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ABSTRACT

Exploring the Extent of Statistical Learning used by Implicit Language Learners: Insights
from Non-Maori Speakers Exposed to Maori
by

Ashvini Varatharaj

Recent works have demonstrated that New Zealanders who are frequently exposed to
Maori in everyday life, but do not speak it, have an extensive memory store of Maori forms,
called a proto-lexicon (Oh et al., 2020). This proto-lexicon is composed of morphs - words
and word pieces that recur with statistical regularity in language usage that are learned
through statistical learning (Ngon, et al., 2013). The proto-lexicon endows
Non-Maori-Speaking New Zealanders (NMS) with rich implicit knowledge of Maori, which
permits them to morphologically segment Maori words at above-chance levels (Panther et al.,
2023a). Prior works (Saffran et al., 1996; Saffran 2003; Frank et al., 2013) have shown how
statistical learning helps in implicit learning, but only in artificial languages. Oh et al. (2020)
is one of the first studies to have shown this in real world exposure. In this work we use
Morfessor (Smit et al., 2014), an unsupervised Bayesian segmentation model that identifies
statistically recurrent morphs across words under the assumption of morphological

concatenativity, to build on these recent studies to investigate the extent of statistical learning



used by NMS. We use Morfessor as our control statistical learner to perform two analyses. In
our first analysis, we compare NMS and Morfessor to an expert Maori Speaker’s (MS)
ability to segment words into morphs. Comparing NMS and Morfessor’s segmentation
performances, we show the differences and similarities in the segmentation and learning
process, and how it is affected by the statistical properties of the language. Further, using an
error analysis on the segmentations, we gain insights into their underlying assumptions used
in their segmentation process. The results of analysis 1 suggest that NMS may be sensitive to
more than Morfessor, e.g. templates.

As a follow up to these results, in our second analysis, we dive deep into the results of the
concatenative category of words whose structure closely resembles Morfessor’s assumption.
By generating pseudo-Maori words for this category and testing Morfessor’s performance on
them, we provide insights into how the statistical learning of real Maori morphs depends on
explicit cues which it does not have access to — which the NMS seem to have some access to,
where in they use the statistical regularities by taking a templatic approach in order to
segment the words into morphs.

The most recent updated version of this work for publication can be found here :

http://arxiv.org/abs/2403.14444.
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I. Introduction

Human beings have a powerful ability to learn language implicitly, through mere exposure
and even without conscious effort or awareness. Implicit language learning refers to the
process of learning a language by being exposed to it rather than a conscious effort to learn
it. Prior research (Saffran, Aslin, and Newport 1996; Frank, Tenenbaum, and Gibson 2013)
have shown how infants and adults are able to identify words in an artificial language after
being exposed to it for a short duration through statistical learning, a process by which
recurring structures in the language are identified and stored in the memory. Such learning
has also recently been shown to occur outside of the lab, with real languages (Oh et al.,
2020). The work by Oh et al. (2020) showed that Non-Maori Speakers (NMS) (- i.e New
Zealanders who don't speak Maori but are frequently exposed to it in everyday life — ), have
implicit lexical and phonotactic knowledge. The phonotactic knowledge was best explained
by the assumption that it derives from a memory store of phoneme sequences that recur with
statistical regularity in the language, called morphs. Further, Panther et al. (2023b) replicated
this result with more tightly-controlled stimuli and showed that an individual's lexical and
phonotactic knowledge are correlated, lending crucial empirical support to Oh et al.'s
assumption that phonotactic knowledge derives from lexical knowledge. Panther et al.
(2023a) showed that NMS were able to segment words into morphs more accurately than
Americans (who are not exposed to Maori) ie the segmentations made by NMS more closely
mirrored those made by the fluent Maori speakers, supporting the claim that they have a
memory-store of morphs. Furthermore, their segmentations were sensitive to phonological
properties (such as phonotactics i.e. phoneme sequences which are more likely) in similar

ways to those of fluent speakers, suggesting that the morphs learned by statistical learning
1



align well with the actual underlying morphs of the language. These three works collectively
provide evidence for the idea that non-native speakers (NMS) possess lexical and phonotactic
knowledge, and that this knowledge is interconnected.

It has been postulated that this knowledge is gained through statistical learning, but
relatively little is known about the precise aspects of linguistic structure that facilitate such
learning. In this work we aim to take the first steps towards understanding this by focusing
on two analyses. First, we compare the segmentations generated by Morfessor (Smit et al.,
2014), a naive unsupervised morphological segmentation model on real Maori with the
segmentations produced by Non-Maori speakers (NMS) exposed to real Maori. This
comparison sheds light on the similarities and differences between the statistical learning
processes employed by Morfessor and NMS. Second, we investigate the performance of
Mortfessor on actual Maori words compared to artificially generated Maori-like language
(pseudo Maori). Using artificially generated languages provides us the capability to make
sure it reflects the statistics of the language and that it follows Morfessor’s concatenativity
assumption 1.e. that it does not contain other cues to morph boundaries that are in real Maori.
By analyzing the differences between pseudo and real Maori, we gain insights into the
limitations and deficiencies of Morfessor in capturing the complexities of real Maori. By
putting together insights from these two analyses, we shed light on the similarities and
differences between the statistical learning processes employed by Morfessor and NMS,
contributing to a better understanding of implicit language learning through exposure.
Furthermore, by examining Morfessor's performance across these distinct analyses, we aim
to contribute to the broader implications of it towards unsupervised learning of

morphological structure.



To summarize, the research questions of this work are as follows :

1. What are the similarities and differences between the statistical learning processes
employed by Morfessor and NMS in the context of Maori language segmentation?

2. How does the performance of the Morfessor algorithm on actual Maori words
compare to expectations derived from artificially generated Maori-like language
(pseudo Maori), and what insights can this provide into the limitations and
deficiencies of Morfessor in capturing the complexities of real Maori?

3. What are the implications for unsupervised learning of morphological structure in
segmentation models, considering that Morfessor may perform differently in different
subsets of data due to its potential limitations and missed assumptions? How can the
understanding of these implications contribute to a better grasp of implicit language
learning through exposure, particularly in the context of unsupervised morphological
segmentation models when used in languages like Maori?

By addressing these research questions, the study aims to uncover the potential and

boundaries of statistical learning in implicit language learning .

I1. Background

A.Implicit language learning and Statistical learning

How humans learn to extract knowledge from their environment is one of the

fundamental questions in cognitive science. Statistical learning refers to the process of



extracting statistical regularities from input and adapting to them, based on considerations of
frequency, variability, distribution, and co-occurrence (Saffran et al., 1996). Humans are
highly sensitive to such statistical regularities and implicitly learn them from birth (Bulf,
Johnson, and Valenza 2011; Gervain et al. 2008; Teinonen et al. 2009).

Implicit learning refers to the process of learning without intention, and even without the
awareness of what has been learned (Williams, 2020) . Implicit learning plays a crucial role
in human cognition as it underlies various essential skills such as language comprehension
and production, intuitive decision making, and social interaction (Rebuschat, 2015).

A particularly prominent form of implicit learning is statistical learning. While early
literature on statistical learning focused narrowly on transition probabilities, in this work
"statistical learning" is being used more broadly to capture the learning of statistical
morphological properties.

Saffran et al. (1996) was the first study that showed that infants were able to segment
segment a fluent speech stream of a highly constrained artificial language into word-like
units after just two minutes of exposure to the artificial language, thus showing how infants
were performing word segmentation through statistical learning by being able to track the
transitional probabilities. Estes et al. (2007) demonstrated that, for infants, exposure to word
forms in a statistical word segmentation task facilitates subsequent word learning, thus
showing the effect of implicit learning in the downstream task of word learning.

