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Research Article

Adipose depot-specific effects of ileal interposition
surgery in UCD-T2D rats: unexpected implications
for obesity and diabetes
Connie Hung1, Casey Bronec1, Eleonora Napoli1, James Graham2, Kimber L. Stanhope1,2, Ilaria Marsilio1,3,
Maria Cecilia Giron3, Peter J. Havel1,2 and Cecilia Giulivi1,4
1Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, U.S.A.; 2Department of Nutrition, University of California, Davis,
CA 95616, U.S.A.; 3Department of Pharmaceutical and Pharmacological Sciences, Pharmacology Building, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy;
4Medical Investigations of Neurodevelopmental Disorders (M. I. N. D.) Institute, University of California, Davis, CA 95817, U.S.A.
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Ileal interposition (IT) surgery delays the onset of diabetes in a rat model of type-2 dia-
betes (UCD-T2DM). Here, to gain a deeper understanding of the molecular events under-
lying the effects of IT surgery, we examined the changes in the proteome of four white
adipose depots (retroperitoneal, mesenteric, inguinal, and epididymal) and plasma-free
fatty acid profile in pre-diabetic rats 1.5 months following IT or sham surgery. The IT-
mediated changes were exerted mainly in mesenteric fat and spanned from delayed adi-
pocyte maturation to a neuroendocrine remodeling. Conversely, inguinal, retroperitoneal,
and epididymal depots showed opposite trends consistent with increased adipocyte mat-
uration and adipogenesis development prior to overt signs of diabetes, probably orche-
strated by peroxisome proliferator-activated receptor gamma signaling and higher plasma
n-6/n-3 free fatty acid ratios. The resulting scenario suggests a targeted use of surgical
strategies that seek to delay or improve diabetes in order to manipulate adipose depot-
specific responses to maximize the duration and beneficial effects of the surgery.

Introduction
The unquestioned role of obesity-induced insulin resistance in the pathogenesis of type-2 diabetes
mellitus (T2DM), a metabolic disease estimated to affect more than 400 million people worldwide [1],
is an important indication of the strong link between dysregulation of cellular energy metabolism and
the development of T2DM.
Ileal interposition (IT) surgery, by delivering incompletely digested nutrients as well as biliary and

pancreatic secretions to the distal intestinal (ileal) mucosa [2], mimics one important component of
gastric bypass surgery, which has been shown to improve glucose homeostasis and reverse insulin
resistance and T2DM [3–5]. In a previous study, we reported that IT surgery delayed diabetes onset in
UCD-T2DM rats [6], increased circulating bile (cholic) acid levels, decreased endoplasmic reticulum
(ER) stress, and inflammation [7], improved insulin signaling (in fat, liver, skeletal muscle, and pan-
creas), and enhanced glucose-stimulated insulin secretion and preservation of islet integrity and β-cell
mass. However, as of today, an integrated view of the effects of IT surgery on fat depots is still
missing.
Considering the obesity epidemic, there is substantial interest in the biology of adipose tissue.

While increased visceral fat mass is associated with a higher risk of metabolic dysfunction, increased
subcutaneous white adipose tissue (WAT) is not [8,9]. There are six major internal fat depots: perire-
nal, gonadal, epicardial, retroperitoneal, omental, and mesenteric. Interestingly, unlike other pads, the
blood supply of the mesenteric depot reaches liver directly through the portal circulation, which
according to the Bjorntorp’s hypothesis [10], underlies the mesenteric depot’s direct involvement in
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the pathology of cardiovascular disease and T2DM. Given that the expansion of the visceral WAT is closely
associated with human diseases such as T2DM, fatty liver disease, and cardiovascular disease, it is likely that
the mesenteric depot is directly relevant to the pathophysiology of metabolic disease in humans. Yet, this par-
ticular depot is often excluded from analyses.
In the present study, we applied proteomic analyses to investigate the effects of IT surgery on the metabolism

of four WAT depots: one subcutaneous (SC; inguinal), and three intra-abdominal (IA), of which one visceral
and intraperitoneal (mesenteric, associated with internal digestive organs and with venous drainage into the
portal system) and two non-visceral (retroperitoneal and epididymal-associated with the reproductive organs).
These studies were complemented and extended by plasma-free fatty acid (FFA) profile. We employed
UCD-T2DM rats, as a biological model of T2DM, which exhibit a pathophysiology representative of the clinical
manifestations observed in humans, i.e. insulin resistance with inadequate insulin compensation and intact
leptin signaling compared with most other rodent models of T2DM [11].
While the understanding of the molecular regulation of adipogenesis is mainly based on information

obtained thus far from transcriptome data [12], our approach (the use of proteomics applied to the study of
whole fat depots, as opposed to isolated adipocytes) should circumvent the less-than-robust (and gene-specific
[13]) correlations between mRNA levels and protein expression [14] that occurs as a result of translational con-
trols exerted by transcription factors, microRNAs, and epigenetic factors, concurrently taking into account
metabolic differences between fat depots in vivo.

