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38 Abstract 

39 Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes 

40 have received increasing attention. However, large uncertainties in model predictions remain, 

41 partially due to the lack of explicit representation and parameterization of microbial processes. 

42 One great challenge is to effectively integrate rich microbial functional traits into ecosystem 

43 modeling for better predictions. Here, using soil enzymes as indicators of soil function, we 

44 developed a competitive dynamic enzyme allocation scheme and detailed enzyme-mediated soil 

45 inorganic N processes in the Microbial-ENzyme Decomposition (MEND) model. We conducted 

46 a rigorous calibration and validation of MEND with diverse soil C-N fluxes, microbial C:N ratios, 

47 and functional gene abundances from a 12-year CO2×N grassland experiment (BioCON) in 

48 Minnesota, USA. In addition to accurately simulating soil CO2 fluxes and multiple N variables, 

49 the model correctly predicted microbial C:N ratios and their negative response to enriched N 

50 supply. Model validation further showed that, compared to the changes in simulated enzyme 

51 concentrations and decomposition rates, the changes in simulated activities of eight C-N associated 

52 enzymes were better explained by the measured gene abundances in responses to elevated 

53 atmospheric CO2 concentration. Our results demonstrated that using enzymes as indicators of soil 

54 function and validating model predictions with functional gene abundance in ecosystem modeling 

55 can provide a basis for testing hypotheses about microbially-mediated biogeochemical processes 

56 in response to environmental changes. Further development and applications of the modeling 

57 framework presented here will enable microbial ecologists to address ecosystem-level questions 

58 beyond empirical observations, toward more predictive understanding, an ultimate goal of 

59 microbial ecology.
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63 1 INTRODUCTION

64 Projecting future carbon cycling and climate change scenarios is a grand challenge in ecology, 

65 and for society (Cavicchioli et al., 2019). Microorganisms, acting as detritivores, plant symbionts, 

66 or pathogens, are critical in mediating ecosystem carbon (C) and nutrient cycling and consequently 

67 climate change (Bardgett et al., 2008, Cavicchioli et al., 2019). However, traditional 

68 biogeochemical and Earth system models (ESMs) do not explicitly consider the roles of microbial 

69 communities by assuming that microbes are in equilibrium with their environment (Schimel, 2013). 

70 Such classical models appear to work well for large scale patterns of bulk soil organic matter pools, 

71 but they may have reached their limits, particularly when depicting transient dynamics in the face 

72 of environmental changes (Wieder et al., 2015). In the last decade, a considerable amount of effort 

73 has been devoted to explicitly integrating microbial communities and functions into microbial 

74 ecological models (e.g., Allison et al., 2010, Davidson et al., 2012, Manzoni et al., 2016, Schimel 

75 &  Weintraub, 2003, Sulman et al., 2018, Tang &  Riley, 2019, Wang et al., 2013, Wieder et al., 

76 2015). Studies have shown that microbial-explicit models could more accurately represent the 

77 impacts of global change drivers, such as warming and priming effects (Wieder et al., 2015). This 

78 calls for more mechanistic microbial ecological models to advance our understanding of soil 

79 microbial and biogeochemical responses to environmental changes.

80 Ecosystem models with carbon-nitrogen (C-N) coupled processes have elucidated substantial 

81 impacts on the carbon-climate feedbacks that are lacking from the C-only models, for instance, 

82 smaller sensitivity of land C uptake to temperature variation or increasing atmospheric CO2 

83 concentration (Thornton et al., 2007). N availability is known to strongly influence microbial 

84 growth and C cycling (Cavicchioli et al., 2019, Treseder, 2008), hence, multiple microbial-explicit 

85 models have accounted for C-N interactions (e.g., Abramoff et al., 2017, Drake et al., 2013, Gao 

Page 5 of 51 Global Change Biology



6

86 et al., 2020, Kyker-Snowman et al., 2020, Schimel &  Weintraub, 2003). However, limited 

87 attention has been paid to the explicit representation and parameterization of multiple differential 

88 microbial groups, particularly related to the inorganic N cycle (e.g., N mineralization and 

89 immobilization, nitrification, and denitrification) (Sulman et al., 2018, Wang et al., 2019). This 

90 impedes a comprehensive validation of complex C-N processes and their interactions as have been 

91 done for classical terrestrial C-N coupled models. Therefore, the introduction of mechanistic 

92 inorganic N cycling into microbial ecological models may provide new opportunities to pose and 

93 validate further hypotheses about coupled C-N cycling in response to environmental perturbations, 

94 especially elevated atmospheric CO2 concentration (eCO2) and enhanced N deposition (Abramoff 

95 et al., 2017, Wieder et al., 2015).

96 The absence of microbial communities in ecosystem models is primarily due to the extremely 

97 high diversity and complexity of microbial communities and the lack of appropriate strategies and 

98 frameworks for using microbial information in ecological modeling (Bailey et al., 2018, Bardgett 

99 et al., 2008, Gao et al., 2020, Todd-Brown et al., 2012, Wieder et al., 2015). Because microbial 

100 communities under natural settings are extremely diverse and complex, functional traits-based 

101 approaches are very attractive and promising for explicitly accounting for the role of microbes in 

102 regulating biogeochemical cycles in ecosystem models (Falkowski et al., 2008, Klausmeier et al., 

103 2020). However, one big challenge is how to extract and scale functional information to inform 

104 ecosystem modeling (Torsvik &  Øvreås, 2002). This challenge has also become an important 

105 motivation to develop microbially-explicit models (Bailey et al., 2018). Despite increasing interest 

106 in incorporating microbial functional traits into ecosystem models, it remains a major challenge to 

107 directly link genomes to global processes (Bailey et al., 2018). However, it is viable to link 

108 genomes and processes at intermediate scales with integrated applications of powerful analytical 
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109 and modeling techniques (Song et al., 2017, Trivedi et al., 2013). While representing a massive 

110 number of microbial taxa in models is impractical and unnecessary, owing to functional 

111 redundancy (Bailey et al., 2018), grouping microbes and enzymes into simplified functional guilds 

112 is feasible and enables the parameterization of microbial ecological models (Chen &  Sinsabaugh, 

113 2021, Song et al., 2017).

114 However, it remains challenging to develop microbially-explicit N transformation processes. 

115 First, the multi-step inorganic N reactions are regulated by intracellular enzymes that are located 

116 at cell membrane, cytoplasm, or periplasm (Fiencke &  Bock, 2006, Schlesier et al., 2016, Song 

117 et al., 2017). These intracellular N enzymes differ from extracellular enzymes (e.g., ligninases and 

118 cellulases) and have little capability of acting on their own, leading to the concern in representing 

119 them in microbial ecological models. Second, an effective microbial or enzyme allocation scheme 

120 is warranted to handle diverse microbial communities associated with the multiple inorganic N 

121 processes. For instance, we have recently used GeoChip-based gene abundances (Shi et al., 2019) 

122 to constrain the Microbial-ENzyme Decomposition (MEND) model, where we only considered 

123 extracellular C-degrading  enzymes owing to the lack of detailed representation of microbially-

124 mediated inorganic N reactions (Gao et al., 2020, Guo et al., 2020). In short, modeling efforts have 

125 not kept pace with the rapid advances in the microbial ecology of N relevant microorganisms and 

126 genes (Hu et al., 2015).

