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BETTI NUMBERS AND THE CURVATURE OPERATOR OF THE

SECOND KIND

JAN NIENHAUS, PETER PETERSEN AND MATTHIAS WINK

Abstract. We show that compact, n-dimensional Riemannian manifolds with n+2

2
-nonnegative

curvature operators of the second kind are either rational homology spheres or flat.
More generally, we obtain vanishing of the p-th Betti number provided that the curvature

operator of the second kind is C(p, n)-positive. Our curvature conditions become weaker as
p increases. For p = n

2
we have C(p, n) = 3n

2

n+2

n+4
, and for 5 ≤ p ≤ n

2
we exhibit a C(p, n)-

positive algebraic curvature operator of the second kind with negative Ricci curvatures.

Introduction

It is an important topic in geometry to understand how geometric assumptions restrict the
topology of the underlying Riemannian manifold. For example, D. Meyer [Mey71] showed
that manifolds with positive curvature operators are rational homology spheres. Gallot-
Meyer [GM75] proved the corresponding rigidity theorem. That is, manifolds with nonneg-
ative curvature operators are either reducible, locally symmetric or their universal cover has
the cohomology of a sphere or a complex projective space.

With Ricci flow techniques, these results were improved to diffeomorphism classifications.
In particular, due to the work of Hamilton [Ham82,Ham86], Chen [Che91] and Böhm-Wilking
[BW08], manifolds with 2-positive curvature operators are diffeomorphic to space forms.
The corresponding rigidity result was obtained by Ni-Wu [NW07]. Generalizations of these
results in the context of isotropic curvatures were proven by Brendle-Schoen [BS08, BS09]
and Brendle [Bre08].

Moreover, the second and third named authors proved vanishing and rigidity theorems for
p-forms based on the corresponding assumption on the sum of the lowest (n−p) eigenvalues
of the curvature operator in [PW21].

In addition to the curvature operator

R : Λ2TM → Λ2TM, (R(ω))ij =
∑

k,l

Rijklωkl,

the curvature tensor of a Riemannian manifold also induces a self-adjoint operator on the
space of symmetric (0, 2)-tensors

R : S2(TM) → S2(TM),
(
R(h)

)
ij
=
∑

k,l

Rikljhkl.
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2 NIENHAUS, PETERSEN AND WINK

The curvature operator of the second kind is the induced map on the space of trace-free
symmetric (0, 2)-tensors:

R : S2
0(TM) → S2

0(TM), R = prS2
0
(TM) ◦R|S2

0
(TM).

It was already studied by Bourguignon-Karcher in [BK78]. In contrast to R, the curvature
operator of the second kind R satisfies the natural geometric condition that R ≥ κ implies
that all sectional curvatures are bounded from below by κ.

Ogiue-Tachibana [OT79] proved that similarly to D. Meyer’s result, compact manifolds
with positive curvature operators of the second kind are rational homology spheres. Both
proofs rely on the Bochner technique.

Nishikawa [Nis86] conjectured that compact manifolds with positive curvature operators of
the second kind are diffeomorphic to spherical space forms. In [CGT21], Cao-Gursky-Tran
proved Nishikawa’s conjecture. In fact, they proved Nishikawa’s conjecture for manifolds
with 2-positive curvature operators of the second kind. Subsequently, X.Li [Li22] relaxed
the assumption to 3-positive curvature operator of the second kind. The proofs are based on
the observation that these manifolds satisfy the PIC1 condition and thus Brendle’s [Bre08]
convergence result for the Ricci flow applies.

In addition, the rigidity part of Nishikawa’s conjecture [Nis86] asserts that a manifold with
nonnegative curvature operator of the second kind is diffeomorphic to a locally symmetric
space. In [Li22], X.Li proved that a Riemannian manifold of dimension n ≥ 4 with 3-
nonnegative curvature operator of the second kind is either diffeomorphic to a spherical
space form, flat, or n ≥ 5 and the universal cover is isometric to a compact irreducible
symmetric space.

The first main theorem of the paper rules out the third option, even under a weaker
assumption on the eigenvalues of the curvature operator of the second kind.

Definition. A self-adjoint operator R with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN is called k-
nonnegative for some k ≥ 1 if λ1 + . . .+ λ⌊k⌋ + (k − ⌊k⌋) λ⌊k⌋+1 ≥ 0.

Note that R is k-nonnegative if it is ⌊k⌋-nonnegative. We say R is nonnegative if it is
1-nonnegative.

Theorem A. Let (M, g) be a compact, n-dimensional Riemannian manifold. If the curva-

ture operator of the second kind is n+2
2
-nonnegative, then (M, g) is either flat or a rational

homology sphere.

Compact symmetric spaces which are real cohomology spheres were classified by Wolf in
[Wol69]. Apart from spheres, SU(3)/SO(3) is the only simply connected example. However,
according to example 4.5, the curvature operator of the second kind of SU(3)/SO(3) is 9-
positive but not 8-nonnegative. Thus, combining Theorem A with X.Li’s result explained
above [Li22], we obtain the following improvement on Nishikawa’s conjecture.

Corollary. Let n ≥ 4 and let (M, g) be a compact, n-dimensional Riemannian manifold.

If the curvature operator of the second kind is 3-nonnegative, then (M, g) is either flat or

diffeomorphic to a spherical space form.

In dimension n = 3, X.Li proved the above result in [Li22].
The proof of Theorem A is an application of a Bochner formula for the curvature operator

of the second kind. In the case of n+2
2
-nonnegative curvature operator, we are able to obtain

control on all Betti numbers. This is also the case for Einstein manifolds:
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Theorem B. Let (M, g) be a compact, n-dimensional Einstein manifold. Let N = 3n
2

n+2
n+4

.

(a) If the curvature operator of the second kind is N-positive, then M is a rational ho-

mology sphere.

(b) If the curvature operator of the second kind is N ′-nonnegative for some N ′ < N, then
(M, g) is either flat or a rational homology sphere.

(c) If the curvature operator of the second kind is N-nonnegative, then all harmonic

forms are parallel.

Remark. By the theory of Diophantine equations, 3n
2

n+2
n+4

is only an integer if n = 0, 2, 8.
Therefore, unless n = 2, 8, if the curvature operator of the second kind is ⌊N⌋-nonnegative,
part (b) applies.

Furthermore, the curvature condition in part (b) implies that either R is N -positive or
1-nonnegative, cf. theorem 3.6 (d).

Theorem B amplifies work of Cao-Gursky-Tran [CGT21] who proved that Einstein mani-
folds with 4-nonnegative curvature operators of the second kind are locally symmetric, and
have constant sectional curvature in the case of 4-positivity. This is a consequence of their
observation that manifolds with 4-nonnegative curvature operators of the second kind have
nonnegative isotropic curvature, and Brendle’s theorem [Bre10] on Einstein manifolds with
nonnegative isotropic curvature. Much earlier, Kashiwada [Kas93] proved the theorem for
manifolds with positive curvature operators of the second kind.

For a general Riemannian manifold, we obtain the following vanishing and rigidity results
for the p-th Betti number. Note that due to Poincaré duality we may assume p ≤ n

2
. Set

Cp = Cp(n) =
3

2

n(n + 2)p(n− p)

n2p− np2 − 2np+ 2n2 + 2n− 4p
.

Theorem C. Let (M, g) be a compact, n-dimensional Riemannian manifold and let p ≤ n
2
.

