries  in  them;  so  the  analysis  would  be 

 limited to identifying error cases where Morfessor predicts a boundary when there isn’t one. 

 A. Data 

 Pseudo-Māori  Generation  :  The  pseudo  Māori  language  generator  was  a  simple  generative 

 model  built  in  python  3.9.7.  This  involved  a  two-step  process.  First,  we  obtained  the 
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 parameters  from  real  Māori  words  in  order  to  simulate  those  properties  in  pseudo  Māori.  The 

 next  step  involved  generating  the  words  in  the  pseudo  Māori  language  using  the  parameters 

 obtained in step one. Each of these steps are explained in detail below. 

 We  use  a  generative  process  to  generate  the  pseudo-Māori  words  which  closely 

 resemble  the  real  Māori  words.  To  develop  words  which  have  properties  similar  to  the  real 

 Māori  words,  we  need  to  obtain  the  statistical  properties  of  the  word  at  different  levels 

 (syllable,  morph,  word)  in  order  to  create  the  pseudo  words.  So  we  first  calculate  these 

 properties in the form of parameters and then use them in our generative process. 

 Below  are  the  steps  involved  in  generating  the  pseudo-Māori  words  for  the 

 polymoraic category. 

 B.Method 

 1.   Getting  parameters  from  real  Māori  words  (polymoraic  category):  This  process 

 involved  two  main  steps:  first,  identifying  the  statistical  parameters  from  the  words  at  the 

 morph  level  in  the  Māori  language  for  the  polymoraic  words.  The  second  step  involved 

 calculating  parameters  at  the  syllable  level.  To  extract  parameters,  we  use  the  polymoraic 

 words  from  the  MS  data  for  which  we  have  the  word  category  information.  This  consists  of 

 1317 words. 

 A.  Parameters  at  the  morph  level:  For  each  word  in  this  subset  Māori  data,  we  create 

 a  pseudo-Māori  word  with  similar  statistical  morph  properties.  First,  we  calculated 

 the  number  of  syllables  present  in  each  morph  of  a  word.  For  example  if  a  word 

 contains  two  morphs,  and  the  number  of  syllables  present  in  each  morph  is  two  and 

 three  respectively,  then  we  store  that  as  the  syllable  count  ([2,3]).  To  simplify,  we 
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 filter  out  any  words  containing  morphs  made  up  of  four  or  more  syllables  since  there 

 were  only  22  words  in  the  MS  dataset  fitting  that  criteria.  This  decision  is  also 

 grounded  in  the  desire  to  maintain  a  manageable  complexity  within  the  model  while 

 capturing  a  representative  range  of  morphological  variability.  We  calculate  the  type 

 frequency  of  each  morph  i.e  the  number  of  words  it  occurs  in.  We  model  the 

 distribution  of  type  frequencies  across  morphs  separately  for  mono-syllabic, 

 disyllabic  and  trisyllabic  morphs.  We  then  group  mono-syllabic  morphs,  di-syllabic 

 morphs  and  tri-syllabic  morphs  to  fit  a  power  law  on  each  of  these  three  distributions 

 since Morfessor assumes a power law distribution. 

 The  distribution  of  each  morph  category  was  modeled  using  a  power  law  and 

 the  parameters  of  the  power  law  are  estimated  using  curve  fitting(  with  Scipy’s 

 curve_fit)  (Virtanen  et  al.,  2020)  .  Scipy’s  curve_fit  uses  nonlinear  least  squares  to  fit 

 a  function,  f,  to  data.  It  returns  optimal  values  for  the  parameters  so  that  the  sum  of 

 the  squared  residuals  of  the  function  f  is  minimized.  In  this  case  the  function  f  is  a 

 power law whose equation is: 

 𝑦 =     𝑎    *     𝑏  𝑥 

 The curve_fit algorithm returns two arrays:  params  - An array with the optimal 

 values of parameters  ‘  a’  and  ‘b’  that it found for  the power function. Figure 3 below 

 shows the fitting of the power law for the three categories of morph distribution. 