127 Model parameterization through calibration and validation with field observations is arduous 

128 due to the limited available long-term experimental data and large uncertainties in measurements 

129 of the state variables, fluxes, and microbial community structure and functions, as well as 

130 uncertainties in model structure and simulations (Bradford et al., 2016, Sulman et al., 2018). 

131 Consistent with these large uncertainties in observations and model simulations, recent comparison 
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132 of five soil C models with different representation of microbial and mineral processes revealed 

133 that existing traditional measurements (e.g., CO2 fluxes and soil C contents) were insufficient to 

134 constrain or validate ecosystem models (Sulman et al., 2018). To demonstrate the capability of 

135 microbially-explicit models, development of benchmarking with multiple datasets with a variety 

136 of microbial and omics data, especially for inorganic N cycling, is needed. 

137 In this study, building on past work (Gao et al., 2020), we attempted to improve the MEND 

138 model by developing a new microbially-mediated inorganic N module that uses relevant enzymes 

139 as indicators of soil function, with the proposition of a competitive dynamic enzyme allocation 

140 scheme. The new inorganic N module accounts for the important roles of intracellular enzymes in 

141 regulating several critical inorganic N transformations, including N fixation, nitrification, and the 

142 sequential denitrification reactions from nitrate (NO3
–) to dinitrogen (N2) (Xue et al., 2016, Zhou 

143 et al., 2012). In addition to several important observations (soil respiration, soil concentrations of 

144 ammonium and nitrate, and abundances of two functional gene groups targeting SOM 

145 decomposition) used in Gao et al. (Gao et al., 2020), the new MEND model was further calibrated 

146 and validated with a variety of new data from that 12-year field experiment, called BioCON (Gao 

147 et al., 2020), including SOC content, multiple inorganic N transformations, and the abundances of 

148 six functional gene groups important to inorganic N processes. We directly compared model 

149 outputs to the relative changes of the measured gene abundances in response to eCO2. Our results 

150 indicated that explicitly using enzymes as soil function indicators in ecosystem models and 

151 validating model predictions with gene abundance data can provide a basis for better understanding 

152 and testing hypotheses about microbially-mediated biogeochemical processes under 

153 environmental changes.

154
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155 2 MATERIALS AND METHODS

156 2.1 Overview of the MEND modeling framework

157 We developed an integrated microbial ecological modeling framework, consisting of several 

158 key components such as model development, sensitivity analysis, model calibration, validation, 

159 and uncertainty quantification (Fig. 1a). The new MEND model explicitly represents distinct 

160 microbial and enzyme groups responsible for C-N transformation processes. The Multi-Objective 

161 Parameter Sensitivity Analysis (MOPSA) was used to determine the relative importance of 

162 parameters in terms of multiple response objectives (i.e., variables). The sensitivity analysis forms 

163 the cornerstone of the Multi-Objective Parameter Stochastic Optimization (MOPSO) and 

164 validation procedure. The MOPSO approach aims to determine the values of those “free” 

165 parameters by calibrating the model against observations (Fig. 1b), where a stochastic optimization 

166 algorithm, the Shuffled Complex Evolution (SCE) (Duan et al., 1992), is modularized and 

167 incorporated into the MEND model for automatically calibrating parameters. The SCE algorithm 

168 combines the strengths of several optimization strategies such as controlled random search, 

169 complex shuffling, and competitive evolution, which ensure that the parameter space is efficiently 

170 and thoroughly exploited (Duan et al., 1992, Wang et al., 2015). The MOPSO enables to fit 

171 multiple observational variables (soil respiration, C pools, microbial biomass, etc.) by minimizing 

172 the overall objective function as the weighted average of multiple objectives pertaining to these 

173 variables (Fig. 1b). We further validated the model and evaluated model performance against 

174 datasets not used for model calibration. The Uncertainty Quantification by Critical Objective 

175 Function Index (UQ-COFI) approach was developed to filter the parameter sets generated by the 

176 MOPSO procedure. These filtered parameter sets by UQ-COFI represented the posterior parameter 

177 space, which were used to drive multiple model runs to quantify uncertainties in response variables 
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178 due to parametric uncertainty. We employed this integrated modeling framework to guide reliable 

179 model development and application. 

180 A detailed description of model sensitivity analysis (MOPSA) and uncertainty quantification 

181 (UQ-COFI) are presented in Supporting Information Sections 3.3 and 3.6, respectively. In the 

182 following, we overview the new MEND model and its calibration and validation against multiple 

183 datasets.

184

185 2.2 New MEND model with a competitive dynamic enzyme allocation scheme

186 We incorporated a new N-associated module into the old MEND (MEND-old) model (Gao et 

187 al., 2020, Wang et al., 2021) (Supporting Information Fig. S1b; for comparison, the new MEND 

188 model (MEND-new) is shown in Fig. S1a, a copy of Fig. 2) by explicitly representing: (i) multiple 

189 key intracellular enzymes as indicators that catalyze nitrification, sequential denitrification, and 

190 nitrogen fixation processes; (ii) plant-microbial competition for inorganic N (NH4
+ and NO3

–); (iii) 

191 ammonium (NH4
+) sorption; (iv) nitrate (NO3

–) and nitrite (NO2
–)  leaching; and (v) N gases (NO, 

192 N2O, and N2) exchange between soil and the atmosphere. A reaction rate in the model may be 

193 modified by soil pH, soil temperature and moisture conditions (Supporting Information Figs. S2–

194 S4). Details on MEND-new model and its state variables, governing equations, component fluxes 

195 and parameters are described in Supporting Information Sections 1–3 and Table S1–S6. 