(a) If the curvature operator of the second kind is Cp-positive, then the p-th Betti number

bp(M,R) vanishes.
(b) If the curvature operator of the second kind is C ′-nonnegative for some C ′ < Cp, then

bp(M,R) vanishes or (M, g) is flat.
(c) If the curvature operator of the second kind is Cp-nonnegative, then all harmonic

p-forms are parallel.

Note that Cp increases as p ≤ n
2
increases. In particular, the curvature conditions become

weaker as p-increases. Therefore, unless (M, g) is flat, if the curvature operator of the second
kind is Cp-nonnegative, then all harmonic k-forms vanish for p < k < n − p. Furthermore,
we obtain the weakest curvature condition for p = n

2
. In this case we have Cn

2
= 3n

2
n+2
n+4

as in
the Einstein case in Theorem B.

The effect that curvature conditions become weaker as p increases also occurs for holo-
morphic p-forms on a compact Kähler manifold according to a result of Bochner [Boc46].
However, in the case of manifolds with generic holonomy this is a new phenomenon.

Due to a result of X.Li [Li22], n-nonnegativity of R implies that Ric ≥ scal
n(n+1)

≥ 0.

However, R being (n + 1)-nonnegative does not imply nonnegativity of Ricci curvature,
according to example 4.4.
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Notice that for any fixed p we have

Cp(n) ∼
3n

2

p

p+ 2

for large n. In particular, asymptotically for large n, our curvature conditions do not imply
lower Ricci curvature bounds for p ≥ 5. Specifically, for p = 5 we have C5(n) ≥ 15n

14
≥ n + 1

if n ≥ 14. In contrast, the results for the (standard) curvature operator in [PW21] imply
lower Ricci curvature bounds for any p.

In addition to vanishing and rigidity results, our methods also yield estimation results
in the presence of lower Ricci curvature bounds. This is a consequence of the techniques
developed by Gallot [Gal81] and P.Li [Li80]. In particular, Gallot proved estimation theorems
for the Betti numbers of manifolds with upper diameter bounds and lower bounds on the
(standard) curvature operator. The curvature assumption was weakened in [PW21] to a
lower bound on the average of the lowest (n− p)-eigenvalues of the curvature operator.

For the curvature operator of the second kind, lemma 3.14 yields a lower bound on the Ricci
curvature provided that the average of the lowest n eigenvalues of the curvature operator of
the second kind is bounded from below. Therefore, the techniques of Gallot and Li yield:

Theorem D. Let n ≥ 3, D > 0 and κ ≤ 0. Let (M, g) be a compact, n-dimensional

Riemannian manifold. Let λ1 ≤ . . . ≤ λ 1

2
(n+2)(n−1) denote the eigenvalues of the curvature

operator of the second kind of (M, g). There is C(n,Dκ2) > 0 such that if diam(M) < D
and {

λ1 + . . .+ λ⌊n+2

2
⌋ +

1
2
· λ⌊n+2

2
⌋+1 ≥ n+2

2
· κ, if n odd,

λ1 + . . .+ λn+2

2

≥ n+2
2

· κ, if n even,

then

bp(M) ≤
(
n

p

)
exp

(
C
(
n, κD2

)
·
√

−κD2p(n− p)
)
.

In particular, there is ε(n) > 0 such that κD2 > −ε implies bp(M) ≤
(
n

p

)
.

In the Einstein case, a lower bound on the scalar curvature implies a lower bound on the
Ricci curvature. Thus we obtain the bound on the Betti numbers bp(M) in Theorem D for
all p provided the Riemannian manifold (M, g) is Einstein, diam(M) < D and λ1 + . . . +
λ⌊N⌋ + (N − ⌊N⌋) · λ⌊N⌋+1 ≥ Nκ, where N = 3n

2
n+2
n+4

.
In order to obtain an estimation analog of Theorem C, we impose an explicit lower Ricci

curvature bound:

Corollary. Let n ≥ 3, D > 0 and κ ≤ 0. Let (M, g) be a compact, n-dimensional Riemann-

ian manifold. Let λ1 ≤ . . . ≤ λ 1

2
(n+2)(n−1) denote the eigenvalues of the curvature operator

of the second kind of (M, g). There is C(n,Dκ2) > 0 such that if diam(M) < D,

Ric ≥ (n− 1)κ and λ1 + . . .+ λ⌊Cp⌋ + (Cp − ⌊Cp⌋)λ⌊Cp⌋+1 ≥ Cpκ,

then

bp(M) ≤
(
n

p

)
exp

(
C
(
n, κD2

)
·
√

−κD2p(n− p)
)
.

In particular, there is ε(n) > 0 such that κD2 > −ε implies bp(M) ≤
(
n

p

)
.
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The proofs of the main Theorems are based on the Bochner technique. By Hodge theory,
every de Rham cohomology class is represented by a harmonic form. If ω is a harmonic
p-form, then it satisfies the Bochner formula

∆
1

2
|ω|2 = |∇ω|2 + g(RicL(ω), ω).

We establish that the curvature term of the Lichnerowicz Laplacian satisfies the equation

3

2
g(RicL(ω), ω) =

N∑

α=1

λα|Sαω|2 +
p(n− 2p)

n

∑

j,k

∑

i2,...,ip

Rjkωji2...ipωki2...ip +
p2

n2
scal |ω|2,

where {Sα} is an orthonormal eigenbasis of the curvature operator of the second kind with
corresponding eigenvalues {λα}, and N = dimS2

0(TM) = 1
2
(n− 1)(n+ 2).

We are able to control the first term by understanding the interaction of trace-free, sym-
metric tensors on forms, adapting ideas of [PW21]. The key point is that all weights |Sαω|2
are bounded by p(n−p)

n
|ω|2 while the total weight

∑
α |Sαω|2 = p(n−p)

n
n+2
2
|ω|2 is large in com-

parison. In particular,
∑

α λα|Sαω|2 ≥ 0 if the curvature operator of the second kind is
n+2
2
-nonnegative. Moreover, n+2

2
-nonnegativity also implies nonnegative Ricci curvature and

hence g(RicL(ω), ω) ≥ 0.
It follows that every harmonic form on a manifold with n+2

2
-nonnegative curvature operator

of the second kind is parallel and satisfies 0 ≥ scal |ω|2. This implies ω vanishes unless M
is flat. We remark that this final conclusion is also possible with the formula obtained by
Ogiue-Tachibana [OT79], cf. remark 2.6, provided the curvature operator of the second kind
is positive. However, this argument has not been pointed out before.

For the general case we also incorporate the Ricci and scalar curvature terms in a single
estimate on the eigenvalues of the curvature operator of the second kind. This places different
weights on the eigenvalues. The main technical tool, the weight principle 3.6, is a refinement
of the ideas above and allows us obtain eigenvalue estimates for sums with different weights.
In particular, the weight principle 3.6 extends [PW21, Lemma 2.1] to an abstract setting.

The curvature operator of the second kind also naturally occurs in the context of deforma-
tions of Einstein structures, cf. Berger-Ebin [BE69], Besse [Bes87] or Koiso [Koi79a,Koi79b],
as well as in Bochner-Weitzenböck formulas for symmetric tensors, cf. Mikeš-Rovenski-
Stepanov [MRS20] or Shandra-Stepanov-Mikeš [SSM19].

Restrictions on the restricted holonomy groups of not necessarily complete manifolds which
satisfy nonnegativity or nonpositivity conditions on the eigenvalues of the curvature operator
of the second kind are studied by the authors and W. Wylie in [NPWW22].