Materials and methods
Chemicals and biochemicals
Acetone, EDTA, EGTA, sodium succinate, mannitol, sucrose, and HEPES were all purchased from Sigma
(St. Louis, MO). Tris–HCl, glycine, sodium chloride, and potassium chloride were purchased from Fisher
(Pittsburg, PA). Bovine serum albumin (fatty acid free) was obtained from MP Biomedicals. All other reagents
were of analytical or higher grade.

Animals
Male UCD-T2DM rats were individually housed on a 14–10 h light–dark cycle in wire cages in the animal
facility of the Department of Nutrition (University of California, Davis). For the present study, only male mice
were used to avoid confounding effects arising from sex hormonal cycles. Non-fasting glucose levels were
assessed weekly between 14:00 and 16:00 h by a glucometer (One-Touch Ultra, Life Scan, Milpitas, CA), with
diabetes onset defined as testing a non-fasted blood glucose value >200 mg/dl for two consecutive weeks. At 2
months of age, rats received either IT surgery or sham (sham) surgery. Evaluation of hormone and plasma
metabolites was performed as described before [6]. The two groups, IT (n = 10) and sham (n = 9), were killed
1.5 m post-surgery for tissue collection. All experimental protocols were approved by the UCD Institutional
Animal Care and Use Committee and followed the NIH guidelines.

Surgery
The procedure for IT surgery was performed as described in detail in Cummings et al. [15]. After cutting a
midline abdominal incision, a segment of ileum (∼10 cm) ∼5–10 cm proximal to the ileocecal valve was trans-
ected. The ends of the ileum were anastomosed using a 7-0 PDS suture (Ethicon). The isolated ileal transection
was then transposed 5–10 cm distal to the ligament of Treitz with its vasculature supply. Rats that underwent
the sham surgery were subjected to the same protocol, but transections made in the identical location were ana-
stomosed in their original position without translocation.

Tissue collection
At 1.5 months after either IT surgery or sham surgery (when the rats were 3.5 ± 0.5 months old), they were
euthanatized with an overdose of pentobarbital (200 mg/kg, i.p.). The four fat depots (retroperitoneal, mesen-
teric, inguinal, and epididymal), excluding corresponding lymph nodes and blood vessels, were collected and
weighted. An aliquot was set aside for fat content (see below) and the remaining aliquots were immediately
stored at −80°C. The retroperitoneal depot was dissected from behind the kidney and along the dorsal portion
of the abdomen excluding the WAT around the kidney (considered as ‘perirenal’). For the evaluation of fat
content, each depot was extracted with Folch extraction procedure, the extracted organic layer was dried under
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nitrogen, and the final dry residue was weighted as described before [16]. Data were normalized per rat. For
adipocyte sizing, samples were evaluated at the UCD Veterinary Medicine Teaching Hospital for a service fee.
Formalin-fixed samples were embedded in paraffin, sliced into 5-mm sections, mounted, and stained with
hematoxylin and eosin. Stained slides were examined under a microscope equipped with a digital camera fol-
lowing the approach described by Chen and Farese [17] based on the cross-sectional area of all the adipocytes
present in three or more non-overlapping microscope fields. Plasma samples were collected and analyzed for
FFA composition by the UCD Mass Spectrometry Facility.

Proteomics analyses
Sample preparation
Equivalent amounts of adipose tissue from 10 IT or 9 sham individual rats were pooled into either sham or IT
groups. Samples were delipidated in detail as described before [18]. Pellets were subsequently diluted in buffer
containing 7 M urea, 2 M thiourea, 1% (w/v) sulfobetaine-10, 3% (w/v) CHAPS, and 1.5% (v/v) protease
inhibitor cocktail (Sigma, St. Louis, MO). Protein solubilization was achieved through mechanical homogeniza-
tion followed by brief sonication, incubation at 35°C for 15 min, and centrifugation at 16 000g for 45 min at
room temperature. Protein evaluation was performed with the Pierce BCA protein assay (Thermo Scientific,
Waltham, MA). Samples were submitted to the UCD Core Proteomics Facility where they were digested over-
night with a trypsin to protein ratio of 1 : 30. The equivalent of 2–5 mg of protein was loaded for liquid chro-
matography–mass spectrometry (LC–MS/MS) analysis.

Database searching
All MS/MS samples were analyzed using X! Tandem [The GPM, thegpm.org; version TORNADO
(2010.01.01.4)]. X! Tandem was set up to search the uniprot__20120523_gTmkm3 database (89576 entries),
assuming the digestion by the enzyme trypsin. X! Tandem was searched with a fragment ion mass tolerance of
20 ppm and a parent ion tolerance of 1.8 Da. Deamidation of Asn and Gln, oxidation of Met and Trp, sulfone
of Met, Trp oxidation to formylkynurenin, and acetylation of the N-terminus were specified in X! Tandem as
variable modifications.

Criteria for protein identification
Scaffold (v. 3.00.07, Proteome Software, Inc., Portland, OR) was used to validate MS/MS-based peptide and
protein identification. Peptide identification was accepted if it could be established at >80% probability by the
Peptide Prophet algorithm [19]. Protein identifications were accepted if they could be established at >80.0%
probability and contained at least two identified peptides. Protein probabilities were assigned by the Protein
Prophet algorithm [20]. Proteins that contained similar peptides and could not be differentiated based on MS/
MS analysis alone were grouped to satisfy the principles of parsimony.