196 We used flexible stoichiometry (i.e., time-variant C:N ratio) for SOM and microbial biomass 

197 pools to represent microbial adaptation in response to the stoichiometric imbalance of available 

198 resources (Du et al., 2018, Fanin et al., 2017, Mooshammer et al., 2014a, Mooshammer et al., 

199 2014b, Zechmeister-Boltenstern et al., 2015). In addition to the three SOM-degrading enzyme 

200 functional groups, i.e., EPO, EPH and EM, we incorporated six new enzyme systems as indicators 
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201 controlling inorganic N transformations (Fig. 2), i.e., nitrogenases (corresponding to functional 

202 genes of nifH), ammonia oxidases (amoA), nitrate reductases (narG/napA), nitrite reductases 

203 (nirS/nirK), nitric oxide reductases (norB), and nitrous oxide reductases (nosZ) (Xue et al., 2016, 

204 Zhou et al., 2012). 

205 We proposed a competitive dynamic enzyme allocation scheme to deal with the synthesis of 

206 multiple enzyme groups (see Supporting Information Section 1.1.7). The enzyme allocation 

207 approach developed here is based on the synthetic results that enzyme activities are dependent on 

208 microbial biomass (Jian et al., 2016) and substrate availability (Sinsabaugh et al., 2014). A 

209 competitive allocation scheme is applied to the production of enzymes for each inorganic N 

210 transformation process, where the competitive allocation coefficient is the saturation level of an 

211 inorganic N substrate (i.e., the ratio of the substrate concentration to the corresponding half-

212 saturation constant) relative to the sum of the saturation levels of all inorganic N substrates 

213 (Supporting Information Eq. 40). 

214

215 2.3 Model calibration and validation

216 We implemented the MOPSO approach, based on the SCE algorithm (Duan et al., 1992, Wang 

217 et al., 2015), to calibrate selected model parameters according to the sensitivity analysis (Fig. 1b). 

218 We aimed to determine parameter values and their uncertainties by achieving high goodness-of-

219 fits of model simulations against experimental observations, such as soil respiration (Rs), microbial 

220 heterotrophic respiration (Rh), microbial biomass carbon (MBC), and soil C and N pools and fluxes. 

221 Each objective evaluates the goodness-of-fit of a specific observed variable. The parameter 

222 optimization attempts to minimize the overall objective function (J) that is computed as the 

223 weighted average of multiple single-objectives (see Eqs. 67 in Supporting Information Section 
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224 3.4). Generally, equal weights are assigned to these objectives. However, a higher weight is 

225 recommended for a variable that is frequently measured or is vital to the research topic.

226 Different objective functions were used to quantify the goodness-of-fit for different variables 

227 (Supporting Information Section 3.4), depending on the measurement method and frequency. As 

228 per model validation (Refsgaard, 1997), we used datasets that were not involved in model 

229 calibration to evaluate model performance, where the same calibrated parameter values were used 

230 in model validation.

231

232 2.4 BioCON datasets for model calibration and validation 

233 Since there is no gold-standard for validating model performance, it is a common practice to 

234 use published datasets in ecosystem and bioinformatic studies, which have advantages for model 

235 calibration and validation (Luo et al., 2012, Ning et al., 2020). Thus, we used experimental data 

236 (Table 1) from a well-designed, long-term multifactor free-air CO2 enrichment experiment, 

237 BioCON (Biodiversity, CO2, and N deposition) (45.4010° N, 93.2010° W) in Minnesota, USA 

238 (Reich &  Hobbie, 2013). The BioCON experiment aims, among other goals, to elucidate how 

239 microbe-mediated feedbacks to soil respiration are affected by N addition (+4 g N m–2 yr–1) and 

240 elevated atmospheric CO2 (eCO2, +180 ppm) (Adair et al., 2009, Adair et al., 2011). The BioCON 

241 soil is an Entisol, more specifically, a mixed, frigid Lamellic Udipsamments as per the USDA soil 

242 taxonomy (O'Geen et al., 2017, Soil Survey Staff, 1999). This excessively drained soil, derived 

243 from glacial outwash with a coarse structure, has very poor development and a sandy texture (92–

244 94% sand and 2–3% clay in the top 114 cm) (Kazanski et al., 2021, O'Geen et al., 2017). In 

245 summary, there were four CO2×N treatments among 296 plots: ambient atmospheric CO2 & 

246 ambient N supply (aCO2-aN), eCO2-aN, aCO2 & enriched N supply (aCO2-eN), and eCO2-eN with 
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247 each treatment having 74 plots (biological replicates). To examine the effects of plant diversity on 

248 ecosystem N cycling, the BioCON experiment also has (at each level of CO2 and N) treatment 

249 plots planted with either 1, 4, 9, or 16 grassland species (Dijkstra et al., 2007). 

250 Estimates of daily GPP (gross primary production) values were obtained from a corrected 8-

251 day GPP product based on the MODIS GPP (MOD17A2/MOD17A2H) (Gao et al., 2020, Zhu et 

252 al., 2018) and used to drive model simulations under the control treatment (aCO2-aN). The GPP 

253 for the other three treatments was rescaled according to the general linear relationship between 

254 NPP (net primary production) and GPP (Gao et al., 2020). Meanwhile, environmental datasets 

255 measured in each CO2×N treatment were also used for model simulations for each treatment, 

256 including monthly soil pH, daily soil temperature and moisture. 

257 Soil samples for microbial community analysis were collected from the 296 plots in August 

258 2009. Each sample was a composite of five soil cores from each plot at a depth of 0–15 cm. 

259 Microbial DNA was extracted, hybridized with GeoChip arrays, and analyzed as described 

260 previously (Guo et al., 2020, Tu et al., 2014). The eCO2 effect on the abundance of each functional 

261 gene (total abundance of all probes of this gene) was examined by the response ratio (Luo et al., 

262 2006):

263                             (1)𝑅𝑅 = ln (𝑥𝑇 𝑥𝐶)

264 where RR is the response ratio (effect size) that quantifies the log-proportional change between the 

265 gene abundances of eCO2 ( ) and aCO2 ( ) samples.  𝑥𝑇 𝑥𝐶

266 The observed response ratios (RRs) between the gene abundances (GAobs) of eCO2 and aCO2 

267 were used as additional data to evaluate model-simulated enzyme concentrations (ECsim), enzyme 

268 activities (EAsim), or equivalent first-order reaction rates (FRsim). As the Michaelis-Menten kinetics 
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269 is used in the MEND model, the relationships among ECsim, EAsim, and FRsim are described as 

270 follows: 

271                                                 (2)𝐸𝐴𝑠𝑖𝑚 = 𝑉𝑑 ∙ 𝐸𝐶𝑠𝑖𝑚  

272       (3)𝐹𝑅𝑠𝑖𝑚 = (𝑉𝑑 ∙ 𝐸𝐶𝑠𝑖𝑚)/(𝐾 + 𝑆) = 𝐸𝐴𝑠𝑖𝑚/(𝐾 + 𝑆)

273 where ECsim (mg C cm−3), EAsim (mg C cm−3 h−1), and FRsim (h−1) are simulated enzyme 

274 concentration, enzyme activity, and the equivalent first-order reaction rate, respectively; S denotes 

275 the substrate (e.g., SOC) concentration; and the parameters Vd and K represent the specific enzyme 

276 activity (mg C mg−1 C h−1) and the half-saturation constant (mg C cm−3), respectively. 