There have been other studies that have shown different regularities in language learnt
through implicit statistical learning by children and adults. Saffran et al. (1997) investigated
the word segmentation abilities of first-grade children and adults using an incidental

language-learning task. Incidental-learning studies typically require that the subjects are



engaged in a non-linguistic task while linguistic stimuli play in the background so that the
participants are not actively and continuously attending to the linguistic stimuli. This way,
any learning that occurred can be concluded as completely incidental, in that the attention
was not directed to the language learning task which they are being tested for. The subjects
were told that they were participating in an experiment investigating the influence of auditory
stimuli on creativity. The experiment had adults and children perform a coloring activity on
the computer (incidental task) while the auditory stimuli of artificial language with no pauses
or any acoustic or prosodic cues to word boundaries was being played in the background.
After the 20 minute experiment, the participants were given two sets of words and asked to
guess which one sounded like the one that was played in the background during the
experiment.The results showed that both age groups were able to learn the words of an
artificial language presented in continuous speech, with children performing as well as

adults.

B. Statistical learning in Real world languages

As seen above, previous research with artificial language learning paradigms has
shown that infants are sensitive to statistical cues to word boundaries and that they can use
these cues to extract word-like units (Saffran, 2001). However, this leads us to the question of
whether infants perform statistical learning in real languages they hear outside the lab? Do
they use this statistical information to construct word forms as they do in the artificially
created languages? Pelucchi, Hay, and Saffran (2009) found that 8-month-old English

learning infants, exposed to Italian, were capable of identifying patterns of transitional



probabilities in language, even when the linguistic input was intricate, naturally spoken,
followed grammatical rules, and conveyed meaning. Demonstration of statistical learning in
a natural language allowed for greater ecological validity than previous experiments using
artificial languages. However, these results tell us little about the representations that infants
formed while listening to the fluent speech.

Ngon et al. (2013) showed that 11 month old French learning infants used statistical
information to extract word candidates from their input. Using nonword stimuli matched with
syllabic structure of real French words, the work showed that infants listen longer to high
frequency disyllabic sequences than low frequency disyllabic sequences. This shows that
infants are sensitive to the statistical property of frequency. Using another experiment
comparing high-frequency nonwords and high-frequency French words as stimuli, they
showed that infants showed no-difference between these two. Together this work depicted
how infants, when they haven’t yet learnt to segment words accurately from their input, are
using the statistical recurrence of the units in their input towards the word-finding process.
The units that recur sufficiently often are extracted as morphs and stored in memory, in a
proto-lexicon (Johnson 2016). The proto-lexicon is a precursor to a fully-fledged mental
lexicon: it contains forms, but not necessarily associated meanings, and may contain morphs
corresponding to both words and non-words. From the above experiments, it is evident that
infants, without conscious effort (implicitly) are extracting statistical properties in the input
they are exposed to create their protolexicon. Thus we can say that the proto-lexicon acts as
the seat upon which implicit knowledge of a language is built.

Another crucial limitation in the above words is that the exposure phase was

performed in a lab based setup; while the stimuli were designed to be naturalistic, they are



still highly constrained with respect to the number of words they are exposed to.
Additionally, the infants were placed in sound attenuated booths and the setup was such that
the infants would actively listen to the stimuli being presented. A crucial difference in the
approach of the experiment involving non-native Maori speakers (NMS) as in (Oh et al.,
2020), lies in the type of exposure they receive compared to this experiment. Unlike
controlled experimental settings in a lab, their exposure occurs naturally in daily life
situations, spanning a prolonged period. Additionally, the degree of engagement with the
language varies among participants, reflecting a more organic and diverse range of
interactions with the language, representing implicit learning scenarios in a real world setup.
Recent work by Oh et al. (2020) showed that Non-Maori speaking New Zealanders
who have been exposed to Maori develop a Maori proto-lexicon through implicit statistical
learning. Through a word identification experiment, the study showed that New Zealanders
who are commonly surrounded by Maori but do not speak it were able to distinguish real
Maori words from word-like (phonotactically-matched) nonwords, thus demonstrating
implicit lexical knowledge. Further, using a wellformedness rating experiment, participants
rated Maori-like nonwords for how good they would be as a real Maori word, using a scale
ranging from 1 (‘Non Maori-like non-word’) to 5 (‘Highly Maori-like non-word’). The
words for the stimuli represent different degrees of phonotactic wellformedness based on the
statistics of the language. The participants involved three groups - NMS, fluent Maori
speakers, and non-Maori speaking Americans. The Fluent Maori speakers provide us with a
baseline metric given that they have full lexicon and a complete phonotactic knowledge. The
US participants are at the other end of the comparison, given that they have no lexicon and

almost no phonotactic knowledge of the language. The results showed that the US



participants showed only a slight increase in their ratings across varying levels of phonotactic
probability, suggesting they have minimal specific knowledge of Maori phonotactics. In
contrast, both NMS demonstrated a substantial increase in their ratings in line with
phonotactic probability, indicating a significant understanding of Maori phonotactics. This
shows that the ratings provided by NMS is not by mere guessing, rather it is a result of their
exposure to Maori, indicating proof of non-negligible phonotactic knowledge of Maori.
Additionally, the performance of the NMS did not significantly differ from that of MS, which
shows that NMS have gained a strong phonotactic knowledge of Maori which is similar to
that of MS.

To analyze the source of NMS’ phonotactic knowledge, simulations of proto-lexicon
with varying vocabulary sizes of Maori lexicon were used to predict NMS’ well-formedness
ratings. The results showed that the well-formedness ratings of NMS participants can be
adequately explained by assuming that their phonotactic knowledge is based on a
proto-lexicon consisting of 3,000 common Maori words. Further, the authors noted that from
what is known about statistical learning, it is possible that the NMS proto-lexicon does not
consist of words at all, but is rather made up of morphs, which are phonological
(sub)sequences that recur across different words. To test the cognitive assumption that the
NMS proto-lexicon consists of morphs, phonotactic probabilities were calculated based on
morphs (obtained from morph segmentation of words by a fluent Maori speaker). Using
ordinal mixed-effects regression models, the morph-based phonotactic probabilities better
predicted NMS’s ratings than the word-based phonotactic probabilities, thus suggesting that
the NMS’ protolexicon most likely consists of morphs. Using simulations of a proto-lexicon

consisting of morphs, the work showed that the NMS participants' ratings can be adequately



predicted by phonotactic knowledge generated over a set of approximately 1,500 of the most
common morphs.

Through modeling of these results, it was concluded that the best fit of the
performance of these non-Maori speakers in the lexical tasks is explained by their statistical
learning of word parts or morphs, which involves segmenting words into smaller components
and storing them for future use. Building on this, recent work Panther et al. (2023a) showed
that morphological segmentations by Non-Maori speakers in New Zealand matches the
segmentations by proficient Maori speakers, thus adding to the literature that NMS are able
to gain speaker-like knowledge through ambient exposure and implicit statistical learning.

It brings up the important and interesting question of how language structure affects
the learning by non-speakers of a language to segment words in a real language and process
morphological complexities of the language. Todd et al. (2023) raise this question in a
replication of Oh et al.'s (2020) work, targeting implicit knowledge of Spanish held by
non-Spanish-speaking Californians and Texans. In this work, the authors showed that
non-Spanish speakers in California and Texas (states where Spanish is largely spoken), have
implicit lexical and phonotactic knowledge of Spanish. However, it appears to be weaker
than the knowledge of Maori held by Non-Maori speakers in New Zealand studied by Oh et
al. (2020). One potential explanation is the structure of the language , morphology being a
notable structural difference — Spanish has morphological differences to Maori, such a lower

use of compounding compared to (inflectional or derivational) affixation.