Free fatty acid profile
This analysis was performed at the Mass spectrometry Facility at UC Davis and following protocol essentially
described in ref. [21]. Aliquots (20 ml) of plasma from 13 sham and 12 IT animals, stored at −80°C, were
thawed (10 min at 4°C), extracted, derivatized, and the metabolite abundances quantified by gas chromatog-
raphy time-of-flight (GC-TOF) MS. Briefly, aliquots were extracted with 1 ml of degassed acetonitrile/isopropa-
nol/water (3 : 3 : 2) solution at −20°C, centrifuged, the supernatants removed, and solvents evaporated to
dryness under reduced pressure. To remove membrane lipids and triglycerides, dried samples were reconsti-
tuted with acetonitrile/water (1 : 1), decanted, and taken to dryness under reduced pressure. Internal standards,
C8-C30 FFA methyl esters, were added to samples and derivatized with methoxyamine hydrochloride in pyri-
dine and subsequently by N-methyl-N-(trimethylsilyl)trifluoroacetamide for trimethylsilylation of acidic
protons. Derivatized samples were analyzed on an Agilent 6890/5975 MSD gas chromatograph (Santa Clara,
CA) with a 30 m long, 0.25 mm i.d. DB225MS column with 0.25 mm 5% diphenyl film with an additional 10
m integrated guard column (Agilent Technologies). An aliquot (1 ml) was injected at 50°C (ramped to 225°C)
in splitless mode with a 25 s splitless time. The chromatographic gradient consisted of a constant flow of 1 ml/
min, ramping the oven temperature from 60°C, increased with a rate of 10°C/min with a total run time of 28.5
min. Mass spectrometry was performed using a Leco Pegasus IV time-of-flight mass spectrometer, 230°C trans-
fer line temperature, electron ionization at −70 V, and an ion source temperature of 250°C. Mass spectra were
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acquired at 1800 V detector voltage at m/z 85–500 with 17 spectra/s. Acquired spectra were further processed
using the BinBase database. Detailed criteria for peak reporting included mass spectral matching, spectral
purity, signal-to-noise ratio, and retention time. All entries in BinBase were matched against the Fiehn mass
spectral library of 1200 authentic metabolite spectra using retention index and mass spectrum information, or
the NIST11 commercial library. All samples were analyzed in one batch, and data quality and instrument per-
formance were constantly monitored using quality control samples (National Institute of Standards and
Technology). Quality controls were comprised of a mixture of standards and analyzed every 10 samples, were
monitored for changes in the ratio of the analyte peak heights, and used to ensure equivalent conditions within
the instrument.

Calculations of free fatty acid-derived parameters
These parameters were calculated essentially as described in ref. [22], with the following modifications. For
each animal, the plasma FFA concentrations were converted to mM with appropriate standards run in parallel.
The average chain length (ACL) was calculated as = (Σ [Total Cni FA] × ni) where n = carbon atom number);
double bond index or DBI = (Σ [Monoenoic FA] × 1) + (Σ [Dienoic FA] × 2) + (Σ [Trienoic FA] × 3) + (Σ
[Tetraenoic FA] × 4) + (Σ [Pentaenoic FA] × 5) + (Σ [Hexaenoic FA] × 6); and peroxidizability index or PI =
[(0.025 × Σ [Monoenoic FA]) + (1 × Σ [Dienoic FA]) + (2 × Σ [Trienoic FA]) + (4 × [Tetraenoic FA]) + (6 × Σ
[Pentaenoic FA]) + (8 × Σ [Hexaenoic FA)]. This last index takes into account that the peroxidation increases as
an exponential function of the number of double bonds per fatty acid.
Enzymatic activities of fat depots were estimated as the product-to-precursor ratios of individual plasma

FFAs [23] as follows: stearoyl-CoA desaturase = 16:1 n-7/16:0 or 18:1 n-9/18:0, elongase = 18:0/16:0 or 18:1
n-7/16:1 n-7, D5D = 20:4 n-6/20:3 n-6, D6D = 18:3 n-6/18:2 n-6, and de novo lipogenesis = 16:0/18:2 n-6.

Statistics
Proteomics data were analyzed with two-tailed Student’s t-test with unequal variances (between IT and sham
treatments) with a significance level set at P≤ 0.05. Proteomic analysis considered all protein peptides from the
dataset that had exclusive spectrum counts of at least ±0.3 (LOG2 ratio IT/sham) and P≤ 0.05. The comprised
list was analyzed by using Metabonalayst [24], with the statistical methods therein. FFA profile data and indices
were analyzed by using Kruskal–Wallis.