277 In summary, nine C-N response variables were involved in the calibration of MEND-new 

278 (Table 1): soil CO2 flux (Rs), microbial biomass C (MBC), soil organic C (SOC), ammonium 

279 (NH4
+), nitrate + nitrite (NO3

–+ NO2
–), as well as the reference rates of net N mineralization (FNmn-

280 im), nitrification (FNnit), biological N fixation (FNfix), and plant N uptake (FNim_VG). Among these 

281 variables, the literature-reported biological N fixation rates (including both symbiotic and non-

282 symbiotic N fixation) (Cleveland et al., 2013, 1999) and plant N uptake rates (Bessler et al., 2012, 

283 Harty et al., 2017, Reyes et al., 2015) in grasslands were used as reference for model calibration. 

284 To examine the predictive power of the model, we only calibrated the model against the data under 

285 the control treatment (aCO2-aN) and then applied the calibrated parameters to the other three 

286 treatments for model validation. To further investigate the model’s capability in representing 

287 microbial and enzyme functional traits, we directly validated the model against literature-reported 

288 microbial C:N ratios (Xu et al., 2013) and the measured response ratios of gene abundances 

289 (GAobs).

290
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291 3 RESULTS

292 Detailed results of model sensitivity analysis and uncertainty quantification are presented in 

293 Supporting Information Results 5.1 (with Fig. S5) and 5.2 (with Fig. S6), respectively. In the 

294 following, we focus on the key results with respect to model calibration, validation, and ecological 

295 insights.

296

297 3.1 Model calibration and validation of soil respiration and inorganic N processes

298 3.1.1 Model calibration and validation strategy in terms of the BioCON data 

299 Based on the aforementioned sensitivity analysis and previous studies on the MEND model 

300 (Wang et al., 2019, Wang et al., 2015, Wang et al., 2013), we selected 14 important parameters 

301 (Supporting Information Fig. S6) to conduct model calibration. 

302 In the first step of calibration, we calibrated nine microbial physiological parameters by 

303 achieving high goodness-of-fits of model simulations against experimental observations, such as 

304 soil respiration (Rs), microbial biomass carbon (MBC), and soil organic carbon (SOC) (Table 1). 

305 We only compared the simulated mean values of MBC and SOC to the observed reference MBC 

306 and SOC, respectively, as we only had observations at one time point for each of them. In the 

307 overall objective function (Eqs. 67 in Supporting Information Section 3.4), the weights of 0.50, 

308 0.25, and 0.25 were assigned to the objectives pertaining to Rs, MBC, and SOC, respectively, 

309 owing to far more data points available for Rs (284 data points) than for MBC and SOC. The 9 

310 parameters (Supporting Information Table S5) included: (i) six parameters (Vg, , KD, Yg, kYg,  ) 𝛼 𝛾

311 for microbial growth, maintenance, and mortality; and (ii) three parameters (pEP, fpEM, rE) for 

312 enzyme production, turnover and decomposition of SOM. 
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313 As for the second step of calibration, we fixed the parameter values determined by the first 

314 step and calibrated five important inorganic N parameters (Supporting Information Table S5: VNfix, 

315 VNnit, VNdenit, VNplant, and QmaxNH4) by fitting observed concentrations of ammonium (NH4
+) and 

316 nitrate + nitrite (NO3
–+ NO2

–), as well as the reference rates of net N mineralization (FNmn-im), 

317 nitrification (FNnit), biological N fixation (FNfix), and plant N uptake (FNim_VG) (Table 1). In the 

318 overall objective function, higher weights were used for the objectives of NH4
+ and NO3

–+ NO2
– 

319 than the remaining N variables. As a result, there were nine individual objective functions 

320 regarding the nine C-N response variables in the model calibration: the first three objective 

321 functions were used for the calibration of microbial physiological parameters and the remaining 

322 six variables were used for the parametrization of inorganic N transformation parameters (Table 

323 1).

324 The model simulation period covered the 12-year observational period (1998–2009). Model 

325 simulations for each treatment were driven by the corresponding data: GPP, soil temperature and 

326 moisture, and inorganic N (NH4
+ and NO3

–) input. We used the MOPSO approach to calibrate 

327 model parameters with the data from the aCO2-aN treatment. We then validated the model using 

328 the same set of model parameters calibrated for aCO2-aN to simulate Rh and Rs, and soil inorganic 

329 N in the other three treatments (eCO2-aN, aCO2-eN and eCO2-eN). 

330 3.1.2 Model calibration and validation results of soil respiration

331 Our model calibration with aCO2-aN data achieved good agreement between simulated and 

332 observed soil respiration (Fig. 3a, R2 = 0.60), so did the model validation of soil respiration in the 

333 other three treatments (Fig. 3b, R2 = 0.56–0.61). In addition, the percent bias (|PBIAS|) values of 

334 mean soil respiration were 3% for calibration and 3–11% for validation, suggesting that simulated 

335 mean soil respiration values were close to the observed ones in all four treatments. The simulated 
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336 mean values of MBC and SOC were within the tolerances for MBC (10%) and SOC (5%), 

337 respectively, as expected in model simulations (Table 1). 

338

339 3.1.3 Model calibration and validation results of soil ammonium and nitrate

340 In addition, the simulated mean soil NH4
+ and (NO3

–+NO2
–) concentrations also agreed well 

341 with the observations in both model calibration and validation (Fig. 3c and 3d). Although model 

342 validation showed larger percent bias between simulated and observed values (|PBIAS| = 24–29% 

343 for NH4
+ and 5–39% for NO3

–+NO2
–) than model calibration (2% for both NH4

+ and 8% for NO3
–

344 +NO2
–), the model validation of inorganic N concentrations could still be judged as satisfactory 

345 according to the 70% bias criterion for N modeling (Moriasi et al., 2007). Simulated variation (i.e., 

346 average standard deviation (SD) = 0.20 gN m–2) in soil NH4
+ concentrations by the MEND-new 

347 model was also comparable to observed variation (average SD = 0.15 gN m–2), which was also 

348 true for soil NO3
–+NO2

– (average SD = 0.074 and 0.070 gN m–2 for observed and simulated 

349 concentrations, respectively). For comparison, the simulated average SD values by the MEND-old 

350 model were 0.072 and 0.095 gN m–2 for soil NH4
+ and NO3

–+NO2
–, respectively.

351 Generally, the simulated mean NH4
+ and NO3

– concentrations by MEND-new from this study 

352 showed much lower biases than MEND-old with simplified N processes as described in Gao et al. 