C. Morphological Segmentation



Having seen that adults use phonotactic cues to segment words from sentences, and
knowing that language contains recurring structures, it is highly likely that learners are
implicitly learning these structures in the process (Panther et al., 2023a ). The literature on
modeling morphological segmentation processes reinforces this perspective, indicating that
morphological segmentation can be accomplished without relying on semantic knowledge.
Various algorithms have been proposed, demonstrating that recurrent morphological patterns
can be statistically learned in a bottom-up manner solely from exposure to word forms
(Creutz and Lagus, 2007; Daland and Pierrehumbert, 2011). Some algorithms like Morfessor
(Creutz and Lagus, 2007) assume that segmentations require reference to an inventory of
morphs, so there is an assumed proto-lexicon. Whereas other algorithms such as DiBS
(Daland and Pierrehumbert, 2011) assume that segmentation can occur based on
phonological transition probabilities alone, without the need of a known inventory

(proto-lexicon).

In morphological segmentation the goal is to identify boundaries within words by splitting
them into morphemes, the smallest meaning-carrying units. In unsupervised approaches, the
inventory of parts is inferred from the training data, by identifying the morphs — sequences of
characters, phonemes, or larger ‘atoms’ — that recur across words with statistical regularity.
For this work we use Morfessor (Virpioja et al., 2013)) as our naive statistical learner, a
generative probabilistic unsupervised morphological segmentation model. We chose to use
Morfessor due to its simple assumptions and is often used as a baseline among morphological

segmentation models.
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Unsupervised morphological segmentation provides us an avenue to simulate implicit
statistical learning processes. In this work , we use Morfessor , which is one of the popular
unsupervised morphological segmentation models in the field. Morfessor operates within a
Minimum Description Length framework (Rissanen, 1978), aiming to identify the most
concise and straightforward set of morphs (the lexicon) that can generate the training data
with the highest probability. In this approach, the lexicon is treated as a collection of morphs,
and during training, the cost of adding a particular morph to the lexicon is determined based
on both its complexity and how frequently it appears across words. The training data are
assumed to be generated from the lexicon by concatenating morphs drawn independently
from it, without considering any constraints related to their position, sequencing, or
morphosyntactic category. Morfessor is based on the assumptions that words are composed
of morphs, that frequent morpheme sequences indicate valid morphological units, and that
language users are capable of generating new words through productive morphological
processes. This then neatly relates to the assumption which was modeled in Oh et al. (2020),
which showed that NMS’s phonotactic knowledge can be best explained by a protolexicon
made up of morphs. Morfessor thus can be a good candidate to understand the exact
underlying implicit learning processes used by Non-Maori speakers (NMS). By drawing
parallels between the learning processes between NMS and Morfessor, this work aims to
look into the extent of statistical learning used by NMS.

In the context of our discussion, it is essential to acknowledge the inherent limitations
of Morfessor, which arise from the simplifications entailed by its assumptions. However, as

we will elaborate in the following section, the structural characteristics of the Maori language
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align well with these assumptions. This alignment suggests that Morfessor can be considered

a plausible naive cognitive model for the purposes of our analysis.

II1. Maori Language

Maori, or te reo Maori, commonly shortened to te reo, is an Eastern Polynesian
language spoken by the Maori people, the indigenous population of mainland New Zealand.
As of the latest data available, the 2018 New Zealand Census reported that there are 185,955
Maori speakers which accounts for approximately 3.9% of the total population of New
Zealand.

The Maori phoneme inventory consists of five vowel and ten consonant phonemes as show in
Table 1. The ten consonant phonemes are : /p, t, k, m, n, n, w, f, r, h/ and the five vowels are
/i, e, a, o, u/. The orthography in Maori is highly transparent i.e. the written form closely
resembles the spoken form. The consonants are represented by <p, t, k, m, n, ng, w, wh, r, h>,
and the vowels represented by <i, e, a, o, u> respectively. Vowel length is phonemic, and
each vowel has a long counterpart. Long vowels are represented with a macron: <I, &, 2, 0,
>, Maori syllables follow a (C)V(V) template, with optional simplex onsets and no codas.
Maori also has a transparent morphological system, which consists of little inflectional and
derivational morphology, and in which compounding is frequent (Harlow, 2007). This makes

it suitable for morphological segmentation models such as Morfessor.

In the context of the Maori language, there is not (yet) a consensus on what is and is not a
diphthong, based on phonetic properties (e.g., the absence of hiatus as you mention) or

phonological properties (e.g., the influence on stress assignment). Furthermore, the status of
12



a VV sequence as a diphthong or sequence of monophthongs is affected by morphological
structure, and it is not yet clear the extent to which diphthongization across morpheme
boundaries occurs. Given these outstanding questions, we follow other quantitative work on

Maori in treating all Vs separately.

Thus, for the purpose of this study, we only model CV and V structures. The models hence

are not particularly distinguishing diphthongs and sequences of monophthong structures as it

could lead to ambiguity. The table below (Harlow, 2007) shows the phoneme tables.

Table 1. Phonemes in Maori

labial dentalfalveolar wvelar glottal

stops p t k
nasals m n n
fricatives f h
liquid r
semivowel w

front central back
high i u
mid e
low a

IV. Analysis 1: Comparing Morfessor and Non-Maori Speaker (NMS)

segmentations on real Maori words.
Non-Maori speakers in New Zealand exposed to Maori are similar to Morfessor in the
sense that both are learning to segment the language based on statistical patterns in the

language they are exposed to without getting feedback (unsupervised). In both cases the

learners are using recurring units to learn word parts in order to build their proto-lexicon. By
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comparing them, we can understand how similar or different these two learning processes are
which will help understand how statistical learning plays a role in implicit language learning

through exposure.

A. Data

The dataset used here is the NMS Non-Maori Speaker (NMS ) data and the MS (Maori
Speaker) data.

1. Non-Maori Speaker (NMS ) data: Non-speaker segmented data is used from Panther et
al. (2023a) where 195 non-Maori speakers in New Zealand were asked to segment Maori
words into morphs. During the experiment, the participants were given multiple examples of
morphological complexity in English and Maori before providing the task of segmenting
Maori words. The stimuli were presented orthographically. They were asked to click between
any two letters to assign a segmentation or to click a box under the word to leave the word
unsegmented. Each label obtained from the participants indicates whether or not the

participant thought if there was a boundary between the two letters.

Aggregating NMS data : In order to use the NMS data as a comparison between Maori
Speakers as well as Morfessor, it needed to be aggregated. For each letter pair in each word,
there were labels from multiple participants where the labels indicated if each participant
thought whether there was a boundary between the two letters. To aggregate at the word
level, the majority of the labels at each position were taken as the final label for each word.
For example, Table 2. below shows the aggregated data for one word ‘hoiho’.

Table 2. Example of aggregation of labels from NMS data.

14



word true_votes false votes majority segmentation

hoiho [0, 1, 8, 0] [11, 10, 3, 11] | [False, False, hoi+ho
True, False]

The participant labels were counted based on whether they placed a boundary between each
pair of letters. For the word ‘hoiho’, there are 4 possible places where they could place a
boundary — between the letters ‘h’ and ‘0’, ‘0’ and ‘1’, ‘i’ and ‘h’, ‘h’ and ‘0’. The true votes
are the counts of how many participants placed a boundary in these positions in the given
order. Similarly false votes are the number of participants who did not place a boundary in

that position. The majority is taken between the two sets of votes to determine the aggregated

segmentation which is ‘hoi+ho’. There are a total of 4427 words in this dataset.