 We  obtain  three  sets  of  such  parameters,  one  for  each  category,  which  we  then  use  to 

 generate  pseudo  mono,di,  tri-syllabic  morphs.  The  number  of  morph  types  in  these 

 categories  are  based  on  the  counts  present  in  the  subset  data.  Table  7  below  shows  the 
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 morph  type  counts  and  the  parameters  obtained  for  each  of  the  three  categories  of 

 morphs. 

 Table 7. Morph type count and power law parameters for mono,di,tri-syllabic morphs. 

 category  count  parameter a  parameter b 

 mono-syll 
 abic 

 58  83.125  -0.652 

 di-syllabic  479  72.495  -0.609 

 tri-syllabic  127  7.463  -0.502 
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 Figure  3.  The  distribution  of  mono,  di,  tri  syllabic  morphs  is  shown  with  the  black 

 dots  in  the  three  graphs  correspondingly.  The  red  curves  in  each  graph  show  the  curve 

 fit using the power law parameters obtained for each of the distributions. 

 B.  Parameters  at  the  syllable  level:  The  next  step  involved  calculating  parameters  at 

 the  syllable  level.  Similar  to  the  morph  distributions,  we  model  the  distribution  of 

 type  frequencies  of  all  the  possible  syllables  across  morphs.  The  distribution  of 
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 syllables  was  calculated  from  the  bag  of  morphs,  containing  all  distinct  morphs  in  the 

 data  (morph  types),  and  modeled  using  power  law.  The  parameters  obtained  are  a  = 

 107.675,  b  =  -0.589  .  Figure  4  below  shows  the  fitting  of  the  power  law  over  the 

 syllable distribution. 

 Figure  4.  The  distribution  of  syllable  frequencies  is  shown  by  the  black  dots.  The  red 

 curve shows the curve fit using the power law parameters obtained. 

 2. Generation  of  pseudo-Māori  polymoraic  words:  Using  the  parameters  calculated  above, 

 the  pseudo  Māori  words  were  generated  step-by-step  through  a  bottom  up  generative  process 

 as explained below: 

 Step  1.  Initialization  of  Consonants  and  Vowels  :  We  start  by  defining  the  basic  building 

 blocks  of  the  pseudo  Māori  language.This  includes  a  set  of  consonants:  ['h',  'f',  't',  'N',  'r',  'k', 

 'n',  'm',  'p',  'w'],  and  a  set  of  vowels:  ['a',  'e',  'i',  'o',  'u',  'A',  'E',  'I',  'O',  'U'],  where 

 ‘A’,’E’,’I’,’O’,’U’ are the long vowels and ‘wh’ is represented as f and ‘ng’ as ‘N’. 
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 Step  2.  Construct  syllables  :  The  syllable  structures  allowed  in  the  language  are  ‘CV’  and 

 ‘V’.  Using  this,  all  possible  combinations  following  these  syllable  structures  were  created  to 

 create the bag of pseudo-syllables. 

 Step  3:  Assigning  Probabilities  to  Syllables  :  Using  the  power  law  parameter  for  syllables 

 obtained  above,  np.random.power  was  used  to  assign  probabilities  to  these  pseudo-syllables. 

 This  step  ensures  that  the  frequency  of  syllable  occurrence  in  the  pseudo  language  mimics 

 natural linguistic patterns. 

 Step  4.  Generation  of  Syllabic  Morphs  :  The  number  of  mono,  di  and  tri  syllabic  morphs 

 were  matched  with  category  counts  from  the  1294  Māori  words.  The  mono,  di  and  tri 

 syllabic  morphs  were  generated  from  the  bag  of  syllables  using  a  sampling  process  (with 

 replacement) with the syllable probabilities as weights. 

 Step  5.  Probabilistic  Weighting  of  Morphs  :  Once  we  had  the  bags  of  mono,  di  and  tri 

 syllabic  pseudo  morphs,  the  power  law  parameters  for  the  three  categories  of  morph 

 categories  were  used  to  generate  the  probabilities  (weights)  for  pseudomorphs.  This 

 probabilistic  weighting  is  crucial  for  the  next  step,  where  these  morphs  are  used  to  construct 

 pseudo words. 