353 (2020), except for the NO3
– validation under eCO2-aN. The average |PBIAS| for NH4

+ was reduced 

354 from 45% (MEND-old, 12–68% in range) to 21% (MEND-new, 2–28%), though the average 

355 |PBIAS| values for NO3
– were similar between MEND-old (11–32% with an average of 18%) and 

356 MEND-new (5–39% with an average of 18%) (Fig. 3c and 3d). In order to account for the effects 

357 of the number of free (i.e., calibrated) model parameters on the model performance, we calculated 

358 the Akaike information criterion (AIC) of the two models (Goll et al., 2012). The number of free 
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359 model parameters for inorganic N processes was five for MEND-old (Gao et al., 2020) and six for 

360 MEND-new (see Table S5), as most of the N-related parameters in MEND-new were determined 

361 as per literature. Compared to MEND-old, MEND-new had a slightly higher AIC under aCO2-aN 

362 (Fig. 3c), but lower AIC under the other three treatments (Fig. 3d). 

363 3.1.4 Model calibration and validation results of inorganic N fluxes

364 Biological N fixation and plant N uptake rates during model calibration and validation were 

365 generally in accordance with literature-reported data (Fig. 4). The simulated biological N fixation 

366 rates in all four treatments were comparable to the ranges for grasslands reported in the literature 

367 (Cleveland et al., 2013, Cleveland et al., 1999). The N fixation rates were significantly higher 

368 under the two eN treatments compared to those under the aCO2-aN treatment (Fig. 4a). However, 

369 we did not observe statistically significant eCO2 effects on the N fixation rates. Our simulated 

370 plant N uptake rates were generally between 15 and 30 g N m–2 yr–1, which were within the range 

371 (10–40 g N m–2 yr–1) observed in grasslands (Bessler et al., 2012, Harty et al., 2017, Reyes et al., 

372 2015). The plant N uptake rates were significantly lower under aCO2-aN than those under the other 

373 three treatments, with the highest under eCO2-eN and no significant difference between eCO2-aN 

374 and aCO2-eN or eCO2-eN (Fig. 4b).  

375 The simulated net N mineralization and nitrification rates were within the observed ranges in 

376 both model calibration and validation (Supporting Information Fig. S7). As mentioned in the 

377 methods, we did not expect simulated values to match the measured nitrification rates and net N 

378 mineralization rates as they represented reference rates or rough estimates. Our simulated net N 

379 mineralization rates were 57–85% (with a mean of 68%) of the reference rates, with the lowest 

380 simulated actual N mineralization rate under aCO2-aN and the highest under the two eCO2 

381 treatments (Supporting Information Fig. S7a). The simulated nitrification rates accounted for 39–
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382 54% (with a mean of 47%) of the reference values, with the lowest under the two ambient N 

383 treatments and the highest under the two enriched N treatments (Supporting Information Fig. S7b).

384

385 3.2 Model validation of microbial C:N ratios

386 Independent model validation showed that the microbial C:N ratios simulated by MEND-new 

387 conformed to the literature-reported mean value and the 95% confidence interval for grassland 

388 soils (Xu et al., 2013), whereas MEND-old predicted much higher microbial C:N ratios (Fig. 5a). 

389 Though both models predicted lower microbial C:N under eN than aN (Fig. 5b and 5c), only the 

390 MEND-new model revealed a statistically significant decrease in the microbial C:N as a result of 

391 N addition (Fig. 5c). However, neither model demonstrated significant eCO2 effect on the 

392 microbial C:N ratios (Supporting Information Fig. S8).

393

394 3.3 Model validation with functional gene abundances

395 We first compared the eCO2 effects on enzymes simulated by the two models, i.e., MEND-old 

396 and MEND-new. To make the results comparable between the two models, gene abundances were 

397 not included in the calibration of MEND-old, matching what we did for MEND-new in this study. 

398 We only examined the oxidative enzymes (Fig. 5d) and hydrolytic enzymes (Fig. 5e) that are 

399 associated with the C cycle because only these two groups are included in both models. The 

400 response ratios (RRs) of simulated enzyme concentrations (ECsim), enzyme activities (EAsim), and 

401 the first-order reaction rates (FRsim) by MEND-old were significantly higher than the response 

402 ratios of observed gene abundances (GAobs). The simulated response ratios by MEND-new were 

403 generally lower than those by MEND-old, except for the FRsim of hydrolytic enzymes under eN 

404 and the FRsim of oxidative enzymes. In short, compared to MEND-old, the simulated response 
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405 ratios by MEND-new were generally closer to the measured values. Particularly, only the EAsim 

406 by MEND-new correctly reflected the negative response in the oxidative enzymes observed under 

407 eN (Fig. 5d).     

408 We further evaluated the similarity or dissimilarity between MEND-new simulated and 

409 observed response ratios of all eight enzymes associated with the C and N cycling by the Wilcoxon 

410 signed rank test (Conover, 1998). The simulated response ratios consist of ECsim (Fig. 6a), EAsim 

411 (Fig. 6b), or FRsim (Fig. 6c) for eight enzymes, whereas the observed response ratios include GAobs 

412 for eight corresponding genes (Table 1 and Fig. 6).  

413 The simulated results of response ratios indicate that the eCO2 effects on the enzymes were 

414 more pronounced under aN than under eN, consistent with the responses in GAobs, i.e., 50% CI = 

415 0.03~0.06 under aN versus –0.02~ –0.01 under eN (Fig. 6). We also found that, among the three 

416 simulated variables (ECsim, EAsim, and FRsim), only EAsim responses were not significantly different 

417 from the responses of GAobs under aN or eN according to the Wilcoxon signed rank test (Fig. 6b). 

418 Our results showed positive responses of EAsim under aN for six out of eight enzymes, which 

419 concurred with the changes in GAobs. However, the other two enzyme groups (NO and N2O 

420 reductases) exhibited slightly negative response ratios (–0.019 and –0.003) when comparing eCO2-

421 aN to aCO2-aN, which were not consistent with GAobs responses (0.03 and 0.05). In addition, 

422 negative response ratios of EAsim under eN were found for all enzymes except two groups 

423 (hydrolytic enzymes and NO2
– reductases), which generally concurred with the changes in GAobs 

424 under eN. 

425
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426 4 DISCUSSION

427 4.1 Ecosystem modeling with explicit enzymes as bioindicators 

428 The MEND-new model developed here offers new capabilities to investigate microbial-

429 enzyme mediated N fixation, nitrification, and denitrification, and plant-microbe competition for 

430 inorganic N, as well as inorganic N leaching and gaseous emissions processes, which adds 

431 additional features to the original MEND-old model (Gao et al., 2020, Wang et al., 2020). The 

432 oxidative and hydrolytic enzymes for depolymerizing SOM are actual molecules which are 

433 independently functional. However, the intracellular N enzymes (responsible for biological N 

434 fixation, nitrification, and denitrification) are not physical molecules and thus have little ability to 

435 function independently of a living cell (Fiencke &  Bock, 2006, Schlesier et al., 2016, Song et al., 

436 2017). Toward this end, we treat these inorganic N enzymes as simple bioindicators of likely 

437 activity of cellular level microbial physiology. Explicit representing these intracellular N enzymes 

438 in the model is more “pseudo-mechanistic” rather than “truly-mechanistic” (Hommel, 2020), but 

439 it provides a tractable way to capture complex biological dynamics of inorganic N cycling. 