2. Maori Speaker (MS) data :We use the word segmentation data collected from a fluent
Maori expert speaker (MS data) in Oh et al. (2020). As described in their work, the initial
corpus consisted of 19,595 words from the Te Aka dictionary (Moorfield, 2011). However,
since segmentations could reliably and straightforwardly be inferred for some words — either
because they are too short to be complex or the result of productive and transparent
morphological processes, these words were excluded from the words given to the speaker.
1,014 words that were identified as simplex—bimoraic or smalle—were excluded.
Additionally, 34 bimoraic words composed of a repeated syllable were selectively evaluated
for potential segmentation. Another 6,360 words were held out in order to reduce
redundancies, so that the raters didn't have to rate more than necessary in order to confidently

arrive at segmentations for all words in the dictionary. The rationale behind this selection was

15



that these words were formed by using a transparent morphological process to a base stem,
which speakers were already breaking down into segments. And once the segmentation of the
stem were known, the segmentation of the held-out word could be inferred from it. The
remaining 12,221 words were presented to the fluent speaker for segmentation.

For the 7,374 words initially held out from decomposition, inferences were made
based on the decompositions of related words within the dictionary. Specifically, the 1,014
short words presumed to be simplex were inferred to contain only a single morph. For the
6,360 words that were likely products of transparent morphological processes using known
stems, their decompositions were inferred by applying the known morphological rules to the
identified stems, adding affixes and reduplication where appropriate. Words formed from
stems that the speaker could not recognize were marked as unknown, which accounted for 71
words. As a result, segmentations for a total of 19,524 words were obtained. Further

methodological details can be found in the supplemental document of Oh et al. (2020).

When comparing MS and NMS performances, we take a subset of the data to match the

words from the NMS data to calculate the performance metrics.

B. Method

Morfessor segmentations : Morfessor was trained and tested on the words for which we
have the NMS segmentations i.e the 4427 words. We obtain the segmentations for those
words for which we have the word category information in order to compare the different

word categories across the two learners.
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The broad categories of words in the dataset are polymoraic, affixation, monomorphemic
and reduplication .
1. The polymoraic words category encompasses terms that consist of four or more moras;
these words may not display transparent morphology yet could possess complex structures. 2.
Monomorphemic words consist of a single morpheme.
a. Bimoraic disyllable words are a subset of monomorphemic words that are
composed of two syllables, each typically containing a short vowel.
b. Trimoraic words, another subset, consist of three moras and may feature
different syllabic structures, including long vowels.

3. Affixation category words are those that carry one or more affixes and are further
subdivided into three specific types:

a. Nominal,

b. Passive, and

c. "whaka" prefixed words that typically denote a causative action in the language.
4. The reduplication category involves words that exhibit repetition of word parts, either
partially or in full. This category itself has several subcategories:

a. partial reduplication left short where the first mora (syllable containing a short

vowel) is repeated to the left,
b. left-reduplication where 2 morae in a word with more than 2 morae are repeated to
the left,
c. total reduplication where the entire word is duplicated to create a new meaning.
d. partial reduplication left long which involves the first syllable of the base repeated to

the left (and has its vowel lengthened) , and
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e. partial reduplication_right where a portion of the end of the word is repeated.

The sub categories of words and their counts are shown in table 2 below.

Metrics : The metrics used to compare performance are boundary precision and recall
(Stolcke and Shriberg, 1996). In our use case of identifying morphological boundaries in
words, precision and recall can be understood in the context of whether the boundaries are
identified correctly by the two learners (NMS and Morfessor) compared to the true
morphological boundaries. It is to be noted that the "true" boundaries are taken to be those
produced by the fluent speaker and we acknowledge that there might be variation between
speakers for these boundaries. Precision in this context refers to the proportion of the
boundaries identified by the learner that are actually correct. Recall refers to the proportion
of the true boundaries correctly identified by the learner. For example, if we have a word that
should be segmented as A+B+C and the provided boundary position by NMS is A+BC, then
the precision in this case would be 1 or 100% and the recall would be 0.5 or 50% since the
learner missed one boundary. The precision and recall is calculated at the word level and
averaged for each subcategory.
Edge cases: In the context of this analysis, we have adopted specific conventions to handle
edge cases where traditional precision and recall metrics may not be directly applicable:
1. True Zero Boundaries: If the correct segmentation contains no boundaries, and the
learner also predicts no boundaries, we define both precision and recall as 1. This
reflects perfect agreement between the learner's predictions and the ground truth, even

in the absence of boundaries to detect.
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2. Missing Learner Boundaries: When the true segmentation contains boundaries, but
the learner fails to predict any, traditional precision would be undefined due to a zero
divisor. For the purposes of analysis, we will consider precision to be O in this
scenario. This decision aligns with the principle that the learner has failed to detect
any of the true boundaries it was supposed to find.

3. Incorrect Learner Boundaries: In the case where the true segmentation has no
boundaries (e.g., mono-morphemic words) but the learner incorrectly predicts
boundaries, recall would traditionally be undefined. Again, for the sake of
consistency in analysis, we will treat recall here as 0. This reflects the learner's error
in predicting boundaries where there should be none.

While these conventions might affect the interpretation of the results, they are necessary to
ensure that the analysis remains coherent and can accommodate all possible scenarios. We
want to note that we are aware of the limitations inherent in this approach during
interpretation of overall results. By following up with an error analysis alongside our
quantitative measures, we aim to address these limitations and provide a more
comprehensive understanding of the learner's performance in this context.

Table 3. Precision, recall for each of the word categories

category| morf_prec NMS_prec morf_rec NMS_rec
polymoraic 0.70 0.81 0.88 0.82
monomorphemic 0.26 0.71 0.28 0.72
affixation 0.72 0.72 0.86 0.72
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reduplication 0.61 0.77 0.83 0.79

C. Results

Table 3. shows the comparison of average precision, recall for Morfessor and NMS for each
of the four categories of words. Overall the NMS speakers seem to be performing better than
Morfessor in all categories in terms of precision with the affixation category performance
being equal to Morfessor. NMS precision is the highest in the polymoraic category followed
by reduplication, affixation and monomorphemic categories. However, with Morfessor, the
highest precision is obtained in the affixation category followed by polymoraic, reduplication
and monomorphemic categories. The recall metric however has a different trend from the
precision. Morfessor seems to consistently have a higher recall in all the categories, the
highest being in polymoraic category. This could be due to over segmentation by Morfessor.
NMS has the highest recall in the polymoraic category as well. NMS recall is the lowest in
the monomorphemic and affixation categories. We will dive deep into the results of each of
these categories and subcategories next. Table 4 below shows the sub-category of words and

their respective precision,recall metrics.

Table 4. Precision, recall and average frequency of the morphs each learner is exposed  to

for each category.

sub
category category| morf_prec| morf_rec| NMS_prec|NMS_rec
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bimoraic_di
monomorph syllable 0.21 0.21 0.88 0.88
emic trimoraic 0.31 0.35 0.54 0.55
nominal 0.71 0.84 0.66 0.67
passive 0.67 0.77 0.56 0.56
affixation whaka 0.77 0.97 0.95 0.93
total_redup 0.55 0.88 0.95 0.97

partial_redu
p_left long 0.69 0.95 0.8 0.82

partial_redu
p_left_short 0.45 0.6 0.55 0.59

reduplicatio | partial_redu
n p_right 0.76 0.88 0.78 0.77
polymoraic | polymoraic 0.7 0.88 0.81 0.82

Monomorphemic words : Any word with three or fewer morae is monomorphemic.
Monomorphemic words as mentioned can be either bimoraic disyllable or trimoraic. For
example ‘pewa’ is a bimoraic_disyllable. NMS predicted ‘pewa’ with no boundaries, while
Morfessor predicted ‘pet+wa’. While both the learners seem to be struggling, Morfessor is
better in the trimoraic category than the bimoraic disyllable, whereas NMS appears to be
performing substantially better than Morfessor in both the categories, bimoraic di_syllable

being its highest in both precision and recall.