 Step  6.  Construction  of  Pseudo  Māori  Words  :To  generate  each  pseudo  word  for  a  real 

 Māori  word,  we  used  the  syllable  count  to  pick  morphs  with  specific  syllable  counts  by 

 sampling  (without  replacement)  from  the  respective  bag  of  morphs.  This  ensured  that  we 

 matched  each  Māori  word  with  a  statistically  similar  pseudo  word.  The  selected  morphs  are 

 then  combined  to  form  a  pseudo  word  that  statistically  mirrors  the  syllable  and  morph 

 structure of the real Māori word. 
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 Step  6.  Simulation  and  Analysis  :  We  ran  the  generative  process  of  generating  words  for 

 1000  iterations.  In  each  iteration,  a  set  of  pseudo  Māori  words  using  the  above  method.  After 

 each  iteration,  the  metrics  were  calculated  across  each  language  by  averaging  the  word  level 

 metrics. 

 C. Results 

 Figure 5.  Box plot of Morfessor’s precision and recall  on the segmentations of 1000 sets of 

 Pseudo-Māori polymoraic words (containing mono-syllabic, di-syllabic and tri-syllabic 

 morphs only) along with Morfessor’s performance on these subset of words from real Māori. 

 Figure  5  shows  the  distribution  of  macro-averaged  precision  recall  (calculated  mean  for  each 

 language)  for  Morfessor’s  segmentations  on  all  the  1000  generated  Pseudo-Māori  languages. 

 The  precision  and  recall  were  calculated  at  the  word  level,  and  then  averaged  across  all  the 

 words  to  calculate  the  mean  for  each  language  which  is  the  value  used  for  the  plots.  With  a 
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 mean  precision  of  0.843  and  a  mean  recall  of  0.957,  we  can  see  that  Morfessor  is  able  to 

 segment  pseudo-Māori  really  well.  Since  each  word  was  matched  with  a  real  Māori  word 

 (excluding  words  containing  4  and  5  syllable  morphs),  we  can  calculate  the  precision  and 

 recall  for  these  subset  of  words  in  real  Māori.  The  mean  precision  and  recall  for  these  words 

 from real Māori are  0.707 and 0.891. 

 The  high  precision  and  recall  rates  on  pseudo-Māori  polymoraic  words  indicate  that 

 Morfessor  excels  at  identifying  and  segmenting  patterns  that  are  statistically  present  in  the 

 dataset.  In  pseudo-Māori  ,  with  its  highly  controlled  design,  the  words  are  matched  to  the 

 original  words  in  terms  of  structure  and  regularity.  The  difference  between  the  performance 

 could  arise  from  the  fact  that  the  gold  standard  segmentations  of  the  real  Māori  words  is  a 

 function  not  just  of  the  morphological  statistics,  but  also  of  other  cues  that  the  fluent  speaker 

 who  provided  the  gold  standard  segmentations  picked  up  on.  By  contrast,  the  pseudo-Māori 

 words are based just on the morphological statistics which Morfessor can pick up on. 

 It  could  be  the  case  that  NMS  also  struggle  with  similar  structural  challenges,  i.e.  for  the 

 most  part  they  are  able  to  learn  the  statistical  properties  which  occur  in  the  polymoraic 

 words,  which  can  be  seen  by  the  high  precision  and  recall  by  NMS  in  the  polymoraic 

 category.  However,  like  Morfessor,  they  could  be  missing  out  on  cues  which  they  don’t  have 

 access  to.  Further  analysis  is  required  to  understand  what  are  the  exact  kind  of  cues  they 

 struggle with. 