440 Although enzyme-enabled representation of more detailed C-N transformation processes increases 

441 model complexity, it potentially offers important insights into microbial control over 

442 biogeochemical and the interactions between multiple physical, chemical, and biological processes.   

443 In contrast with enzyme-based models like MEND, the gene-centric approach was developed 

444 for examining ocean N cycling, where the gene abundances can be directly modeled to mediate 

445 chemical reactions (Reed et al., 2014). The gene-centric approach offers the advantage of direct 

446 comparison between modeled and measured gene abundances. However, currently there is no 

447 enough information available for identifying appropriate biomarker genes for a specific metabolic 

448 pathway (Reed et al., 2014). In addition, for modeling a complex system with many processes, 
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449 compared with the models characterized by enzyme groups, the number of genes may increase 

450 dramatically, resulting in difficulties and uncertainties in estimating a vast number of parameters 

451 for these genes. In terms of ecosystem-level modeling that relies on bulk concentrations, it is 

452 currently more feasible to adopt the strategy with aggregated enzyme groups than the gene-centric 

453 approach.  

454 We also proposed a competitive dynamic enzyme allocation scheme to assist the incorporation 

455 of multiple enzyme systems. Here, ‘dynamic’ means the allocation of each enzyme group varies 

456 with time, and ‘competitive’ implies that multiple enzyme systems compete with each other as per 

457 the relative saturation levels of the corresponding substrates. Enzyme allocation problems have 

458 been studied theoretically (Müller et al., 2014) or empirically (Sinsabaugh &  Moorhead, 1994, 

459 Sinsabaugh et al., 2002) based primarily on stoichiometric information (Allison et al., 2011). 

460 These previous studies were generally focused on limited groups of enzymes (Averill, 2014, 

461 Müller et al., 2014), in contrast to the eight enzyme systems regulated by our competitive dynamic 

462 enzyme allocation scheme. We realize that this allocation approach could not be directly evaluated 

463 as it is currently challenging to measure in situ production rates, particularly, of multiple enzyme 

464 systems. However, our model calibration and validation with a variety of inorganic N 

465 concentrations and fluxes indirectly demonstrated the applicability of this competitive dynamic 

466 enzyme allocation scheme, which was further supported by the model evaluation with measured 

467 gene abundance data.   

468

469 4.2 Rigorous calibration and validation of microbial ecological models 

470 Rigorous calibration and validation of microbial ecological models against observations is 

471 essential for assessing and refining models. However, finding appropriate datasets to validate 
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472 microbial and enzymatic reactions in ecosystem models exhibits significant challenges. Treating 

473 inorganic N enzymes as indicators of soil function also allows the use of corresponding gene 

474 abundance data in ecosystem modeling, yet the relationship between enzymes and their coding 

475 genes is complicated (Bailey et al., 2018). Here, we used gene abundance data for model validation 

476 instead of calibration, because we attempted to explore the possible relationships between 

477 simulated ecosystem functioning (i.e., enzyme concentrations, enzyme activities, or reaction rates) 

478 and gene abundance. We showed that the changes in enzyme activities, rather than enzyme 

479 concentrations and the first-order reaction rates, are better explained by the responses in gene 

480 abundances. This may be due to the inclusion of more (eight in this study vs. two in Gao et al. 

481 (2020)) enzyme systems and relevant gene abundance data, which could introduce larger variation 

482 in the data resulting in differential modeling performance in terms of multiple variables. Therefore, 

483 we need more paired measurements of gene abundances and process rates under long-term field 

484 conditions in various ecosystems. DNA-based functional gene abundances have been thought to 

485 integrate longer-term (hours to days or longer) microbial potential in the physicochemical 

486 environment (Petersen et al., 2012, Rocca et al., 2015). Thus, we infer that DNA-based functional 

487 gene abundance is likely a better predictive variable for enzyme activity than for enzyme 

488 concentration or reaction rate. In the MEND model, enzyme activity contains the information of 

489 both active enzymes and their specific activity. To this end, enzyme activity represents the 

490 potential enzyme-catalyzed biogeochemical rates not limited by substrate availability (Ouyang et 

491 al., 2018, Petersen et al., 2012), whereas substrate availability is considered in the actual reaction 

492 rate (i.e., FRsim calculated by Eq. 3). This interpretation supports our results on stronger 

493 relationship between GAobs and EAsim than between GAobs and the other two variables (ECsim and 

494 FRsim).
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495 Very few studies have adopted gene abundance data in ecosystem or environmental modeling, 

496 where the model-data integration practices were often implemented for a short time period (e.g., 

497 20 days) based on laboratory data (Gao et al., 2020, Li et al., 2017, Pagel et al., 2016, Song et al., 

498 2017). Compared to these short-term laboratory-based modeling studies, it is likely more 

499 challenging to conduct gene-informed long-term (e.g., years to decades or longer) ecosystem 

500 modeling in the field, owing to complex spatiotemporal environmental conditions and large 

501 uncertainties in measurements, as demonstrated by the current study. 

502 We also adopted the differential split-sample test to conduct a rigorous model calibration (for 

503 the baseline treatment aCO2-aN) and validation (for the other three treatments under differential 

504 CO2 and N supply), which has been considered as the best possible approach for model 

505 parameterization (Refsgaard, 1997) and helped to demonstrate the predictive power of the 

506 calibrated model. During this process, we implemented advanced model-data integration by 

507 combining a wide spectrum of observations ranging from conventional measurements (e.g., soil 

508 respiration fluxes, concentrations of NH4
+and NO3

–), to less frequently measured variables (e.g., 

509 all kinds of inorganic N fluxes and microbial biomass), and to rarely available gene abundance 

510 data of multiple enzyme systems that regulates SOM decomposition and inorganic N processes. 

511 Simulation of some processes and properties were improved using our new modeling approach, 

512 while others were not. For example, we incorporated new data associated with N processes from 

513 the BioCON experiment into model calibration and validation, and compared to the BioCON 

514 results from the MEND-old model (Gao et al., 2020), the simulated NH4
+ and NO3

– concentrations 

515 from this study were improved as indicated by much lower biases and generally lower AIC (except 

516 aCO2-aN). By contrast, the model performance in soil respiration simulations was consistent 

517 between MEND-new (R2 = 0.56–0.61) and MEND-old (R2 = 0.53–0.61). Previous studies have 
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518 demonstrated that the incorporation of more detailed biogeochemical processes might not 

519 necessarily improve modeling performance of soil respiration, as multi-objective model 

520 calibration aims to find a compromise between different objectives, such as various observed C-N 

521 pool sizes and process rates other than soil respiration (Bao et al., 2012, Davidson et al., 2012, 

522 Wang &  Chen, 2012, Wang et al., 2019). Such model-data integration with multiple datasets on 

523 diverse system processes is crucial for examining the model’s capability in representing a 

524 multitude of soil biogeochemical processes. In addition, model goals are not limited to improving 

525 gross predictions but also gaining insights to underlying processes. Mechanistic understanding and 

526 representation of microbially-mediated biogeochemical processes would help depict ecosystem 

527 responses to diverse perturbations more confidently.