Results
IT surgery decreased circulating active glucagon-like peptide-1,
insulin-to-glucagon ratio, and fasting glycemia and lipidemia at 1.5 m after IT
surgery
As observed before, none of the UCD-T2DM rats that underwent either IT or sham surgery developed overt
diabetes at 1.5 months post-surgery. In IT-operated animals, fasting plasma glucose and triglycerides (TG)
were, respectively, reduced by 11% and 21%, while fasting plasma insulin was reduced by ∼50% compared with
sham-operated animals (Table 1). In addition, circulating concentrations of the total glucagon-like peptide-1
(GLP-1, insulin-secretion mediator [25]) and the active/total GLP-1 ratio were higher in IT-operated rats,
whereas plasma glucagon, adiponectin, and monocyte chemoattractant protein-1 were not different between
the two groups (Table 1).
Body weight did not differ between IT- and sham-operated animals, although total and depot-specific fat

mass was reduced by ∼20% in IT-operated animals (Table 2), suggesting either increased lipolytic capacity or
decreased recruitment and/or maturation of pre-adipocytes into adipocytes.

Proteomic profiles of WAT depots after IT surgery
The observed decreases in fat mass in IT-operated UCD-T2DM rats prompted us to take a deeper look at the
intermediary metabolism of these depots by analyzing their proteome profiles.
At 1.5 months after sham or IT surgery, protein-enriched fractions from four WATs, namely epididymal,

retroperitoneal, mesenteric, and inguinal, were obtained from UCD-T2DM rats. To evaluate the effects of the
IT surgery, statistical analyses on the WAT proteome profiles were performed by setting the threshold for dif-
ferentially expressed proteins at |LOG2 ratio IT/sham| ≥ 0.3 and P≤ 0.05 (Supplementary Dataset). The
number of differentially expressed proteins in each depot in response to IT surgery was as follows: epididymal
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267; retroperitoneal 141; mesenteric 111; and inguinal 80. Upon IT surgery, epididymal fat also had the highest
number of uniquely (not shared by any other depot) differentially expressed proteins (n = 144), followed by
retroperitoneal (n = 42), mesenteric (n = 28) and inguinal with only 22. Of note, while the higher number of
unique proteins identified in the epididymal depot might suggest that this tissue was the one that responded
most robustly to IT surgery, the number of unique proteins per depot was proportional to the total number of
proteins for each depot (number of unique proteins = 5.7 + 0.002 × [number of total proteins]1.98; R2 = 0.998,

Table 1 Metabolic and endocrine outcomes at 1.5 months after IT or sham surgery

Outcome

Sham IT

Change (%) P-valueMean ± SEM (n)

Glucose and lipids

Non-fasting glucose (mg/dl) 128 ± 5 (16) 139 ± 4 (16) 0.115

Fasting glucose (mg/dl) 113 ± 3 (12) 101 ± 1 (11) −11% 0.001

HbA1c (%) 4.5 ± 0.2 (12) 4.3 ± 0.2 (12) 0.416

Fasting TG (mg/dl) 136 ± 10 (12) 108 ± 7 (12) −21% 0.041

Fasting FFA (mEq/l) 0.90 ± 0.06 (12) 1.01 ± 0.03 (12) 0.137

Fasting cholesterol (mg/dl) 110 ± 3 (12) 101 ± 4 (12) 0.079

Fasting hormone concentrations

Insulin (pM) 519 ± 34 (12) 280 ± 0.1 (12) −47% <0.0001

Glucagon (pg/ml) 58 ± 2 (12) 63 ± 7 (12) 0.076

Adiponectin (mg/ml) 5.7 ± 0.6 (12) 6.3 ± 0.2 (12) 0.392

Total GLP-1 (pg/ml) 5 ± 1 (12) 14 ± 2 (12) 180% 0.002

Active GLP-1 (pg/ml) 3.8 ± 0.4 (12) 5.0 ± 0.4 (12) 0.059

Active/total GLP-1 1.1 ± 0.3 (12) 0.5 ± 0.1 (12) −56% 0.049

MCP-1 (pg/ml) 1014 ± 39 (6) 945 ± 50 (6) 0.290

n = number of animals; values in bold indicate P≤ 0.05. Abbreviations: FFA: free fatty acids; GLP-1: glucagon-like peptide-1;
Hb: hemoglobin; MCP-1: monocyte chemoattractant protein-1; TG: triglycerides.

Table 2 Adipose depot weights in age-matched sham and
IT UCD-T2DM rats at 1.5 months after surgery

Fat depot
IT/sham fat mass
(mean ± SEM) (g) P-value*

Intra-abdominal

Non-visceral

Epididymal 0.8 ± 0.3 0.018

Retroperitoneal 0.7 ± 0.3 0.012

Visceral

Mesenteric 0.8 ± 0.3 0.059

Subcutaneous

Inguinal 0.8 ± 0.3 0.081

Total adipose tissue 0.8 ± 0.2 0.002

*P-values obtained with one-tailed Student’s t-test. Values in bold
indicate P ≤ 0.05. Each group consisted of 12 animals. Depot weights in
sham-treated animals were 6.0 ± 0.5, 9.4 ± 0.8, 7.5 ± 0.7, 34 ± 2, and 57
± 3 for epididymal, retroperitoneal, mesenteric, subcutaneous, and total,
respectively (mean ± SEM in g).
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P < 0.01). Moreover, the number of proteins with differential abundance in response to IT surgery per fat depot
did not show any correlation with either fat or protein contents (Table 3).
Gene ontology analysis revealed that the majority of proteins with differential abundance in response to IT