Structure. Section 1 collects some preliminary results and sets up notation. In section 2 we
provide a brief introduction to the Bochner technique and in particular establish a Bochner
formula for the curvature operator of the second kind in proposition 2.1. In section 3 we
prove the key technical tool, the weight principle 3.6. As an application we obtain estimates
on the curvature terms in the Bochner formula. For example, proposition 3.13 provides a
simple, preliminary estimate that provides asymptotically the same result as Theorem C,
cf. example 4.2. Theorem C itself relies on the refined estimate in proposition 3.15. The
proofs of the main Theorems are given in section 4. Section 4 also contains the example
of an (n + 1)-positive algebraic curvature operator of the second kind with negative Ricci
curvatures, and discusses the curvature of the rational homology sphere SU(3)/SO(3).
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1. Preliminaries

Let (V, g) be an n-dimensional Euclidean vector space, and let R be an algebraic (0, 4)-
curvature tensor on V. Let S2(V ) denote the space of symmetric (0, 2)-tensors on V. The
subspace of trace-free symmetric (0, 2)-tensors is denoted by S2

0(V ). Recall that

S2(V ) = S2
0(V )⊕ Rg

is the decomposition of S2(V ) into O(n)-invariant, irreducible subspaces.
For an algebraic curvature tensor R set

R : S2(V ) → S2(V ),

h 7→
n∑

k,l=1

R·kl·hkl,

where the components are with respect to an orthonormal basis e1, . . . , en for V.
Note that R is self-adjoint and

R(g) =

n∑

k,l=1

R·kl·δkl = −Ric .

Furthermore, the operator R leaves the subspace S2
0(V ) invariant if and only if R is Einstein.

Define

R̊ : S2(V ) → S2
0(V ),

R̊ = prS2
0
(V ) ◦R =R + g(Ric, ·) g

n
.

The induced operatorR = R̊|S2
0
(V ) : S

2
0(V ) → S2

0(V ) is called curvature operator of the second

kind. Note that R is again self-adjoint.

Example 1.1. If R is the curvature tensor of the round sphere, then R(h) = h − tr(h) id .
Indeed, note that Rijkl = δikδjl − δilδjk and thus

(
R(h)

)
ij
=

n∑

k,l

Rikljhkl =
n∑

k,l

(δilδkj − δijδkl) hkl = hji − δij

n∑

k=1

hkk = hij − δij tr(h).

In particular, R̊|S2
0
(V ) = idS2

0
(V ) .

Proposition 1.2.

tr(R) =
scal

2
and tr(R) =

n + 2

2n
scal .

Proof. If e1, . . . , en is an orthonormal basis for V, then

g(R(ei ⊗ ei), ei ⊗ ei) = 0,

g(R(
1√
2
(ei ⊗ ej + ej ⊗ ei)),

1√
2
(ei ⊗ ej + ej ⊗ ei)) = Rijij .

This implies tr(R) =
∑

i<j Rijij =
scal
2
.

Furthermore, note that tr(R) = tr(R)− g(R( g√
n
), g√

n
) = scal

2
+ scal

n
= n+2

2n
scal . �
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Via the metric, we identify symmetric (0, 2)-tensors with self-adjoint endomorphisms of
V.

Definition 1.3. Let V be a finite dimensional Euclidean vector space. Let T (0,k)(V ) denote
the vector space of (0, k)-tensors on V. For S ∈ S2(V ) and T ∈ T (0,k)(V ) set

(ST )(X1, . . . , Xk) =

k∑

i=1

T (X1, . . . , SXi, . . . , Xk)

and define T S2 ∈ T (0,k)(V )⊗ S2(V ) via

g(T S2

(X1, . . . , Xk), S) = (ST )(X1, . . . , Xk).

In particular, if {Sα} is an orthonormal basis for S2(V ), then

T S2

=
∑

Sα

SαT ⊗ Sα.

Similarly, we define

T S2
0 =

∑

Sα

SαT ⊗ Sα

where {Sα} is an orthonormal basis for S2
0(V ).

Remark 1.4. (a) We have T S2

= T S2
0 + 1√

n
(gT )⊗ 1√

n
g. The observation

gT =

k∑

i=1

T (. . . , id, . . .) = kT

thus implies the important relation

T S2

= T S2
0 +

k

n
T ⊗ g.

(b) If ω ∈
∧p V ∗ is a p-form and S ∈ S2(V ), then Sω is again a p-form. Indeed,

(Sω)(X,X,X3, . . . , Xp) = ω(SX,X,X3, . . . , Xp) + ω(X,SX,X3, . . . , Xp) + 0 = 0.

(c) We use the standard norm on
⊗k V ∗. In particular, if ω is a p-form, then

|ω|2 =
∑

i1,...,ip

(ωi1...ip)
2 = p!

∑

i1<...<ip

(ωi1...ip)
2.

Example 1.5. Set ei ◦̄ ej = 1
2
(ei ⊗ ej + ej ⊗ ei) and note that

||ei ◦̄ ej ||2 =
{
1 if i = j,
1
2

if i 6= j.
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Thus,

T S2

=
∑

i≤j

(ei ◦̄ ej)T ⊗ ei ◦̄ ej
||ei ◦̄ ej ||2

=
∑

i

(ei ◦̄ ei)T ⊗ ei ◦̄ ei +
∑

i 6=j

(ei ◦̄ ej)T ⊗ ei ◦̄ ej

=
∑

i,j

(ei ◦̄ ej)T ⊗ ei ◦̄ ej .

Furthermore, note that

R(ei ◦̄ ej) = 1

2

∑

k,l

R·kl· (δkiδlj + δkjδli) =
1

2
(R·ij· +R·ji·)

and thus

g(R(ei ◦̄ ej), ek ◦̄ el) = 1

2
(Rkijl +Rkjil) .

Definition 1.6. For an algebraic curvature tensor R and a (0, k)-tensor T set

R(T S2

) =
∑

α

SαT ⊗ R(Sα).

In particular, for all S ∈ S2(V ) and X1, . . . , Xk ∈ V we have

g(R(T S2

)(X1, . . . , Xk), S) = (R(S)T )(X1, . . . , Xk).

Similarly we define R(T S2
0 ) and R(T S2

0 ).

Example 1.7. If {Sα} is an orthonormal eigenbasis for R with corresponding eigenvalues
{λα}, then

g(R(T S2
0 ), T S2

0) =
∑

α,β

g(SαT, SβT ) g(R(Sα), Sβ)

=
∑

α,β

λαg(SαT, SβT ) g(Sα, Sβ)

=
∑

α

λα|SαT |2

and thus in particular

|T S2
0 |2 =

∑

α

|SαT |2.

Proposition 1.8. If T is a (0, k)-tensor, then

g(R(T S2
0 ), T S2

0 ) = g(R(T S2
0 ), T S2

0 ).

Proof. Let {Sα} denote an orthonormal basis for S2
0 . Recall that R = R̊ + g(Ric, ·) g

n
. Since

any Sα is trace-free and hence orthogonal to g, we have

g(R(Sα), Sβ) = g((prS2
0
◦R(Sα), Sβ) = g(R(Sα), Sβ).
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Thus we obtain

g(R(T S2
0 ), T S2

0 ) =
∑

α,β

g(SαT, SβT )g(R(Sα), Sβ)

=
∑

α,β

g(SαT, SβT )g(R(Sα), Sβ) = g(R(T S2
0 ), T S2

0).

�

2. A Bochner formula for the curvature operator of the second kind

The Bochner technique relies on the observation that on p-forms

∆Hodge = ∇∗∇+ RicL,

where

RicL(ω)(X1, . . . , Xp) =

p∑

i=1

n∑

j=1

(R(Xi, ej)ω)(X1, . . . , ej , . . . , Xp).

