Title
Azobenzene Sulphonic Dye Photoalignment as a Means to Fabricate Liquid Crystalline Conjugated Polymer Chain-Orientation-Based Optical Structures

Permalink
https://escholarship.org/uc/item/13h3881d

Journal
Advanced Optical Materials, 8(8)

ISSN
2195-1071

Authors
Zhang, Haoran
Ma, Lingling
Zhang, Qian
et al.

Publication Date
2020-04-01

DOI
10.1002/adom.201901958

Peer reviewed
Azobenzene Sulphonic Dye Photoalignment as a Means to Fabricate Liquid Crystalline Conjugated Polymer Chain-Orientation-Based Optical Structures

Haoran Zhang, Lingling Ma, Qian Zhang, Yuping Shi, Yueting Fang, Ruidong Xia,* Wei Hu,* and Donal D. C. Bradley*

The use of a noncontact photoalignment method to fabricate in-plane optical structures, defined by the local uniaxial ordering of liquid crystalline conjugated polymer chains, is reported. Molecular orientation is demonstrated for both green-light-emitting fluorene-benzothiadiazole alternating copolymer F8BT and F8BT/red light emitting complex copolymer Red-F binary blend films deposited on a well-known azobenzene sulphonic dye photoalignment material SD1. Absorption anisotropy ratios of up to 9.7 are readily achieved for 150 nm thickness F8BT films. Spatial pattern definition, afforded by masking the UV polarized light exposure of the photoalignment layer, allows the fabrication of optical structures with a resolution down to the micron scale. The alignment process is further extended to enable the serial, independent orientation of films deposited on top of each other and to permit the molecular orientation to follow curvilinear patterns. In the former case, this allows F8BT bilayer structures to be fabricated that show even higher absorption anisotropy ratios, up to ≈12, close to the theoretical limit for the previously deduced ≈22° optical transition dipole moment angle relative to the chain axis.

1. Introduction

Mainchain liquid crystalline conjugated polymers (LCCPs)\(^{[1–9]}\) offer the opportunity to reveal and utilize the natural optical and electrical anisotropy of long-chain soluble semiconductors through molecular level orientation on suitable alignment layers.\(^{[9–18]}\) This has allowed the demonstration of polarized polymer light emitting diodes (LEDs)\(^{[7,12,19]}\) highly polarized microcavity emission sources,\(^{[20]}\) enhanced thin film optical gain media and microcavity lasers,\(^{[21–23]}\) and optimized charge carrier transport, including within field effect transistor (FET) device structures.\(^{[24–26]}\) Rubbed alignment layers have, however, several potential drawbacks in relation to the resulting surface roughness, the presence of debris and electrostatic charges, and a limited ability to spatially pattern the subsequent liquid crystal orientation. Transfer printing can allow directional/local placement of oriented films but this approach is not conducive to straightforward fabrication.\(^{[27]}\) Noncontact photoalignment provides a different approach and a variety of polymeric and cross-linkable alignment layer materials have been used to align LCCPs and related oligomers for LED and FET applications.\(^{[28–32]}\) For example, polarized electroluminescence was demonstrated by Sainova et al.,\(^{[29]}\) albeit with relatively modest efficiency (≤0.1 cd A\(^{-1}\)) and at relatively high drive voltage (≥10 V), additionally requiring doping of the alignment layer with a significant fraction of a hole transport.
molecule. The reported photoalignment approach did, encour‐
gagingly, allow selective definition of spatial patterns through a
multistep, optical rewriting process; a 300 mesh transmission
electron microscope grid was used as mask.[29] Further improve­
ments are needed in order that photoalignment can become a
routine patterning method for LCCP chain-orientation-based
optical structures. In particular, a more readily processed align­
ment layer material with suitable optical and electrical charac­
teristics is desirable.

In this paper, we report the first use for LCCP chain-orien­
tation of a well-studied sulfonic azo dye SD1 (see
Figure 1a for chemical structure), previously used to good effect as a
photoalignment layer for liquid crystal displays and other
optical structures.[33–37] We focus on the green-light emission
poly(9,9-dioctylfluorene-co-benzothiadazole) (F8BT) LCCP
(Figure 1b) and a 90 wt% host:10 wt% guest binary blend with
the red-light emission complex copolymer Red F (comprising
9,9-dioctylfluorene [50%], benzothiadiazole [40%], triarylamine
[5%], and thio­phone-benzothiadiazole-thiophene [5%] moieties; Figure 1c) as guest. F8BT has been widely deployed as the emis­
sion layer in polymer LEDs, as a laser gain medium[23,38–40] and
also as a resonance energy transfer host for red-light emission
guest gain polymers.[41,42] The large fractional overlap between the emission spectrum of F8BT
and the absorption spectrum of Red F leads to efficient Förster
energy transfer, resulting in red emission from the blend
(vide infra). While Red F is not itself a LCCP, at 10 wt% or less
the F8BT host LCCP is still able to ensure polarized emission.