surgery (and present in at least one depot) were associated with the following cellular components: cytoskeleton
and remodeling of matrix, ribosomal, cytosolic, followed by intracellular, cell part, organelle (Figure 1). The
broad cellular composition of fat depots [26,27] was confirmed by the differential expression of proteins, which
— according to the protein databases — are expressed in platelets, red blood cells, macrophages, and muscle
(Supplementary Dataset). Increases in proteins related to peripheral nervous system were detected in inguinal
and epididymal as well as in mesenteric depots (Supplementary Dataset), whereas blood cells and vasculature-
associated proteins were less abundant in response to IT surgery in all depots.
In terms of biological processes, the most significant differences were observed for proteins involved in

glucose metabolism and glycerogenesis (Figure 1). The rest were part of muscle contraction, chromatin organ-
ization, blood circulation, mitosis, and organelle organization.

Table 3 Fat depot wet weights, protein content, and number of proteins per depot in UCD-T2DM upon IT surgery

Fat depot

Fat content (g) per 100 g of
body weight
(mean ± SEM)

Protein content (mg)
per g fat
(mean ± SEM)

Number of proteins per
depot

Intra-abdominal

Epididymal 1.4 ± 0.1 5.1 ± 0.3 267

Retroperitoneal 1.9 ± 0.1 5.2 ± 0.4 141

Mesenteric 1.6 ± 0.1 10 ± 1 111

Subcutaneous

Inguinal 7.2 ± 0.6 4.5 ± 0.3 80

Each group consisted of 12 animals at 1.5 months after surgery.

Figure 1. Gene ontology analysis of WAT proteome profiles at 1.5 m after IT surgery.

Gene ontology analysis (cellular component and biological process) was performed with the proteomic profile of all proteins

that had different abundance between IT surgery (n = 10) and sham (n = 9) across all four depots in response to IT surgery,

independent of the relative abundance of proteins (i.e. a protein showed higher abundance in response to IT surgery in one

depot vs. lower abundance in another depot), and excluding those ‘uncharacterized’ (utilizing a seed of 363 from 377). All

analyses were performed with proteins identified by mass spectrometry utilizing PANTHER.
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Pathway over-representation and topology analyses indicated that IT surgery modified FFA metabolism
(including elongation and glycerolipid metabolism) across all depots (Figure 2). Other pathways affected by the
surgery were pentose phosphate, glycolysis, TCA (tricarboxylic acid) cycle, and hypertrophy. Interestingly,
while the same pathways were affected in all four depots, when taking into account the fold change in protein
abundance, those in mesenteric fat showed opposite trends than those in the other three depots (Figure 2).

IT surgery affects adipocyte differentiation and adipogenesis
Proteomics analysis showed overexpression of specific fatty acid transporters (Fabp4 and 5) and
acyl-CoA-binding protein (Dbi), mainly in post-IT retroperitoneal, inguinal, and epididymal fats
(Supplementary Dataset). Similarly, a significant number of enzymes involved in the uptake of glucose, glycoly-
sis, and the TCA cycle were overall overexpressed in fat depots in response to IT surgery with the exception of
the mesenteric depot (Supplementary Dataset). Finally, key enzymes in de novo lipogenesis (under ‘Fatty acid
biosynthesis’, Supplementary Dataset) were overall over-represented in all depots, with the exception of mesen-
teric. Lipases that showed higher abundance were Ces1d in retroperitoneal and epididymal depots, Lipe in epi-
didymal fat, and Ptrf in inguinal and epididymal fat depots (Supplementary Dataset). Pathway analysis
indicated that after IT surgery relevant changes were associated with a significant number of lipid droplet
(LD)-associated proteins, and important in the regulation of LD growth (i.e. SNAREs, motor proteins, cytoskel-
etal components, ribosomal proteins, proteasomal, lipid metabolism enzymes, signaling proteins, ER proteins,
chaperones, and folding, among others; Supplementary Dataset under ‘Cytoskeleton/EMC/dynamics’). Notably,
depots other than inguinal and mesenteric exhibited the largest number of up-regulated cytoskeletal/matrix
remodeling proteins (Supplementary Dataset). After IT surgery, a significant over-representation of proteins

Figure 2. Pathway over-representation analyses of fat depots in response to IT surgery.