In particular, cf. [Bes87], the curvature term on p-forms is given by

g(RicL(ω), ω) = p
∑

i2,...,ip

∑

i,j

Rijωii2...ipωji2...ip

− p(p− 1)

2

∑

i3,...,ip

∑

i,j,k,l

Rijklωiji3...ipωkli3...ip.

If ω is a harmonic p-form, ∆Hodgeω = 0, then

∆
1

2
|ω|2 = |∇ω|2 − g(∇∗∇ω, ω) = |∇ω|2 + g(RicL(ω), ω).

In particular, if M is compact and g(RicL(ω), ω) ≥ 0, then ω is parallel.
Estimation results on the dimension of the kernel of the Hodge Laplacian follow if there

are constants κ ≤ 0 and C > 0 such that g(RicL(ω), ω) ≥ κC|ω|2 and Ric ≥ (n − 1)κ,
cf. [PW21, Theorem 1.9].

The connection to the curvature operator of the second kind is given by the following
observation.

Proposition 2.1. Let R be an algebraic curvature tensor and let ω be a p-form. With respect

to an orthonormal basis the curvature term in the Bochner formula satisfies

3

2
g(RicL(ω), ω) = g(R(ωS2

0), ωS2
0 ) +

p(n− 2p)

n

∑

j,k

∑

i2,...,ip

Rjkωji2...ipωki2...ip +
p2

n2
scal |ω|2.

If the orthonormal basis diagonalizes the Ricci tensor, then furthermore

3

2
g(RicL(ω), ω) = g(R(ωS2

0), ωS2
0 ) +

n− 2p

n

∑

I=(i1,...,ip)

(
∑

i∈I
Rii

)
ω2
I +

p2

n2
scal |ω|2.

In particular, if R is Einstein, Ric = scal
n
g, then

3

2
g(RicL(ω), ω) = g(R(ωS2

0), ωS2
0 ) +

p(n− p)

n2
scal |ω|2.
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Proof. Recall that due to proposition 1.8 we may consider the term g(R(ωS2
0 ), ωS2

0). Since

ωS2
0 = ωS2 − p

n
ω ⊗ g and R(g) = −Ric, it follows that

g(R(ωS2
0 ), ωS2

0) = g(R(ωS2

), ωS2

) +
2p

n
g(ωS2

, ω ⊗ Ric)− p2

n2
scal |ω|2.

Propositions 2.3 and 2.4 below imply

g(R(ωS2
0), ωS2

0 ) = − 3

2

p(p− 1)

2

∑

i,j,k,l

∑

i3,...,ip

ωiji3...ipωkli3...ipRijkl

+

(
p

2
+

2p2

n

)∑

i,j

∑

i2,...,ip

Rijωii2...ipωji2...ip −
p2

n2
scal |ω|2

= − 3

2

p(p− 1)

2

∑

i,j,k,l

∑

i3,...,ip

ωiji3...ipωkli3...ipRijkl

+
p(n+ 4p)

2n

∑

i,j

∑

i2,...,ip

Rijωii2...ipωji2...ip −
p2

n2
scal |ω|2.

Thus,

g(R(ωS2
0 ), ωS2

0) +
p(n− 2p)

n

∑

j,k

∑

i2,...,ip

Rjkωji2...ipωki2...ip +
p2

n2
scal |ω|2 =

=
3p

2

∑

i2,...,ip

∑

i,j

Rijωii2...ipωji2...ip −
3

2

p(p− 1)

2

∑

i3,...,ip

∑

i,j,k,l

Rijklωiji3...ipωkli3...ip

=
3

2
g(RicL(ω), ω).

�

Proposition 2.2. For an orthonormal basis e1, . . . , en set ei ◦̄ ej = 1
2
(ei ⊗ ej + ej ⊗ ei) .

Then, every p-form ω satisfies

g((ei ◦̄ ej)ω, ω) = p
∑

i2,...,ip

ωii2...ipωji2...ip

and

g((ei ◦̄ ej)ω, (ek ◦̄ el)ω) = p

4

∑

i2,...,ip

(
δjkωii2...ipωli2...ip + δjlωii2...ipωki2...ip

+δikωji2...ipωli2...ip + δilωji2...ipωki2...ip

)

+
p(p− 1)

2

∑

i3,...,ip

(
ωiki3...ipωjli3...ip + ωili3...ipωjki3...ip

)
.
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Proof. If Ω is another p-form, then

g((ei ◦̄ ej)ω,Ω) =
∑

i1,...,ip

((ei ◦̄ ej)ω)i1...ipΩi1...ip

=
1

2

∑

i1,...,ip

p∑

k=1

δiikωi1...j...ipΩi1...ip +
1

2

∑

i1,...,ip

p∑

k=1

δjikωi1...i...ipΩi1...ip

=
1

2

p∑

k=1

∑

i1,...,ik−1,ik+1,...,ip

(
ωi1...j...ipΩi1...i...ip + ωi1...i...ipΩi1...j...ip

)

=
p

2

∑

i2,...,ip

(
ωii2...ipΩji2...ip + ωji2...ipΩii2...ip

)
.

This implies the first claim. Moreover, note that

(
(ek ◦̄ el)ω

)
ii2...ip

=
1

2

(
δikωli2...ip + δilωki2...ip

)
+

1

2

p∑

α=2

(
δkiαωii2...l...ip + δliαωii2...k...ip

)
.

Thus,

g((ei ◦̄ ej)ω, (ek ◦̄ el)ω) = p

4

∑

i2,...,ip

(
δjkωii2...ipωli2...ip + δjlωii2...ipωki2...ip

)

+
p

4

∑

i2,...,ip

p∑

α=2

(
δkiαωii2...ipωji2...l...ip + δliαωii2...ipωji2...k...ip

)

+ both sums with i and j reversed

=
p

4

∑

i2,...,ip

(
δjkωii2...ipωli2...ip + δjlωii2...ipωki2...ip

+δikωji2...ipωli2...ip + δilωji2...ipωki2...ip

)

+
p

2

p∑

α=2

∑

i2,...,iα−1,iα+1,...,ip

(
ωii2...k...ipωji2...l...ip + ωii2...l...ipωji2...k...ip

)

=
p

4

∑

i2,...,ip

(
δjkωii2...ipωli2...ip + δjlωii2...ipωki2...ip

+δikωji2...ipωli2...ip + δilωji2...ipωki2...ip

)

+
p(p− 1)

2

∑

i3,...,ip

(
ωiki3...ipωjli3...ip + ωili3...ipωjki3...ip

)
.

�

Proposition 2.3. Every p-form ω satisfies

g(ωS2

, ω ⊗ Ric) = p
∑

i,j

∑

i2,...,ip

Rijωii2...ipωji2...ip.

Proof. Due to example 1.5 we have

g(ωS2

, ω ⊗ Ric) =
∑

i,j

g((ei ◦̄ ej)ω ⊗ ei ◦̄ ej, ω ⊗ Ric) =
∑

i,j

g((ei ◦̄ ej)ω, ω)Rij
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and thus proposition 2.2 implies the claim. �

Proposition 2.4. If ω is a p-form, then

g(R(ωS2

), ωS2

) =
p

2

∑

i,j

∑

i2,...,ip

Rijωii2...ipωji2...ip −
3

2

p(p− 1)

2

∑

i,j,k,l

∑

i3,...,ip

Rijklωiji3...ipωkli3...ip

and thus

3

2
g(RicL(ω), ω) = g(R(ωS2

), ωS2

) + p
∑

i,j

∑

i2,...,ip

Rijωii2...ipωji2...ip .