2. Results and Discussion

The process to generate patterned chain orientation structures
for films of F8BT and F8BT/Red-F blend (deposited from a
90 wt% F8BT/10 wt% Red-F solution mixture) on SD1 coated
Spectrosil substrates (1.2 × 1.2 cm²) is outlined in Figure S1a,
Supporting Information; see Experimental Section for further
details. Under polarized UV light SD1 tends to align with its
long axis perpendicular to the incident polarization direc­
tion (order parameter \(S \approx 0.5 \)),[34] providing an azimuthal
anchoring energy comparable to that of rubbed polyimide films
(\(\approx 10^{-4} \) J m⁻²).[46,47] Thermal annealing then drives thermotropic
homogeneous alignment of the LCCP atop the UV exposed
SD1 regions and quenching freezes the resulting order into a
nematic glass state.

Figure 2 shows atomic force microscope (AFM) images of
surface topographies for a) SD1, b) aligned F8BT, and c) aligned
F8BT/Red-F blend films. The deduced root-mean-square (RMS)
roughness values are 0.41 ± 0.05 nm for SD1, 0.7 ± 0.1 nm for
F8BT, and 0.7 ± 0.1 nm for F8BT/Red-F, suggesting good uni­
formity despite the extensive processing required. Novel double
layer structures were also fabricated involving a repeat of the
process outlined in Figure S1a, Supporting Information, with
spin-coating of a second SD1 layer on top of the first aligned
conjugated polymer film after ozone treatment of the latter to
increase adhesion. The resulting surface topography for such
an F8BT double layer structure (Figure S1b, Supporting Infor­
mation) is shown in Figure 2d and reveals a still modest, albeit
somewhat higher, RMS roughness = 1.3 ± 0.2 nm.

The degree of molecular orientation in the processed LCCP
films was examined using polarized absorption and photo­
luminescence (PL) spectroscopy. Spectra were recorded with
incident light polarized both parallel (∥) and perpendicular (⊥)
to the polymer chain alignment direction and PL was collected
without further polarization selection. Figure 3a–c shows typical
spectral data, with evident anisotropy in all three cases; parallel-
polarized incident light (solid line spectra) is more strongly
absorbed and generates stronger PL. The absorption anisotropy,
$A_{\text{Abs}} = \frac{\text{Abs}_{\parallel}}{\text{Abs}_{\perp}}$, measured at the low energy peak wavelength, λ_{max}, ranges from $A \approx 3.5$ for the F8BT/Red-F blend (Figure 3b, $\lambda_{\text{max}} = 450$ nm), through $A_{\text{Abs}} \approx 7.25$ for F8BT (Figure 3a, $\lambda_{\text{max}} = 450$ nm), to $A_{\text{Abs}} = 11.4$ for the bilayer F8BT structure (Figure 3c, $\lambda_{\text{max}} = 450$ nm). Previous results for F8BT aligned on rubbed polyimide[12,13,14] fall within the same range, confirming the effectiveness of the SD1-based photoalignment process. In terms of PL, we find anisotropy values $A_{\text{PL}} = \frac{\text{PL}_{\parallel}}{\text{PL}_{\perp}} \approx 9$ (at 550 nm) for F8BT, $A_{\text{PL}} \approx 5.1$ (at 635 nm) for the F8BT/Red-F blend, and $A_{\text{PL}} \approx 13.8$ (at 548 nm) for the F8BT bilayer sample. A number of factors will influence the measured anisotropies. At a molecular level the angle that the optical dipole transition moment makes with the chain axis provides a fundamental limit on the observable anisotropy[1,13,14]. Other factors include the order parameter, S, achieved for chain axis orientation and the liquid crystalline domain structure adopted.[1,13] For F8BT the dipole transition moment angle has been estimated to be $\approx 22^\circ$, which would suggest a maximum possible anisotropy, $A_{\text{Abs max}} = 12.25$.[13]

The influence of LCCP film thickness on absorption anisotropy was carefully studied so as to better understand the scope for order parameter optimization. The polymer chains within the nematic liquid crystalline phase behave in a cooperative manner with the alignment layer acting to direct their assembly, ideally into a specific, monodomain state. It is expected that the interplay between chain–chain and chain–alignment layer interactions will mediate the ordering; for thicker films, there may be a

Figure 2. Atomic force microscope (AFM) film surface topography images (3 × 3 µm² area) for: a) Polarized UV photoexposed SD1 (30 nm thickness); b) F8BT (250 nm) aligned on top of photoexposed SD1; c) F8BT/Red-F blend (200 nm) aligned on top of photoexposed SD1; d) F8BT double layer (150 nm each) separately aligned on top of photoexposed SD1 films.