 VI. Discussion and Future work 
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 By  comparing  Morfessor  and  NMS  speakers  in  Analysis  1,  we  note  how  similar  they 

 performed  in  some  word  categories  and  how  different  they  performed  in  others.  The 

 reduplication  word  category  results  show  that  NMS  with  a  better  precision  are  able  to  pick  up 

 these  recurring  patterns  better  than  Morfessor.  Reduplication  is  a  typologically  common 

 feature,  found  in  85%  of  languages  documented  in  the  World  Atlas  of  Language  Structures 

 (Rubino.  (2013)),  but  it  is  often  overlooked  in  unsupervised  morphological  segmentation 

 approaches  (Todd  et  al.  (2022)).  Incorporating  reduplication  templates  directly  into 

 Morfessor  was  shown  to  substantially  improve  segmentations  compared  to  the  original 

 Morfessor  model  (without  reduplication  templates)  (Todd  et  al.  (2022)  ).  By  using  these 

 templates  in  future  analysis,  we  could  analyze  if  Morfessor  performance  can  be  improved 

 and  observe  if  that  helps  Morfessor  behave  more  like  the  NMS.  If  using  reduplication 

 templates  in  Morfessor  helps  improve  the  performance  and  mimic  NMS,  it  could  further  help 

 us gain proof of how NMS use ‘templatic’ approaches towards building their bag of morphs. 

 Within  the  polymoraic  category  of  real  Māori  words,  though  these  words  closely 

 match  the  underlying  assumptions  of  Morfessor  (these  words  are  constructed  through  simple 

 concatenation  of  morphs,  without  things  like  allomorphy  or  reduplication  templates),  NMS 

 still  outperformed  Morfessor  significantly.  This  shows  that  the  implicit  learning  mechanism 

 of  NMS  is  more  complex  than  that  of  Morfessor’s.  As  seen  in  analysis  1,  NMS  seem  to 

 follow  a  'templatic'  procedure  in  their  learning  process.  They  look  for  overarching  templates 

 in  the  language,  which  guide  their  segmentation.  And  these  templates  require  a  certain  level 

 of  confidence  before  they  start  using  them  as  rules  in  the  language.  In  the  affix  analysis 

 above,  the  difference  in  performances  in  the  default  and  the  non-default  allmorphs  is  an 

 example  of  this  templatic  approach.  Their  approach  seems  to  be  grounded  in  a  broader 
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 understanding  of  the  language's  structure,  where  they  wait  to  reach  a  certain  threshold  of 

 understanding  before  finalizing  the  templatic  knowledge  they  are  acquiring.  This  behavior 

 was  noted  in  Panther  et  al.'s  study,  where  it  was  highly  unlikely  for  NMS  to  segment  at 

 positions  other  than  the  initial  bimora.  This  also  causes  them  to  be  overly  cautious  in  placing 

 boundaries, thus leading to under segmentation errors. 

 Zooming  in  on  the  errors  made  by  Morfessor  and  NMS,  it  was  interesting  to  see  that 

 both  of  them  made  different  kinds  of  errors.  While  Morfessor’s  errors  were  mainly  over 

 segmentation,  NMS  were  mostly  undersegmenting.  Like  discussed  above,  this  could  be  due 

 to  Morfessor’s  oversimplification  of  the  language  structure  while  NMS  have  not  fully 

 acquired  the  entirety  of  the  sub  parts  of  the  words  in  the  language  or  haven’t  reached  the 

 threshold  yet  to  learn  that  these  word  parts  can  occur  on  their  own.  While  they  seem  to  be 

 picking  up  on  patterns  which  Morfessor  misses  (such  as  the  reduplication  patterns),  they  still 

 lack  in  other  parts  of  their  morphological  knowledge.  Further  investigation  into  what  they 

 lack could provide insights into their learning processes. 