Affixation : Within the affixation category, both Morfessor and NMS struggle the most with
nominal subcategory and perform the best in whaka, although the Morfessor outperforms
NMS in the nominal and passive categories. This can be attributed to the fact that “whaka”
contains the most common prefix, and so it should be easily extracted by both Morfessor and

human learners. To understand the performances in nominal and passive categories, we need
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a fine grained analysis of the default and non-default sub categories within these affix
categories. Table 7 below shows the split of default and non-default affixes in the nominal
and passive categories. The nominal category has ‘haNa’ and ‘taNa’ as the default
allomorphs of the -Canga affix. The non-default variants of it are 'aNa', 'Na', 'kaNa', 'maNa',
'raNa', 'faNa'. Similarly the passive category has ‘tia’ and ‘hia’ in the default allomorphs of the
-Cia affix category and has variants of the non-default category: ‘Nia', 'a', 'ia', 'ina', 'kia', 'mia’,
'na','Na’, 'ria', 'fia’, 'fina’, 'kina'.

To compare how the statistical recurrence of default and non-default affixes in the

input affects the performance of these learners in each of the word categories, we create the
average morph frequency and affix accuracy metric.
Average frequency : The average morph frequency metric is designed to quantify the
exposure frequency of various morphs to learners. For Morfessor, the average morph
frequency calculation is based on the morphs present in the word types that are input into the
model, with a reference to the segmentation provided by an expert Maori Speaker (MS). In
the case of NMS, the average morph frequency metric is derived from their exposure to the
morphs present in the word types in the Te Aka dictionary (Moorfield, 2011). It was
calculated by dividing the total number of word types each morph occurred in by the sum of
all such counts for all the morphs. This acts as a proxy for the linguistic input available to
NMS.

The average morph frequency at the word level is calculated by taking the average of
the corresponding morph frequencies contained in the word. This process essentially

provides a measure of how frequently Morfessor and NMS encounter specific morphs in the

language across different word categories. By comparing these frequencies, we can gain
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insights into the differences in morph frequencies in relation to their morphological
segmentation process. Removing the stem and looking at the affix frequency alone can give
us a better idea to interpret the results of the different sub categories. To understand the effect
of affix segmentation alone, we created an affix_acc metric to calculate the accuracy of
segmentation of the affix in each category as shown in the table 5 below. The affix acc
ranges from O to 1. The Figure 1 below shows the distribution of default and non-default
allomorphs for the different affix categories.

Average affix accuracy : This metric is based on the accuracy of getting the affix
segmentation correct. Irrespective of the remaining morphs in the words, the affix accuracy
for a word is 1 if the affix has been correctly segmented. The average of the affix accuracies

for all the words in the category is presented as the value for each category in Table 5.
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Figure 1. Distribution of non-default and default affix categories among nominal, passive and
whaka affix categories.

Table 5. Affix segmentation accuracy and frequencies for Morfessor and NMS
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Morfessor NMS
affix_frequ affix_freq
category| affix_type affixes| affix_acc ency| affix_acc uency
default|haNa','taNa’ 1.00 0.97 0.89 0.77
aNa', 'Na',
nominal 'kaNa',
'maNa’,
non-default|'raNa’, 'faNa' 0.88 1.15 0.53 0.66
default tia','hia" 1.00 1.58 0.72 3.86
Nia', 'a', 'ia',
'ina’, 'kia',
passive 'mia’,
'na','Na', 'ria,
'fia', 'fina’,
non-default 'kina' 0.77 0.63 0.34 0.79
whaka default|whaka 1.00 3.61 0.98 6.88

Nominal Category:

® Default Affixes: In nominals, it looks like within the default affix category both

Morfessor and NMS are doing relatively well. The high affix frequency of 1 in

Morfessor and 0.89 in NMS attests to this. This could be due to the fewer items of

affixes in this category along with the fact that the affix frequency is high for this

category.

e Non-Default Affixes: Here ,the performance drops for both Morfessor and NMS, with

Mortfessor maintaining a lead. Although the mean affix frequency for this category is

higher, the greater variation could be the reason behind the drop in affix accuracy in

Morfessor. In the case of NMS, the affix frequency drops which, along with the
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multiple variations could cause the lower affix accuracy. This suggests that the lower
frequency and greater variation in non-default affixes pose challenges to effective
segmentation in both learners. In the case of Morfessor, the recall is high, which can
be attributed to the over segmentation behavior. One possible explanation for the low
performance by NMS can be that the affix frequencies haven’t reached a threshold for

them to confidently identify the different templates needed.

Passive Category:

Default Affixes: Similar to the nominal category, default affixes see better
performance compared to non-default categories. Morfessor has a high affix
frequency within this category which could be the reason underlying the high
accuracy in segmenting these default affixes. NMS on the other hand, has a relatively
high affix frequency although this is not leading to the same increase in its affix
accuracy. Further fine grained analysis of the individual affix performance might shed

light on this behavior.

Non-Default Affixes: Both Morfessor and NMs have the lowest affix accuracy in this
category. NMS appears to be struggling more than Morfessor. The complexity of the
multiple allomorphs could be an important contributing factor. Similar to the
non-default category in the nominal affixes, the low performance by NMS can be that
the affix frequencies haven’t reached a threshold for them to confidently identify the

different templates needed.
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'Whaka' Category: The whaka category results seem to be straightforward. Both NMS and
Morfessor have a high frequency of whaka in their input which could result in the correct
segmentation of the affix in almost all the words (accuracy of 1 and 0.98 in Morfessor and

NMS respectively).

While there are some similar trends across the subcategories, NMS and Morfessor seem to be
learning through different processes by using the statistical regularities in distinct ways
which needs further analysis by breaking down each of the non-default affix performances as

well.

Reduplication : Morfessor is not able to learn patterns like humans. NMS speakers are able
to identify reduplicated patterns and so have a much higher precision compared to Morfessor.
Within reduplication subcategories, it is interesting to see how the total redup frequencies
are the lowest for Morfessor and NMS within this subcategory, but NMS seem to be having
the highest precision in total redup, indicating an intuitive process which seems to be helping
NMS segment these words. However, for Morfessor, which depends on the distributional
properties of morphs, doesn’t seem to be picking up on recurrent patterns.

We can see that partial redup left short (Leftward Redup with short vowel) is the
hardest for both Morfessor and NMS in terms of precision. Morfessor seems to be
performing better in the partial redup right than in the partial redup left long, even though
the average frequency is higher in the later category. Further analysis on the different patterns
within this category might help shed light on this behavior. NMS on the other hand , have a

better precision for partial redup left long than partial redup right.
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Polymoraic: These are words which contain four or more moras and are the class of words
without transparent morphology. These are the categories of words that don’t contain
reduplication nor affixations. Overall, It appears that NMS are performing relatively better
than Morfessor in terms of precision(prec Morfessor = 0.70, prec NMS = 0.81) whereas
Mortfessor’s recall is better than NMS (prec Morfessor = 0.82, prec. NMS = 0.88). While it
has a lower precision, it has a high recall which could be due to Morfessor oversimplifying
the segmentations by either over-segmenting or mis-segmenting. The error analysis in the
next section shows

the distribution of over-segmentation, mis-segmentation and

under-segmentation by Morfessor and NMS for the Polymoraic category.

Polymoraic words error analysis : Figure 2 shows the errors for the polymoraic word

category.
Table 6. Error analysis on polymoraic words
Over-segmentation % Under-segmentation %
Incorrect |Mis-segmentat Partially Partially
(n) ion % correct Errors correct Errors
Morfessor 639 1.56 74.80 18.15 0.63 4.85
NMS 290 11.03 11.38 18.97 9.31 49.31
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Figure 2. The distribution of correct splits vs the splits made by the learners categorized as
correct segmentations, over, under, partially correct and mis segmentations in polymoraic
words.