Figure 3. Polarized absorption (left ordinate) and PL (right ordinate) spectra for aligned a) F8BT (255 nm thickness), b) F8BT/Red-F blend (305 nm thickness), and c) bi-layer F8BT films (140 nm thickness each). Solid line spectra were recorded with the incident light polarized parallel and dashed line spectra, perpendicular, to the polymer chain orientation direction. d) Absorption anisotropy at λ_{max} as a function of thickness for F8BT (open circles data) and F8BT/Red-F blend (open down triangles data) films aligned on identically prepared SD1 photoalignment layer coated Spectrosil substrates. No account has been taken of the minor contribution (see Figure S1d, Supporting Information) from the thin SD1 layer to these spectra.
tendency to order spontaneously, in ways no longer wholly directed by the alignment layer. Figure 3d shows the variation in A_{abs} for a set of F8BT (open circles data) and F8BT/Red-F blend (open down triangles data) films aligned on identically prepared SD1 photoalignment layer coated Spectrosil substrates and subject to the same straightforward annealing protocol (see Experimental Section for details). It is evident that alignment under these conditions is favored for films with thicknesses in the range ≈ 100 to ≈ 250 nm; the peak anisotropy for F8BT is 9.7 at film thickness 150 nm while for the blend, A_{abs} reaches 8 at 155 nm thickness. It is also clear that the blend gives systematically lower anisotropies until film thicknesses ≥ 350 nm are used, at which point both film types have similar, albeit relatively low, anisotropies with $A_{\text{abs}} \approx 4$. Further studies will be required to ascertain in detail the origins of this thickness variation but it reassuringly demonstrates that best orientation occurs for film thicknesses similar to those commonly used in a variety of device structures.[21,42,48,49] The asymptotic limit for thicker films, were it to persist to micrometer scale, would be higher than the PL anisotropy achieved previously for 3 μm thickness poly(9,9-dioctylfluorene) LCCP time-of-flight photocurrent samples aligned using a rather unannealing protocol on rubbed polyimide, where $A_{\text{PL}} = 2.4 \pm 0.2$.[24]

The highest anisotropies are seen for the SD1 (30 nm)/F8BT (140 nm)/SD1 (30 nm)/F8BT (140 nm) double LCCP layer structures (Figure 3c). The slightly higher A_{abs} for the bilayer film is 11.4 versus 9.5 for a corresponding 142 nm single layer F8BT film (Figure 3d) is not fully understood and was not anticipated given the high processing temperatures required and the use of SD1 on top of a conjugated polymer to which it might not be expected to adhere as well as it does to the Spectrosil substrate.

Deposition of the second SD1 layer is found to have no direct effect on the anisotropy of the first F8BT layer. It is possible, however, that the second thermal treatment helps to achieve further alignment. Even in the absence of a detailed explanation, this observation represents an encouraging result for the potential use of photoalignment to fabricate a variety of LCCP multilayer structures. In addition, this approach allows a higher anisotropy for thicker films (280 nm combined F8BT thickness in the bilayer) than available from an equivalent thickness single layer (c.f. Figure 3d), and also the opportunity to independently pattern the individual layers (vide infra).

One of the specific advantages of using a photoalignment approach is the ability to generate spatial patterns in the LCCP orientation by masking the polarized UV light exposure of the SD1 film, thereby yielding a variety of optical structures. Figure 4a shows just such a pattern that was generated within a F8BT/Red-F film. The letters (standing for Nanjing University of Posts and Telecommunications Institute of Advanced Materials) correspond to aligned regions and are revealed by viewing the sample PL in a microscope equipped with crossed polarizers. The excitation light passing through the bottom polarizer (hatched red arrow) was polarized at 45° to the polymer chain axis (solid white arrow). Further simple patterns are shown in Figure S2, Supporting Information, for both F8BT/Red-F blend and F8BT LCCP films; in this case with orthogonal excitation light polarization so that the aligned regions appear dark. A patterning resolution test using a standard 1951 US Airforce Resolving Power Test Target as mask (see Figure S3, Supporting Information) shows that $<4 \mu$m features are readily generated and Figure 4b shows a polarized PL image of a set of simple stripes with widths from 3 to 30 μm (bottom to top, bright regions) and a fixed inter-stripe spacing of 10 μm. Chain orientation is perpendicular to the long axis of the stripe and the excitation light was polarized at 45° to the chain axis. Good fidelity is obtained for the 3 μm stripe, setting a further upper bound on the resolution limit. No smaller structures have been fabricated at this time but we note that an earlier study of SD1 showed that ≈ 100 nm orientation patterning can be achieved under specific conditions.[13]