 In  Analysis  2,  we  saw  that  Morfessor  is  able  to  perform  well  on  the  pseudo-Māori 

 compared  to  the  real  Māori  words.  This  shows  that  the  Morfessor  indeed  is  good  at  picking 

 up  the  statistical  regularities  in  pseudo-Māori  language.  However,  the  reason  it 

 underperforms  in  real  Māori  could  be  due  to  information  it  does  not  have  access  to  real 

 Māori  words  –  the  cues  which  humans  could  be  picking  up  on  that  could  have  led  to  the 

 difference  in  performance.  The  following  list  could  be  some  of  the  factors  that  contribute  to 

 these differences : 
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 1.  Moraic  Weights:  Moraic  weight  pertains  to  the  role  of  moras  in  determining  syllable 

 structure  and  stress  patterns.  A  mora  is  a  basic  timing  unit  in  the  phonology  of  some 

 spoken  languages,  equal  to  or  shorter  than  a  syllable.  The  concept  of  moraic  weight  in 

 Māori  is  closely  tied  to  vowel  length.  Long  vowels  have  more  weight  because  they 

 occupy  two  moras,  influencing  how  syllables  are  perceived  and  stressed.  At  the 

 moment,  our  language  generation  depends  primarily  on  syllable  weights,  while  the 

 role  of  moraic  weights  might  be  significant.  Moraic  weights  determine  the  length  and 

 rhythm  of  syllables  and  can  have  a  profound  impact  on  the  prosody  of  a  language. 

 Humans  are  particularly  sensitive  to  long  vowels  and  diphthongs  (Panther  et  al., 

 2023b), and our current approach may not fully account for these complexities. 

 2.  Affixes:  Our  current  system  doesn't  explicitly  distinguish  between  affixes  and  root 

 words.  Incorporating  these  differences  into  the  generator  could  help  us  understand  if 

 they  perform  better  in  one  category  over  another.  NMS  again  could  be  using  an  affix 

 template  approach  where  they  identify  there  are  certain  morphs  which  can  recur  in 

 certain  positions  with  other  morphs.  By  using  a  similar  templatic  approach  as  in  Todd 

 et  al.  (2022),  we  could  provide  information  to  Morfessor  about  affix  templates  to  see 

 if this helps Morfessor in its performance. 

 3.  Vowel  and  Consonant  Harmony:  Presently,  we're  not  differentiating  between  vowel 

 harmony  and  consonant  harmony.  These  phonological  processes,  where  certain 

 features  of  a  sound  spread  to  adjacent  sounds,  are  key  components  in  many 
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 languages.  Todd  et  al.  (2021)  show  that  in  Māori,  morphs  generally  show  a  preference 

 for  harmonic  vowels  and  disharmonic  constants.  However,  in  compounds,  vowel 

 harmony  is  often  not  observed,  which  contrasts  with  previous  findings  that  suggested 

 a  general  tendency  towards  vowel  harmony  in  words,  thus  illustrating  the  impact  of 

 phonological  factors  on  morphology.  By  analyzing  the  segmentations  for  these 

 properties,  we  can  get  insight  into  how  it  could  affect  the  segmentations.  Having  the 

 pseudo-Māori  language  have  these  properties  can  further  provide  insights  into  how 

 NMS and Morfessor differ on these factors. 

 4.  Phonotactic  Probabilities  :  We  are  also  not  considering  phonotactic  probabilities, 

 which  refer  to  the  likelihood  of  certain  sounds  occurring  together  in  a  language. 

 Incorporating  this  could  make  our  language  generation  more  accurate  and  natural,  as 

 it  would  respect  the  rules  governing  the  arrangement  of  phonemes  within  a  language. 

 Given  that  there  have  been  unsupervised  word  segmentation  models  based  on 

 phonotactic  probabilities  (Daland  and  Pierrehumbert  2011)  ,  it  is  crucial  to  test  how 

 this affects morphological segmentation. 

 From  this  initial  study  at  the  morph  level,  we  can  infer  that  statistical  cues  in  the  language 

 structure  helps  gain  a  certain  level  of  morph  identification  in  real  Māori.  However,  further 

 research  has  to  be  done  to  incorporate  potential  cues  such  as  templatic  approaches  for 

 different  word  categories,  phonotactic  probabilities,  moraic  weights  etc  into  the  generated 

 languages  to  understand  how  Morfessor  can  gain  Māori  speaker  level  performance,  thus 
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 providing  insights  into  the  exact  regularities  and  patterns  picked  up  by  the  Non-Māori 

 speakers. 