The figure shows a visual representation of the different kinds of errors made by the learners
while the table shows the quantitative analysis of the error types. We analyze the errors
drawing from these two representations. We define partially correct over-segmentations to
see if at least part of the oversegmentations contain actual correct morphs ie even though the
boundaries are not placed in the correct positions, we check if there is a subset of correct
morphs with the provided boundaries Similarly, we check if there is a subset of correct
morphs in the over segmentation cases, which we define as partially correct over
segmentations. This gives us an idea that while the entire word was not correctly segmented
in all the positions, a part of the segmentations were indeed correct.
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Table 6. shows the error analysis on the polymoraic words. Morfessor, tends to have a
significant number of over-segmentations, accounting for approximately 92.96% of the
errors. However, a large majority of it (74.80%) consists of partially correct segmentations i.e
out of the oversegmentations, some of the boundaries are being placed in the correct
positions. Over-segmentation occurs when Morfessor divides words into smaller units or
morphemes more frequently than necessary. This high rate of over-segmentation contributes
to the high recall, as Morfessor captures a large portion of the true morphs in the words.
However, it also introduces incorrect morphs thus affecting the precision as seen above.

The next category of errors made by Morfessor is under-segmentation, which
accounts for around 5.48% of the errors. Out of these, a small percentage do contain partially
correct morphs (0.63%). Under-segmentation occurs when Morfessor fails to identify an
adequate number of morphemes within a word. This can happen due to various reasons, such
as infrequent occurrence of individual morphemes or the limitations in Morfessor's
assumptions about the structure of the language or corpus which we analyze to some extent
using the next analysis.

Mis-segmentations are the least common type of error made by Morfessor,
representing approximately 1.56% of the errors. Mis-segmentation refers to cases where
Mortfessor incorrectly splits a word into morphs, resulting in incorrect boundaries between
them.

On the other hand, the most common error made by NMS is under-segmentation,
accounting for around 58.62% of the errors with 9.31% of them containing partially correct
morphs. This suggests that the NMS have difficulty identifying an adequate number of

morphs in the words, possibly due to having a high threshold of confidence required before
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they commit to a boundary being present. The second most common error made by NMS is
over-segmentation, representing approximately 30.34% of the errors with 11.38% being
partially correct. It is worth noting that both Morfessor and NMS exhibit fewer errors in the
mis-segmentation category. NMS have a higher error rate of 11.03% compared to the 1.56%
by Morfessor.

To summarize, Morfessor tends to have a higher rate of over-segmentation errors,
followed by under-segmentation and mis-segmentation errors. In contrast, the NMS show a
higher rate of under-segmentation errors, followed by over-segmentation and
mis-segmentation errors. These findings provide some initial insights into the strengths of the
processes each takes in identifying morphs and where they lack.

Findings from the above results exemplify how two learners that are similar in their
learning processes show significant differences between them in their performances. Results
from Analysis 1 indicate that overall NMS are better than Morfessor in the morphological
segmentation task. It seems like there are cues to morphological segmentations in Maori
which NMS are using, that go beyond simple recurrence statistics as utilized by Morfessor,
e.g knowledge of affixation and reduplication templates. If this is the case, then we expect
that Morfessor would do much better on a language that followed exactly the same
morphological statistics as Maori but lacked sensitivity to these other cues. To verify this
assumption, we create artificial languages resembling Maori but adhering strictly to
Morfessor's assumed language structure. If Morfessor is able to perform well on
pseudo-Maori, then it suggests that the learning mechanisms NMS use are far more complex

than the one used by Morfessor.
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V. Analysis 2 : Morfessor performance on pseudo-Maori polymoraic words

From Analysis 1, it appears that NMS are utilizing cues for morphological segmentation in
the Maori language that extend beyond the basic recurrence statistics employed by
Mortfessor. These cues might include factors like specific patterns such as the reduplication
templates. Given this observation, it's reasonable to hypothesize that Morfessor would
perform more effectively with a language that has morphological statistics identical to Maori
but does not require sensitivity to these additional cues. We test this hypothesis by generating
pseudo-Maori words which are highly constrained to follow the morphological statistical

properties of real Maori words.

From the different word categories, we create pseudo-Maori words only for the polymoraic
category in this analysis since the polymoraic category most neatly fits the generative process
that Morfessor assumes. Each other category has some limitation that makes it ill-suited to
this analysis. For instance, the reduplication category of words, as seen from Todd et al.
(2022), would benefit from Morfessor having reduplication templates (which we are not
using in the current analysis). The Affixation category would need some way to inform
Morfessor about the allomorphy i.e the fact that there are multiple variants of the same affix.
Monomorphemic words, by definition, have no boundaries in them; so the analysis would be

limited to identifying error cases where Morfessor predicts a boundary when there isn’t one.

A. Data

Pseudo-Maori Generation : The pseudo Maori language generator was a simple generative

model built in python 3.9.7. This involved a two-step process. First, we obtained the
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parameters from real Maori words in order to simulate those properties in pseudo Maori. The
next step involved generating the words in the pseudo Maori language using the parameters
obtained in step one. Each of these steps are explained in detail below.

We use a generative process to generate the pseudo-Maori words which closely
resemble the real Maori words. To develop words which have properties similar to the real
Maori words, we need to obtain the statistical properties of the word at different levels
(syllable, morph, word) in order to create the pseudo words. So we first calculate these
properties in the form of parameters and then use them in our generative process.

Below are the steps involved in generating the pseudo-Maori words for the

polymoraic category.

B.Method

1. Getting parameters from real Maori words (polymoraic category): This process
involved two main steps: first, identifying the statistical parameters from the words at the
morph level in the Maori language for the polymoraic words. The second step involved
calculating parameters at the syllable level. To extract parameters, we use the polymoraic
words from the MS data for which we have the word category information. This consists of

1317 words.

A. Parameters at the morph level: For each word in this subset Maori data, we create
a pseudo-Maori word with similar statistical morph properties. First, we calculated
the number of syllables present in each morph of a word. For example if a word
contains two morphs, and the number of syllables present in each morph is two and

three respectively, then we store that as the syllable count ([2,3]). To simplify, we
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filter out any words containing morphs made up of four or more syllables since there
were only 22 words in the MS dataset fitting that criteria. This decision is also
grounded in the desire to maintain a manageable complexity within the model while
capturing a representative range of morphological variability. We calculate the type
frequency of each morph i.e the number of words it occurs in. We model the
distribution of type frequencies across morphs separately for mono-syllabic,
disyllabic and trisyllabic morphs. We then group mono-syllabic morphs, di-syllabic
morphs and tri-syllabic morphs to fit a power law on each of these three distributions

since Morfessor assumes a power law distribution.

The distribution of each morph category was modeled using a power law and
the parameters of the power law are estimated using curve fitting( with Scipy’s
curve fit) (Virtanen et al., 2020). Scipy’s curve_fit uses nonlinear least squares to fit
a function, f, to data. It returns optimal values for the parameters so that the sum of
the squared residuals of the function f is minimized. In this case the function fis a

power law whose equation is:

The curve_fit algorithm returns two arrays: params - An array with the optimal
values of parameters ‘a’ and ‘b’ that it found for the power function. Figure 3 below

shows the fitting of the power law for the three categories of morph distribution.

We obtain three sets of such parameters, one for each category, which we then use to
generate pseudo mono,di, tri-syllabic morphs. The number of morph types in these

categories are based on the counts present in the subset data. Table 7 below shows the
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morph type counts and the parameters obtained for each of the three categories of

morphs.

Table 7. Morph type count and power law parameters for mono,di,tri-syllabic morphs.

mong-syllabic morphs

34

category count parameter a | parameter b
mono-syll | 58 83.125 -0.652
abic

di-syllabic | 479 72.495 -0.609
tri-syllabic | 127 7.463 -0.502
BO
B0
40
20

]

0 10 20 30 a0 60




100 200 300 400 500
di-syllabic morphs

=5

g1 ®
T.
5.
751
c
]
o 4
£
3.
2.
1.
o 20 40 B0 ] 100 120

tri-syllabic morphs

Figure 3. The distribution of mono, di, tri syllabic morphs is shown with the black
dots in the three graphs correspondingly. The red curves in each graph show the curve

fit using the power law parameters obtained for each of the distributions.