Proof. Notice that

∑

i,j,k,l

∑

i3,...,ip

ωiki3...ipωjli3...ipRijkl =
1

2

∑

i,j,k,l

∑

i3,...,ip

ωiji3...ipωkli3...ipRijkl,

since Rijkl = − (Rjkil +Rkijl) = Rilkj +Rikjl implies

∑

i,j,k,l

∑

i3,...,ip

ωiki3...ipωjli3...ipRijkl =
∑

i,j,k,l

∑

i3,...,ip

(
ωiki3...ipωjli3...ipRilkj + ωiki3...ipωjli3...ipRikjl

)

= −
∑

i,j,k,l

∑

i3,...,ip

ωiki3...ipωjli3...ipRijkl

+
∑

i,j,k,l

∑

i3,...,ip

ωiji3...ipωkli3...ipRijkl.
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Due to example 1.5 and proposition 2.2 we thus obtain

g(R(ωS2

), ωS2

) =
∑

i,j,k,l

g((ei ◦̄ ej)ω ⊗ R(ei ◦̄ ej), (ek ◦̄ el)ω ⊗R(ek ◦̄ el))

=
1

4

∑

i,j,k,l

g((ei ◦̄ ej)ω, (ek ◦̄ el)ω)(Rkijl +Rkjil +Rlijk +Rlijk)

=
1

2

∑

i,j,k,l

g((ei ◦̄ ej)ω, (ek ◦̄ el)ω)(Rkijl +Rkjil)

=
p

8

∑

i,j,k,l

∑

i2,...,ip

(
δjkωii2...ipωli2...ip + δjlωii2...ipωki2...ip

+δikωji2...ipωli2...ip + δilωji2...ipωki2...ip

)
(Rkijl +Rkjil)

+
p(p− 1)

4

∑

i,j,k,l

∑

i3,...,ip

(
ωiki3...ipωjli3...ip + ωili3...ipωjki3...ip

)
(Rkijl +Rkjil)

=
p

8

∑

i2,...,ip

(
∑

i,l

Rilωii2...ipωli2...ip +
∑

i,k

Rikωii2...ipωki2...ip

+
∑

j,l

Rjlωji2...ipωli2...ip +
∑

j,k

Rkjωji2...ipωki2...ip

)

+
p(p− 1)

4

∑

i,j,k,l

∑

i3,...,ip

(
ωjii3...ipωkli3...ip + ωkii3...ipωjli3...ip

+ωjli3...ipωkii3...ip + ωkli3...ipωjii3...ip

)
Rijkl

=
p

2

∑

i,j

∑

i2,...,ip

Rijωii2...ipωji2...ip

− p(p− 1)

2

∑

i,j,k,l

∑

i3,...,ip

(
ωiji3...ipωkli3...ip + ωiki3...ipωjli3...ip

)
Rijkl

=
p

2

∑

i,j

∑

i2,...,ip

Rijωii2...ipωji2...ip −
3

2

p(p− 1)

2

∑

i,j,k,l

∑

i3,...,ip

ωiji3...ipωkli3...ipRijkl,

where we used the initial observation for the last equality. �

Remark 2.5. Every (0, p)-tensor T satisfies

3

2
g(RicL(T ), T ) = g(R(T S2

0 ), T S2
0 ) +

p(n− 2p)

n

∑

j,k

∑

i2,...,ip

RjkTji2...ipTki2...ip +
p2

n2
scal |T |2

+
∑

1≤r 6=s≤p

∑

I∈Irs

∑

i,j,k,l

TIrsij TIrskl (Rkijl +Rkjil) ,

where

Irs = {(i1, . . . , ir−1, ir+1, . . . is−1, is+1, . . . , ip) ∈ {1, . . . , n}p−2},
TIrsij = Ti1...ir−1iir+1...is−1jis+1...ip.
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Note that the last term vanishes for p-forms. For symmetric (0, 2)-tensors the last term
reads

4
∑

i,j,k,l

TijTklRkijl = 8
∑

i<j

∑

k<l

TijTkl (Rkijl +Rlijk) .

Remark 2.6. In order to recover the Bochner formula of Ogiue-Tachibana [OT79] from
proposition 2.1, set

ei ⊙ ej = ei ⊗ ej + ej ⊗ ei − 2

n
δij

n∑

k=1

ek ⊗ ek.

Note that the ei ⊙ ej are trace-free but not orthogonal. For every p-form ω we have

((ei ⊙ ej)ω)i1...ip =

p∑

k=1

(
δiikωi1...j...ip + δjikωi1...i...ik

)
− 2

n
δijωi1...ip .

In [OT79], Ogiue-Tachibana observed that

3

2
g(RicL(ω), ω) =

1

4

∑

i,j,k,l

∑

i1,...,ip

((ei ⊙ el)ω)i1...ip((e
j ⊙ ek)ω)i1...ipRijkl

+
p(n− 2p)

n

∑

j,k

∑

i2,...,ip

Rjkωji2...ipωki2...ip +
p2

n2
scal |ω|2.

In fact, it is straightforward to check that for any (0, k)-tensor

T S2
0 = T S2 − k

n
T ⊗ g =

1

2

∑

i,j

(ei ⊙ ej)T ⊗ (ei ◦̄ ej) = 1

4

∑

i,j

(ei ⊙ ej)T ⊗ (ei ⊙ ej).

With g(R(ei ◦̄ ej), ek ◦̄ el) = 1
2
(Rkijl +Rkjil) we thus directly obtain

g(R(T S2
0 ), T S2

0 ) =
1

4

∑

i,j,k,l

∑

i1,...,ip

g((ei ⊙ ej)T, (ek ⊙ el)T )g(R(ei ◦̄ ej), ek ◦̄ el)

=
1

4

∑

i,j,k,l

∑

i1,...,ip

((ei ⊙ el)T )i1...ip((e
j ⊙ ek)T )i1...ipRijkl

and together with proposition 2.1 we recover the formula of Ogiue-Tachibana.

3. The weight principle

Let R be an operator with eigenvalues λi ∈ R. In this section we introduce a calculus to
estimate finite weighted sums

∑
i ωiλi with weights ωi ≥ 0. The main result is the weight

principle 3.6. As an application, we estimate the curvature term in the Bochner formula for
the curvature operator of the second kind.

Definition 3.1. Let ωi ≥ 0 with Ω = maxi ωi and set S =
∑

i ωi. We call S the total weight
and Ω the highest weight.

We will use the notation

[R,Ω,S]
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to denote any finite weighted sum
∑

i ωiλi in terms of the eigenvalues λi of the operator R
with highest weight Ω and total weight S. In particular, if F (R) is a (geometric) quantity
depending on R and R = R(R) is an operator, then we will write

F (R) ≥ [R,Ω,S]
provided F (R) is bounded from below by a weighted sum in terms of the eigenvalues of R
with highest weight Ω and total weight S.

We write

[R,Ω,S] ≥ [R, Ω̃, S̃]
provided for every sum

∑
i ωiλi with

∑
i ωi = S and maxi ωi = Ω there is a sum

∑
i ω̃iλi

with
∑

i ω̃i = S̃ and maxi ω̃i = Ω̃ such that
∑

i

ωiλi ≥
∑

i

ω̃iλi.

Similarly, if c ∈ R, we write

[R,Ω,S] ≥ c

provided every sum
∑

i ωiλi with
∑

i ωi = S and maxi ωi = Ω satisfies
∑

i

ωiλi ≥ c.