528 Our direct validation of simulated microbial C:N ratios exemplifies the predictive power of the 

529 MEND-new model, given that microbial C:N ratios were not included in model calibration. The 

530 near congruence between observed and simulated microbial C:N ratios indicated the substantive 

531 improvement of the MEND-new model over the old version through mechanistic representation 

532 of N processes including dynamic N mineralization-immobilization and the competitive N uptake 

533 between plants and microbes. In addition, the MEND-new model predicted decreased microbial 

534 C:N ratios under enriched N supply (Xiao et al., 2018), owing to insignificant changes in microbial 

535 biomass C and significantly increased microbial biomass N.

536 It should be noted that the soil system studied in this study could be not well representative. 

537 The soil in the experimental site is a Typic Udipsamments that is minimally developed with no 

538 diagnostic horizons, and it could have little potential for stabilizing organic matter by mineral 

539 sorption or occlusion in aggregates (Schimel &  Schaeffer, 2012, Six et al., 2002). Mineral 

540 interactions and spatial processes could play a small role in regulating the processing of plant 
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541 detritus or SOM, or of N cycling processes in this soil. In addition, anaerobiosis and anerobic 

542 micro-sites are likely uncommon in the coarsely textured soils with high saturated hydraulic 

543 conductivity (O'Geen et al., 2017), which will certainly affect N (especially denitrification) 

544 dynamics, differently from other soils that are more developed with more texture structure 

545 (Kristensen et al., 2000). Nevertheless, this simple soil system is a perfect test-bed in many ways 

546 for experimental and modeling ideas. However, the parameterization of the model might not be 

547 readily applicable to other soils that have a fine texture and/or aggregate development, in which 

548 microbe-substrate-mineral interactions regulate the functioning of the biological components of 

549 the soil system. More likely, the model might just need different parameterization or perhaps more 

550 sophisticated treatment of organic-mineral interactions. Testing this would be a natural next phase 

551 in evaluating the model’s applicability in diverse soils and ecosystems.   

552 In summary, this study presents substantive methodological and ecological advances relative 

553 to previous studies, including our recent publication (Gao et al., 2020), in that (i) the MEND-new 

554 model now includes a more detailed representation of enzyme-catalyzed N transformation 

555 processes, with the addition of a competitive dynamic enzyme allocation scheme to tackle the 

556 synthesis of multiple enzyme systems; (ii) the model was calibrated against a variety of observed 

557 N fluxes and validated by gene abundances for six N-associated processes, indicating that the 

558 changes in enzyme activities, rather than enzyme concentrations and reaction rates, were better 

559 explained by the measured gene abundances in responses to eCO2; and (iii) the MEND-new 

560 model’s predictions agreed well with the literature in terms of microbial C:N ratios and decreased 

561 microbial C:N as a result of N addition, whereas the MEND-old model did not. Taken together, 

562 our results indicated that representing microbial-enzyme groups in ecosystem models is a 

563 potentially valuable step forward to develop robust predictive models that interpolate or 
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564 extrapolate observed interactions among microbes and soil C-N cycling, likely bolstering 

565 confidence in the assessments and projections of carbon-climate feedbacks. Pertaining to model 

566 refinement, a comprehensive understanding of microbial communities and their roles in regulating 

567 specific C and nutrient processes is essential for successful incorporation of enzymes-based 

568 bioindicators in ecosystem modeling. The newly refined MEND model has the potential to provide 

569 a powerful avenue for understanding and testing hypotheses about microbially mediated soil 

570 biogeochemical processes under environmental changes.

571

572 Abbreviations

573 aCO2: ambient atmospheric CO2 concentration; BioCON (Biodiversity, CO2, and Nitrogen); C: 

574 Carbon; DOM: Dissolved Organic Matter; EA: Enzyme Activity; EC: Enzyme Concentration; 

575 eCO2: elevated atmospheric CO2 concentration;  FR: First-order reaction Rate; GA: Gene 
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577 Microbial Biomass; MBC: Microbial Biomass Carbon; MBA: Active Microbial Biomass; MBD: 

578 Dormant Microbial Biomass; MEND: Microbial-ENzyme Decomposition model; MOM: Mineral-

579 associated Organic Matter; MOPSA: Multi-Objective Parameter Sensitivity Analysis; MOPSO: 

580 Multi-Objective Parameter Stochastic Optimization; N: Nitrogen; PBIAS: percent bias; POM: 

581 Particulate Organic Matter; RR: Response Ratio; SCE: Shuffled Complex Evolution; SD: Standard 

582 Deviation; SOC: Soil Organic Carbon; SOM: Soil Organic Matter; SWC: Soil Water Content; 
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623

624 Figure legends:

625 Figure 1 Framework for developing the Microbial-ENzyme Decomposition (MEND) model. 

626 (a) MEND modeling framework. (b) Procedure of the Multi-Objective Parameter Stochastic 

627 Optimization (MOPSO), which directly incorporates the Shuffled Complex Evolution (SCE) 

628 algorithm into MEND model calibration.   

629

630

631 Figure 2 Diagram of the Microbial-ENzyme Decomposition (MEND) model. Ra and Rh are 

632 autotrophic and heterotrophic respiration, respectively. POMO and POMH are particulate organic 

633 matter (POM) decomposed by oxidative (EPO) and hydrolytic enzymes (EPH), respectively. 

634 MOM is mineral-associated OM, which is decomposed by a mixed enzyme group EM. 

635 Dissolved OM (DOM) interacts with the active layer of MOM (QOM) through sorption and 

636 desorption. Litter enters POMO, POMH, and DOM. Microbes consist of active (MBA) and 

637 dormant microbes (MBD). DOM can be assimilated by MBA. Inorganic N deposition and 

638 fertilization enter NH4
+ and NO3

– that can be immobilized by microbes and taken up by plant 

639 roots. NH4
+ adsorption is also considered. N fixation, nitrification and denitrification are 

640 mediated by nitrogenases (nifH), ammonia oxidases (amoA, nxrA/B) and N-reductases 

641 (narG/napA, nirS/nirK, norB, nosZ), respectively. Inorganic N loss pathways include leaching 

642 (NO3
– and NO2

–) and gas emission (NO, N2O, and N2) from the soil to the atmosphere. 