Pathway over-representation analyses were performed on each of the four fat depots (n = 10 IT and 9 sham animals) with the proteins differentially

expressed as a consequence of the IT surgery. The analysis was performed by using MetaboAnalyst [24]. Enrichment analysis aimed at evaluating

whether the observed proteins in a particular pathway were significantly enriched (appear more than expected by random chance) within the

dataset. The over-representation analysis (ORA) was based on hypergeometrics analysis (shown in blue). The topology analysis (shown in orange)

aimed at evaluating whether a given protein played an important role in response to the IT surgery based on its position within a pathway. The

degree centrality measured the number of links that connected to a node (representing the protein) within a pathway.
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related to cellular stress response was noted in all fat depots except the mesenteric (Supplementary Dataset
under ‘Antioxidant response’). Similarly, the expression of protein disulfide isomerases and peptidyl-prolyl cis–
trans isomerases A (epididymal) and B (epididymal, retroperitoneal, and inguinal) were increased after IT
surgery (Supplementary Dataset).
By selecting those proteins from Supplementary Dataset identified by the literature as being part of the adi-

pocyte secretome during adipogenesis ([28]; Figure 3A), we distinguished those whose concentrations increased
with the progression of adipogenesis (in the plain text), those that peaked at mid-process (in bold and italics),
and those that declined from the onset of this process (in bold) (Figure 3A). Comparing the percentages of pro-
teins that demonstrated higher vs. lower abundance after IT surgery for each depot (Figure 3B) as well as the
average fold change (Figure 3C), it was evident that the secretome profile of epididymal fat was consistent with
that of later stages of adipogenesis (ratio of high-over-low abundance of 3), whereas inguinal (ratio = 1.5) and
retroperitoneal (ratio = 1.0) presented intermediate values. Conversely, the profile of mesenteric WAT appeared
to closely resemble that of the pre-adipocyte stage.
In summary, based on the ratio of proteins with higher to lower abundance post-IT surgery, proteins asso-

ciated with mature adipocytes (i.e. adipocyte maturation) seemed to be favored in epididymal, retroperitoneal,
and inguinal depots, but not in mesenteric (Supplementary Dataset under ‘Adipocyte differentiation’ and
‘Mature adipocytes’).

Figure 3. Effect of IT surgery on the WAT secretome profile in adipose depots.

(A) Proteins differentially expressed between IT (n = 10 animals) and sham (n = 9 animals) per depot were identified as being part of the adipocyte

secretome during adipogenesis. Their abundance is shown as LOG2 ratio of IT/sham. Those proteins whose concentration increased with the

progression of adipogenesis (shown in the plain text), those that peaked at mid-process (shown in bold and italics text), and those that declined

from the onset of this process (in bold text). (B) Percentage of proteins per depot with a higher or lower abundance after IT surgery. (C) Average fold

change for proteins under panel B.
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Increased adipocyte maturation through peroxisome proliferator-activated
receptor gamma signaling
In terms of signaling, the peroxisome proliferator-activated receptor gamma (PPARγ) pathway emerged as a
common mechanism across all depots in response to IT surgery (Figure 2) in line with the activation of this
pathway during increased adipocyte maturation [29]. Indeed, several proteins known to be downstream targets
of PPARγ (e.g. Fabp4, Fabp5, Dbi and Acsl1) showed higher abundance in IT vs. sham in all depots with the
exception of mesenteric (Figure 3).
In an attempt to identify the possible activators of the PPARγ pathway as a result of IT surgery, and consid-

ering that FFAs are potent ligands of this factor [30], plasma FFA fatty acid composition was evaluated.
Although plasma FFA profile may not reflect directly the metabolic status of adipose tissue, the only significant
sites of FFA liberation into plasma are from adipose tissues with a plasma half-life of 2–4 min [31]. Plasma
FFA profile revealed several important aspects related to PPARγ signaling pathway (Figure 4): (i) higher levels
(15–20%) of three fatty acids [two n-6 polyunsaturated fat (PUFA) and one n-3 PUFA, eicosatrienoic acid
(Figure 4A)] related to more pro-inflammatory states and adipocyte maturation and (ii) higher (15%) delta-6
desaturase (D6D) estimated activity in IT vs. sham (Figure 4B,C) with no differences for the estimated delta-5
desaturase (D5D) activity suggested increases in diabetes risk (not shown). (Of note, the use of fatty acid ratios
as index of desaturase activity has been indicated as estimated because steady-state concentration ratios can be
markers of altered incorporation, synthesis and/or secretion, or utilization [32]); (iii) no significant increases in

Figure 4. Plasma FFAs post-IT surgery and associated parameters.

(A) The profile of plasma FFA was performed in 13 sham and 12 IT animals at 1.5 m after IT or sham surgery. Only those fatty acids whose

concentrations were significantly different are shown. (B) D6D index in sham and IT rats, calculated as indicated in the Materials and methods.

(C) Conversion of linoleic and α-linolenic acid into longer-chain n-6 and n-3 PUFA by the action of D6D, D5D, and elongases. Boxes framed in

black: compounds detected by FFA profile analysis; in red, higher concentration of compound in IT vs. sham. (D) ACL, DBI, and PI indices were

calculated as indicated in the Materials and methods. Statistics were performed using the Student’s t-test.
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the resistance to lipid peroxidation was observed in IT based on the lack of differences in both the density of
double bonds in FFA (double bond index or DBI) and the peroxidizability index (PI) (Figure 4D). The modest
decrease in the average chain length (ACL) suggested some improvement in β-oxidation of FFA.
Taken together, the plasma FFA profile confirmed the proteomics and pathway analyses findings, as rats that

underwent IT intervention compared with sham show pre-diabetic plasma biomarkers already at 1.5 m
post-surgery.