Example 3.2. If R denotes the curvature operator of the second kind of an n-dimensional
Riemannian manifold, then

scal ≥ 2n

n+ 2

[
R, 1, (n− 1)(n+ 2)

2

]
,

since scal = 2n
n+2

tr(R) and dimS2
0(TM) = (n−1)(n+2)

2
.

Lemma 3.3. Let [R,Ω,S], [R, Ω̃, S̃] denote weighted sums of eigenvalues of R with highest

weights Ω, Ω̃ and total weights S, S̃, respectively.
(a) If c > 0, then

[R, cΩ, cS] = c · [R,Ω,S].

(b) If Ω ≤ Ω̃, then

[R,Ω,S] ≥ [R, Ω̃,S].
(c)

[R,Ω,S] + [R, Ω̃, S̃] ≥ [R,Ω + Ω̃,S + S̃].

Proof. Part (a) is immediate. For part (b) note that any sum [R,Ω,S] =
∑

i ωiλi is bounded
from below by the corresponding sum with decreasing weights ωj ≥ ωj+1 and increasing
λj ≤ λj+1. Increasing the highest weight in the rearranged sum while keeping the total
weight fixed decreases the total sum. For part (c) note that the highest weight is bounded

by Ω + Ω̃ and its total weight is S + S̃. Thus the claim follows from (b). �
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Lemma 3.4. If λ1 ≤ . . . ≤ λN denote the eigenvalues of R, then for m ∈ N

[R,Ω,S] ≥ (S −mΩ) λm+1 + Ω

m∑

i=1

λi.

Proof. If ωi denote the corresponding weights with Ω = maxωi and S =
∑

i ωi, then

[R,Ω,S] =
N∑

i=1

ωiλi ≥
m∑

i=1

ωiλi +

N∑

i=m+1

ωiλm+1 = Sλm+1 +

m∑

i=1

ωi (λi − λm+1)

≥ Sλm+1 + Ω
m∑

i=1

(λi − λm+1) = (S −mΩ) λm+1 + Ω
m∑

i=1

λi.

�

Recall that by definition R is k-nonnegative for some k ≥ 1 provided its eigenvalues
λ1 ≤ λ2 ≤ . . . ≤ λN satisfy λ1 + . . .+ λ⌊k⌋ + (k − ⌊k⌋) λ⌊k⌋+1 ≥ 0.

Proposition 3.5. Let λ1 ≤ λ2 ≤ . . . ≤ λN denote the eigenvalues of R.
(a) R is k-nonnegative if and only if [R, 1, k] ≥ 0.
(b) Let c ∈ R. Then, λ1 + . . .+ λ⌊k⌋ + (k − ⌊k⌋) λ⌊k⌋+1 ≥ c if and only if [R, 1, k] ≥ c.

Proof. (a) By definition we have λ1 + . . . + λ⌊k⌋ + (k − ⌊k⌋) λ⌊k⌋+1 ≥ [R, 1, k]. On the
other hand, by lemma 3.4, any sum in [R, 1, k] is bounded from below by λ1 + . . . + λ⌊k⌋ +
(k − ⌊k⌋) λ⌊k⌋+1.

(b) follows as in (a). �

Theorem 3.6 (Weight principle). Let R be an operator on a finite dimensional vector space

with real eigenvalues. Then,

(a) [R,Ω,S] > 0 if and only if [R, 1, S
Ω
] > 0 if and only if R is S

Ω
-positive.

(b) [R,Ω,S] ≥ 0 if and only if [R, 1, S
Ω
] ≥ 0 if and only if R is S

Ω
-nonnegative.

(c) Let κ ∈ R. [R,Ω,S] ≥ Sκ if and only if [R, 1, S
Ω
] ≥ κS

Ω
.

(d) Let k′ < k. If R is k′-nonnegative, then either R is k-positive or 1-nonnegative.

Proof. Parts (a)-(c) are an immediate consequence of lemma 3.3 and proposition 3.5. For
part (d) observe that if R is not k-positive, then λ⌊k′⌋+1 = 0. Thus, k′-nonnegativity implies
that λ1 = . . . = λ⌊k′⌋+1 = 0 and in particular λi ≥ 0 for all i. �

Lemma 3.7. Let ω be a p-form and S ∈ S2
0(V ). Then,

(a)

|ωS2
0 |2 = p(n− p)

n

(n+ 2)

2
|ω|2,

(b)

|Sω|2 ≤ p(n− p)

n
|S|2|ω|2 = 2

n+ 2
|S|2|ωS2

0 |2.
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Proof. (a) We apply the formula for g(R(ωS2
0 ), ωS2

0) in the proof of proposition 2.1 to the
curvature tensor Rijkl = δikδjl − δilδjk of the round sphere. Hence we have R = id on S2

0(V )
and

|ωS2
0 |2 = p

2n
(−3(p− 1)n+ (n + 4p)(n− 1)− 2p(n− 1)) |ω|2 = p

2n
(n+ 2)(n− p)|ω|2.

(b) For S ∈ S2
0(V ) there is an orthonormal basis e1, . . . , en for V and λ1, . . . , λn ∈ R such

that S(ei) = µiei for i = 1, . . . , n. It follows that

(Sω)i1...ip =




∑

i∈{i1,...,ip}
µi


ωi1...ip

and

|Sω|2 =
∑

I=(i1,...,ip)

(
∑

i∈I
µi

)2 (
ωi1...ip

)2
.

Maximizing |Sω|2 under the constraints

|ω|2 =
∑

i1,...,ip

(
ωi1...ip

)2
= 1, |S|2 =

n∑

i=1

µ2
i = 1, tr(S) =

n∑

i=1

µi = 0

yields Lagrange multipliers α1, α2, α3 ∈ R such that





∑

j∈{j1,...,jp}
µj




2

− α1


ωj1...jp = 0,

2
∑

I=(i1,...,ip)

(
∑

i∈I
µi

)
χI(j)

(
ωi1...ip

)2 − 2α2µj − α3 = 0

for all j, j1, . . . , jp = 1, . . . , n, where for I = (i1, . . . , ip)

χI(i) =

{
1 i ∈ I,

0 i /∈ I

is the characteristic function.

In particular, if ωj1...jp 6= 0, then
(∑

j∈{j1,...,jp} µi

)2
= α1 is constant and thus |Sω|2 = α2

1.

Therefore it suffices to show that (
p∑

i=1

µi

)2

≤ p(n− p)

n

provided that
n∑

i=1

µ2
i = 1 and

n∑

i=1

µi = 0.

This again yields Lagrange multipliers β1, β2 ∈ R such that

1− 2β1µj − β2 = 0 for 1 ≤ j ≤ p,

−2β1µj − β2 = 0 for p+ 1 ≤ j ≤ n.
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This implies µ1 = . . . = µp and µp+1 = . . . = µn. Solving

pµ2
1 + (n− p)µ2

n = 1,

pµ1 + (n− p)µn = 0

yields µ2
1 =

n−p

pn
and µ2

n = p

(n−p)n
and thus

(
p∑

i=1

µi

)2

= p2µ2
1 =

p(n− p)

n

as claimed. �

Example 3.8. The estimate in lemma 3.7 (ii) is sharp for ω = e1 ∧ . . . ∧ ep and S ∈ S2
0(V )

given by S(ei) = µiei with

µ1 = . . . = µp =

√
n− p

np
,

µp+1 = . . . = µn = −
√

p

(n− p)n
.

Corollary 3.9. If the curvature operator of the second kind is n+2
2
-nonnegative, then

g(R(ωS2
0), ωS2

0 ) ≥ 0.