643

644

645
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646

647 Figure 3 MEND model calibration and validation. (a) Soil respiration (Rs) calibration with 

648 ambient CO2-ambient N (aCaN) data, (b) Rs validation with data from the other three treatments: 

649 elevated CO2-aN (eCaN), aC-enriched N (aCeN), and eCeN. (c) Absolute value of percent bias 

650 (|PBIAS|, %) between simulated and observed mean for the calibration of ammonium (NH4
+) and 

651 nitrate (NO3
–, including both NO3

– and NO2
–) from aCaN. (d) |PBIAS| for the validation of NH4

+ 

652 and NO3
– from the other three treatments.  Error bars in A represent the standard deviations. R2 

653 values in A and B denote the coefficient of determination. In (c) and (d), the two models of 

654 MEND-old and MEND-new denote the old version of MEND model as described in Gao et al. 

655 (2020) and the new MEND model in this study, respectively. The two numbers in each facet of 

656 (c) and (d) denote the Akaike information criterion (AIC, lower is better) for the two models, 

657 respectively. 

658

659

660 Figure 4 Comparison between simulated rates and literature-reported nitrogen flux rates. 

661 (a) Biological N fixation rate; the “Literature” data were from Cleveland et al. (1999, GBC) and 

662 Cleveland et al. (2013, PNAS), where the bars show the mean values and the error bar shows the 

663 value range. (b) Plant N uptake rate; the “Literature” data were from Bessler et al. (2012) and 

664 Reyes et al. (2015), where the error bar denotes the value range. The difference in simulated 

665 rates between paired treatments was tested by the Wilcoxon signed rank test. “*”, “**”, and 

666 “***” denote significant difference with p-value < 0.05, p-value < 0.01, and p-value < 0.001, 

667 respectively. “NS.” means not significant.

668
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669 Figure 5 Comparison of microbial C:N ratios and functional enzymes simulated by two 

670 models (MEND-old and MEND-new). (a) modeled versus literature-reported microbial C:N 

671 ratios (error bars denote the 95% confidence interval); (b) MEND-old modeled microbial C:N 

672 ratios under ambient N (aN) and enriched N (eN); (c) MEND-new modeled microbial C:N ratios 

673 under aN and eN; (d) elevated CO2 (eCO2) effect on oxidative enzymes; (e) eCO2 effect on 

674 hydrolytic enzymes. MEND-old and MEND-new denote the old version of MEND model as 

675 described in Gao et al. (2020) and the new MEND model in this study, respectively. The 

676 “Literature” data in (a) were from Xu et al. (2013). The eCO2 effects in the year of 2009 (d and 

677 e) are quantified by the response ratio (RR), which is defined as the logarithmic ratio of a 

678 variable under eCO2 to that under ambient CO2 (aCO2) as per ambient N (aN) or enriched N (eN) 

679 treatment. The RRs are calculated pertaining to observed gene abundances (GAobs), simulated 

680 enzyme concentrations (ECsim, mg C cm−3 soil), simulated enzyme activities (EAsim, mg C cm−3 

681 C h−1), and simulated first-order reaction rates (FRsim, h−1). The difference between paired data 

682 was tested by the Wilcoxon signed rank test. “*”, “**”, and “***” denote significant difference 

683 with p-value < 0.05, p-value < 0.01, and p-value < 0.001, respectively. “NS.” means not 

684 significant.

685

686

687
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688 Figure 6 Elevated CO2 (eCO2) effects on functional genes/enzymes quantified by the 

689 response ratio (RR) in the year of 2009. (a) RRs of observed gene abundances (GAobs) versus 

690 simulated enzyme concentrations (ECsim, mg C cm−3 soil), (b) RRs of GAobs versus simulated 

691 enzyme activities (EAsim, mg C cm−3 C h−1), (c) RRs of GAobs versus simulated first-order 

692 reaction rates (FRsim, h−1). The RR is defined as the logarithmic ratio of a variable under eCO2 to 

693 that under ambient CO2 (aCO2) as per ambient N (aN) or enriched N (eN) treatment. Each 

694 boxplot includes eight RR values from eight genes (enzymes): two groups (oxidative and 

695 hydrolytic) for the decomposition of soil organic matter, nitrogenases (nifH), ammonia oxidases 

696 (amoA) and four N-reductases (narG/napA, nirS/nirK, norB, nosZ). The difference in RR 

697 between two variables was tested by the Wilcoxon signed rank test. “*”, “**”, and “***” denote 

698 significant difference with p-value < 0.05, p-value < 0.01, and p-value < 0.001, respectively. 

699 “NS.” means not significant.

700
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Table 1. BioCON data for MEND model calibration and validation

Response 
variable

Description Objective Function Number of 
data points

Rs (CO2) Soil respiration = root 
respiration (Ra) + microbial 
respiration (Rh)

𝐽1 = 𝑅2 284

MBC Microbial biomass carbon , tolerance = 10%𝐽2 = 𝑀𝐴𝑅𝐸𝑡 1

SOC Soil organic carbon , tolerance = 5%𝐽3 = 𝑀𝐴𝑅𝐸𝑡 1

NH4
+ Ammonium concentration 𝐽4 = 0.8 × |𝑃𝐵𝐼𝐴𝑆| + 0.2 × 𝑀𝐴𝑅𝐸 8

NO3
– + NO2

– Nitrate+Nitrite concentration 𝐽5 = 0.8 × |𝑃𝐵𝐼𝐴𝑆| + 0.2 × 𝑀𝐴𝑅𝐸 8

FNmn-im Net N mineralization rate , tolerance = 0.5𝐽6 = 𝑀𝐴𝑅𝐸𝑡 10

FNnit Nitrification flux rate , tolerance = 0.9𝐽7 = 𝑀𝐴𝑅𝐸𝑡 10

FNfix N fixation flux rate , tolerance = 0.2𝐽8 = 𝑀𝐴𝑅𝐸𝑡 1

FNim,VG Plant uptake rate of N , tolerance = 0.5𝐽9 = 𝑀𝐴𝑅𝐸𝑡 1

EPO Oxidative Enzyme 1

EPH Hydrolytic Enzyme 1

ENH4 Ammonium oxidase 1

ENO3 Nitrate reductase 1

ENO2 Nitrite reductase 1

ENO Nitric oxide reductase 1

EN2O Nitrous oxide reductase 1

EN2 Nitrogenase

For model validation only:
Compare simulated and observed Response 
Ratios (RR). 
Observed RR is the response ratio of 
omics-detected gene abundances between 
elevated CO2 (eCO2) and ambient CO2 
(aCO2). 
Simulated RR is the response ratio of 
MEND-modeled enzyme concentrations, 
activities, or reaction rates between eCO2 
and aCO2. 1

Notes: R2 denotes the coefficient of determination, |PBIAS| is the absolute value of the percent 
bias, MARE is the mean absolute relative error, MAREt is the MARE with a tolerance. See 
Supporting Information Eqs. 68–71 for a description of these criteria.
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