 While  Morfessor  takes  a  Bayesian  approach  to  morphological  segmentation  using  the 

 Minimum  Description  Length  principle,  using  other  segmentation  models  such  as  DiBS 

 (Diphone-Based  Segmentation)  (Daland  and  Pierrehumbert  2011)  ,  could  provide  an 

 understanding  of  how  statistical  properties  in  phonotactic  features  could  help  towards 

 implicit  language  learning.  DiBS  analyzes  how  these  features  interact  in  a  language, 

 focusing  on  the  segmentation  of  diphones  (pairs  of  adjacent  phonetic  units)  to  understand  the 

 language's  structure.  As  seen  how  providing  reduplication  template  information  to  Morfessor 

 helps  its  performance  in  the  segmentation  of  reduplication  word  category  (Todd  et  al.  2022)  , 

 identifying  ways  to  incorporate  prosodic  and  phonotactic  patterns  can  help  provide  a  more 

 holistic morphological segmentation model which could be closer to processes used by NMS. 

 More  broadly,  this  work  contributes  to  the  understanding  of  statistical  learning  in 

 humans  and  the  cognitive  implications  by  comparing  non-speakers  of  a  language  who  have 

 ambient  exposure  to  a  morphological  segmentation  model.  Both  Morfessor  and  NMS  seem  to 

 be  using  statistical  learning;  however,  the  patterns  or  regularities  of  the  language  that  they 

 learn  appears  to  be  different.  NMS  seem  to  understand  patterns  which  Morfessor  misses. 

 This  could  be  attributed  to  two  factors  as  observed  from  our  analysis.  First,  NMS  seem  to  be 

 using  a  broad  pattern  matching  process  using  a  templatic  approach  in  order  to  draw  their 

 conclusions  on  which  word  parts  are  morphs  as  seen  in  the  reduplication  word  category. 

 Second,  they  potentially  use  a  higher  threshold  than  Morfessor  to  identify  confidently  if  the 

 word  parts  are  indeed  morphs.  Further  work  is  needed  to  tease  apart  these  factors  and 

 confirm  this  hypothesis.  These  cues  could  further  help  us  understand  how  unsupervised 
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 morphological  segmentation  models  can  be  made  better  in  order  to  pick  up  on  these  pattern 

 identifying processes in addition to the statistical recurrence of morphs. 

 These  results  also  help  us  provide  insights  into  the  role  of  language  structure  in 

 unsupervised  learning  morphological  segmentation.  As  we  have  seen  here,  it  is  important  to 

 know  the  strengths  of  how  learning  models  perform  in  real  languages.  For  example,  from 

 analysis  2  we  did  see  that  although  Morfessor  is  good  at  picking  statistical  morph  structure 

 cues  in  highly  constrained  pseudo  Māori,  one  needs  to  understand  why  it  is  not  performing 

 well  in  real  Māori.  Similar  to  how  (Todd  et  al.  2022)  showed  that  having  reduplication 

 templates  could  inform  Morfessor  better  about  reduplication  patterns  in  the  language,  similar 

 added  cues  to  Morfessor  and  other  unsupervised  segmentation  models  can  help  learn  them 

 learn the morphological structural challenges of real languages. 

 One  of  the  research  questions  of  this  work  was  to  understand  the  extent  of  statistical 

 learning  of  morphs  in  unsupervised  learning  through  exposure  in  a  non-lab  setup,  by 

 morphological  segmentation  models  and  in  implicit  learning  contexts  with  respect  to 

 Non-Māori  speakers,  both  of  whom  share  many  properties  in  their  learning  processes.  We 

 have  seen  through  our  analysis  the  similarities  in  the  statistical  properties  which  both 

 Morfessor  and  NMS  learn,  and  connecting  it  to  the  cues  which  are  available  to  the  two 

 learners.  NMS,  as  we  saw,  have  access  to  external  cues  such  as  phonotactics  and  the 

 cognitive  mechanism  of  template  approach,  which  need  further  analysis  to  understand  their 

 impact completely. 