Proof. Recall that

g(R(ωS2
0 ), ωS2

0) =
∑

α

λα|Sαω|2,

where {Sα} is an orthonormal eigenbasis for R with corresponding eigenvalues {λα}. In

particular, the total weight is |ωS2
0 |2 and highest weight is bounded by p(n−p)

n
|ω|2 due to

lemma 3.7. Thus,

g(R(ωS2
0 ), ωS2

0) ≥ [R, p(n− p)

n
,
p(n− p)

n

(n+ 2)

2
] · |ω|2

and the weight principle 3.6 implies the claim. �

X. Li [Li22] observed that Ric ≥ scal
n(n+1)

≥ 0 provided the curvature operator of the second

kind is n-nonnegative. An application of the Bochner technique hence yields Theorem A.

Proof of Theorem A. By passing to the orientation double cover if needed, we may assume
that (M, g) is oriented. Thus we may assume p ≤ n

2
due to Poincaré duality. Proposition

2.1 and corollary 3.9 hence show that g(RicL(ω), ω) ≥ 0, and thus all harmonic forms are
parallel.

If ω is a parallel p-form for 1 ≤ p ≤ n
2
and there is q ∈M with scalq > 0, then proposition

2.1 implies scal |ω|2 = 0 at q. In particular, ω vanishes at q and consequently ω = 0.
Otherwise, (M, g) is scalar flat and hence R = 0. In particular, (M, g) is flat. �
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Proposition 3.10. The trace-free, symmetric (0, 2)-tensors

φij =
1√
2

(
ei ⊗ ej + ej ⊗ ei

)
, 1 ≤ i < j ≤ n,

ψk =
1√

(n− k + 1)(n− k)

(
−kek ⊗ ek +

n∑

l=k+1

el ⊗ el

)
, k = 1, . . . , n− 1,

form an orthonormal basis for S2
0(V ). Moreover, g(R(φij), φij) = Rijij and in particular

n∑

j=1
j 6=i

g(R(φij), φij) = Rii,

p∑

k=1

g(R(ψk), ψk) =
2

n− p

(
p∑

k=1

Rkk −
∑

1≤k<l≤p

Rklkl

)
− p

(n− p)n
scal .

Proof. This is a straightforward computation. �

Lemma 3.11. For an algebraic curvature tensor R let R denote the corresponding curvature

operator of the second kind.

The Ricci tensor satisfies Ric ≥ [R, 1, (n− 1)] and for p ≥ 2 we have

p∑

i=1

Rii ≥ [R, 2, p(n− 1)]

with respect to any orthonormal basis e1, . . . , en for V.

Proof. Proposition 3.10 implies that
p∑

i=1

Rii = 2
∑

1≤i<j≤p

g(R(φij), φij) +
∑

1≤i≤p

∑

p+1≤j≤n

g(R(φij), φij).

Since the {φij} are orthonormal, we obtain

p∑

i=1

Rii ≥ [R, 2, 2 · p(p− 1)

2
+ p(n− p)] = [R, 2, p(n− 1)].

�

Remark 3.12. The same technique also yields that for p ≥ 2 the Ricci tensor is p-

nonnegative provided that any sum of p(n−1)
2

sectional curvatures Rijij is nonnegative. Indeed,
note that

p∑

i=1

Rii =

p∑

i=1

n∑

j=1

Rijij = 2
∑

1≤i<j≤p

Rijij +
∑

1≤i≤p

∑

p+1≤j≤n

Rijij = [Rijij , 2, p(n− 1)]

and the weight principle 3.6 applies.

Proposition 3.13. If p ≤ n
2
and ω is a p-form, then

3

2
g(RicL(ω), ω) ≥

[
R, 1

n(n + 2)

(
n2p− np2 − 2np + 2n2 + 4n− 8p

)
,
3

2
p(n− p)

]
· |ω|2.
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Proof. Due to propositions 1.2 and 2.1 and lemmas 3.3, 3.7 and 3.11 we have with respect
to an orthonormal basis that diagonalizes the Ricci tensor

3

2
g(RicL(ω), ω) = g(R(ωS2

0), ωS2
0) +

n− 2p

n

∑

I=(i1,...,ip)

(
∑

i∈I
Rii

)
ω2
I +

p2

n2
scal |ω|2

≥
[
R, p(n− p)

n
,
p(n− p)

n
· n+ 2

2

]
· |ω|2 + n− 2p

n
[R, 2, p(n− 1)] · |ω|2

+
p2

n2
· 2n

n + 2

[
R, 1, (n+ 2)(n− 1)

2

]
· |ω|2

≥
[
R, 1

n

(
p(n− p) + 2(n− 2p) +

2p2

n + 2

)
,

p

n

(
(n− p)

n+ 2

2
+ (n− 2p)(n− 1) + p(n− 1)

)]
· |ω|2.

Note that the condition p ≤ n
2
ensures that the (n − 2p) factor in the second term is

nonnegative. �

By considering both {φij} and {ψk} from proposition 3.10, we can refine lemma 3.11.

Lemma 3.14. For an algebraic curvature tensor R, let R denote the curvature operator of

the second kind.

With respect to any orthonormal basis, the Ricci tensor satisfies

R11 ≥
n− 1

n+ 1
[R, 1, n] + 1

n(n + 1)
scal

and for p ≥ 2 we have
p∑

i=1

Rii ≥
n− p+ 1

n− p+ 2
[R, 2, p(n− 1)] +

p

n(n− p+ 2)
scal .

Proof. Proposition 3.10 implies that

∑

1≤k<l≤p

g(R(φkl), φkl) +
∑

1≤k≤p

∑

p+1≤l≤n

g(R(φkl), φkl) +

p∑

k=1

g(R(ψk), ψk) =

=
n− p+ 2

n− p

(
p∑

k=1

Rkk −
∑

1≤k<l≤p

Rklkl

)
− p

(n− p)n
scal .

Since {φkl}∪ {ψk} is orthonormal, the sum is nonnegative provided that R is p

2
(2n− p+1)-

nonnegative.
Moreover, it follows that
p∑

i=1

Rii =
2(n− p+ 1)

n− p+ 2

∑

1≤k<l≤p

Rklkl +
n− p

n− p+ 2

(
∑

1≤k≤p

∑

p+1≤l≤n

Rklkl +

p∑

k=1

g(R(ψk), ψk)

)

+
p

(n− p + 2)n
scal .

In particular, with regard to eigenvalues of R, the terms in the first line have highest

weight 2(n−p+1)
n−p+2

and total weight (n−p+1)p(n−1)
n−p+2

. �
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Proposition 3.15. If p ≤ n
2
and ω is a p-form, then

3

2
g(RicL(ω), ω) ≥

[
R, 1

n(n + 2)

(
n2p− np2 − 2np + 2n2 + 2n− 4p

)
,
3

2
p(n− p)

]
· |ω|2.

Proof. The proof is analogous to the proof of proposition 3.13. Instead of lemma 3.11 one
uses lemma 3.14. �

Remark 3.16. A 1-form ω in fact satisfies the slightly improved estimate

3

2
g(RicL(ω), ω) ≥

[
R, 2n− 1

n+ 2
,
3(n− 1)

2

]
· |ω|2.

Proposition 3.17. Let p ≤ n
2
and let ω be a p-form. If Ric = scal

n
g, then

3

2
g(RicL(ω), ω) ≥

p(n− p)

n

[
R, n + 4

n + 2
,
3n

2

]
· |ω|2.

Proof. According to proposition 2.1 we have

3

2
g(RicL(ω), ω) = g(R(ωS2

0), ωS2
0 ) +

p(n− p)

n2
scal |ω|2.