. Parameters at the syllable level: The next step involved calculating parameters at
the syllable level. Similar to the morph distributions, we model the distribution of

type frequencies of all the possible syllables across morphs. The distribution of
35



syllables was calculated from the bag of morphs, containing all distinct morphs in the
data (morph types), and modeled using power law. The parameters obtained are a =
107.675, b = -0.589 . Figure 4 below shows the fitting of the power law over the

syllable distribution.

100

frequency
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0 20 a0 60 80 100
Syllables
Figure 4. The distribution of syllable frequencies is shown by the black dots. The red

curve shows the curve fit using the power law parameters obtained.

2. Generation of pseudo-Maori polymoraic words: Using the parameters calculated above,
the pseudo Maori words were generated step-by-step through a bottom up generative process
as explained below:

Step 1. Initialization of Consonants and Vowels : We start by defining the basic building
blocks of the pseudo Maori language.This includes a set of consonants: ['h', 'f', 't', 'N', 't', 'k,
'n', 'm', 'p', 'wW'], and a set of vowels: ['a', ‘¢, I, 'o', ', 'A", 'E', T, 'O, 'U'], where

‘A’VE’,’T’,°0°,’U’ are the long vowels and ‘wh’ is represented as f and ‘ng’ as ‘N’.
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Step 2. Construct syllables : The syllable structures allowed in the language are ‘CV’ and
‘V’. Using this, all possible combinations following these syllable structures were created to
create the bag of pseudo-syllables.

Step 3: Assigning Probabilities to Syllables : Using the power law parameter for syllables
obtained above, np.random.power was used to assign probabilities to these pseudo-syllables.
This step ensures that the frequency of syllable occurrence in the pseudo language mimics
natural linguistic patterns.

Step 4. Generation of Syllabic Morphs : The number of mono, di and tri syllabic morphs
were matched with category counts from the 1294 Maori words. The mono, di and tri
syllabic morphs were generated from the bag of syllables using a sampling process (with
replacement) with the syllable probabilities as weights.

Step 5. Probabilistic Weighting of Morphs : Once we had the bags of mono, di and tri
syllabic pseudo morphs, the power law parameters for the three categories of morph
categories were used to generate the probabilities (weights) for pseudomorphs. This
probabilistic weighting is crucial for the next step, where these morphs are used to construct
pseudo words.

Step 6. Construction of Pseudo Maori Words :To generate each pseudo word for a real
Maori word, we used the syllable count to pick morphs with specific syllable counts by
sampling (without replacement) from the respective bag of morphs. This ensured that we
matched each Maori word with a statistically similar pseudo word. The selected morphs are
then combined to form a pseudo word that statistically mirrors the syllable and morph

structure of the real Maori word.
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Step 6. Simulation and Analysis : We ran the generative process of generating words for
1000 iterations. In each iteration, a set of pseudo Maori words using the above method. After
each iteration, the metrics were calculated across each language by averaging the word level

metrics.

C. Results

type
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Figure 5. Box plot of Morfessor’s precision and recall on the segmentations of 1000 sets of
Pseudo-Maori polymoraic words (containing mono-syllabic, di-syllabic and tri-syllabic

morphs only) along with Morfessor’s performance on these subset of words from real Maori.

Figure 5 shows the distribution of macro-averaged precision recall (calculated mean for each
language) for Morfessor’s segmentations on all the 1000 generated Pseudo-Maori languages.
The precision and recall were calculated at the word level, and then averaged across all the

words to calculate the mean for each language which is the value used for the plots. With a
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mean precision of 0.843 and a mean recall of 0.957, we can see that Morfessor is able to
segment pseudo-Maori really well. Since each word was matched with a real Maori word
(excluding words containing 4 and 5 syllable morphs), we can calculate the precision and
recall for these subset of words in real Maori. The mean precision and recall for these words
from real Maori are 0.707 and 0.891.

The high precision and recall rates on pseudo-Maori polymoraic words indicate that
Morfessor excels at identifying and segmenting patterns that are statistically present in the
dataset. In pseudo-Maori , with its highly controlled design, the words are matched to the
original words in terms of structure and regularity. The difference between the performance
could arise from the fact that the gold standard segmentations of the real Maori words is a
function not just of the morphological statistics, but also of other cues that the fluent speaker
who provided the gold standard segmentations picked up on. By contrast, the pseudo-Maori

words are based just on the morphological statistics which Morfessor can pick up on.

It could be the case that NMS also struggle with similar structural challenges, i.e. for the
most part they are able to learn the statistical properties which occur in the polymoraic
words, which can be seen by the high precision and recall by NMS in the polymoraic
category. However, like Morfessor, they could be missing out on cues which they don’t have
access to. Further analysis is required to understand what are the exact kind of cues they

struggle with.

VI. Discussion and Future work
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By comparing Morfessor and NMS speakers in Analysis 1, we note how similar they
performed in some word categories and how different they performed in others. The
reduplication word category results show that NMS with a better precision are able to pick up
these recurring patterns better than Morfessor. Reduplication is a typologically common
feature, found in 85% of languages documented in the World Atlas of Language Structures
(Rubino. (2013)), but it is often overlooked in unsupervised morphological segmentation
approaches (Todd et al. (2022)). Incorporating reduplication templates directly into
Morfessor was shown to substantially improve segmentations compared to the original
Mortfessor model (without reduplication templates) (Todd et al. (2022)). By using these
templates in future analysis, we could analyze if Morfessor performance can be improved
and observe if that helps Morfessor behave more like the NMS. If using reduplication
templates in Morfessor helps improve the performance and mimic NMS, it could further help
us gain proof of how NMS use ‘templatic’ approaches towards building their bag of morphs.
Within the polymoraic category of real Maori words, though these words closely
match the underlying assumptions of Morfessor (these words are constructed through simple
concatenation of morphs, without things like allomorphy or reduplication templates), NMS
still outperformed Morfessor significantly. This shows that the implicit learning mechanism
of NMS is more complex than that of Morfessor’s. As seen in analysis 1, NMS seem to
follow a 'templatic' procedure in their learning process. They look for overarching templates
in the language, which guide their segmentation. And these templates require a certain level
of confidence before they start using them as rules in the language. In the affix analysis
above, the difference in performances in the default and the non-default allmorphs is an

example of this templatic approach. Their approach seems to be grounded in a broader
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understanding of the language's structure, where they wait to reach a certain threshold of
understanding before finalizing the templatic knowledge they are acquiring. This behavior
was noted in Panther et al.'s study, where it was highly unlikely for NMS to segment at
positions other than the initial bimora. This also causes them to be overly cautious in placing
boundaries, thus leading to under segmentation errors.

Zooming in on the errors made by Morfessor and NMS, it was interesting to see that
both of them made different kinds of errors. While Morfessor’s errors were mainly over
segmentation, NMS were mostly undersegmenting. Like discussed above, this could be due
to Morfessor’s oversimplification of the language structure while NMS have not fully
acquired the entirety of the sub parts of the words in the language or haven’t reached the
threshold yet to learn that these word parts can occur on their own. While they seem to be
picking up on patterns which Morfessor misses (such as the reduplication patterns), they still
lack in other parts of their morphological knowledge. Further investigation into what they
lack could provide insights into their learning processes.