 Based  on  the  comparisons  between  Morfessor’s  performance  on  real  Māori  and 

 pseudo  Māori  words,  we  were  able  to  address  our  second  research  question.  From  our 

 analysis,  we  saw  that  Morfessor  is  able  to  segment  the  pseudo-Māori  words  since  they  follow 
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 the  concatenative  properties.  This  helped  us  point  out  that  it  relatively  struggles  with  words 

 in  real  Māori  since  there  are  more  factors  to  the  real  words  which  need  other  kinds  of  cues 

 which  we  need  to  understand  further.  Since  NMS  are  able  to  perform  better,  we  can  say  that 

 NMS  seem  to  be  accessing  these  cues  which  Morfessor  doesn’t  have  access  to.  Further 

 analysis  is  required  to  identify  and  incorporate  these  cues  into  Morfessor  to  check  if  it  helps 

 improve Morfessor’s performance, thus proving our hypothesis. 

 Lastly,  this  work  also  helped  point  out  the  ways  in  which  unsupervised  segmentation 

 models  like  Morfessor  need  additional  language-specific  aids  for  segmentation.  The 

 difference  between  performances  by  Morfessor  on  pseudo  Māori  and  real  Māori  words 

 underscores  the  importance  of  understanding  the  differences  in  morphological  segmentation 

 model  output  when  applied  to  different  languages.  It  helps  us  think  about  how  these  models 

 can  be  made  better  by  providing  additional  cues  to  it  as  shown  by  the  reduplication  templates 

 in  Todd et al. (2022  ). 

 This  work  has  helped  dive  into  understanding  of  what  underlying  cognitive  processes  the 

 NMS  could  be  using  by  doing  an  analysis  on  the  segmentations  by  the  two  learner  models.  It 

 provides  us  with  further  directions  to  build  a  complete  understanding  of  the  processes 

 underlying the implicit statistical learning by NMS. 

 VII. Conclusion 

 In  summary,  our  comparative  analysis  of  Morfessor  and  NMS  in  handling  Māori 

 word  categories  underscores  the  nuanced  complexities  in  language  processing.  While 

 Morfessor's  algorithmic  precision  captures  certain  statistical  regularities,  it  falls  short  in  the 

 intricate  aspects  of  linguistic  structure  that  NMS,  through  implicit  learning  mechanisms, 
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 navigate  more  adeptly.  This  divergence  not  only  highlights  the  limitations  of  current 

 unsupervised  morphological  segmentation  models  but  also  points  to  potentially  rich, 

 templatic  patterns  employed  by  NMS.  Understanding  the  underlying  processes  of  NMS  could 

 pave  the  way  for  enhancing  computational  models  by  integrating  more  sophisticated, 

 human-like implicit learning processes. 

 Furthermore,  this  study's  findings  significantly  contribute  to  our  comprehension  of 

 statistical  learning  in  language  acquisition  in  the  context  of  implicit  learning.  The  distinct 

 approaches  employed  by  NMS  and  Morfessor  in  deciphering  linguistic  patterns  reveal  the 

 depth  and  variety  of  statistical  properties  that  inform  language  understanding.  The  superior 

 performance  of  NMS  in  certain  word  categories  suggests  a  threshold-based,  templatic 

 learning  process,  which  is  less  evident  in  Morfessor’s  method.  Future  research  on  dissecting 

 these  learning  mechanisms,  particularly  how  they  apply  to  unsupervised  language  learning 

 scenarios  could  help  improve  unsupervised  models  when  applied  to  languages  such  as  Māori, 

 which  are  not  commonly  used  in  benchmarking  these  models.  The  insights  from  such 

 investigations  could  improve  our  approaches  to  computational  language  models,  making 

 them  more  reflective  of  the  intricate,  multi-layered  processes  as  seen  in  the  implicit  learning 

 process  by  NMS.  In  essence,  exploring  these  avenues  could  lead  to  more  human-like  models, 

 greatly  enhancing  our  ability  to  model  and  understand  the  complexities  of  morphological 

 segmentation specifically and implicit learning more broadly. 
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