Thus, the weight principle 3.6, lemma 3.7 and proposition 1.2 yield

3

2
g(RicL(ω), ω) ≥

p(n− p)

n

[
R, 1, n+ 2

2

]
· |ω|2

+
p(n− p)

n2

2n

n + 2

[
R, 1, (n− 1)(n+ 2)

2

]
· |ω|2

≥ p(n− p)

n

[
R, n+ 4

n+ 2
,
3n

2

]
· |ω|2.

�

4. Proofs of the main Theorems

In this section we prove Theorems B - D. The proof of Theorem A was given after corollary
3.9. We conclude the section with an example of an algebraic, (n + 1)-positive curvature
operator of the second kind with negative Ricci curvatures, and the example of the rational
homology sphere SU(3)/SO(3).

Proof of Theorem B. Recall that N = 3n
2

n+2
n+4

.
(c) The fact that all forms are parallel if the curvature operator of the second kind is

N -nonnegative is a direct consequence of proposition 3.17, the weight principle 3.6 and the
Bochner technique as outlined at the beginning of section 2.

(a) To obtain vanishing of the Betti numbers, let ω be a harmonic p-form and suppose
that the curvature operator of the second kind is N -positive. Since ω is parallel, proposition
3.17 yields

0 =
3

2
g(RicL(ω), ω) ≥

p(n− p)

n

[
R, n+ 4

n+ 2
,
3n

2

]
|ω|2.

The weight principle 3.6 implies that
[
R, n+4

n+2
, 3n

2

]
> 0, and hence ω vanishes.
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(b) If R is N ′-nonnegative for some N ′ < N, then by the weight principle 3.6 (d), either
R is N -positive and M is a rational homology sphere by part (a), or R is 1-nonnegative and
(M, g) is either flat or a rational homology sphere by Theorem A. �

Proof of Theorem C. The proof is analogous to the proof of Theorem B. Instead of propo-
sition 3.17 one uses 3.15. �

Proof of Theorem D. The weight principle 3.6 and the estimate Ric ≥ [R, 1, (n− 1)] in
proposition 3.11 immediately imply that Ric ≥ (n − 1)κ provided that the average of the
lowest (n − 1) eigenvalues of the curvature operator of the second kind is bounded from
below by κ. The methods of Gallot and P.Li imply Theorem D, cf. [PW21, Theorem 1.9]. �

Remark 4.1. Note that proposition 3.14 in fact provides a lower bound on Ricci curvature
if the average of the lowest n eigenvalues of R is bounded from below by κ.

If the eigenvalues λ1 ≤ . . . ≤ λN of the curvature operator of the second kind satisfy
λ1 + . . .+ λm ≥ mκ, then λj ≥ κ for j > m and thus

scal =
2n

n + 2
tr(R) ≥ 2n

n+ 2
κ · dim(S2

0(TM)) = n(n− 1)κ.

In particular, if in addition (M, g) is Einstein, then Ric = scal
n
g ≥ (n − 1)κg and we obtain

the estimation theorem corresponding to Theorem B from the weight principle 3.6 and the
work of Gallot and P.Li as before.

The proof of the estimation theorem corresponding to Theorem C is analogous, provided
a lower bound on the Ricci curvature is assumed explicitly, cf. examples 4.2 and 4.4.

Example 4.2. Let S = 3
2
p(n− p). Let

Ωpre =
1

n(n + 2)

(
n2p− np2 − 2np+ 2n2 + 4n− 8p

)

be the highest weight obtained with the preliminary estimate in proposition 3.13 and let

Ω =
1

n(n + 2)

(
n2p− np2 − 2np+ 2n2 + 2n− 4p

)

be the highest weight in proposition 3.15.
The difference of the highest weights is Ωpre − Ω = 2(n−2p)

n(n+2)
.

Furthermore, the quotient S
Ω
is increasing in p. Note that we require p ≤ n

2
in the estimates

above due to the (n − 2p) factor of the Ricci curvature term. Thus we get the weakest
curvature condition for p = n

2
.

For p = 2 we obtain

S
Ω

=
3n

4

n2 − 4

n2 − 3
2
n− 2

.

For p = 4 and n ≥ 4 we have

S
Ω

= n
n2 − 2n− 8

n2 − 11
3
n− 8

3

> n.

For p = 5 and n ≥ 5 we have

S
Ω

=
15n

14

n2 − 3n− 10

n2 − 33
7
n− 20

7

>
15n

14
.
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For p = n
2
, we have

S
Ω

=
3n

2

n+ 2

n+ 4

as in the Einstein case. Furthermore, note that for any fixed p we have

lim
n→∞

S
n · Ω =

3p

2(p+ 2)
.

Recall that X.Li [Li22] proved the lower Ricci curvature bound Ric ≥ scal
n(n+1)

≥ 0, pro-

vided the curvature operator of the second kind is n-nonnegative. In contrast, example 4.4
below exhibits an (n+1)-positive curvature operator of the second kind with negative Ricci
curvatures.

In particular, for p = 5, . . . , n
2
, our curvature conditions do not imply nonnegative Ricci

curvature, while we are still able to control the Betti numbers. For example, as a special
case of Theorem C, we have

Corollary 4.3. Let (M, g) be a compact n-dimensional Riemannian manifold. Let n ≥ 14
and 5 ≤ p ≤ n− 5.

If the curvature operator of the second kind is (n + 1)-nonnegative, then all harmonic

p-forms are parallel.

If in addition scal > 0 at a point in M , then the p-th Betti number bp(M,R) vanishes.

Example 4.4. In [Li22], X.Li observed that the curvature operator of the second kind of
S1×Sn−1 has the eigenvalues −n−2

n
with multiplicity one, 0 with multiplicity n−1 and 1 with

multiplicity (n−2)(n+1)
2

. In particular, the curvature operator of the second kind is (n + 1)-
positive, but not n-nonnegative. For small κ < 0, we obtain an algebraic, (n + 1)-positive
curvature operator of the second kind with Ricci curvature R11 < 0 by adding the curvature
tensor κ

2
g ? g of constant sectional curvature κ to the curvature tensor of S1 × Sn−1.

Example 4.5. Consider the irreducible symmetric space M = SU(3)/SO(3). As Wolf
[Wol69] observed, M is a rational homology sphere. However, note that H2(M,Z) = Z/2Z.

The curvature operator R :
∧2 TM →

∧2 TM has a 7-dimensional kernel and the nonzero
eigenvalue 5/2 with multiplicity 3. In particular, the Ricci tensor satisfies Ric = 3g.

The curvature operator of the second kind R : S2
0(TM) → S2

0(TM) has eigenvalues −3/2
with multiplicity 5 and 2 with multiplicity 9. In particular, it is 9-positive but not 8-
nonnegative.
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metric examples, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 1, 71–92.
[Boc46] S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946), 776–797.
[Bre08] Simon Brendle, A general convergence result for the Ricci flow, Duke Math. J. 145 (2008), 585–601.
[Bre10] Simon Brendle, Einstein manifolds with nonnegative isotropic curvature are locally symmetric, Duke

Math. J. 151 (2010), no. 1, 1–21.
[BS08] Simon Brendle and Richard M. Schoen, Classification of manifolds with weakly 1/4-pinched curva-

tures, Acta Math. 200 (2008), no. 1, 1–13.



24 NIENHAUS, PETERSEN AND WINK

[BS09] Simon Brendle and Richard Schoen, Manifolds with 1/4-pinched curvature are space forms, J. Amer.
Math. Soc. 22 (2009), no. 1, 287–307.
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