In Analysis 2, we saw that Morfessor is able to perform well on the pseudo-Maori
compared to the real Maori words. This shows that the Morfessor indeed is good at picking
up the statistical regularities in pseudo-Maori language. However, the reason it
underperforms in real Maori could be due to information it does not have access to real
Maori words — the cues which humans could be picking up on that could have led to the
difference in performance. The following list could be some of the factors that contribute to

these differences :
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Moraic Weights: Moraic weight pertains to the role of moras in determining syllable
structure and stress patterns. A mora is a basic timing unit in the phonology of some
spoken languages, equal to or shorter than a syllable. The concept of moraic weight in
Maori is closely tied to vowel length. Long vowels have more weight because they
occupy two moras, influencing how syllables are perceived and stressed. At the
moment, our language generation depends primarily on syllable weights, while the
role of moraic weights might be significant. Moraic weights determine the length and
rhythm of syllables and can have a profound impact on the prosody of a language.
Humans are particularly sensitive to long vowels and diphthongs (Panther et al.,

2023b), and our current approach may not fully account for these complexities.

Affixes: Our current system doesn't explicitly distinguish between affixes and root
words. Incorporating these differences into the generator could help us understand if
they perform better in one category over another. NMS again could be using an affix
template approach where they identify there are certain morphs which can recur in
certain positions with other morphs. By using a similar templatic approach as in Todd
et al. (2022), we could provide information to Morfessor about affix templates to see

if this helps Morfessor in its performance.

Vowel and Consonant Harmony: Presently, we're not differentiating between vowel
harmony and consonant harmony. These phonological processes, where certain

features of a sound spread to adjacent sounds, are key components in many
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languages. Todd et al. (2021) show that in Maori, morphs generally show a preference
for harmonic vowels and disharmonic constants. However, in compounds, vowel
harmony is often not observed, which contrasts with previous findings that suggested
a general tendency towards vowel harmony in words, thus illustrating the impact of
phonological factors on morphology. By analyzing the segmentations for these
properties, we can get insight into how it could affect the segmentations. Having the
pseudo-Maori language have these properties can further provide insights into how

NMS and Morfessor differ on these factors.

4. Phonotactic Probabilities: We are also not considering phonotactic probabilities,
which refer to the likelihood of certain sounds occurring together in a language.
Incorporating this could make our language generation more accurate and natural, as
it would respect the rules governing the arrangement of phonemes within a language.
Given that there have been unsupervised word segmentation models based on
phonotactic probabilities (Daland and Pierrehumbert 2011), it is crucial to test how

this affects morphological segmentation.

From this initial study at the morph level, we can infer that statistical cues in the language
structure helps gain a certain level of morph identification in real Maori. However, further
research has to be done to incorporate potential cues such as templatic approaches for
different word categories, phonotactic probabilities, moraic weights etc into the generated

languages to understand how Morfessor can gain Maori speaker level performance, thus
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providing insights into the exact regularities and patterns picked up by the Non-Maori
speakers.

While Morfessor takes a Bayesian approach to morphological segmentation using the
Minimum Description Length principle, using other segmentation models such as DiBS
(Diphone-Based Segmentation) (Daland and Pierrehumbert 2011), could provide an
understanding of how statistical properties in phonotactic features could help towards
implicit language learning. DiBS analyzes how these features interact in a language,
focusing on the segmentation of diphones (pairs of adjacent phonetic units) to understand the
language's structure. As seen how providing reduplication template information to Morfessor
helps its performance in the segmentation of reduplication word category (Todd et al. 2022),
identifying ways to incorporate prosodic and phonotactic patterns can help provide a more
holistic morphological segmentation model which could be closer to processes used by NMS.

More broadly, this work contributes to the understanding of statistical learning in
humans and the cognitive implications by comparing non-speakers of a language who have
ambient exposure to a morphological segmentation model. Both Morfessor and NMS seem to
be using statistical learning; however, the patterns or regularities of the language that they
learn appears to be different. NMS seem to understand patterns which Morfessor misses.
This could be attributed to two factors as observed from our analysis. First, NMS seem to be
using a broad pattern matching process using a templatic approach in order to draw their
conclusions on which word parts are morphs as seen in the reduplication word category.
Second, they potentially use a higher threshold than Morfessor to identify confidently if the
word parts are indeed morphs. Further work is needed to tease apart these factors and

confirm this hypothesis. These cues could further help us understand how unsupervised
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morphological segmentation models can be made better in order to pick up on these pattern
identifying processes in addition to the statistical recurrence of morphs.

These results also help us provide insights into the role of language structure in
unsupervised learning morphological segmentation. As we have seen here, it is important to
know the strengths of how learning models perform in real languages. For example, from
analysis 2 we did see that although Morfessor is good at picking statistical morph structure
cues in highly constrained pseudo Maori, one needs to understand why it is not performing
well in real Maori. Similar to how (Todd et al. 2022) showed that having reduplication
templates could inform Morfessor better about reduplication patterns in the language, similar
added cues to Morfessor and other unsupervised segmentation models can help learn them
learn the morphological structural challenges of real languages.

One of the research questions of this work was to understand the extent of statistical
learning of morphs in unsupervised learning through exposure in a non-lab setup, by
morphological segmentation models and in implicit learning contexts with respect to
Non-Maori speakers, both of whom share many properties in their learning processes. We
have seen through our analysis the similarities in the statistical properties which both
Mortfessor and NMS learn, and connecting it to the cues which are available to the two
learners. NMS, as we saw, have access to external cues such as phonotactics and the
cognitive mechanism of template approach, which need further analysis to understand their
impact completely.

Based on the comparisons between Morfessor’s performance on real Maori and
pseudo Maori words, we were able to address our second research question. From our

analysis, we saw that Morfessor is able to segment the pseudo-Maori words since they follow
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the concatenative properties. This helped us point out that it relatively struggles with words
in real Maori since there are more factors to the real words which need other kinds of cues
which we need to understand further. Since NMS are able to perform better, we can say that
NMS seem to be accessing these cues which Morfessor doesn’t have access to. Further
analysis is required to identify and incorporate these cues into Morfessor to check if it helps
improve Morfessor’s performance, thus proving our hypothesis.

Lastly, this work also helped point out the ways in which unsupervised segmentation
models like Morfessor need additional language-specific aids for segmentation. The
difference between performances by Morfessor on pseudo Maori and real Maori words
underscores the importance of understanding the differences in morphological segmentation
model output when applied to different languages. It helps us think about how these models
can be made better by providing additional cues to it as shown by the reduplication templates
in Todd et al. (2022).

This work has helped dive into understanding of what underlying cognitive processes the
NMS could be using by doing an analysis on the segmentations by the two learner models. It
provides us with further directions to build a complete understanding of the processes

underlying the implicit statistical learning by NMS.

VII. Conclusion

In summary, our comparative analysis of Morfessor and NMS in handling Maori
word categories underscores the nuanced complexities in language processing. While
Morfessor's algorithmic precision captures certain statistical regularities, it falls short in the

intricate aspects of linguistic structure that NMS, through implicit learning mechanisms,
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navigate more adeptly. This divergence not only highlights the limitations of current
unsupervised morphological segmentation models but also points to potentially rich,
templatic patterns employed by NMS. Understanding the underlying processes of NMS could
pave the way for enhancing computational models by integrating more sophisticated,
human-like implicit learning processes.

Furthermore, this study's findings significantly contribute to our comprehension of
statistical learning in language acquisition in the context of implicit learning. The distinct
approaches employed by NMS and Morfessor in deciphering linguistic patterns reveal the
depth and variety of statistical properties that inform language understanding. The superior
performance of NMS in certain word categories suggests a threshold-based, templatic
learning process, which is less evident in Morfessor’s method. Future research on dissecting
these learning mechanisms, particularly how they apply to unsupervised language learning
scenarios could help improve unsupervised models when applied to languages such as Maori,
which are not commonly used in benchmarking these models. The insights from such
investigations could improve our approaches to computational language models, making
them more reflective of the intricate, multi-layered processes as seen in the implicit learning
process by NMS. In essence, exploring these avenues could lead to more human-like models,
greatly enhancing our ability to model and understand the complexities of morphological

segmentation specifically and implicit learning more broadly.
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