F8BT double layer patterning was also demonstrated (Figure 4c,d). The schematic in Figure S1c, Supporting Information, shows the configuration of the chain alignment stripes and the nature of the pattern they delineate. The solid white arrows show the alignment direction for the upper F8BT layer and the red hatched arrows again show the bottom polarizer alignment. The PL excitation polarization in Figure 4c is thus
The structure in Figure 5a is akin to a multimode interferometer using a microscope with crossed polarizers. The bottom region (Figure 5b), we found non-oriented background. In relation to the PL anisotropy due to chain orientation will be mirrored, in accord with the Kramers–Kronig relations, in a corresponding anisotropy in film refractive index (n). This has previously been used to control the emission from microcavity structures, leading to a splitting in resonances for parallel and perpendicular polarization angles 0°, 45°, 22.5°. This has previously been used to control the emission from microcavity structures, leading to a splitting in resonances for parallel and perpendicular polarization angles 0°, 45°, 22.5°.

The ability to write patterns offers the possibility to fabricate photonic structures such as waveguides and other light propagation control structures (e.g., gratings and diffractive elements). Here, the observed anisotropy in absorption due to chain orientation will be mirrored, in accord with the Kramers–Kronig relations, in a corresponding anisotropy in film refractive index (n). This has previously been used to control the emission from microcavity structures, leading to a splitting in resonances for parallel and perpendicular polarization angles 0°, 45°, 22.5°.

The refractive index of spin-coated F8BT at 577 nm, the peak optical gain wavelength, has been reported to be 1.69. For films aligned on rubbed polyimide, the index along the polymer chain direction increases to 2.1, while the perpendicular index reduces to ≈ 1.59. The resulting index difference is significantly higher than the conformation-change-patterning we have
previously reported, which was already sufficient to generate useful optical confinement.\cite{29,31} The added complication here is the anisotropy, which means that different polarizations of light experience different indices even when propagating in the same direction; this makes design of structures more involved and rules out certain applications. However, in common with the conformation-change approach, patterning via chain alignment is film thickness conserving, supporting an attractive planar architecture.

As a demonstration of the sorts of structures one might fabricate, Figure 4b showed a set of simple stripes with width down to 3 μm, while Figure 5 shows more complex structures fabricated with both a single SD1 exposure step for a unidirectional linear structure (Figure 5a) and a threefold SD1 exposure sequence to accommodate a stripe that undergoes a 90° change in direction with a curvilinear connecting region (Figure 5c). Also shown in Figure 5b are the polarized excitation PL spectra, recorded at specific locations both within and without the aligned region; these are wholly consistent with the data shown in Figure 3a.

Finally, it should be emphasized that no studies have yet been undertaken to explore light propagation in such structures and that several requirements will need to be met before that can be done. Most critical will be to improve the optical quality of the films through removal of impurities (including dust) from the starting materials and through management of the processing to avoid film heterogeneities. The latter can arise through partial crystallization during thermal processing, voids induced by trapped solvent, and other variations in microstructure, especially for blend films. Grating or prism couplers will also generally be needed as butt-coupling is difficult for thin film formats due to mode-matching challenges and especially so for soft materials that do not cleave readily to form a well-defined facet.

3. Summary and Conclusions

SD1 has been shown to be an effective, high-temperature stable (≥265 °C), photoalignment material for nematic LCCP orientation. It performs as well as previously reported rubbed polyimide films, with both oriented F8BT and F8BT/Red-F blend samples showing strong optical anisotropies. The latter range from \(\Delta n = 3.5 \) for the blend to 11.4 for an F8BT bilayer, with optimal LCCP film thickness found to lie within the device relevant 125 to 200 nm range.

Spatial patterning, with linear and curvilinear features and linewidths down to ~3 μm, has also been straightforwardly demonstrated, including independent sequential orientation of films on top of each other. This is not feasible with a rubbed polyimide alignment approach. Furthermore, multiple PL optical states, defined by the relative alignment between chain orientation direction and PL excitation and detection polarization, are readily created with visibilities that range from dark to bright (relative to the unaligned background), including invisible when the pattern and background show matched PL intensities.