Discussion
In a previous study, we reported that IT surgery in 4-month-old male UCD-T2DM rats delayed diabetes onset
by an average of 120 days [6] which is equivalent to ∼10 years in humans [6,33]. In this study, to gain a
deeper understanding of the molecular events underlying the effects of IT surgery, we examined the changes in
the proteome of four WAT depots and plasma FFA profile in rats after 1.5 m of IT or sham surgery before
they show overt signs of diabetes. Many rat models for type 2 diabetes (T2D) are available, including the
Goto-Kakizaki (GK) (which represents a more suitable model for the study of T2D not associated with obesity
[34]) and the Zucker Diabetic Fatty (ZDF) [35]. Compared with the ZDF rats, the UCD-T2DM model presents
an obesity of polygenic origin, later onset of obesity, and T2DM, and a more moderate plasma TG elevation.
Importantly, the UCD-T2DM model responds to the administration of exogenous leptin, leading to normaliza-
tion of fasting glucose and lower HbA1c [36]. Other differences between the two models were presented in
detail in a previous study from our group (see Table 5 in [11]).
Overall, the proteome profiles of these fat depots — except mesenteric — in response to IT surgery are con-

sistent with a transition from pre-adipocyte to mature adipocyte differentiation. Conversely, the opposite trend
observed in mesenteric fat seems to be consistent with the prevention or delay of the detrimental changes asso-
ciated with adipocyte maturation, fat deposit and cell hypertrophy, and the ensuing development of T2DM.
The major findings supporting these conclusions can be summarized as it follows: (a) IT surgery had a fat
depot-specific effect mainly observed in the beneficial effect exerted on mesenteric fat; (b) the proteomic profile
of mesenteric fat was consistent with a delayed adipocyte maturation compared with other depots with the
involvement of cells other than adipocytes and the PPARγ pathway (Figure 5); (c) molecular markers of a pre-
diabetic state are evidenced already at 1.5 m after IT surgery. Consistent with this last premise, others reported
that certain biological processes (such as inflammation in the adipose tissue) precede the development of
inflammation elsewhere and thus can act as early indicators for development and progression of disease in
other tissues (e.g. β-cell failure and liver dysfunction; [37]).
Our results support the notion that the observed delayed onset of diabetes after IT surgery seems related to

the decreased differentiation of adipocytes in a particular depot, mesenteric fat, and the only true visceral WAT
evaluated, with increased remodeling of the neuroendocrine system. In this regard, recent studies point to the
importance of LD-associated proteins and lipases in the dysregulation of adipocyte lipolysis in obesity [38].
The higher abundance of lipases (e.g. Ces1d, Lipe, and Ptrf ) as well as other proteins important in the regula-
tion of LD growth suggested that the adipocytes from fat depots other than mesenteric were at late stages of
differentiation or with more mature adipocytes. In support of these findings, visceral adipocyte size was smaller
and more prominent in mesenteric than subcutaneous adipose tissue [6], and this and our previous study
showed decreases in the inflammatory/stress responses in mesenteric fat from UCD-T2DM rats 1.5 months
after IT compared with sham [15]. In addition, the over-representation in a significant number of enzymes
involved in the uptake of glucose, glycolysis, and the TCA cycle in fat depots in response to IT surgery (with
the exception of the mesenteric depot) signals glucose uptake and metabolism as critical for mature adipocytes.
The rate of glucose uptake into adipocytes is an important determinant of fat storage given that glycerol-3-
phosphate is necessary for the glycerol backbone of triglyceride synthesis.
Interestingly, among the 13 most abundant proteins identified by our study in mesenteric fat following IT

surgery, only one (insulinoma-associated protein 2; Insm2) has a clear role in diabetes [39]. Deletion of this
gene in mice results in mild glucose intolerance and decreased glucose-responsive insulin secretion [40]. This
protein is also present in the neurites of enteric neuronal cells, in the muscular layers of the stomach, small
intestine, and colon, and it has been shown to be expressed in neuroendocrine cells that possess regulated
secretory granules of neuropeptides and/or hormones [41]. Furthermore, two other proteins (i.e. Dlgp4 [42]
and Arl8b [43]; Supplementary Dataset) of the 13 up-regulated in post-IT mesenteric fat are associated with
synapsis maintenance and remodeling. Thus, it is likely that the presence of Insm2 in mesenteric WAT may
favor the formation of secretory vesicles with neuropeptides or adipokines affecting other organs, especially the
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liver. Alternatively, heightening the neuroendocrine system in mesenteric fat may reduce the differentiation of
mesenchymal stem cells to adipocytes [44] or promote pre-adipocyte proliferation but not their differentiation
[45]. Indeed, an increased number of enteroendocrine cells were observed in the intestine of rats that under-
went IT surgery [46].
Of relevance, ER stress is known to play an important role in obesity, insulin resistance, and T2DM, but,

more recently, as an inhibitor of adipocyte differentiation [47]. Intriguingly, the significant over-representation
of proteins related to cellular stress response including unfolded protein response after IT surgery noted in all
fat depots, except that the mesenteric may represent an attempt to fight increased cellular stress and sustain the
maturation process. Indeed, our previous report showed that IT-operated rats had decreased activation of Perk,
Atf6, Ire1, and Grp78/BiP in the liver, skeletal muscle, pancreas, and adipose tissue, suggesting that IT surgery
decreased ER stress at 1.5 months post-surgery in UCD-T2DM rats [15]. Increased ER stress can also lead to
misfolding or unfolding in proteins, which stimulates a response known as the unfolded protein response,
mediated by ER membrane-associated proteins [7].
Given the variety of pathways over-represented by the tissue proteomics, it is important to note that mature

adipocytes constitute ∼50% of the total cell content of most fat depots, with the rest being constituted by pre-
adipocytes, endothelial cells, macrophages, and mast and dendritic cells, sympathetic and sensory nerve fibers,

Figure 5. Differential expression of key proteins in adipocyte maturation in response to IT surgery.

Differences in protein expression patterns between mesenteric (IT/sham; n = 10 IT and 9 sham) and epididymal (IT/sham; n = 10 IT and 9 sham)

depots in the context of adipocyte maturation. Epididymal was taken as a representative of the non-mesenteric depots’ protein expression profiles.

Scheme was built with the PathVisio software.
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as well as stem cells [48]. In this regard, none of the responses by WAT depots were necessarily linked to the
fat or protein mass. Assuming that the adipocyte number is proportional to the fat content, then subcutaneous
fat has the highest adipocyte-to-non-adipocyte ratio (in contrast with visceral adipose tissue). This indicates
that some of the responses observed for mesenteric fat were mediated by cells other than adipocytes modulating
adipocyte fate in a bi-directional neuron–adipocyte cross-talk.
Pathway analysis highlighted the involvement of the PPARγ pathway (down-regulated in mesenteric with

opposite responses in the rest of the depots), possibly modulated by the n-6/n-3 FFA ratio. The higher plasma
n-6/n-3 ratio is indicative of increased adipocyte proliferation and differentiation, lipogenesis and PPARγ signal-
ing [49], as well as a more pro-inflammatory state. As eicosanoid levels derived from the n-3 and n-6 series are
controlled by the rate-limiting steps catalyzed by D5D and D6D [50], the higher D6D index was also consistent
with a pre-diabetic state because this activity correlates directly with diabetes risk and insulin resistance (whereas
D5D activity has a reciprocal correlation; [51]) and with inflammatory marker IL-1β in both visceral and subcuta-
neous fat [23]. If this scenario is correct, the proteomics of non-visceral fat depots align more closely to the
plasma FFA profile. Then, the role of non-visceral fats could be more ascribed at providing readily available
sources of fuel and paracrine factors to neighboring tissues [52]. In contrast, IT surgery, a process that favors the
delivery of incompletely digested nutrients, bile acids and salts, and pancreatic enzymes to the ileum [2], affects
mainly a fat depot (mesenteric) more anatomically associated with the intestine (organ cross-talk; [10]).
Previous studies proposed that another contributing factor of improved lipid metabolism after IT surgery

may be attributed to increased levels of total circulating bile acids, and in particular, a higher proportion of
non-conjugated cholic acid [6,15]. In those studies, it was proposed that increases in cholic acid levels modulate
ER stress contributing to improved insulin sensitivity and preservation of β-cell mass. However, proteomic ana-
lyses revealed only one protein connected with bile acid metabolism (NR1H4; Supplementary Dataset) with
lower abundance in post-IT retroperitoneal fat depot. Then, IT surgery may be enhancing not only the absorp-
tion of bile acids but also that of FFA possibly resulting in a higher uptake of those of the n-3 over the n-6
series, which would promote the inhibition of adipocyte differentiation in this depot via PPARγ signaling.
Consistent with our results indicating mesenteric fat as one of the main targets of the delayed diabetes onset

in response to IT surgery, visceral adiposity is associated with chronic low-grade inflammation, which promotes
adipocyte dysfunction, insulin resistance, and β-cell damage. In studies using magnetic resonance imaging and
computed tomography, increased visceral fat mass was specifically related to insulin resistance [53], and surgi-
cal removal of visceral fat in rodent models of type-2 diabetes also improved hepatic insulin sensitivity and
glucose tolerance while reducing gluconeogenesis [54].
Our study has some limitations, i.e. the use of combined samples for proteomics which eliminates the inter-

individual variations, the use of protein expression as a marker for activities within pathways minimizing
metabolite-driven and epigenetic effects, and the evaluation of fat depot metabolism at time points shorter
than at 1.5-m post-IT surgery to evaluate earlier metabolic changes. Nevertheless, our findings suggest that the
use of surgical strategies that seek diabetes onset delay and/or symptoms improvements should contemplate the
involvement of adipose depot-specific effect assessment in diabetes prevention and/or remission, paying special
attention to early, molecular predictors of pre-diabetic states, and how to manipulate these responses to imple-
ment a long-lasting, post-surgery beneficial impact.
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