Photoalignment also provides a route to enhance the coupling strength in ultrastrongly coupled microcavities where the orientation of the polymer chains increases the vector dot product (\(\mu \cdot E \)) between the optical transition dipole moment (\(\mu \)) and a suitably polarized optical electric field vector (\(E \)).\cite{22} For F8BT, this leads to a coupling ratio \(g = \) Rabi splitting energy (\(E_{\text{Rabi}} \))/optical transition energy (\(E_{\text{opt}} \)) = 1.25 eV/2.71 eV = 46% that is substantially larger than the ≈10–20% threshold for ultrastrong coupling. Similar behavior is seen for poly(9,9-dioctyfluorene) (PFO) where \(g = 1.47 \) eV/3.23 eV = 46%, while for poly(9,9-dihexylfluorene-dithiophene) (F6T2) \(g = 1.80 \) eV/2.79 eV = 65%, the highest reported value to date for an organic cavity. In the latter case the Rabi splitting of 1.8 eV also puts the interpolariton transition within the visible spectrum for the first time.

The availability of such a versatile photoalignment material for LCCPs offers many opportunities to tune the electronic and optical properties of this class of polymer semiconductor for different device applications and our future work will seek to address a number of these opportunities.

4. Experimental Section

The SD1 photoalignment material used in this study was purchased from the Nanjing Murun Advanced Material Company Ltd and used as supplied. F8BT (\(M_n = 50 000 \)) was purchased from Hanfeng Ltd and Red-F was supplied by the Sumitomo Chemical Company Ltd; again, both were used as supplied. The chemical structures of SD1, F8BT, and Red-F are shown in Figure 1.

Chain oriented F8BT and F8BT/Red-F blend films were fabricated using SD1 as the photoalignment layer. The four-step procedure (Figure S1a, Supporting Information) comprised:

a) Spin-coating 30 nm thickness SD1 films from 5 mg mL\(^{-1}\) dimethylformamide solution onto precleaned polished Spectrosil substrates and annealing at 100 °C for 10 min.

b) Masked exposure of the SD1 films to ≥1 J cm\(^{-2}\) linearly polarized (Glan-Taylor prism) ultraviolet (405 nm) light (for example using 10 mW cm\(^{-2}\) for 10 min).

c) Spin-coating 50–720 nm thickness LCCP and LCCP blend films on top. For F8BT, spin-coating was performed with 20–30 mg mL\(^{-1}\) toluene solution and for F8BT/Red-F blend films, 20–30 mg mL\(^{-1}\) toluene solutions of each were mixed in a ratio of 9:1 F8BT:Red-F prior to spin-coating.

d) Annealing in a Linkam LTS420E-PB4 hot stage at 265 °C for 2 min under nitrogen, followed by slow cooling at 1 °C min\(^{-1}\) to 235 °C and then rapid quenching to room temperature.

For bilayer samples, the process was repeated for the second LCCP film (see Figure S1b, Supporting Information, for schematic), with the first oriented LCCP film exposed to ozone (generated using a 120 W, 254 nm UV lamp) for 30 min before depositing SD1 on top.

Film thicknesses were measured with a Bruker Dektak XT stylus profilometer and film surface topography with a Bruker Dimension Icon atomic force microscope (AFM) equipped with Scansys-Air peak-force tapping mode tips. Film absorption and PL spectra were measured, respectively, using Perkin–Elmer Lambda 35 UV/Vis spectrophotometer and LS 55 Fluorescence spectrometer with excitation wavelength set to 450 nm.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.
Acknowledgements

H.Z., L.M., and Q.Z. contributed equally to this work. The authors thank Takeshi Yamada and the Sumitomo Chemical Company for providing the Red-F polymer. The authors further thank Mariano Campoy-Quiles for assistance with refractive index measurements. R.X. acknowledges funding from the National Natural Science Foundation of China (Grants 61504058, 5186143501, and 61576023), a Chinese 973 project (grant 2015CB932003), and the Priority Academic Program Development Fund of Jiangsu Higher Education Institutions (PAPD-YX030003); D.D.C.B. acknowledges the University of Oxford and the Jiangsu Province Double Creation Team Award for funding support. Y.S. thanks the Hong Kong Jockey Club for a DPhil Graduate Scholarship.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

chain orientation optical structures, F8BT and Red-F, liquid crystalline conjugated polymers, refractive index modulation, SD1 photoalignment

Received: November 22, 2019
Revised: January 11, 2020
Published online: