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Abstract

Hydrodynamics on Smooth 2-Manifolds with Spherical

Topology

Ben Jeffrey Gross

The investigation of soft materials poses many important challenges having

implications for application areas that range from the design of better materials

for use in engineering practice to gaining further insights into the functioning of

biological organisms. In soft materials there is often an interplay between di-

rect microstructure-level interactions and fluctuations in yielding observed bulk

macroscopic material properties. As part of these interactions geometry and

hydrodynamic interactions often play a central role. We shall investigate interfa-

cial phenomena associated with soft materials, particularly relevant to the study

of lipid bilayer membranes. We shall address the problem of how to formulate

and numerically approximate continuum mechanics on 2-manifolds in the case

of non-trivial geometries having spherical topology. We shall be particularly in-

terested in developing methods for investigating the case of hydrodynamic flow

responses on curved surfaces. We shall present results for an initial model assum-

ing that we have smooth, star-shaped (radial) membrane geometry. We show how

spectral methods of approximation can be developed based on use of spherical

harmonics expansions, Lebedev quadrature. We use these approaches to inves-

tigate how hydrodynamic flow responses depend on the surface geometry. We

x



find that the surface curvature can significantly effect dissipation rates and aug-

ment flow responses. We then develop more general methods for the case of any

smooth geometry having spherical topology using numerical approaches based on

Generalized Moving Least Squares (GMLS). We use these to further investigate

hydrodynamic flows in this setting. We conclude by briefly discussing our current

work to extend these numerical approaches to even more general smooth compact

manifolds without the need for spherical topology.
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2.1 Continuum Mechanics for Manifolds. We consider continuum me-
chanics formulated within general curved spaces having non-euclidean
metric. At each point of the manifold the tangent space TMx

consists of all vectors tangent to the manifold when thought of as
an embedding. The cotangent space T ∗Mx consists of all linear
functionals of the tangent vectors giving a dual space. Elements
of these spaces are isomorphic and can be related by the musical
isomorphisms [ : TMx → T ∗Mx and ] : TMx → T ∗Mx see
discussion in Section 2.1. . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Lebedev Quadrature. Shown are the sample points of the Lebedev
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responds to a sphere and r0 = 0.4 to the final shape of Manifold
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3.6 Convergence of the numerical exterior derivative operator d for
1-forms. We show for Manifold B the relative error of dα in ap-
proximating dα as the number of Lebedev nodes increases. The
1-form is α = |g| exp(z)dθ + |g| exp(z)dφ. We investigate how
the manifold geometry influences convergence by varying the am-
plitude r0 in the range [0.0, 0.4] for Manifold B. The amplitude
r0 = 0.0 corresponds to a sphere and r0 = 0.4 to the final shape
of Manifold B shown in Figure 1.1. . . . . . . . . . . . . . . . . . 57

4.1 Lebedev Quadrature with 5810 nodes. We show on the left the
Lebedev quadratures for integration of functions on a sphere of
unit radius. The Lebedev quadrature integrates exactly all spher-
ical harmonics up to the 131st order [2]. The mapping of the
sphere to the manifold on the right induces a new quadrature
weighted by the local manifold metric. While the induced quadra-
ture is no longer exact for spherical harmonics on the surface it
still exhibits a high level of accuracy. We show by the colors the
Gaussian curvature K on the surfaces over the range −7 to 7. . . 60

4.2 Quadrature on Radial Manifolds. For ellipsoids of oblate and pro-
late shapes we test the quadrature by integrating the Gaussian
curvature over the manifold and compare the results with the pre-
dictions of the Gauss-Bonnet Theorem [3, 4]. We show the ac-
curacy of the quadrature as the number of quadrature nodes Q
increases and when varying the shape parameter r0 of the ellip-
soid, see equation 4.2.2 and equation 4.2.4. The case r0 = 0 gives
a sphere with the other r0 values giving the shapes as shown in
Figure 4.4. We show as insets the ellipsoids with r0 = 0.4 and the
Gaussian curvature distribution on the surface. . . . . . . . . . . 65

4.3 Quadrature on Radial Manifolds. We test our quadratures by
integrating the Gaussian curvature on the manifold and comparing
with the predictions of the Gauss-Bonnet Theorem [3, 4]. We
show the relative errors as the number of quadrature points Q
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analytically in advance for these manifolds the test also validates
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4.4 Hydrodynamic Flow on Ellipsoids. We show on the left the el-
lipsoid shapes in the oblate and prolate cases from equation 4.2.2
and 4.2.2 as r0 is varied. We use these shapes for computing
hydrodynamic flows driven by the surface force density in equa-
tion 4.4.1 corresponding to the vector potential of equation 4.4.2.
We investigate the accuracy of the hydrodynamics solver as the
number of spherical harmonics increases and the shape is varied.
We show on the right the hydrodynamics flows corresponding to
equation 4.4.2 in the case of the oblate and prolate when r0 = 0.4. 77

4.5 Convergence of the Stokes Flow for Oblate Ellipsoids. We show
the relative errors of the L2-norm of the potential, H1-norm of the
potential, and L2-norm of the velocity. The results show how the
error behaves as we increase the number of quadrature nodes Q
and number of spherical harmonics. We use spherical harmonics
up to degree bL/2c where L is the largest exact order of the cor-
responding Lebedev quadrature with Q nodes. We also show how
convergence depends on the shape as r0 is varied. We find in each
case super-algebraic convergence of the hydrodynamic solver. For
additional discussions can also see [5]. . . . . . . . . . . . . . . . 78

4.6 Convergence of the Stokes Flow for Prolate Ellipsoids. We show
the relative errors of the L2-norm of the potential, H1-norm of the
potential, and L2-norm of the velocity. The results show how the
error behaves as we increase the number of quadrature nodes Q
and number of spherical harmonics. We use spherical harmonics
up to degree bL/2c where L is the largest exact order of the cor-
responding Lebedev quadrature with Q nodes. We also show how
convergence depends on the shape as r0 is varied. We find in each
case super-algebraic convergence of the hydrodynamic solver. For
additional discussions can also see [5]. . . . . . . . . . . . . . . . 79

5.1 Radial Manifold Shapes. We consider hydrodynamic flows on
manifolds with shapes ranging from the sphere to the more com-
plicated geometries generated by equation 5.1.1. We show with
colors the Gaussian curvature of the shapes. We take Manifold
A to be a sphere of radius R = 1.0. We show Manifold B with
r0 = 0.4 and Manifold C with r0 = 0.4 in equation 5.1.1. . . . . . 83
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5.2 Structure of the hydrodynamic flow. We consider the case of three
particles immersed within an interface of spherical shape and sub-
jected to force. We generate a force density on the surface us-
ing the extended immersed boundary method for manifolds we
introduced in [6]. The particles are configured at the locations
x1 = (−1, 0, 0), x2 = (1, 0, 0), x3 = (0,−1, 0), and each subjected
to the force F = (0, 0, 1). We show in the left panel the immersed
boundary approach for fluid-particle coupling on manifolds [6] and
range of spreading around each particle used to obtain a force den-
sity on the surface. We show in the right panel the hydrodynamic
flow response. The flow exhibits two two vortices and global re-
circulation of the fluid. We visualize the streamlines of the hy-
drodynamics flows using Line Integral Convolution (LIC) [7]. Hy-
drodynamic results are for the case with µ = 0.1,γ = 0.1 and
Q = 5810 [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Structure of the Hydrodynamic Flow. We show for Manifold B
and C the hydrodynamic flow responses for a localized unit force
applied in the tangential direction to particles on the surface at the
push-forward of the locations discussed in Figure 5.2. We visual-
ize the streamlines using Line Integral Convolution (LIC) [7]. The
flow responses exhibit eight critical points corresponding to six
vortices and four saddle points. The vortices are marked with red
points and the saddle points with cyan points. We sketch approxi-
mate separatrices for each of the saddle points. For these surfaces
the hydrodynamic flows appear to exhibit structures that favor
more localized recirculation of the fluid relative to the responses
seen for the sphere in Figure 5.2 [8]. . . . . . . . . . . . . . . . . 90

5.4 Topological Transitions in the Flow Structure. As the shapes of
the manifolds deviate more from the sphere the velocity field of the
hydrodynamic flow undergoes a topological transition with the cre-
ation of new vortices and saddle-points. The topological structures
appear to correspond with the flow reorganizing to recirculate fluid
in a more localized manner relative to the global recirculation seen
on the sphere. This is especially pronounced in the elongated ge-
ometries that form for the Manifold C shapes. We show configura-
tions for Manifold B and Manifold C when r0 = 0.0, 0.15, 0.25, 0.4
in equation 5.1.1. We quantify the Rayleigh-Dissipation associated
with each of these flows in Figure 5.5. . . . . . . . . . . . . . . . . 93
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5.5 Rayleigh-Dissipation Rates of Hydrodynamic Flows. Hydrody-
namic flows v on surfaces are obtained by solving the Stokes equa-
tions 2.5.3 as r0 is varied. We take µm = 0.1 and γ = 0.1 for the
manifolds in Figure 5.1. RD rates for v are shown as solid curves.
For comparison we consider the rates obtained from the velocity
field v̂ of flow on the sphere (case r0 = 0) obtained by the pushed-
forward ṽ = φ∗v̂ to the manifold shape with given r0. RD rates for
ṽ are shown as dotted curves. We find that as the geometry devi-
ates from the sphere the rates for the Stokes flow on the manifold
become significantly smaller than the push-forward flow fields from
the sphere. We find the two cases begin to diverge significantly in
the regime where the velocity field transitions topologically with
the addition of new vortices and saddle-point stagnation points
as in Figure 5.3. This transition occurs for Manifold B around
r∗0 = 0.105 and for Manifold C around r∗0 = 0.085 (vertical dashed
line). These results indicate some of the ways that surface geom-
etry can contribute to dissipation rates and hydrodynamic flow
responses [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Counter-Rotated Hydrodynamic Flows. We consider the case of
three particles configured at the locations x1 = (−1, 0, 0), x2 =
(1, 0, 0), x3 = (0,−1, 0) embedded within an interface and sub-
jected to force F = (0, 0, 1) for the sphere and tangent for the other
manifolds. We use our extended immersed boundary method for
manifolds we introduced in [6]. In the left panel, we show the hy-
drodynamic responses for µ = 0.1,γ = 0.1 and Q = 5810. In the
middle panel, we show the rotational field that best counters the
rigid-body rotation of the fluid interface. In the right panel, we
have combining the velocity fields to arrive at a counter-rotated ve-
locity field that would be observed in the moving reference frame.
We visualize the streamlines of the hydrodynamics flows using
Line Integral Convolution (LIC) [7]. . . . . . . . . . . . . . . . . . 96
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6.1 GMLS Approximation of Target Functionals. In the Generalized
Moving Least Squares (GMLS) approach a collection of scattered
data samples of the function values u is approximated by mul-
tiple local reconstructions. This is done by building an ε-graph
between the points within an ε-neighborhood around a base point
x̃ (shown on the left). A function space Vh is used to reconstruct u
by finding the best fitting function p∗ ∈ Vh that matches the val-
ues of the sampling functionals {λj} in the optimization problem
given in equation 6.1.4 (shown on the right). For approximating
a target functional τ acting on u at the base point x̃, we obtain
the approximating GMLS functional τh by evaluating the target
functional on the reconstruction space at p∗. In this manner we
can obtain approximations to general functionals acting on u [9]. . 102

6.2 GMLS Surface Reconstruction and Local Parameterization. For a
manifold represented as a point set, we use a GMLS approach to
obtain local patches and coordinate charts for parameterizing the
surface. At a given base point x̃ we collect all neighbors within
an ε-ball and perform Principle Component Analysis (PCA) to
determine a local tangent plane and normal for the surface. We
parameterize the surface locally using (ξ1, ξ2, q(ξ1, ξ2)), where we
obtain q(ξ1, ξ2) by performing a GMLS reconstruction of the sur-
face [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Point Set Representations of Manifolds. Manifold A is an ellipsoid
defined by the equation x2/a2 + y2/b2 + z2 = s2

0 with a = 1.2, b =
1.2, s2

0 = 1. Manifold B is a radial manifold defined in spherical
coordinates by (θ, φ, r(θ, φ) where r(θ, φ) = 1 + r0 sin(3φ) cos(θ)
with r0 = 0.1. Manifold C is a radial manifold defined in spherical
coordinates by (θ, φ, r(θ, φ) where r(θ, φ) = 1 + r0 sin(7φ) cos(θ)
with r0 = 0.1. Manifold D is a torus defined by the equation
(s2

1 −
√
x2 + y2)2 + z2 = s2

2 with s2
1 = 0.7, s2

2 = 0.3. Each of the
manifolds shown are represented by quasi-uniform point sets with
approximately n = 104 samples. For quasi-uniform sampling we
expect the fill-distance h to scale as h ∼ 1/

√
n. When report-

ing our results, we use throughout the notation h̄−1 =
√
n. We

discuss further details of the point sampling of the manifolds in
Section 7.0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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6.4 GMLS Estimate of the Gaussian Curvature vs Point Set Resolu-
tion. We show on log-log scale the convergence of the GMLS-based
estimation of Gaussian Curvature as the number of sample points
is increased. The h̄−1 =

√
n, where n is the number of points.

Manifold B and Manifold C present the greatest challenge given
localized regions of particularly large Gaussian Curvatures, see
Figure 6.5. We find the accuracy is 5th-order in agreement with
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Chapter 1

Introduction

We develop high-order numerical methods for a continuum mechanics formu-

lation of hydrodynamic flows within two-dimensional curved fluid interfaces.

1.1 Problem Motivation

Hydrodynamics within curved geometries play an important role in diverse

physical systems including the thin films of soap bubbles [10, 11, 12, 13], lipid

bilayer membranes [14, 15, 6, 16, 17] and recent interface-embedded colloidal

systems [18, 19, 20, 21, 22, 21]. Similar hydrodynamic and related curvature

mediated phenomena also plays an important role in physiology such as in the

cornea of the eye with its tear film [23], transport of surfactants in lung alveoli [24,

25] or in cell mechanics [26, 27, 17]. Each of these systems involve potential

interactions between the curvature of the interface and hydrodynamic flows. We

investigate these types of flows by formulating continuum mechanics equations for

hydrodynamics using variational principles and the exterior calculus of differential
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geometry [28]. This provides an abstraction that is helpful in generalizing many of

the techniques of fluid mechanics to the manifold setting while avoiding many of

the tedious coordinate-based calculations of tensor calculus. The exterior calculus

formulation also provides a coordinate-invariant set of equations, more readily

providing insights into the roles played by the geometry in the hydrodynamics

than alternative tensor calculus approaches [29, 30, 31].

There has been a significant amount of experimental and theoretical work

developing approaches for investigating hydrodynamics within curved fluid in-

terfaces [32, 33, 34, 35]. Experimental work includes single particle tracking

of inclusions to determine information about interfacial viscosity and diffusivi-

ties [15, 36]. Even the formulation of the correct continuum mechanics equations

presents some significant challenges in the manifold setting [28]. For instance in

a two-dimensional curved fluid sheet the equations must account for the distinct

components of linear momentum correctly. The concept of momentum is not

an intrinsic field of the manifold and must be interpreted with respect to the

ambient physical space [28]. For instance, when considering non-relativistic me-

chanics in an inertial reference frame with coordinates x, y, z, the x-component

of momentum is a conserved quantity distinct from the y and z-components of

momentum. An early derivation using coordinate-based tensor calculus in the

ambient space was given for hydrodynamics within a curved two-dimensional

fluid interface in Scriven [35]. This was based on the more general shell theories
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developed in [37, 38]. Many subsequent derivations have been performed us-

ing tensor calculus for related fluid-elastic interfaces motivated by applications.

This includes derivation of equations for surface rheology [39, 40, 41], investi-

gation of red-blood cells [42], surface transport in capsules and surfactants on

bubbles [32, 12], and investigations of the mechanics, diffusion, and fluctuations

associated with curved lipid bilayer membranes [43, 44, 45, 46, 47, 48, 49, 6, 50].

Recent works by Marsden et al. [28, 31, 51] develop the continuum mechanics

in the more general setting when both the reference body and ambient space

are treated as general manifolds as the basis for rigorous foundations for elastic-

ity [28, 31]. In this work, some of the challenges associated with momentum and

stress with reference to ambient space can be further abstracted in calculations

by the use of covector-valued differential forms and a generalized mixed type of

divergence operator [31, 51]. A particularly appealing way to derive the conser-

vation laws for manifolds is through the use of variational principles based on the

balance of energy and symmetries [28]. This has recently been pursued to derive

elastic and hydrodynamic equations for lipid membranes in [52, 53, 50]. We briefly

present related derivations based on the energy balance approach of [28, 51] to

obtain our hydrodynamic equations.

There has been a lot of recent interest and work on developing computa-

tional methods for evaluating differential operators and for solving equations

on curved surfaces [54, 55, 56, 57]. There has been a lot of recent interest in
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numerical methods related to exterior calculus [58, 59, 60, 61]. This has been

motivated in part by applications in computer graphics [56, 62, 63], electrody-

namics [64], and interest in applications using shell theories for elasticity and

hydrodynamics [53, 52, 65, 49, 17, 66, 67]. Many computational methods treat

the geometry using a triangulated surface and build discrete operators to model

their curvature and differential counter-parts [68, 69, 70, 71, 72, 73, 74]. Some

early work in this direction includes [68, 69, 70, 71] and the Surface Evolver of

Brakke [75]. More recently, discrete approaches such as the Discrete Exterior

Calculus (DEC) [72, 76], Finite Element Exterior Calculus (FEEC) [77, 78] and

Mimetic Methods (MM) [79] have been developed that aim to reproduce in the

numerics analogous properties of the differential operators related to the geo-

metric and topological structure of the manifold [79, 72, 76, 73, 77, 78, 58]. In

these discrete exterior calculus approaches an effort is made to introduce ap-

proximations for fundamental operators such as the exterior derivative d and

Hodge star ? operators that on the discrete level preserve inherent geometric re-

lations [59, 77, 61]. These operators can then be composed to perform geometric

processing tasks or approximate differential equations. For manifolds represented

by discrete symplicial complexes this includes preserving the adjoint conditions

between the exterior derivative, boundary operator, and co-differentials to create

a discrete analogue of the de Rham complex and related theory [80, 3, 81]. This

has been used to obtain models of surface Laplacians and results like discrete
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Hodge decompositions [79, 77, 78, 56]. For finite elements these properties can

be shown to be essential for discretizing problems in elasticity and fluid mechanics

to obtain well-posed approximations with stable numerical methods [79, 77, 78].

In the DEC approach to formulating numerical methods for PDEs on manifolds,

the methods obtained are similar to finite differences [72, 58]. This work has

allowed for impressive results including schemes that are exactly conservative

for quantities such as mass and vorticity [82, 55]. Deriving operators preserving

geometric structure is non-trivial and current numerical methods for spherical

topologies are typically first or second order accurate [82, 55]. Recent methods

have been developed in the setting of tensor product basis that are spectrally

accurate in [83].

We also mention there are many meshfree approaches for solving PDEs. These

may be characterized broadly by the underlying discretization; this includes Ra-

dial Basis Functions (RBFs) [84], Smooth Particle Hydrodynamics (SPH) [85],

and approaches Generalized Finite Difference/Moving Least Squares/Reproducing

Kernel Particle Method (GFD/MLS/RKPM) [86]. While the majority of mesh-

free literature targets solution of PDEs in Rd, significant recent work has fo-

cused on the manifold setting [87, 88, 89, 90, 91]. In the last decade, substan-

tial work has been done to use RBFs to solve shallow-water equations on the

sphere [92]. The meshfree setting is attractive particularly for building semi-

Lagrangian schemes of interest in atmosphere science [93, 94, 92]. In these
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schemes the discretizations are typically cast in strong form resembling a collo-

cated finite difference method, and thus often have difficulty obtaining stable so-

lutions for flow problems. While predictive simulations have been obtained, they

typically rely upon the introduction of an artificial hyper-viscosity to obtain stable

results [95, 93, 96]. While SPH approaches offer attractive structure-preserving

properties, particularly in conserving invariants of Lagrangian transport, it is in

general not possible to simultaneously obtain conservation principles and a con-

sistent discretization [97]. MLS/RKPM/GFD approaches provide a compelling

alternative by addressing accuracy issues through the explicit construction of ap-

proximations with polynomial reproduction properties and an accompanying rig-

orous approximation theory [98, 99], but lack a stability theory. There have been

several examples of successful discretization of scalar surface PDEs [100, 101].

In Generalized Moving Least Squares (GMLS) this approach is extended to en-

able the recovery of arbitrary linear bounded target functionals from scattered

data [98, 102].

1.2 Overview (What we do)

This thesis can be divided into three parts. We first derive our hydrodynamics

in the langauge of exterior calculus in Chapter 2. Then, we implement a hydro-

dynamic solver (in python) for manifolds with radial geometries, as described in
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Chapters 3-5. Finally, we use GMLS to extend our results to manifolds with

Spherical Topologies (using the Compadre package) GMLS, in Chapters 6-7.

In Chapter 2 we introduce the basic operators of exterior calculus, and use

these to formulate conservation laws of continuum mechanics in the manifold

setting. We expand many of the operators from exterior calculus in the 2-

dimensional manifolds, allowing us to view the actions of these operators in a

coordinate-free way. We formulate our hydrodynamic equations for curved fluid

interfaces, making use of the relations in the exterior calculus such as the Hodge

decomposition and adjoint conditions on exterior derivatives and co-differentials.

Manifold CManifold BManifold A

Figure 1.1: Radial Manifolds: A radial manifold is defined as a surface where each point can

be connected by a line segment to the origin without intersecting the surface. Shown are three

radial manifolds which for discussions we refer to interchangeably as the (i) Sphere / Manifold

A, (ii) Dimple / Manifold B, and (iii) Fountain / Manifold C. The manifolds are generated (in

spherical coordinates) by the radial functions (i) r(θ, φ) = 1.0, (ii) r(θ, φ) = 1+r0 sin(3φ) cos(θ)

with r0 = 0.4, and (iii) r(θ, φ) = 1 + r0 sin(7φ) cos(θ) with r0 = 0.4. The differential geometry

of radial manifolds is derived in Section 3.1.
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In Chapter 3 we use an L2-projection to spherical harmonics (using Lebedev

quadratures) to approximate the exterior derivative operator d and Hodge star

operator ? on radial manifolds, ie. smooth manifolds that occupy a star-shaped

domain in R3. Using derivations of the differential geometry for general radial

manifolds, such as those in Figure 1.1, we can discretize these exterior calculus

operators. We show that our methods provide spectrally accurate approxima-

tions for these operators. While our numerical methods do not seek to preserve

exactly the geometric and topological relations between our approximate exterior

operators, we have from the spectral representation that these relations hold for

our expansions to a high level of accuracy, via hyperinterpolation.

In Chapter 4 we demonstrate spectrally accurate methods for solving hydro-

dynamic flows on curved surfaces having general radial manifold shape based

on a weak exterior calculus formulation of the hydrodynamic equations. Since

Lebedev nodes were developed for quadratures on the sphere, we extend them to

obtain quadratures for general radial manifolds by making use of a coordinate-

independent change of measure formula derived using the Radon-Nikodym The-

orem [103]. We mention that alternative formulations are also possible related to

our approach in terms of discrete triangulations provided appropriate transport

theorems and quadrature are developed over the mesh. We test the accuracy of

our quadrature scheme for general radial manifolds by integrating the Gaussian

curvature over the surface. From the Gauss-Bonnet Theorem this should give the
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Euler characteristic for the spherical topology and independent of the detailed

geometric shape [4, 3]. We then provide convergence results for our hydrodynam-

ics solver in a few special cases with known hydrodynamics solutions showing the

solver’s accuracy.

In Chapter 5 we demonstrate our numerical methods for a few example man-

ifolds by investigating hydrodynamic flow responses and the role of surface ge-

ometry. As a baseline, we first consider hydrodynamic flows driven by particles

configured on a sphere and subjected to force. We investigate for equivalent

forcing how these hydrodynamic flow responses change when the particles are

on a surface having a more complicated geometry. We find as the geometry has

more heterogeneous curvatures the structure of the hydrodynamic flow fields are

observed to change significantly. In some cases this appears to correspond to a

topological transformation of the stream-lines of the flow. The fluid flow is ob-

served to result in a transition from a more global recirculation of fluid to a much

more localized recirculation of fluid and can result in the creation of new singu-

larities (stagnation points) that take the form of new vortices and saddle points.

We use our numerical methods to report on the Rayleigh-Dissipation associated

with these hydrodynamic flow responses. We find that these quantitative and

topological changes may play a role in mitigating dissipation within the fluid for

certain geometries. We mention that related to our findings some work on fluid
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dissipation in the case of perturbations from a flat sheet, such as in a planar soap

film, were recently investigated in [104].

In Chapter 6 we introduce meshfree methods based on a Generalized Moving

Least Squares (GMLS) approach. The manifold is represented as a collection of

points embedded in an ambient space. At each point we consider a function space

generated by a local basis of shapes. In our case, we use multivariant polynomials

of finite degree. We extract geometric information to high-order by fitting a local

function from this space to the neighborhood of points [105, 106, 107, 108]. To

represent scalar and vector fields on the surface we take a similar approach.

In Chapter 7 we again present the Stokes problem in exterior calculus form,

slightly reformulating these equations for maximum compatibility with GMLS.

We illustrate how GMLS is able to accurately handle the disretization of exterior

calculus operators [88]. Finally, we implement this Stokes scheme in the Com-

padre toolkit [109], an open-source high-performance Trilinos library supporting

meshfree discretization at scale. In this context we show through numerical exper-

iment that the scheme is able to obtain high-order convergence to manufactured

solutions without the need for numerical stabilization.

In summary, our methods and results show some of the rich ways that surface

geometry can impact hydrodynamic flow responses within curved fluid inter-

faces. The development of the GMLS and exterior calculus tools presented in

this manuscript constitutes a foundational work which may be used in the future
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to handle a wide range of problems involving flow on deforming manifolds and

investifating phenomena in curved fluid interfaces. To do this, we must first es-

tablish how exterior calculus operators may be handled in the GMLS framework.

With this goal in mind, we first summarize the GMLS method in the context of

surface PDEs.
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Chapter 2

Using Exterior Calculus
Operators to Formulate the
Stokes Problem

The exterior calculus allows for a covariant formulation of the equations avoid-

ing the need to explicitly express the metric tensor and components. This reveals

more readily and intuitively in many cases the roles played by geometry. The ex-

terior calculus will ultimately simplify many of our calculations in fluid mechanics

by providing an analogue to often employed vector calculus techniques used in

the Euclidean case. We briefly review for exterior calculus the basic definitions

and relations we shall make use of in our calculations. For a more comprehensive

and detailed discussion see [80, 3].
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2.1 Vector and Exterior Calculus on Rieman-

nian Manifolds

We consider smooth n-dimensional closed Riemann manifoldsM with metric

g. We have from the Whitney Embedding Theorem [80, 110] that we can always

express such manifolds as an embedding in a space RN provided N is sufficiently

large. We consider the embedding map σ = σ(x) : Rn → RN associated with a

chart having coordinates xi. Note tht Einstein summation conventions are used

throughout. We adopt the usual convention of indexing contravariant tensors

with superscripts and covariant tensors with subscripts [80, 111].

The tangent space at location x consists of the span of the vectors ∂σ/∂xi ∈

RN . We denote the tangent space by TMx = span {∂xi} with the usual notation

v

n tangent space

co-tangent space

tangent space

v

v*

Figure 2.1: Continuum Mechanics for Manifolds. We consider continuum mechanics formulated

within general curved spaces having non-euclidean metric. At each point of the manifold the

tangent space TMx consists of all vectors tangent to the manifold when thought of as an

embedding. The cotangent space T ∗Mx consists of all linear functionals of the tangent vectors

giving a dual space. Elements of these spaces are isomorphic and can be related by the musical

isomorphisms [ : TMx → T ∗Mx and ] : TMx → T ∗Mx see discussion in Section 2.1.
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for the basis vectors ∂xi := ∂σ/∂xi = σxi [80]. The co-tangent space corresponds

to the dual T ∗Mx of the tangent space consisting of all linear functionals acting

on vectors in TMx. The linear functional corresponding to vector u = ui∂xi

is denoted by u∗ having the action on a vector v = vi∂xi given by u∗[v] =

uigijv
j where gij = σxi · σxj = 〈∂xi , ∂xj〉 is the metric tensor. We can use as

a basis for the co-tangent space dxi which denotes the linear functional having

the action dxi[∂xj ] = δij where δij is the Kronecker δ-function which is one if

i = j and otherwise zero. This allows for representing a general linear functional

of the co-tangent space as u∗ = uidx
i. With these conventions we can define

isomorphisms between the tangent and co-tangent spaces [ : TMx → T ∗Mx

and ] : T ∗Mx → TMx. These correspond to the relationships between the

representations u = ui∂xi and u∗ = uidx
i with u[ = u∗ and [u∗]] = u. In terms

of coordinates these maps give [u[]i = ui = giju
i and [u]]i = ui = gijuj. The gij

are the components of the metric tensor and gij are components of the inverse

metric tensor. The ] and [ are often referred to as the musical isomorphisms since

this helps remember how they correspond in coordinates to lowering and raising

the indices [80]. This illustrated in Figure 2.1.

We can also define functionals that take multiple vectors as input. We define

k-forms α(u1, . . . ,uk) as functionals that are linear and have the anti-symmetric

property α(uσ(1), . . . ,uσ(k)) = sign(σ)α(u1, . . . ,uk). We can combine k-forms α
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and `-forms β to obtain (k + `)-forms using the wedge product ∧ defined as

α ∧ β =
1

k!`!

∑
σ∈Pk+`

sign(σ)α(uσ(1), . . . ,uσ(k))β(uσ(k+1), . . . ,uσ(k+`)). (2.1.1)

The Pk+` is the permutation group on k+` elements. This has the useful property

that α ∧ β = (−1)k`β ∧ α. This allows us to construct from the 1-forms α, β

the differential forms that can be integrated over a two-dimensional surface as

λ = α∧β or more generally n-dimensional surfaces as λ = α(1) ∧ · · · ∧α(n). We

define the exterior derivative d acting on a k-form α = αi1,...,ikdxi1 ∧ · · ·dxik as

the resulting (k + 1)-form

dα =
1

k!

∂

∂xj
αi1,...,ikdxj ∧ dxi1 ∧ · · ·dxik . (2.1.2)

Here we have taken that the k-form to be α = (1/k!)αi1...ikdxi1 ∧ · · · ∧ dxik ,

where ∧ denotes the wedge product [111, 80]. Since we are using the Einstein

summation conventions, all permutations of the indices can arise and hence the

factor of 1/k!. For notational convenience and to make expressions more compact

we will sometimes adsorb this factor implicity into αi1...ik .

When integrating over the manifold it is useful to define an L2-inner-product

on differential forms. We use the volume n-form of the manifold ω to define the

manifold L2-inner-product

〈α,β〉M =

∫
M
〈α,β〉g ω. (2.1.3)

By using the isomorphisms ] and [ between the co-tangent and tangent space

we have that the local metric inner-product on differential forms is equal to the
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local metric inner-product on the isomorphic vector fields 〈α,β〉g =
〈
α],β]

〉
g
.

As a consequence, the L2-inner-product on differential forms is consistent with

the L2-inner-product defined on the isomorphic vector fields

〈α,β〉M =
〈
α],β]

〉
M . (2.1.4)

This is useful allowing us to perform calculations in either representation as

convenient. We define the Hodge star ? as the operator that for any k-form γ

and λ gives

∫
M
γ ∧ ?λ =

∫
M
〈γ,λ〉gω = 〈γ,λ〉M. (2.1.5)

where ω is the volume n-form of the closed manifold. In coordinates we can

express the Hodge star ?α as the (n− k)-form

?α =

√
|g|

(n− k)!k!
αi1,...,ikεi1,...,ik,j1,...,jn−k

dxj1 ∧ · · · ∧ dxjn−k . (2.1.6)

The ε`1,...,`n denotes the Levi-Civita tensor which gives the sign of the permutation

of the indices `1, . . . , `n and is otherwise zero. When working with differential

forms the Hodge star gives the analogue for differential forms of taking the or-

thogonal complement of a vector subspace [80].

For smooth orientable n-dimensional manifolds the Hodge star satisfies a num-

ber of useful identities that we shall use in our derivations. The first is that

? ? η = (−1)k(n−k)η where η is a k-form. If we have γ = ?η then we can use

two applications of the Hodge-star to determine that the inverse is again a Hodge
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star operator multiplied by a sign so that η = ?−1γ = (−1)k(n−k) ?γ. From these

relations we have the useful identity that

〈γ,λ〉M = 〈?γ, ?λ〉M. (2.1.7)

Furthermore, we have the adjoint relationship

〈?γ,λ〉M = (−1)k(n−k)〈γ, ?λ〉M. (2.1.8)

In other words, the adjoint operator to the Hodge star is ?T = (−1)k(n−k)?. It is

often useful to work with the adjoint of the exterior derivative δ = dT where the

co-differential operator is defined as δ = (−1)n(k−1)+1 ?d?. With these definitions

it follows that the exterior derivative d and codifferential δ satisfy

〈δα,β〉M = 〈α,dβ〉M. (2.1.9)

These summarize a few relationships and identities in exterior calculus that we

shall make use of in our subsequent calculations.

2.2 Formulating Vector Operators as Exterior

Calculus Operators

With these conventions we can generalize many of the operators that arise in

vector calculus in the context of surfaces as

gradM(f) = [df ]], divM(F) = −(− ? d ? F[) = −δF[, (2.2.1)

curlM(F) =
[
− ? dF[

]]
.
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The f is a function (0-form) and F is a 1-form.

It is also natural to consider common vector calculus differential operators

such as the Laplacian. It is important to note that on manifolds there are a few

different operators that share many of the features with the Laplacian of vector

calculus. This requires care when formulating conservation laws or considering

constitutive models. A few generalizations and related operators of the Laplacian

include

∆H(F) =
[
(δd + dδ) F[

]]
, ∆S(F) (2.2.2)

=
[
−δdF[

]]
, ∆Rf = −∆Hf = −(− ? d?)df = −δdf.

The ∆R = div(grad(·)) denotes the rough-Laplacian given by the generalization

of the divergence applied to the gradient as in vector calculus. For vector fields,

∆H(F) denotes the Hodge-de Rham Laplacian, which has similarities as taking

the curl of the curl [80]. In fact, in the case that div(F) = −δF[ = 0 we

have −∆H(F) = ∆S(F) =
[
−δdF[

]]
. We remark by conventions adopted in

differential geometry the Hodge-de Rham Laplacian has the opposite sign when

reduced in the Euclidean case for comparison to the Laplacian of vector calculus.

As a consequence, while the Laplacian is a negative semi-definite operator, in

contrast the Hodge-de Rham Laplacian is a positive semi-definite operator. These

conventions are important to consider when formulating physical models and

numerical calculations utilizing operators and results from differential geometry.
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When working with mechanical systems involving manifolds embedded within

an ambient space and when working with coordinates it is useful to summarize

briefly a few definitions and results from differential geometry. A more detailed

discussion can be found in [28, 80]. When working in coordinates in an embed-

ding space, the Christoffel symbols Γcab of the manifold can be viewed as serving

to represent the rate-of-change of the tangent space basis vectors ea = ∂xa as

∂ea
∂xb

= Γcabec. A more geometrically intrinsic definition without reference to an

embedding space can be given in terms of the metric as

Γcab =
1

2
gck
(
∂gak
∂xb

+
∂gkb
∂xa
− ∂gab
∂xk

)
. (2.2.3)

We can define a covariant derivative connecting tangent spaces as

∇vw =

(
∂wc

∂xb
vb + Γcabv

awb
)

ec. (2.2.4)

When w = waea = wa∂xa we denote this in components as wc|b so that ∇ebw =

wc|bec. We can define a covariant divergence as div(w) = wb|b. We often will

consider motions φt : B → S of a manifold with reference body B mapped to

a configuration in an embedding space S. We define the flow φt,s of a motion

starting at time t and ending at time s as φt,s = φs ◦φ−1
t . The associated velocity

of the flow is given by a velocity field v with v(x) = d
ds

(φt,sx)
∣∣
s=t

. The Lie

derivative of a tensor under the flow is defined as

Lvt =
d

ds

(
φ∗t,st

)∣∣
s=t

. (2.2.5)
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The φ∗t,s is the pull-back [80]. In the case of the tensor t is a vector field t = w

we have that the Lie derivative generalizes the material derivative as

Dw

Dt
:= Lvw = ∂tw +∇vw. (2.2.6)

We emphasize that ∇v is now the covariant derivative of equation 2.2.4. We also

discuss additional results and relations in our prior work [5]. A more detailed

discussion of continuum mechanics and differential geometry also can be found

in [28, 80].

Lastly, the exterior calculus provides generalizations of the Stokes Theorem

and the Divergence Theorem to manifolds. These take the form respectively

∫
∂Ω

ω =

∫
Ω

dω,

∫
∂Ω

?ω =

∫
Ω

d ? ω. (2.2.7)

The ω is a k-form and Ω denotes a general smooth domain with smooth boundary

∂Ω within the manifold. When Ω is in two dimensions and ω is a 1-form, the

integrals on the left-hand-side perform a type of line integral over the boundary

contour ∂Ω. For the Stokes Theorem the component of the vector field that is

tangent to the contour is integrated. For the Divergence Theorem the Hodge

star ? ensures that only the component of the vector field that is normal to the

contour is integrated. The right-hand side then integrates over the interior region

of Ω. For the Stokes Theorem dω corresponds to a generalized representation of

the curl operation. For the Divergence Theorem d ? ω provides a representation

of the divergence. We emphasize the sign of ?ω which was chosen in order to
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represent fluxes with respect to outward normals using the 1-form ω. Additional

applications of the Hodge star ? and isomorphisms [, ] can also be useful to

make conversions that bring these expressions into closer agreement with the

standard vector calculus interpretations and intuition. Notice the relation of these

expressions when ω = F[ to equation 2.2.1. A useful feature of equation 2.2.7 is

that it also generalizes readily to higher dimensions and k-forms.

2.3 Expressing Exterior Calculus Operators on

2-Manifolds

By restricting ourselves to 2-manifolds, we can simplify many of the exterior

calculus expressions we introduced in Einstein notation. We additionally make

use of the fact that computing the inverse of a 2 x 2 matrix is simple to ex-

press. Once we compute these expressions for arbitrary 2-d coordinates, it is

relatively simple to substitute the particular coordinates we use to parametrize

our manifolds in our various solvers.

The scalar Laplace-Beltrami operator ∆LB = −δd that acts on 0-forms can

be expressed in coordinates as

∆LB =
1√
|g|
∂i

(
gij
√
|g|∂j

)
. (2.3.1)

The gij denotes the metric tensor, gij the inverse metric tensor, and |g| the

determinant of the metric tensor. To decompose the Laplace-Beltrami operator
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we find it useful to represent it as a combination of terms hij

hij =
(√
|g|gij

)
∂ij +

(
∂i
√
|g|gij

)
∂j. (2.3.2)

We obtain ∆LB = (1/
√
|g|)

∑
ij hij. The decomposition into hij is particularly

helpful since this makes more transparent the terms which pose in practice the

most challenges in numerical calculations.

To help elucidate these operator expressions we consider the coordinates

(x1, x2) = (θ, φ), so ∂1 = ∂θ and ∂2 = ∂φ. This aligns with the Chart A co-

ordinates for radial manifolds, described in Chapter 3, although these results

hold for any smooth Riemanian 2-manifold.

This allows us to compute analytically many of the terms that arise involving

the metric and exterior operators. Using that the manifolds are two dimensional

with coordinates (θ, φ) we have from the formula for a two-by-two inverse matrix

that

√
|g|gij =



gφφ/
√
|g| if: i = j = θ

gθθ/
√
|g| if: i = j = φ

−gθφ/
√
|g| = −gφθ/

√
|g| if: i 6= j.

(2.3.3)

In the radial manifold case, we can compute each of these terms in the expression

in equation 2.3.3.
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The exterior derivatives can be expressed for a 0-form f and 1-form α as

df = (∂θf)dθ + (∂φf)dφ = fθdθ + fφdφ (2.3.4)

dα = (∂θαφ − ∂φαθ)dθ ∧ dφ. (2.3.5)

The generalized curl on the radial manifold of a 0-form and 1-form can be ex-

pressed as

− ? df = curlM(f) =
√
|g|(fθgθφ + fφg

φφ)dθ −
√
|g|(fθgθθ + fφg

φθ)dφ(2.3.6)

− ? dα = curlM(α) =
∂φαθ − ∂θαφ√

|g|
. (2.3.7)

In this notation we have taken the conventions that fj = ∂xjf and αj such that

α = αjdx
j where j ∈ {θ, φ}. The isomorphisms ] and [ between vectors and

co-vectors can be expressed explicitly as

v[ = (vθσθ + vφσφ)[ (2.3.8)

= vθgθθdθ + vθgθφdφ+ vφgφθdθ + vφgφφdφ

= (vθgθθ + vφgφθ)dθ + (vθgθφ + vφgφφ)dφ

(α)] = (αθdθ + αφdφ)] (2.3.9)

= αθg
θθσθ + αθg

θφσφ + αφg
φθσθ + αφg

φφσφ

= (αθg
θθ + αφg

φθ)σθ + (αθg
θφ + αφg

φφ)σφ

We use the notational conventions here that for the embedding map σ we have

σθ = ∂θ and σφ = ∂φ. Combining the above equations we can express the
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generalized curl as

(− ? df)] = ([
√
|g|(fθgθφ + fφg

φφ)]gθθ + [−
√
|g|(fθgθθ + fφg

φθ)]gφθ)σθ(2.3.10)

+ ([
√
|g|(fθgθφ + fφg

φφ)]gθφ + [−
√
|g|(fθgθθ + fφg

φθ)]gφφ)σφ

=
fφ√
|g|
σθ −

fθ√
|g|
σφ

− ? dv[ =
∂φ(vθgθθ + vφgφθ)− ∂θ(vθgθφ + vφgφφ)√

|g|
. (2.3.11)

Additional details and discussions of these operators also can be found in and

in [4, 80, 3].

2.4 Continuum Mechanics and Conservation Laws

on Manifolds

We discuss briefly how we formulate continuum mechanics in the covariant

form on curved surfaces and more general manifolds. We use the exterior calculus

concepts discussed in Section 2.1 to derive hydrodynamic equations for curved

fluid interfaces.

There are a few different ways that one can attempt to develop the equations

of continuum mechanics in the setting of manifolds. One approach is to try

to use the embedding space with local coordinates and a change of variables.

This can become quite tedious and we shall try to avoid coordinate calculations
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to the extent it is possible. By using an exterior calculus formulation of the

hydrodynamics we can abstract away in our derivations and analysis many of the

details related to intricacies of computing with specific coordinates and tensors in

curved spaces. This allows us to generalize more readily many of the techniques

employed in fluid mechanics to the manifold setting. This approach also helps in

revealing geometric features of the equations and the continuum mechanics.

We instead use an approach related to the Green-Rivlin-Naghdi Theorem [112]

which is based on the use of energy balance and invariance of physical laws

under symmetries to derive the conservation equations for mass, momentum,

and angular momentum [28, 31, 51]. We remark this approach also provides

some insights into why these physical laws manifest in some ways differently in

curved manifolds relative to the Euclidean case.

As a starting point we consider a generalization of the Reynold’s transport

theorem to the setting of a manifold. This allows us to express how an integral

over a moving parcel of material transforms over time in the Eulerian reference

frame. For a k-dimensional domain consider the k-form α. We have from prop-

erties of differential forms and the pull-back that

∂

∂s

∫
φs(U)

α

∣∣∣∣
s=t

=

∫
φs(U)

d

ds

(
φ∗t,sα

) ∣∣∣∣
s=t

=

∫
φt(U)

Lvα. (2.4.1)

The φt,s(x) = φs(φ
−1
t (x)) denotes the change in configuration from time t to time

s > t.
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In the special case when α = fdv, where dv = ω is the volume differential

form, we have the Lie derivative is Lv = ḟ + div (fv) where ḟ = ∂f/∂t +

v[f ] where for short we denote by v[f ] = (df)[v]. We also emphasize that the

divergence operator for a vector field on the manifold is now div(w) = wb|b where

in coordinates the wa|b denotes the covariant derivative component corresponding

to derivatives in the direction ∂xb . This gives the scalar transport theorem

∂

∂t

∫
φt(U)

fdv =

∫
φt(U)

ḟ + div (fv) . (2.4.2)

This can be further specialized in the case of a hypersurface where U ⊂ B and

dimS = dimB+1. In this case we have for φt(U) ⊂ S the surface-scalar transport

theorem

∂

∂t

∫
φt(U)

fdv =

∫
φt(U)

(
ḟ + f

(
div
(
v‖
)

+ vnH
))
dv. (2.4.3)

The H denote the mean-curvature of the manifold describing the configuration of

the surface [4]. The v = v‖ + vnn where vn = vnn gives the velocity component

normal to the surface in the ambient space. Here the div denotes the covariant

divergence in the manifold describing the surface. In coordinates aligned with

the surface this would be div(w) = wa|a where now the indices a are restricted

only over directions ∂xa corresponding to the components tangent to the surface.

We again emphasize that mechanics requires use of some structure of the ambient

physical space in order to make sense of physical quantities such as momentum

of the surface [28]. We shall avoid in our derivation the need to integrate vector
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fields over the manifold with explicit reference to the ambient space by considering

how the mechanics arises from an energy balance principle. This involves the

integration and use of transport theorems only for scalar fields. We can express

the balance of energy for a mechanical system in the general manifold setting as

∂

∂t

∫
φt(U)

ρ

(
e+

1

2
〈v,v〉

)
dv =

∫
φt(U)

ρ
〈
b̄,v

〉
dv +

∫
∂φt(U)

〈t,v〉 . (2.4.4)

The e denotes the energy density per unit mass, ρv the momentum density, ρb̄

the body force, and t = σ[n] the internal material traction stress vector. This

describes the rate at which the total energy (potential + kinetic) is changing

in the system as a consequence of mechanical work done by the body force and

stresses. We point out that the structure of the ambient physical space is still

playing a role but now is contained within the inner-products that appear in

equation 2.4.4 given in equation 2.1.3.

We now use augmentations of the motion φt by diffeomorphisms ξt to obtain

a new motion φ̃t = ξt ◦ φt. Since the mechanics associated with any steady

translational motion should adhere to Galilean invariance [113], we have the new

motion φ̃t should satisfy the same energy balance as in equation 2.4.4. We can

also consider how the energy principle transforms under other motions such as

steady rotational motion which while non-inertial does preserve distances within

the material. From these considerations, we consider how the energy transforms

under the augmented motions φ̃t with diffeomorphisms

ξt(x) = x + (t− t0)c or ξt(x) = exp ((t− t0)Ω) x. (2.4.5)
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The c is the steady translational velocity and Ω is any anti-symmetric ma-

trix giving the steady angular velocity when we express the rotation as R(t) =

exp ((t− t0)Ω).

Under the new motion φ̃t in the translational case, we have again that equa-

tion 2.4.4 holds when we substitute in the quantities φ̃t, ẽ(x, t) = e(x, t), ρ̃(x, t) =

ρ(x, t), ṽ = v + c, b̃ = b + a, t̃ = Tξtt. The Tξt denotes the tangent map also

equivalently the push-forward of ξt [80]. The a = v̇ = ∂tv + ∇vv is the accel-

eration expressed in Eulerian reference frame with ∇v the covariant derivative

of equation 2.2.4. We use the result of the surface-transport theorem given in

equation 2.4.3 and subtract the original energy balance equation 2.4.4. At time

t = t0 we have that ξt0 = id and the terms of the energy balance remaining from

the difference between the motions is∫
φt(U)

(
ρ̇+ ρ

(
div
(
v‖
)

+ vnH
))(
〈v, c〉+

1

2
〈c, c〉

)
dv (2.4.6)

=

∫
φt(U)

〈ρ(b− a + div(σ), c〉dv.

This must hold for all choices of c. To obtain this expression we also used

the divergence theorem so that the contributions of the stress vector t over the

boundary ∂φt(U) can be expressed in terms of integration of the divergence of

the stress σ over the volume. Since U is arbitrary and if we take c = qc̃, the

equation 2.4.6 can be localized to a point-wise statement relating the integrands.

We remark localization does require integrands to be sufficiently smooth which

we shall assume throughout. By dividing both sides by q2 and taking the limit
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q →∞ we have that only the quadratic term 1
2
〈c̃, c̃〉 persists with all other terms

on both sides going to zero. This requires the multiplying factor of the quadratic

term involving c̃ to vanish since all the other terms are zero. This yields the

equations for conservation of mass on the surface

ρ̇+ ρ
(
div
(
v‖
)

+ vnH
)
. (2.4.7)

We can use this result to further simplify equation 2.4.6 to obtain

0 =

∫
φt(U)

〈ρ(b− a + div(σ), c〉dv. (2.4.8)

Since c and U are arbitrary this gives the equations for conservation of momentum

on the surface

ρv̇ = div (σ) + ρb. (2.4.9)

We use here that a = ρv̇ = ρ(∂tv +∇vv) gives the acceleration in the Eulerian

reference frame with ∇v the covariant derivative of equation 2.2.4. We can sim-

ilarly use the transformation under the rotational motions given by the second

diffeomorphism in equation 2.4.5 to get the conservation of angular momentum.

This has the important consequence that the stress tensor σ must be symmetric

in the sense σab = σba.

These derivations help us to formulate the proper conservation equations of

continuum mechanics in the manifold setting. Similar techniques have also be

used to derive other equations useful in elasticity and in constitutive modeling
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in [28, 31, 52, 51]. We can already see that conservation of mass has some inter-

esting features quite distinct from the flat Euclidean setting, see equation 2.4.7.

While the momentum equations appear to look superficially similar to the Eu-

clidean setting, it is important to emphasize that the divergence operator div is

based on covariant derivatives having in fact quite distinct behaviors from local

curvature than the Euclidean setting. We shall see these results have a num-

ber of interesting consequences for constutitive laws, such as the proper form for

modeling surface Newtonian fluids for a curved interface.

2.5 A Covariant Stokes Equation

We would like to formulate in a covariant manner the equations of hydro-

dynamics in the case of a fluid interface that is an incompressible Newtonian

fluid [6]. Using our results from Section 2.4 we can express the conservation of

mass and momentum as
ρv̇ = div (σ) + ρb̄

ρ̇+ ρ
(
div
(
v‖
)

+ vnH
)

= 0.

(2.5.1)

We focus here on the the steady-state hydrodynamics of incompressible Newto-

nian fluids within a curved surface of fixed shape. This corresponds to div
(
v‖
)

=

0 and vn = 0. From equation 2.5.1, this yields that ρ̇ = 0 corresponding to a con-

stant mass density ρ = ρ0 within the interface. The steady-state hydrodynamics
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corresponds to the case with ρv̇ = 0 reducing equation 2.5.1 to the conditions
div (σ) = −b

div (v) = 0.

(2.5.2)

In the notation, we take throughout b = ρ0b̄ and v = v‖ since we shall consider

only incompressible fluid flows where the velocity is tangent to the surface. For

an incompressible Newtonian fluid the constitutive law should depend on the

local rate of deformation D of the material as σ = µmD−pI. The p corresponds

to the pressure which acts as a Lagrange multiplier imposing incompressibility.

The µm corresponds to the dynamic shear viscosity of the interfacial fluid. The

I is the metric associated identity operator. The rate-of-deformation tensor is

D = 1
2
∂C/∂t where C is the right-Cauchy-Green Tensor associated with the

motion φt [28]. We can express the rate-of-deformation tensor in terms of the

covariant derivative as Dab = va|b + vb|a. For a two-dimensional incompressible

fluid having a velocity field that is always tangent to the curved surface, we have

div(D)[ = −δdv[ + 2Kv[ [114, 6, 53]. We can further express the divergence

in covariant form and exterior calculus operations as div (v)[ = −δv[. From

equation 2.2.1 we have div(pI)[ = dp. This allows us to express the Stokes

hydrodynamic equations in covariant form as
µm
(
−δdv[ + 2Kv[

)
− γv[ − dp = −b[

−δv[ = 0.

(2.5.3)

We also added to this equation a phenomenological drag term −γv[ which acts

as a force density to model the coupling of the fluid flow on the surface to the
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bulk three-dimensional surrounding fluid. This has been done in the context of

interfaces such as flat lipid membranes in [115] and for bulk external flows for

spherical geometry in [6]. Having some form of dissipative tractional stress is

important with the surrounding bulk fluid since it provides a model of the phys-

ical processes necessary to surppress the otherwise well-known Stokes paradox

that arises in purely two-dimensional fluid equations [116, 117]. Of course this

model is only approximate and one could of course consider more sophisticated

hydrodynamic coupling models [118, 119]. For specialized cases, such as flat in-

terfaces or spherical geometry, the traction coupling with the bulk fluid flow can

be worked out in detail analytically or through asymptotic approximations as

done in [118, 119, 6, 120, 53]. In the more general setting, solution for the sur-

rounding three-dimensional bulk flow is typically difficult to obtain analytically

requiring instead development of separate numerical solvers. While incorporating

such a solver into our approaches is conceptually relatively straight-forward, in

practice it involves some significant investments for implementation and handling

additional technical issues. Here we focus solely develping solvers for the surface

part of the hydrodynamics.
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2.6 Recasting Our Stokes Equation Using the

Hodge Decomposition

We use a surface Hodge decomposition to derive a formulation of the hydro-

dynamics that handles the incompressibility constraint for the flow field. For a

fluid within a general manifold we can express the Hodge decomposition using

the exterior calculus as

v[ = dψ + δφ+ h. (2.6.1)

The ψ is a 0-form, φ is a 2-form, and h is a harmonic 1-form on the surface

with respect to the Hodge Laplacian ∆Hh = (δd + dδ) h = 0. The dimension-

ality of the null-space of the Hodge Laplacian depends on the topology of the

manifold [81]. As a consequence, we have for different topologies that the rich-

ness of the harmonic differential forms h appearing in equation 2.6.1 will vary.

Fortunately, in the case of spherical topology the surface admits only the triv-

ial harmonic 1-forms h = 0 making this manifold relatively easy to deal with

in our physical descriptions. The incompressibility constraint when applied to

equation 2.6.1 results in δv[ = δdψ = ∆Hψ = 0 which for spherical topology

requires ψ = C and dψ = 0. Thus, for an incompressible hydrodynamic flow on

manifolds with spherical topology our physical description must be of the form

v[ = δφ+ v[0. (2.6.2)
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Here we have added a velocity v0 since this corresponds to the non-tangent con-

tributions from rigid-body translational and rotational motions of the entire in-

terface within the physical ambient space. This can arise physically when the

surface force density has a non-zero total net force or torque. We take through-

out the paper the simplification v0 = 0 so that the surface velocities should be

viewed as accounting for the in-plane contributions of the interface motions. Of

course the flow field in other reference frames can be recovered by adding the

non-tangent v0 velocity field at each location on the surface.

Using the Hodge decomposition in equation 2.6.2, we see that φ is a 2-form

on the two-dimensional surface. We find it convenient to express φ in terms of

a 0-form using the Hodge star to obtain Φ = − ? φ. Using the identities of the

Hodge star discussed in Section 2.1, we can express the hydrodynamic flow field

as

v[ = − ? dΦ. (2.6.3)

This can be related to classical methods in fluid mechanics by viewing the op-

erator − ? d as a type of curl operator that is now generalized to the manifold

setting. The Φ serves the role of a vector potential for the flow [116, 117, 119].

The velocity field of the hydrodynamic flows v is recovered from the vector po-

tential Φ as v[ = − ? dΦ. We obtain the velocity field v = v] = (− ? dΦ)] using

equation 2.3.10. Similarly from the force density b acting on the fluid, we obtain

the data − ? db[ for the vector potential formulation of the hydrodynamics in
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equation 2.6.4 using equation 2.3.11. We substitute equation 2.6.3 into equa-

tion 2.5.3 and apply the generalized curl operator curlM = − ?d to both sides to

express the fluid equations on the surface as

µm∆̄2Φ− γ∆̄Φ + 2µm(− ? d(K(− ? d)))Φ = ?db[. (2.6.4)

This provides a particularly convenient form for the fluid equations since it only

involves a scalar field on the surface. We shall utilize primarily this form of the

hydrodynamic equations in our numerical methods.

We mention here the importance of distinguishing between the operators when

acting on the 0-forms Φ in equation 2.6.4 in contrast to the operators acting on

1-forms v[ in equation 2.5.3. In our notation here we use ∆̄ = −δ1d0 to ob-

tain our surface Laplacian. The sign convention ensures our surface Laplacian is

a negative semidefinite operator. This provides consistency with intuition that

is often used in physical setting and agreement with the standard Laplacian of

vector calculus encountered in the Euclidean case. This is in contrast with the

Hodge-Laplacian ∆H = δd + dδ used in differential geometry which is positive

semi-definite [81, 80]. Our sign conventions also ensure that our operator ∆̄ is in

agreement with the Laplace-Beltrami operator on the surface. Further distinc-

tions can also arise when interpreting d and δ depending on the dimensionality

of the manifold and the order k of the k-forms on which the operator acts [80].

We mention these distinctions since in our experience in practice these differ-

ences and the sign conventions can become a significant source of book-keeping
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and confusion in modeling and in numerical methods. We have found it conve-

nient when formulating our numerical methods and performing implementations

to use the Hodge-Laplacian ∆H = −∆̄ = δ1d0 to avoid carrying around the sign.

However, we have found it convenient in our physical analysis and discussions

to use the negative semi-definite surface Laplacian ∆̄ as we have discussed for

equation 2.6.4. Given these considerations, we shall primarily use ∆̄ throughout

most of our discussions in this paper unless otherwise noted.
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Chapter 3

Discretizing Exterior Calculus
Operators on Radial Manifolds

We take an isogeometric approach based on the hyperinterpolation of spheri-

cal harmonics to represent the manifold geometry, differential forms, and related

scalar and vector fields [121, 122, 123]. In hyperinterpolation, functions are over-

sampled to avoid many of the inherent issues associated with trying to design an

optimal collection of nodes for Lagrange interpolation [122, 124, 125, 126]. This

allows for functions to be approximated through L2-orthogonal projections using

exact quadratures up to a desired order [122, 127]. To achieve discretizations

with favorable symmetry on the sphere, we use the nodes of Lebedev quadra-

ture [2, 1]. This is in contrast to the more common approach of using samping

points based on lattitude and longitude coordinates. While lattitude-longitude

samplings have a computational advantage through fast transforms, the sampling

points have poor symmetry and inhomogeneous distribution over the surface with

many points clustering near the poles [128, 129, 130]. The Lebedev quadrature
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points provide a more regular distribution on the surface. For a comperable

number of points, the Lebedev sampling provides a more uniform resolution of

functions [131]. The Lebedev quadrature points also have the feature of being

invariant under rotations corresponding to octohedral symmetry [2, 1]. We show

Lebedev nodes on example radial manifolds in Figure 3.1.

Manifold CManifold BManifold A

Lebedev Quadrature

Figure 3.1: Lebedev Quadrature. Shown are the sample points of the Lebedev quadrature in

the case of 302 nodes. The Lebedev nodes distribute nearly uniformly over the surface and are

invariant under the rotations corresponding to octahedral symmetry [1, 2].

We briefly mention that recently there has also been some very interesting

developments using Spherical Designs to perform quadratures of functions on

spherical geometries [132]. Historically, a significant challenge has been to find

realizations of the nodes for the Spherical Designs of specified order. With recent

advances it has been found that Spherical Designs can be developed that per-

form comperably to Lebedev quadratures in practice [131]. We have chosen to use

Lebedev quadratures in our current work presented given our initial familarity

with them, more established results including guarentees on symmetry, and more
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readily accessible weight-node data sets for exact integration for spherical har-

monics up to high order [1, 2]. Recently promising methods have been developed

to discover Spherical Designs yielding similar high levels of accuracy [132].

3.1 Radial Manifold Differential Geometry

We consider throughout manifolds of radial shape. A radial manifold is de-

fined as a surface where each point can be connected by a line segment to the

origin without intersecting the surface. In spherical coordinates, any point x on

the radial manifold can be expressed as

x(θ, φ) = σ(θ, φ) = r(θ, φ)r(θ, φ) (3.1.1)

where r is the unit vector from the origin to the point on the sphere corresponding

to angle θ, φ and r is a positive scalar function.

We take an isogeometric approach to representing the manifold M . We sample

the scalar function r at the Lebedev nodes and represent the geometry using the

finite spherical harmonics expansion r(θ, φ) =
∑

i r̄iYi up to the order bL/2c

where r̄i = 〈r, Yi〉Q for a quadrature of order L. In this manner we have an

analytic representation of the geometry allowing for fundamental operators to be

computed.

Since there is no global non-singular coordinate system on a radial manifold

surface, we ensure numerical accuracy by utilizing two coordinate charts. The
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first is referred to as Chart A and has coordinate singularities at the north and

south pole. The second is referred to as Chart B and has coordinate singularities

at the east and west pole. For each chart we use spherical coordinates with

(θ, φ) ∈ [0, 2π)× [0, π] but to avoid singularities only use values in the restricted

range φ ∈ [φmin, φmax], where 0 < φmin ≤ π
4
, and 3π

4
≤ φmax < π. In practice,

one typically takes φmin = 0.8 × π
4

and φmax = 0.8 × π. To avoid issues with

singularities when seeking a value at a point x, we evaluate expressions within

each chart in which x resides. If x resides in the restricted range of both charts,

we simply pick one of the two evaluations to use in our calculations.

For Chart A, the manifold is parameterized in the embedding space R3 as

x(θ̂, φ̂) = r(θ̂, φ̂)r(θ̂, φ̂), r(θ̂, φ̂) =

[
sin(φ̂) cos(θ̂), sin(φ̂) sin(θ̂), cos(φ̂)

]
(3.1.2)

and for Chart B

x(θ̄, φ̄) = r(θ̄, φ̄)r(θ̄, φ̄), r̄(θ̄, φ̄) =

[
cos(φ̄), sin(φ̄) sin(θ̄), − sin(φ̄) cos(θ̄)

]
.(3.1.3)

With these coordinate representations, we can derive explicit expressions for ge-

ometric quantities associated with the manifold such as the metric tensor and

shape tensor. Note that we give all expressions with generic polar coordinates

(θ, φ) since the calculations are done the same manner in chart A and chart B.

The derivatives used as the basis ∂θ, ∂φ for the tangent space can be expressed as

σθ(θ, φ) = rθ(θ, φ)r(θ, φ) + r(θ, φ)rθ(θ, φ) (3.1.4)

σφ(θ, φ) = rφ(θ, φ)r(θ, φ) + r(θ, φ)rφ(θ, φ). (3.1.5)
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We have expressions for rθ and rφ in the embedding space R3 using equation 3.1.2

or equation 3.1.3 depending on the chart being used. The first fundamental form

I (metric tensor) and second fundamental form II (shape tensor) are given by

I =

E F

F G

 =

σθ · σθ σθ · σφ

σφ · σθ σφ · σφ

 =

r2
θ + r2 sin(φ)2 rθrφ

rθrφ r2
φ + r2

 . (3.1.6)

and

II =

L M

N N

 =

σθθ · n σθφ · n

σφθ · n σφφ · n

 . (3.1.7)

The n denotes the outward normal on the surface and is computed using

n(θ, φ) =
σθ(θ, φ)× σφ(θ, φ)

‖σθ(θ, φ)× σφ(θ, φ)‖
. (3.1.8)

The terms σθθ, σθφ, and σφ,φ are obtained by further differentiation from equa-

tion 3.1.4 and equation 3.1.5. We use the notation for the metric tensor g = I

interchangably. In practical calculations whenever we need to compute the action

of the inverse metric tensor we do so through numerical linear algebra (Gaussian

elimination with pivoting) [133, 134]. For notational convenience, we use the

tensor notation for the metric tensor gij and its inverse gij which has the formal

correspondence

gij = [I]i,j , gij =
[
I−1
]
i,j
. (3.1.9)

For the metric factor we also have that

√
|g| =

√
det(I) = r

√
r2
θ + (r2

φ + r2) sin(φ)2 = ‖~σθ(θ, φ)× ~σφ(θ, φ)‖. (3.1.10)
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To ensure accurate numerical calculations in each of the above expressions the

appropriate coordinates either Chart A or Chart B are used to ensure sufficient

distance from coordinate singularities at the poles. To compute quantities asso-

ciated with curvature of the manifold we use the Weingarten map [4] which can

be expressed as

W = I−1II. (3.1.11)

To compute the Gaussian curvature K, we use

K(θ, φ) = det (W(θ, φ)) . (3.1.12)

For further discussion of the differential geometry of manifolds see [4, 80, 111].

3.2 Hyperinterpolation on Radial Manifolds

3.2.1 Spherical Harmonic Basis

The spherical harmonics are given by

Y m
n (θ, φ) =

√
(2n+ 1)(n−m)!

4π(n+m)!
Pm
n (cos(φ)) exp (imθ) (3.2.1)

where m denotes the order and n the degree for n ≥ 0 and m ∈ {−n, . . . , n}.

The Pm
n denote the Associated Legendre Polynomials. In our notation, θ denotes

the azmuthal angle and φ the polar angle of the spherical coordinates [123].
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Since we work throughout only with real-valued functions, we have that the

modes are self-conjugate and we use that Y m
n = Y −mn . We have found it conve-

nient to represent the spherical harmonics as

Y m
n (θ, φ) = Xm

n (θ, φ) + iZm
n (θ, φ) (3.2.2)

whereXm
n and Zm

n denote the real and imaginary parts. In our numerical methods

we use this splitting to construct a purely real set of basis functions on the unit

sphere with maximum degree N . We remark that this consists of (N + 1)2 basis

elements. In the case of N = 2 we have the basis elements

Ỹ1 = Y 0
0 , Ỹ2 = Z1

1 , Ỹ3 = Y 0
1 , Ỹ4 = X1

1 , Ỹ5 = Z2
2 , Ỹ6 = Z1

2 , (3.2.3)

Ỹ7 = Y 0
2 , Ỹ8 = X1

2 , Ỹ9 = X2
2 .

We use a similar convention for the basis for the other values of N . We take our

final basis elements Yi to be the normalized as Yi = Ỹi/
√
〈Ỹi, Ỹi〉.

We compute derivatives of our finite expansions by evaluating analytic for-

mulas for the spherical harmonics in order to try to minimize approximation er-

ror [123]. Approximation errors are incurred when sampling the values of expres-

sions involving these derivatives at the Lebedev nodes and performing quadra-

tures. The derivative in the azmuthal coordinate θ of the spherical harmonics is

given by

∂θY
m
n (θ, φ) = ∂θ

√
(2n+ 1)(n−m)!

4π(n+m)!
Pm
n (cos(φ)) exp (imθ) = imY m

n (θ, φ) .
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This maps the spherical harmonic of degree n to again a spherical harmonic of

degree n. In our numerics, this derivative can be represented in our finite basis

which allows us to avoid projections. This allows for computing the derivative in

θ without incurring an approximation error. For the derivative in the polar angle

φ we have that

∂φY
m
n (θ, φ) = m cot(φ)Y m

n (θ, φ) +
√

(n−m)(n+m+ 1) exp (−iθ)Y m+1
n (θ, φ).

(3.2.4)

We remark that the expression can not be represented in terms of a finite ex-

pansion of spherical harmonics. We use this expression for ∂φY
m
n (θ, φ) when we

compute values at the Lebedev quadrature nodes in equation 3.3.1. This pro-

vides a convenient way to compute derivatives of differential forms. We remark

that it is the subsequent hyperinterpolation of the resulting expressions where

the approximation error is incurred. We adopt the notational convention that

Y m
n = 0 when m ≥ n+ 1. For further discussion of spherical harmonics see [123].

3.2.2 Lebedev Quadratures

The Lebedev quadrature nodes are derived by solving a non-linear system

of equations that impose both exactness of integration on spherical harmonics

up to a specified order while maintaining symmetry under octahedral rotations

and reflections [1, 2]. One could also consider using a quadrature based on

spherical coordinates and sampling on the latitudinal and longitudinal points
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which have some computational advantages by using the Fast Fourier Trans-

form [130, 135, 129]. However, these nodes have significant asymmetries with

nodes forming dense clusters near the poles of the sphere, see Figure 3.2. We favor

Gauss-Legendre 

Node Distribution

Lebedev

Figure 3.2: Node Distribution of the Gauss-Legendre Quadrature Compared to Lebedev

Quadrature. We consider the Gauss-Legendre quadrature with 5886 nodes with a comparable

Lebedev quadrature having 5810 nodes (113th order of accuracy) [2]. We see that the Gauss-

Legendre quadrature has dense clustering of points along latitudinal rings when approaching

the north and south poles. We see that while the Lebedev quadrature has some clustering

around a few points, these are less dense and overall exhibits sampling with a greater level of

symmetry over the sphere.

Lebedev quadratures which while having some localized clustering at a few points

exhibits overall a greater level of symmetry and less severe clustering. Quadrature

on the surface of the sphere is still an active area of research with many recent

results in the literature investigating the advantages and draw-backs of different

methods depending on the intended use and application [124, 136, 137, 131]. We

briefly mention that this includes recently introduced Spherical t-Designs [132]

and nodes obtained by minimizing different types of energies motivated by gen-

eralizing the classical Thomson problem [138, 131]. The recently introduced
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Spherical t-Designs are also attractive given their overall symmetry of quadra-

ture nodes [132]. However, the Spherical t-Designs only have 60% approximation

efficiency in the number of nodes per the accuracy achieved. In contrast the

Lebedev quadratures achieve optimal approximation efficiency [131]. In principle,

almost any quadrature on the sphere could be used within the overall numerical

approaches we present. We use the Lebedev quadratures given their high level of

symmetry and approximation efficiency.

3.2.3 Hyperinterpolation

We use hyperinterpolation to obtain a continuum approximation to fields

on the manifold surface [122, 127]. To obtain a continuum representation of a

function f on the surface, we perform an L2-orthogonal projection P to the space

spanned by spherical harmonics up to order bL/2c,

P [f ] = f̄(θ, φ) =
∑
i

f̂iYi(θ, φ), (3.2.5)

where f̂i = 〈f, Yi〉Q. We take the spherical harmonics Yi to be normalized with

〈Yj, Yi〉Q = δij. We use the discrete inner-product defined by

〈u, v〉Q =
∑
`

w`u(x`)v(x`). (3.2.6)

where w`,x` are the Lebedev quadrature weights and nodes. When the quadra-

ture is of order L and the functions u, v are each band-limited with respect to

spherical harmonics up to order bL/2c, the the inner-product is the same as the
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L2-inner-product 〈u, v〉Q = 〈u, v〉L2 . This yields the projection property P2 = P ,

see equation 3.2.5.

In practice, computing the inner-product 〈·, ·〉Q only requires we know values

of f at the Lebedev nodes {x`}. This is utilized to represent functions on the

surface in numerical calculations. We use this property to represent differential

forms on the surface by an equivalent vector field at the Lebedev nodes. We

perform in calculations conversions as needed by using the isomorphisms [, ], as

shown in Figure 2.1. In two dimensions the 0-forms and 2-forms on the surface

are equivalent to scalar fields (a vector field with only one component). For

the more interesting case of 1-forms on the surface, we use as our numerical

represention an equivalent vector field with values specified at each of the Lebedev

quadrature nodes. To simplify our discussion of our numerical methods we use

the terminiology vector field and scalar field interchangably throughout.

The 1-form v[ is equivalent through the isomorphism ] to the vector field

v]. We represent 1-forms by the values of v] stored at the Lebedev quadrature

nodes {x`}. In numerical calculations we avoid issues with charts and coordinate

singularities by representing the form as an expansion of spherical harmonics

using the coordinates of the embedding space. This is done by representing the

components of the associated vector field v] using the embedding space basis

ι1, ι2, ι3 as v](x`) = v̄xι1 + v̄yι2 + v̄zι2 = [v̄x, v̄y, v̄z]ι1,ι2,ι3 . Storing the values

[v̄x, v̄y, v̄z] at the Lebedev nodes provides a convenient numerical representation
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of the differential form. To simplify the notation, we will often drop the subscript

on [·, ·, ·] for the basis when it can be understood by context. When a continuum

representation of the vector field is needed in our numerical calculations, we use

the hyperinterpolation in equation 3.2.5 to obtain the associated smooth vector

field

v̄](θ, φ) = [P v̄x,P v̄y,P v̄z]. (3.2.7)

We take a similar approach for 0-forms and 2-forms which are much easier to

handle and are represented by the scalar field v̄ to yield v̄](θ, φ) = P v̄.

3.3 Computing Exterior Calculus Operators

3.3.1 Computing the Exterior Derivative

To approximate the exterior derivative d, we need to approximate derivatives

of our numerical representation at the Lebdev nodes for differential forms. For

this purpose, we make use of the hyperinterpolation provided by equation 3.2.7.

We remark that our approach in our numerical representation making use of the

embedding space basis provides a global description of the differential form over

the entire surface and a consistent way to obtain derivatives between different

coordinate charts. For a given chart, a differential form has coordinate compo-

nents for a 0-form given by v[ = v, a 1-form by v[ = vidx
i, and a 2-form by

v[ = vijdx
i∧dxj. To numerically compute derivatives based on these expressions
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we perform a conversion from the vector field representation in the embedding

space to the local coordinate representation of the components.

The 1-form presents the most interesting case with the 0-form and 2-form

handled similarly. For 1-forms the components vi are related to the components

v̄k of the vector field representation by vi = gijv
j = gija

j
kv̄

k. The term ajk converts

between the components v̄k given in the coordinates of the embedding space

ι1, ι2, ι3 to the components vj given in the local coordinates on the surface ∂θ, ∂φ.

The exterior derivative of a 1-form can be expressed in coordinate components as

dv[ = ∂svi dx
s ∧ dxi. For numerical calculations at a given location x` (Lebedev

node), we choose an appropriate coordinate chart that is locally non-degenerate.

We compute the component derivative as

∂svi = (∂sgij)a
j
kv̄

k + gij(∂sa
j
k)v̄

k + gija
j
k(∂sv̄

k). (3.3.1)

The first two terms only depend on the geometry of the manifold and only the

values of the differential form at location x` (Lebedev node). This can be ob-

tained readily from the spherical harmonics representation of the geometry of the

manifold. In contrast, the last term depends on the derivatives of the coordinate

components and requires use of the continuum representation from the hyperin-

terpolation obtained in equation 3.2.7. Putting this together with equation 3.3.1

and the coordinate expression for the exterior derivative, we obtain a numerical

exterior derivative operator d for 1-forms. The case of 0-form and 2-form can be

handled similarly. We should mention that the case of a 2-form in two dimensions
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has exterior derivative zero which we also impose in our numerical calculations.

In this manner, we obtain a numerical operator d that maps a k-form defined at

the Lebedev nodes to a (k + 1)-form defined at the Lebedev nodes.

We remark that in practical implementations of the numerical exterior deriva-

tive operator d it is convenient to represent the coordinate conversion in matrix-

vector notation as v = GA−1v̄. The matrix entries [A−1]jk = ajk correspond to

the change from the coordinates of the embedding space to the local coordinates

of the tangent space. The matrix G corresponds to the linear operator associated

with the metric tensor in the tangent plane of the two dimensional manifold. If

we oriented the embedding space coordinates so that the first two components are

orthogonal and oriented in the direction of the tangent plane of the surface, the

entries would be given by [G]i,j = gij for i, j ∈ 1, 2 and zero otherwise. Of course

in general embedding space coordinates the matrix G representing this linear op-

eration takes on an equivalent form under the change of basis formula of linear

algebra. With this notation, the derivatives in local coordinates can be expressed

as ∂sv = (∂sG)A−1v̄ + G(∂sA
−1)v̄ + GA−1(∂sv̄). To avoid differentiating com-

ponents of the inverse matrix A−1, we use the identity ∂sA
−1 = −A−1(∂sA)A−1

and use a linear algebra solver to compute the action of A−1. This is done at

each Lebedev node x` with an appropriate choice made for the coordinate chart

that is locally non-degenerate.
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3.3.2 Computing the Hodge Star

We approximate next the Hodge star ? operator on differential forms. We

remark that in the related area of discrete exterior calculus (DEC) efforts are

made to preserve geometric structure in the discrete setting, often on triangulated

meshes. Interesting issues arise in DEC from the discrete geometry with which

one must grapple and extensive studies have been conducted to formulate good

approximations for the Hodge star ? operator [139, 140]. Here we avoid many

of these issues since we treat the operator at the continuum level and have more

geometric information available to us from our spectral representation of both

the manifold and the differential forms.

We approximate the Hodge star ? operator on differential forms by a numerical

operator ? which makes use of the representation at the Lebedev nodes. The

Hodge star ? has the feature that it is a local operation that involves values of

the differential form and metric tensor only at an individual Lebedev node x`.

We obtain a numerical operator ? by applying the musical isomorphisms and

metric tensor within the appropiate coordinate charts. The main consideration

numerically is to choose well the coordinate chart so it is locally non-degenerate.

The approximation enters through the fidelity of the metric tensor computed

from our representation of the manifold geometry. The geometry for the radial

manifold is determined by the radial function r(θ, φ) which is represented as an

expansion in a finite number of spherical harmonics up to order L, r(θ, φ) =
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∑
i r̂iYi(θ, φ). This provides in a given coordinate chart at location x` the metric

tensor and curvature tensor along with the local coordinate basis vectors ∂θ, ∂φ

and their derivatives. The numerical Hodge star operator ? maps k-forms defined

at the Lebedev nodes to (n−k)-forms defined at the Lebedev nodes. This provides

a convenient map between representations for further application of numerical

exterior calculus operations. In this manner, the numerical exterior derivative d

operator and numerical Hodge star ? operator can be used through composition

to numerically approximate more complex exterior calculus operations on the

manifold.

3.4 Convergence of our Exterior Calculus Op-

erators

We discuss how our numerical methods converge in approximating the fun-

damental exterior calculus operations of the exterior derivative d and the Hodge

star ? when applied to 0-forms, 1-forms and 2-forms. We then discuss the con-

vergence of our methods for compositions of operators and present results for the

Laplace-Beltrami equation.

We remark that throughout our convergence studies, we describe test func-

tions using for a point x on the manifold its location within the embedding

space. To perform calculations we make use of the embedding space coordi-
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nates [x, y, z] corresponding to x = xι1 + yι2 + zι3, where ι1, ι2, ι3 is the basis

for the embedding space. In this manner our test data is not tied to a specific

choice of local coordinates on the manifold. All figures report the relative error

εrel = ‖w̄] − w]‖2/‖w]‖2. The w is the exact result and w̄ is the numerically

computed result. For ‖ · ‖2, we use the L2-norm of the embedding space.

3.4.1 Convergence of the Hodge Star

We approximate the Hodge star ? by the numerical operator ? using hyper-

interpolation. We investigate in practice the accuracy of this approach on a few

different geometries and differential forms.

We first consider a 0-form defined on Manifold B defined in Figure 1.1. We

take the 0-form to be f = exp(z)/(3 − y). We show the accuracy of our nu-

merical operator ? in approximating the Hodge star ? as the number of Lebedev

nodes increases. We find that the main limitation in the accuracy of the ? is

the resolution of the geometry of the manifold. This is seen in our results where

once a sufficient number of spherical harmonic modes are reached the relative

error rapidly decays in approximating ?f . The convergence of ? as the number

of Lebedev nodes is increased and when the geometry is varied is shown in Fig-

ure 3.3. We remark that the the function f provides a description in terms of the

embedding-space coordinates for conveniently generating smooth example fields

on the radial manifold surfaces which are all bounded within a ball of radius 2
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away from the singularity at y = 3. Choosing a function f with a singularity in

the embedding-space helps in generating interesting non band-limited fields on

the manifold surfaces for testing purposes.

Figure 3.3: Convergence of the numerical Hodge star operator ? for 0-forms. We show for

Manifold B how the relative error of ?f in approximating ?f as the number of Lebedev nodes

increases. The 0-form is f = exp(z)/(3 − y). We investigate how the manifold geometry

influences convergence by varying the amplitude r0 in the range [0.0, 0.4] for Manifold B. The

amplitude r0 = 0.0 corresponds to a sphere and r0 = 0.4 to the final shape of Manifold B shown

in Figure 1.1. We remark that all plots are log-log where for each data point for clarity we have

labelled along the log x-axis the specific number of quadrature points.

We next consider on Manifold B the 1-form α =
√
|g| exp(z)dθ+

√
|g| exp(z)dφ.

We again find that the main limitation in the accuracy of the ? is the resolution

of the geometry of the manifold. In this case we find the error rapidly decreases

once a sufficient number spherical harmonic modes are used. The convergence of

? as the number of Lebedev nodes is increased and when the geometry is varied

is shown in Figure 3.4.

These results indicate that the numerical operator ? provides an accurate

approximation to the Hodge star ?. Given the localized nature of the Hodge star,
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the main consideration to obtain accurate results with ? is to use enough Lebedev

nodes to ensure sufficient resolution of the geometry of the manifold.

3.4.2 Convergence of the Exterior Derivative

We investigate the convergence of the numerical operator d in approximating

the exterior derivative d when applied to 0-forms and 1-forms. We do not consider

2-forms here since in two dimensions the exterior derivative would be zero which

we also impose in our numerical calculations [80, 111]. We consider the 0-form

given by f = exp(z) and the 1-form given by α = |g| exp(z)dθ+ |g| exp(z)dφ. We

consider for Manifold B the relative error of d in approximating d as the number

of Lebedev nodes is increased and the manifold geometry is varied. These results

are shown in Figure 3.5 and Figure 3.6.
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Figure 3.4: Convergence of the numerical Hodge star operator ? for 1-forms. We show for

Manifold B the relative error of ?α in approximating ?α as the number of Lebedev nodes

increases. The 1-form is α =
√
|g| exp(z)dθ +

√
|g| exp(z)dφ. We investigate how the manifold

geometry influences convergence by varying the amplitude r0 in the range [0.0, 0.4] for Manifold

B. The amplitude r0 = 0.0 corresponds to a sphere and r0 = 0.4 to the final shape of Manifold

B shown in Figure 1.1.
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We see that the numerical operator d converges spectrally in approximating

the exterior derivative d both for the 0-forms and 1-forms. Interestingly, we see

that in the case when r0 = 0.0 the approximation converges significantly more

rapid than the cases when r0 6= 0. This occurs since r0 = 0 corresponds to

the case when the shape is a sphere where the geometry is relatively simple and

many of the geometric terms to be numerically approximated greatly simplify.

The main source of error in this case arises primarily from the hyperinterpolation

used for computing the derivatives. In the case when r0 6= 0, the isogeometric

approach used to compute d approximates the geometry of the manifold using a

finite spherical harmonics representation which results in an additional source of

approximation error.

Figure 3.5: Convergence of the numerical exterior derivative operator d for 0-forms. We show

for Manifold B the relative error of df in approximating df as the number of Lebedev nodes

increases. The 0-form is f = exp(z). We investigate how the manifold geometry influences

convergence by varying the amplitude r0 in the range [0.0, 0.4] for Manifold B. The amplitude

r0 = 0.0 corresponds to a sphere and r0 = 0.4 to the final shape of Manifold B shown in

Figure 1.1.
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We investigate how the geometry contributes to convergence by varying r0

over the range [0.0, 0.4]. The case with r0 = 0.4 corresponds to the final shape

of Manifold B shown in Figure 1.1. The convergence is found to be spectral and

comparable in each of these different cases for the geometry. We see that as one

might expect the largest errors are incurred in the case with the most pronounced

geometry corresponding to r0 = 0.4. Overall, the results indicate that the nu-

merical operator d provides for 0-forms and 1-forms an accurate approximation

for the exterior derivative d.

Figure 3.6: Convergence of the numerical exterior derivative operator d for 1-forms. We show

for Manifold B the relative error of dα in approximating dα as the number of Lebedev nodes

increases. The 1-form is α = |g| exp(z)dθ + |g| exp(z)dφ. We investigate how the manifold

geometry influences convergence by varying the amplitude r0 in the range [0.0, 0.4] for Manifold

B. The amplitude r0 = 0.0 corresponds to a sphere and r0 = 0.4 to the final shape of Manifold

B shown in Figure 1.1.
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Chapter 4

Implementing a Spectrally
Accurate Stokes Solver on Radial
Manifolds

We develop spectral methods based on a Galerkin-style approximation by in-

troducing an L2-inner-product 〈, 〉M on the manifold surfaceM. To approximate

the inner-product with a high order of accuracy we use hyperinterpolation [124]

on the manifold. For the case when the manifold is a sphere we use the Lebedev

quadrature [1, 2]. We introduce here ways to develop high order quadratures for

integration on more general manifold surfaces of radial shape. Our approach is

based on the use of the Radon-Nikodym Theorem [103] to relate in a coordinate-

free manner the measure associated with surface area on the sphere to the radial

manifold.

Many approximations enter into our solver with sources of numerical errors

including the finite spherical harmonics expansions used to represent fields and

the surface geometry, the surface quadratures for integration and inner-products,
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and the Galkerin approximation for the differential operators. We first show the

efficacy of our approach for quadrature on radial manifolds, and then investigate

the convergence and accuracy of our hydrodynamics solver.

4.1 Inducing an Inner-Product on Radial Man-

ifolds

We introduce a metric associated L2 inner-product 〈, 〉M on the manifold

surface M. For any two differential k-forms α and β we introduce the manifold

inner-product

〈α,β〉M =

∫
M
〈α,β〉g dA (4.1.1)

where 〈α,β〉g is the local metric inner-product on k-forms on the manifold. To

compute in practice this inner-product to a high order of accuracy we need to

integrate over the manifold. For this purpose we introduce an approach based on

Lebedev quadratures.

We obtain a quadrature formula having a high level of accuracy for integration

on the radial manifold surface using the manifold metric. We derive surface

quadratures by using a diffeomorphism Φ that transforms the reference sphere

to the radial manifold. This is done by first considering functions f expressible

as a finite combination of spherical harmonics up to the order of accuracy of

the quadrature. These band-limited functions f are integrated exactly by the
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Figure 4.1: Lebedev Quadrature with 5810 nodes. We show on the left the Lebedev quadratures

for integration of functions on a sphere of unit radius. The Lebedev quadrature integrates

exactly all spherical harmonics up to the 131st order [2]. The mapping of the sphere to the

manifold on the right induces a new quadrature weighted by the local manifold metric. While

the induced quadrature is no longer exact for spherical harmonics on the surface it still exhibits

a high level of accuracy. We show by the colors the Gaussian curvature K on the surfaces over

the range −7 to 7.
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Lebedev quadrature with nodes xi and weights wi which we can express using

spherical coordinates as

∫
S2
fdA =

∫ 2π

0

∫ π

0

f sin(φ)dφdθ =
∑
i

fi · wi. (4.1.2)

The integration on the manifold surface M can be expressed using spherical

coordinates as

∫
M
fdA =

∫ 2π

0

∫ π

0

f
√
|g|dφdθ =

∫ 2π

0

∫ π

0

f

√
|g|

sin(φ)
sin(φ)dφdθ =

∫
S2
f

√
|g|

sin(φ)
dA.(4.1.3)

The term sin(φ) vanishes at the poles and must be considered carefully. Since

the metric has been expressed relative to spherical coordinates, we have for radial

manifolds generated by diffeomorphisms that the
√
|g| vanishes at the pole and

even more importantly the ratio
√
|g|/ sin(φ) approaches a finite value in the limit

of approaching a pole. To derive a quadrature on the surface it is useful to give

an alternative view on our derivation of equation 4.1.3 more abstractly without

relying on coordinates. We can pull-back integration to be on the reference sphere

and consider the change of measure for areas that must occur when transforming

from the unit sphere to the radial manifold. The pull-back of the radial manifold

area measure µM to the sphere is always absolutely continuous with respect

to the sphere area measure µS2 . By the Radon-Nikodym Theorem [103], this

allows us to express without reference to coordinates the relationship between
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the integrations as

∫
M
fdµM =

∫
S2
fηdµS2 . (4.1.4)

The η(x) = dµM/µS2 denotes the Radon-Nikodym derivative at x [103]. We

make the correspondence dA = dµM with dA to be understood by context as the

area element on the manifold M. We also make the correspondence dA = dµS2

to be understood by context as the area element on the sphere surface. From

these considerations, we have for any chart of spherical coordinates (θ̄, φ̄) that

∫
M
fdA =

∫
S2
fηdA =

∫
S2
f

√
|ḡ|

sin(φ̄)
dA. (4.1.5)

The first two expressions are coordinate-free whereas the last expression depends

on the chosen spherical coordinates (θ̄, φ̄). Since this correspondence holds for

integration over any smooth subset of the manifold, we have that the Radon-

Nikodym derivative at x can be expressed for any two choices of spherical coor-

dinates (θ, φ) and (θ̃, φ̃) as

η(x) =

√
|g|

sin(φ)
=

√
|g̃|

sin(φ̃)
. (4.1.6)

This shows that the ratio that arises does not depend on the particular choice

of coordinates. This is useful in numerical calculations since we can use coordi-

nate charts so that any location x on the sphere the ratio has a non-vanishing

denominator. We use primarily two coordinate charts throughout our calcula-

tions. The first with the poles along the z-axis (north and south poles) and the
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second with the poles along the x-axis (east and west poles) [6]. We denote these

by (θ, φ) and (θ̃, φ̃). For instance, when the denominator would be too close to

zero for reliable numerical calculation in the first chart, we switch to the second

chart and compute
√
|g̃|/sin(φ) where g̃ is the metric expressed in the other chart

coordinates.

These results give us a way to use a quadrature on the sphere to induce a

quadrature on the manifold surface as

∫
M
fdA =

∑
i

fi · w̄i. (4.1.7)

The induced weights are given by w̄i = η(xi)wi =
√
|g|/sin(φ)wi and nodes zi =

Φ(xi). In the case of Lebedev quadratures and radial manifolds the quadrature

is no longer exact for spherical harmonics. Instead the quadrature is exact for

the collection of functions of the form f = Y/η where Y is a finite combination

of spherical harmonics. In practice, we find that the induced quadrature still

exhibits a high level of accuracy for smooth fields on the radial manifolds we

consider. We use these results to compute the manifold L2-inner-product for the

surface by 〈α,β〉M ≈ 〈α,β〉Q with

〈α,β〉Q =
∑
i

〈α(xi),β(xi)〉g · w̄i. (4.1.8)
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4.2 Validating Our Quadratures on Radial Man-

ifolds

Since in general it is not straight-forward to obtained closed-form analytic so-

lutions for surface integrals on general radial manifolds, we develop a test based

on the Gauss-Bonnet Theorem [4, 3]. Since each of the manifolds have spheri-

cal topology, a consequence of the Gauss-Bonnet Theorem is that the Gaussian

curvature when integrated over the surface must have

∫
M
K(x)dA = 2πχ(M). (4.2.1)

The χ(M) is the Euler Characteristic of the surface [4, 3]. For spherical topology

the Euler Characteristic is χ(M) = 2 requiring for all the radial manifolds that∫
MK(x)dA = 4π. We perform this calculation using our surface quadrature

introduced in equation 4.1.7.

This provides a significant test of a number of components of our calculation.

To obtain the correct final result requires that the Gaussian curvature, metric

factor, and first and second fundamental forms computed in our calculations

properly combine with the Lebedev quadrature to yield the final integral value

of 4π. We show the results of this test for both the oblate and prolate ellipsoidal

manifolds as we vary both r0 and the order of the quadrature in Figure 4.2.

We consider oblate and prolate ellipsoids that can be characterized by a pa-

rameter r0 which controls the shape. In coordinates (x, y, z), the prolate ellipsoid
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Gauss-Bonnet Test Gauss-Bonnet Test

Oblate Prolate
1.25

0.25

2.5

0.5

Figure 4.2: Quadrature on Radial Manifolds. For ellipsoids of oblate and prolate shapes we

test the quadrature by integrating the Gaussian curvature over the manifold and compare the

results with the predictions of the Gauss-Bonnet Theorem [3, 4]. We show the accuracy of

the quadrature as the number of quadrature nodes Q increases and when varying the shape

parameter r0 of the ellipsoid, see equation 4.2.2 and equation 4.2.4. The case r0 = 0 gives a

sphere with the other r0 values giving the shapes as shown in Figure 4.4. We show as insets

the ellipsoids with r0 = 0.4 and the Gaussian curvature distribution on the surface.
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is ’stretched’ along the z-axis while the oblate is stretched equally along both the x

and y directions. The oblate ellipsoid corresponds to (x2 + y2)/(1 + r0)2 +z2 = 1

with

r(θ, φ) =
1 + r0√

(1 + r0)2 sin2(φ) + cos2(φ)
(4.2.2)

K(θ, φ) =
1(

1 + ((1 + r0)2 − 1) · (1+r0)2 cos2(φ)

(1+r0)2 cos2(φ)+sin2(φ)

)2 . (4.2.3)

The prolate ellipsoid corresponds to x2 + yz + z2/(1 + r0)2 = 1 with

r(θ, φ) =
1 + r0√

1 + (((1 + r0)2 − 1) sin2(φ)
(4.2.4)

K(θ, φ) =
(1 + r0)6(

(1 + r0)4 + (1− (1 + r0)2) · (1+r0)2 cos2(φ)

(1+r0)2 sin2(φ)+cos2(φ)

)2 . (4.2.5)

The K denotes the Gaussian curvature and the r is the shape function of the

radial manifold. We vary r0 to obtain different ellipsoidal shapes as shown in

Figure 4.4.

For the oblate and prolate ellipsoids, we see that in each case as the number of

quadrature nodes increases the computed approximation to the integral converges

rapidly to the Euler characteristic of the surface 2πχ(M) = 4π. We further see

that even on the non-spherical manifolds the rate of convergence is super-algebraic

as the number of quadrature points increase. This indicates that despite the

distortions and re-weighting induced by the transformation of Lebedev nodes the

radial manifold quadrature still retains a high level of accuracy, see Figure 4.2.

We perform further investigation of the quadrature methods on two radial

manifolds having the more complicated shapes of Manifold B and Manifold C
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Gauss-Bonnet Test (Manifold B) Gauss-Bonnet Test (Manifold C)

Q

Manifold B

+3

3-

0

Gaussian
Curvature

Manifold C

+3

3-

0

Gaussian
Curvature

Figure 4.3: Quadrature on Radial Manifolds. We test our quadratures by integrating the

Gaussian curvature on the manifold and comparing with the predictions of the Gauss-Bonnet

Theorem [3, 4]. We show the relative errors as the number of quadrature points Q increases

in the case of r0 = 0.3 for the manifolds B and C given by equation 5.1.1. Since the Gaussian

curvature is not known analytically in advance for these manifolds the test also validates the

geometric approximations made in our numerical methods.
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shown in Figure 4.3 and Figure 5.1. For these shapes, the Gaussian curvature on

the surface is not known analytically in advance. These tests provide a stronger

test and validation than just the quadratures since contributions from errors

arise also from the geometric approximations made by our numerical methods

discussed in Section 3.1. Our results for these tests are shown in Figure 4.3.

We find that while the combined sources of approximation yield larger errors

we can still obtain overall small errors with a sufficient number of quadrature

nodes. The Manifold C shape has a few regions of especially large Gaussian

curvatures which provides a useful challenge for the numerical methods. We

find that once the spherical harmonic basis captures sufficiently these features of

the geometry the quadrature then converges rapidly. In summary, we find that

given a sufficient number of quadrature nodes we can use our extended Lebedev

quadratures of equation 4.1.7 to obtain accurate integration on radial manifolds.

4.3 Creating a Stiffness Matrix for the Weak

Stokes Equation

We develop spectral numerical methods based on Galerkin approximation [141].

Our approach uses hyperinterpolation of functions for L2-projection to spherical

harmonics based on Lebedev quadrature [2, 125]. We consider for radial mani-
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folds the partial differential equations of the form

Lu = g. (4.3.1)

We consider L that are linear operators that take k-forms to m-forms. We take

g to be a general m-form not to be confused with the metric tensor g discussed

in Section 3.1. Typical differential operators L encountered in practice include

operators that arise from composition of the exterior derivative d and Hodge

star ?. This includes the Laplace-Beltrami operator ∆LB = −δ1d0 which takes

0-forms to 0-forms and the Hodge Laplacian ∆H = δ2d1 + d0δ1 which takes 1-

forms to 1-forms. The subscripts here indicate the order of differential form upon

which the operators act.

To obtain numeric methods for equation 4.3.1, we consider Galerkin approx-

imations based on the weak formulation

〈Lu,ψ〉 = 〈g,ψ〉 . (4.3.2)

Here the ψ are test differential m-forms. We take the inner-product 〈·〉 = 〈·〉M

to be the manifold metric associated inner-product on m-forms defined in equa-

tion 2.1.3. We denote the corresponding Hilbert space of square integrable dif-

ferential m-forms as Λ2
m(M) [103, 79]. Central to our approximation is a choice

of the finite dimensional subspace of Λ2
m(M). We use for our solution space

the finite subspace of differential forms ψ that are dual to finite spherical har-

monic expansions. In particular, we consider test m-forms that correspond to
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the surface viewed as a submanifold of the ambient space. This allows in nu-

merical calculations a way to more readily obtain global test m-forms ψ. We

take for given coordinates of the ambient space the test m-forms to be those

forms that can be expressed using a finite spherical harmonics expansion of the

form ψ = ψi1...ikdx
i1 ∧ . . . ∧ dxik with each component having finite expansion

ψi1...ik =
∑
ψ̂

(`)
ik
Y` where ik ∈ {1, 2, 3} and Y` is a spherical harmonic mode. We

expand using spherical harmonics up to order bL/2c since we take our quadra-

tures up to order L. We remark that this general approach reduces to a finite

spherical harmonics expansions of functions in the case of 0-forms.

We compute numerical approximations of the inner-products on the manifold

surface, using our surface-induced quadratures to obtain

〈Lū,ψ〉Q = 〈ḡ,ψ〉Q . (4.3.3)

When the manifold is a sphere the quadrature exactly computes the manifold

inner-product when taken up to order L. In the case of the more general radial

manifolds the quadrature introduces some additional source of errors in the calcu-

lation. Also in practice the operators L considered often have significant depen-

dence on geometric features of the manifold. We use throughout an isogeometric

approach with the manifold shape represented as a finite spherical harmonics

expansion of order L. For radial manifolds this corresponds to an expansion of

the function r(θ, φ) and then computing related geometric quantities using the

formulas from Section 3.2.1 to compute derivatives of the spherical harmonics.
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Given these approximations we obtain the final linear system of equations for û

Lû = M ĝ. (4.3.4)

The û and ĝ denote the collection of coefficients in the expansions of ū and ḡ.

The L denotes the stiffness matrix and M denotes the mass matrix [141].

We mention that this weak-form associated with the manifold metric offers

some particular conveniences when L is a differential operator that can be written

as a composition of exterior calculus operators. This allows for natural use to

be made of the adjoint operators to lower the differential order of the equations

as is typically done in the Euclidean setting by use of integration by parts. For

instance, for the Laplace-Beltrami operator we have 〈δdu, ψ〉 = 〈du,dψ〉 by using

the adjoint property of d and δ given in equation 2.1.9. A similar approach can

be carried out for other operators.

We develop numerical methods using Galerkin approximation for the hydro-

dynamic equations we formulated in Section 2.5 for curved fluid interfaces. We

consider how to approximate equation 2.6.4 using the corresponding weak formu-

lation. We then discuss some details of how we handle the different terms. We

first give general expressions for the terms in equation 4.3.4 and then discuss how

these expressions are approximated numerically.

We showed that for incompressible fluids on a surface governed by equa-

tion 2.5.3 the Hodge decomposition of equation 2.6.1 could be used to obtain

equation 2.6.4. This allows us to express the fluid velocity in terms of a vector
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potential Φ. For a force density b driving the fluid and using the generalized curl,

we have Ξ = ?db[ = −curlM(b[) which gives the RHS term of equation 2.6.4.

We represent these fields on the radial manifold numerically using truncations of

the spherical harmonics expansions

Φ =
∑
`

Φ̂Y`, Ξ =
∑
`

Ξ̂Y`. (4.3.5)

We use the orthogonality and normalization of the spherical harmonics discussed

in Section 3.2.1. We compute the differential operators using the expressions in

Section 2.3 and 3.1. In the case we are given the force density b[ we can construct

the term M ĝ in equation 4.3.4 by computing

[M ĝ]i = 〈Ξ, Yi〉M = −〈− ? db[, Yi〉M. (4.3.6)

In the case when we instead are given Ξ or the expansion coefficients of Ξ̂, we

alternatively compute the product M ĝ from

[ĝ]i = Ξ̂ (4.3.7)

[M ]ij = 〈Yj, Yi〉M. (4.3.8)

The stiffness tensor L for the Stokes equations can be expressed in terms of our

surface Laplacian ∆̄ in equation 2.6.4 as

Lij =
〈(
µm∆̄2 − γ∆̄ + 2µm (− ? d(K(− ? d)))

)
Yi, Yj

〉
M

= Ãij + B̃ij + C̃ij.(4.3.9)

In this notation, we have ∆̄ = −δd, Ãij = µm
〈
∆̄2Yi, Yj

〉
M, B̃ij = −γ

〈
∆̄Yi, Yj

〉
M,

C̃ij = 2µm 〈(?d(K(?d)))Yi, Yj〉. In our numerical calculations, we prefer to avoid
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carrying around the sign and use the equivalent formulation in terms of the

Hodge-Laplacian ∆H = δd = −∆̄ as

Lij =
〈(
µm∆2

H + γ∆H + 2µm (− ? d(K(− ? d)))
)
Yi, Yj

〉
M = Aij +Bij + Cij.(4.3.10)

In this notation, we have Aij = µm 〈∆2
HYi, Yj〉M, Bij = γ 〈∆HYi, Yj〉M, Cij =

2µm 〈(?d(K(?d)))Yi, Yj〉.

As shown in Equation 2.1.9, the exterior calculus has the convenient property

of allowing us to identify readily adjoint operators and perform calculations in

a manner similar to integration by parts done in the Euclidean setting. We

make use of the adjoint relationship between the exterior derivative operator d

and co-differential operator δ which gives 〈δu, v〉 = 〈u,dv〉. Using these adjoint

properties allows us to express the stiffness tensor as

Lij = Aij +Bij + Cij (4.3.11)

Aij = µm 〈∆HYj,∆HYi〉M (4.3.12)

Bij = γ 〈dYj,dYi〉M (4.3.13)

Cij = −2µm 〈K(− ? d)Yi, (− ? d)Yj〉M . (4.3.14)

This formulation for the stiffness matrix L is similar to expressions obtained in

the Euclidean setting by use of integration by parts [141]. An advantage of this

weak form for the stiffness matrix is that the order of differentiation has now been

reduced to order two. This weak form allows us in equation 4.3.12 to replace eval-
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uation of the bi-harmonic operator ∆2
H in equation 2.6.4 with the computation of

the Hodge-Laplacian operator ∆H two times without composition. The exterior

calculus adjoint relationships are particularly useful for Cij where we see that

we can avoid the need to take a derivative of the Gaussian curvature K on the

surface, see equation 4.3.14.

We use these expressions for the stiffness matrix to obtain L̃ by approximating

each of the manifold inner-products 〈·, ·〉M by 〈·, ·〉Q using our induced Lebedev

quadratures. Computing the stiffness tensor components L̃ij then is reduced to

computing accurate local approximations of the Hodge-Laplacian operator ∆H =

δd, exterior derivative operator d, and the generalized curl operator curlM =

−?d. This is done by using our spherical harmonics representation of the surface

and applying in real-space the evaluation of these operators at the quadrature

points to evaluate the needed inner-products. In this manner we obtain the terms

of equations 4.3.11– 4.3.14 needed to formulate equation 4.3.4. This allows us to

approximate numerically solutions of equation 2.6.4 which govern hydrodynamic

flows on the surface.
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4.4 Validating Spectral Convergence of our Stokes

Solver on Radial Manifolds

For manifolds there are few analytically known solutions against which we can

compare the results of our solver. To address this issue, we construct reference

solutions on the manifold using the method of manufactured solutions [142, 143].

In the manifold setting we have additional challenges since even computing the

action of the differential operators involves non-trivial dependencies on the geom-

etry of the surface. We show how to handle these issues in the case of ellipsoids

having prolate and oblate shapes to obtain reference solutions with high precision

against which we can compare the results of our hydrodynamics solver.

We use the method of manufactured solutions in the hydrodynamics setting

by specifying a velocity potential Φ̄. We make a choice for the right-hand side

(RHS) force density term ?db[ so that in equation 2.6.4 we would obtain as

the solution our specified Φ̄. To obtain the RHS data with high precision on

ellipsoids we evaluate the differential operators on the left-hand-side (LHS) of

equation 2.6.4 using symbolic computations [144]. We then use the RHS data for

our numerical methods to solve the hydrodynamic equations 2.6.4 and compare

our numerical results Φ̃ and ṽ with the known solutions Φ̄ and v̄] =
(
− ? dΦ̄

)]
.

Ellipsoids provide good test manifolds for our methods since they have a level

of geometric richness, such as heterogeneous Gaussian curvature, while remaining
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tractable for symbolic computations. Also for ellipsoids, we have explicit expres-

sions for many of the intermediate terms, such as the Gaussian curvature, which

vary over the surface. The final expressions for the action of the operators can

still result in rather large symbolic expressions but ultimately these can be eval-

uated accurately. We use the symbolic computational package [144] to evaluate

the LHS of equation 2.6.4 throughout our calculations. We obtain with high pre-

cision the data needed for the method of manufactured solutions by evaluating

LΦ̄ to obtain

RHS Data = ?db[ = LΦ̄. (4.4.1)

The L denotes the differential operator that appears on the LHS of equation 2.6.4.

We mention that this would correspond to the surface force density b[ = (δd)−1(−?

d)LΦ̄ in equation 2.5.3.

We consider hydrodynamic flows with velocity fields generated by the vector

potential

Φ(x) =
exp(z)

(4− x)(4− y)
. (4.4.2)

Note that we use the ambient space coordinates x = (x, y, z) to avoid issues with

surface coordinates that for spherical topologies would require multiple coordinate

charts to describe the function on the entire surface.

We solve the hydrodynamic equations 2.6.4 using our numerical solver. We

investigate how the hydrodynamics solver performs as we refine the approxima-

tion by increasing the number of spherical harmonics. We also investigate how
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the convergence behaves when we vary the shape of the manifold. We do this

for ellipsoids having the prolate and oblate shapes given by equation 4.2.2 and

equation 4.2.4 as shown in Figure 4.4.

Hydrodynamic Flow on EllipsoidsEllipsoidal Shapes
Oblates

Prolates

Oblate r0=0.4

r0

r0

0.0 0.40.1 0.2 0.3

0.0 0.40.1 0.2 0.3 Prolate r0=0.4

Figure 4.4: Hydrodynamic Flow on Ellipsoids. We show on the left the ellipsoid shapes in

the oblate and prolate cases from equation 4.2.2 and 4.2.2 as r0 is varied. We use these

shapes for computing hydrodynamic flows driven by the surface force density in equation 4.4.1

corresponding to the vector potential of equation 4.4.2. We investigate the accuracy of the

hydrodynamics solver as the number of spherical harmonics increases and the shape is varied.

We show on the right the hydrodynamics flows corresponding to equation 4.4.2 in the case of

the oblate and prolate when r0 = 0.4.

We investigate as r0 is varied the relative errors εr = ‖ũ − u‖/‖u∗‖ where u

is the reference solution and ũ the numerical solution. We consider both the L2-

norm and H1-norm of the vector potential Φ, and the L2-norm of the velocity field

v. We use on the manifold surface the L2-norm given by ‖α‖2 = 〈α,α〉M where

α is a k-form and the H1-norm is given by ‖Φ‖H1 = 〈Φ,Φ〉M+ 〈dΦ,dΦ〉M. The

convergence results for the numerical solver for hydrodynamics of ellipsoids when
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increasing the resolution of spherical harmonics and when the geometry is varied

are given for the oblate case in Figure 4.5 and the prolate case in Figure 4.6.

Potential H1 VelocityPotential

Figure 4.5: Convergence of the Stokes Flow for Oblate Ellipsoids. We show the relative errors

of the L2-norm of the potential, H1-norm of the potential, and L2-norm of the velocity. The

results show how the error behaves as we increase the number of quadrature nodes Q and

number of spherical harmonics. We use spherical harmonics up to degree bL/2c where L is

the largest exact order of the corresponding Lebedev quadrature with Q nodes. We also show

how convergence depends on the shape as r0 is varied. We find in each case super-algebraic

convergence of the hydrodynamic solver. For additional discussions can also see [5].

From the convergence results in Figure 4.5 and 4.6, we find in all cases that

the hydrodynamics solver exhibits super-algebraic rates of convergence. We see

the numerical solver can handle shapes that deviate significantly from the sphere.

For these shapes the differential operators of the hydrodynamic equations involve

more complicated contributions from the geometry. As the shapes become more

pronounced we find somewhat slower convergence relative to the sphere case. We

find that for the sphere case we can capture the solution almost up to round-off

error after which the errors no longer decrease. This occurs around 434 quadra-
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ture points which exactly integrates spherical harmonics up to degree 35 in the

absence of round-off errors.

We mention that the convergence results of the velocity is especially indica-

tive of our methods successfully capturing accurately geometric contributions.

To obtain the solution Φ to the hydrodynamics equations 2.6.4, this requires

computing accurately the geometric contributions in the differential operators.

This includes sources of errors contributing from the Laplace-Beltrami operator,

terms involving the Gaussian curvature, and also quadrature on the surface using

equation 4.1.7. To compute the fluid velocity field v, this also requires comput-

ing operators with geometric contributions such as the generalized curl involving

Potential Potential H1 Velocity

Figure 4.6: Convergence of the Stokes Flow for Prolate Ellipsoids. We show the relative errors

of the L2-norm of the potential, H1-norm of the potential, and L2-norm of the velocity. The

results show how the error behaves as we increase the number of quadrature nodes Q and

number of spherical harmonics. We use spherical harmonics up to degree bL/2c where L is

the largest exact order of the corresponding Lebedev quadrature with Q nodes. We also show

how convergence depends on the shape as r0 is varied. We find in each case super-algebraic

convergence of the hydrodynamic solver. For additional discussions can also see [5].
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a combination of the Hodge star and exterior derivative to recover from Φ the

velocity v.

We notice in the results that the H1 relative errors and the velocity L2 rela-

tive errors are seen to be in close agreement. This agrees with what one would

intuitively expect given the close relationship between dΦ and v. This pro-

vides another test of the accuracy of our numerical Hodge star ? operator since

v[ = − ? dΦ.

In summary, our numerical results indicate our solver provides a convergent

approximation with a super-algebraic order of accuracy for surface hydrodynam-

ics on smooth radial manifolds. Additional discussions and details can also be

found in [8, 5].
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Chapter 5

Stokes Responses Under Varying
Geometries

As a demonstration of our methods, we show how our approach can be used

to investigate the dependence of hydrodynamic flow responses on the geome-

try. We compute flow responses motivated by particles immersed within a fluid

interface and how they would move and interact through the interfacial hydrody-

namic coupling. This arises in many physical settings such as the motions of pro-

teins within lipid bilayer membranes [14, 17, 15] and recent interface-embedded

colloidal systems [18, 19, 20, 22, 21]. We capture the fluid-structure coupling

building on our recently introduced extended immersed boundary methods for

manifolds in [6, 145]. While we focus here primarily on hydrodynamic flow re-

sponses, we mention that our solver could also be used as the basis for drift-

diffusion simulations of microstructures on radial manifolds using our fluctuating

hydrodynamics approaches [146, 147, 148, 6].
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5.1 Experiments of Stokes Responses on Radial

Manifolds

We consider the case of three particles subject to force when immersed within

curved fluid interfaces having the shapes in Figure 5.1. We generate a force den-

sity on the surface using our extended immersed boundary methods for manifolds

introduced in [6]. In the reference spherical shape, the particles are configured at

the locations x1 = (−1, 0, 0), x2 = (1, 0, 0), x3 = (0,−1, 0) with each subjected to

the force F = (0, 0, 1). For each radial manifold shape we use the push-forward

of the three locations x1,x2,x3 and apply force using F projected in the tangen-

tial direction of the surface and normalized to maintain a unit force magnitude

for all shapes. We spread forces over the length-scale 0.1 on the surface using

our extended immersed boundary method discussed in [6]. We show the particle

configuration, force density, and hydrodynamic flow response on the sphere in

Figure 5.2.

We remark that throughout our numerical calculations we allow for a net

total force FT or torque τT acting on the manifold which physically could drive

rotational and translational rigid body motions of the entire interface within the

surrounding fluid. We resolve explicitly the tangential contributions of the rigid-

body motions with our numerical solver, and treat implicitly the non-tangential
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contributions. Of course the flow field in other reference frames can be recovered

by adding the non-tangent v0 velocity field at each location on the surface.

We consider the radial manifold shapes shown in Figure 5.1. These shapes

are generated by the radial functions r(θ, φ). For Manifold A which is a sphere

we have r(θ, φ) = 1.0. For Manifold B and C we use

r(θ, φ) = 1 + r0 sin(3φ) cos(θ) (Manifold B), r(θ, φ) = 1 + r0 sin(7φ) cos(θ) (Manifold C).(5.1.1)

+3

3-

0

Gaussian
Curvature

Manifold A Manifold B Manifold C

Figure 5.1: Radial Manifold Shapes. We consider hydrodynamic flows on manifolds with shapes

ranging from the sphere to the more complicated geometries generated by equation 5.1.1. We

show with colors the Gaussian curvature of the shapes. We take Manifold A to be a sphere

of radius R = 1.0. We show Manifold B with r0 = 0.4 and Manifold C with r0 = 0.4 in

equation 5.1.1.

We demonstrate how the solver captures geometric effects when varying shapes

transitioning from a sphere to either Manifold B or Manifold C. Since our mani-

folds are always compact with spherical topology, we have from the Poincare-Hopf

Theorem that our surface flows must have singularities [81, 3]. We consider hy-

drodynamic flow responses on shapes when changing the amplitude r0 in the
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range 0.0 to 0.4 in equation 5.1.1. We find for shapes having a relatively homo-

geneous curvature close to a sphere that the flows are observed to recirculate the

interfacial fluid globally with just two vortices as in Figure 5.2. Interestingly, as

the shapes become more complicated with heterogeneous positive and negative

curvatures we see that the flow responses are observed to undergo quantitative

changes and a topological transition exhibiting the creation of new vortices and

saddle-point stagnation points as seen in Figure 5.3. This appears to arise from

the hydrodynamic flow recirculating fluid more locally and from rigid-body ro-

tational motions of the interface, which we discuss more below. To investigate

this further, we characterize the hydrodynamics and contributions of geometry

by quantifying the dissipation rates associated with flows on curved surfaces.

5.2 Variational Formulation of Stokes Equation

Stokes hydrodynamics can be viewed as solving a variational principle through

the Helmholtz Minimum Dissipation Theorem [117, 149]. This corresponds to the

flow minimizing the Rayleigh-Dissipation in the space of solenoidal velocity fields

subject to boundary or auxiliary conditions [150]. We generalize this result and

the Rayleigh-Dissipation rate to obtain a variational principle Q[v[] for the Stokes

hydrodynamics equation 2.5.3 for curved fluid surfaces. This can be expressed
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using the exterior calculus as

inf
v

Q[v[], where (5.2.1)

Q[v[] = RD[v[]− F[v[] (5.2.2)

RD[v[] = µm〈dv[,dv[〉M − 2µm〈Kv[,v[〉M + γ〈v[,v[〉M (5.2.3)

F[v[] = 〈b[,v[〉M. (5.2.4)

Here the minimization in v[ is constrained to be over smooth solenoidal vector

fields on the surface in the sense −δv[ = 0 and v[ ∈ H2(M) [103, 116]. For

the given fluid constitutive laws, the Rayleigh-Dissipation term RD[v[] of equa-

tion 5.2.3 gives the rate at which the fluid is doing work when flowing according to

the velocity field v[. The term F of equation 5.2.4 corresponds to the work done

by the external body forces acting to drive the fluid. We derived equation 5.2.2

by taking the manifold inner product of v[ with both sides using equation 2.5.3.

Central to our derivation is use of the adjoint property of the exterior derivative d

with the co-differential δ in the sense of equation 2.1.9. It can be shown that the

solution of the Stokes equations 2.5.3 minimizes equation 5.2.2 over all velocity

fields subject to the incompressibility constraint −δv[ = 0. Taking variational

derivatives of equation 5.2.2 it readily follows that the Stokes equations 2.5.3 are

recovered as the Euler-Lagrange equations of the variational problem given in

equation 5.2.1 [150]. The constraints when handled by the method of Lagrange

multipliers [150] gives the pressure term in equations 2.5.3.
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The variational principle in equation 5.2.2 provides a useful way to view the

hydrodynamic flows as arising from competing physical effects. For steady flows

there is a balance between the work done by an external body force with the

dissipation from the solvent drag and the dissipation from the internal shearing

motions of the fluid. We see the dissipation from shearing motions can be split

into two parts. The first term in equation 5.2.3 is equivalent to µm〈dv[,dv[〉M =

µm〈− ? dv[,− ? dv[〉M = µm〈curlMv[, curlMv[〉M = µm‖curlMv[‖2
M. This cor-

responds to creation of vorticity ω = curlMv[ within the fluid.

The second term involves the Gaussian curvature K which depending on the

sign either penalizes or promotes relative to the flat case changes in the magnitude

of the fluid velocity. Since these two terms arise from the shearing motions of

the fluid material in the ambient space they have a strong relationship through

the surface geometry. For regions having the same vorticity distribution ω the

curvature weighted term shows that regions with positive Gaussian curvature

have a smaller rate of dissipation relative to regions having negative Gaussian

curvature. We see that unlike the flat case the local curvature of the surface

requires the fluid to flow with a momentum in the ambient space that must

change locally in direction to remain within the surface. As a consequence, we

see for surface constrained flows the geometry can result in additional sources of

shearing motions and dissipation.
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The third term corresponds to dissipation from drag of the surface fluid with

the surrounding solvent fluid depending in this case only on the total manifold L2-

norm of the flow. The term F[v[] associated with equation 5.2.4 corresponds to

the applied body force and penalizes the flow when it is not aligned with the force

density b. We see that expressing the Rayleigh-Dissipation with exterior calculus

and splitting into these distinct terms starts to reveal some of the interesting ways

hydrodynamic responses can depend on the geometry of the surface.

Hydrodynamic FlowApplied Force

Immersed 
Boundary Coupling

Figure 5.2: Structure of the hydrodynamic flow. We consider the case of three particles im-

mersed within an interface of spherical shape and subjected to force. We generate a force

density on the surface using the extended immersed boundary method for manifolds we in-

troduced in [6]. The particles are configured at the locations x1 = (−1, 0, 0), x2 = (1, 0, 0),

x3 = (0,−1, 0), and each subjected to the force F = (0, 0, 1). We show in the left panel the

immersed boundary approach for fluid-particle coupling on manifolds [6] and range of spreading

around each particle used to obtain a force density on the surface. We show in the right panel

the hydrodynamic flow response. The flow exhibits two two vortices and global recirculation of

the fluid. We visualize the streamlines of the hydrodynamics flows using Line Integral Convo-

lution (LIC) [7]. Hydrodynamic results are for the case with µ = 0.1,γ = 0.1 and Q = 5810 [8].
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5.3 Dissipation of Stokes Flows Under Varying

Geometries

We compute the dissipation rates for hydrodynamic flow responses for the

geometries ranging from the sphere to Manifold B and C when varying r0 in the

range 0.0 to 0.4 in equation 5.1.1. We show the final shapes in Figure 4.1. As a

basis for comparison for investigating the role of the geometry we consider both

the Stokes hydrodynamic response v obtained from our solver for equation 2.5.3

and the flow obtained from the push-forward of the flow v̂ from the sphere to

the surface geometry ṽ = φ∗v̂. The φ denotes the radial mapping from the

sphere to the surface geometry and φ∗ the associated push-forward [80]. We

show our results for the dissipation rates for hydrodynamic flow responses v and

push-forward flows ṽ in Figure 5.5.

We find as we transition from the sphere to Manifold B and C with the shapes

becoming more heterogeneously curved the dissipation rates for the Stokes flow

is significantly smaller than the push-forward flow ṽ. The differences become

especially large after the Stokes flows exhibit the topological transition with the

emergence of new vortices and saddle-points as seen in Figure 5.3. We see as

the geometry is varied in the range of r0 around the topological transitions the

Rayleigh-Dissipation appears to remain relatively constant in both cases in Fig-

ure 5.5. This seems to indicate that changes in the flow can accommodate to

88



some extent changes in the geometry to avoid the otherwise increases in dis-

sipation that would have occurred within the fluid interface if remaining with

the flow structure associated with the sphere case. We show the flow responses

and relation to geometry in more detail in the plots of Figure 5.4. The geom-

etry appears to promote for both Manifold B and C a recirculation of the fluid

more locally to regions of positive Gaussian curvature possibly at the expense

of creating some additional local vorticity in the fluid flow, see Figure 5.3 and

Figure 5.4. We also emphasize that the quantitative and topological changes can

also in part be explained by the generation from the forces acting on the fluid

interface body that result in a rigid-body rotational motion. We see that in the

case of the sphere we can obtain similar locally re-circulating flows when viewed

in the moving reference-frame of the rotating fluid interface.

In our numerical results for Manifold B and C, we see that our geometries can

exhibit elongated regions of positive Gaussian curvature surrounded by regions

of negative Gaussian curvature. This is especially prominent for Manifold C as

seen in Figure 4.1 and 5.4. The role of the negative Gaussian curvature term in

equation 5.2.3 indicates that dissipation rates can increase relative to regions of

positive curvature. This could potentially explain the preference of the fluid to

recirculate more locally to avoid having to flow through regions of negative cur-

vature. Related to our findings, there has also been some related work concerning

fluid dissipation in the case of perturbations from a flat sheet, as arise in planar
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Manifold B Manifold C

vortices
saddle
points

applied 
force

Figure 5.3: Structure of the Hydrodynamic Flow. We show for Manifold B and C the hydro-

dynamic flow responses for a localized unit force applied in the tangential direction to particles

on the surface at the push-forward of the locations discussed in Figure 5.2. We visualize the

streamlines using Line Integral Convolution (LIC) [7]. The flow responses exhibit eight critical

points corresponding to six vortices and four saddle points. The vortices are marked with red

points and the saddle points with cyan points. We sketch approximate separatrices for each of

the saddle points. For these surfaces the hydrodynamic flows appear to exhibit structures that

favor more localized recirculation of the fluid relative to the responses seen for the sphere in

Figure 5.2 [8].
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soap films, which were recently reported in [104]. These authors also find that

curvature-induced dissipation can amplify dissipation and affect structure of the

hydrodynamic flow. In our work we see even further phenomena with observed

topological transitions in the structure of the hydrodynamic flow response.

5.4 The Role of Rigid-Body Rotations in Stokes

Responses

We show that changes in the observed hydrodynamic responses can in part

be explained by the rigid-body rotational motions induced by the non-torque

balance force acting on the fluid interface seen in the ambient space reference

frame. When a force is applied the fluid interface responds with a combination

of localized internal flows and global rigid-body rotation.

Note, that for the purposes of this discussion we define rigid-body rotations

as the projection of the canonical rigid-body rotational field into the tangent

space. Since true rigid-body rotations of tangent vector fields can only occur

on axially-symetric manifolds (such as the sphere or ellipsoids), our discussion

generally refers to the latter definition. The key difference between these being

that true rigid-body rotational flows are shear-free in our equations, while in the

non-axial symetric case the shear of the flow is only minimized.
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We show the hydrodynamic velocity field in the moving reference frame counter-

rotated by the rigid-body rotational motions. We see in the case of the sphere

we have similar vortices and saddle points when observed in the moving reference

frame. In either reference frame, we find the hydrodynamic flow responses favor

quantitatively more localized re-circulation of fluid.

The trade-off between these global and local responses is governed by the

traction stress with the surrounding bulk fluid. In equation 2.5.3, we used a

basic drag model with traction stress τ f = −γv. For a fully hydrodynamic

approach, which would require a solver for the bulk fluid flow, the traction stress

would be τ f = µf
(
∇v +∇vT

)
· n. We can relate these parameters for the

purpose of obtaining scaling relations by µf ∼ γ`f , where `f is a characteristic

length-scale associated with variations in the flow field. We can characterize the

expected relative strength of the external traction stress with the internal shear

stresses of the interface by the Saffman-Delbrück (SD) length ratio L/R [6, 16].

The SD ratio characterizes the length-scale over which the interfacial flow field

varies in response to a point force, where L = µm/2µf ∼ µm/2γ`f and R is

the effective radius of the manifold [6]. These considerations suggest that when

L/R � 1 the external traction stress τ f becomes large relative to the internal

shear stresses and the hydrodynamic responses avoid rigid rotations and prefer

instead to have flows that are more localized within the fluid interface. When

L/R� 1, the external traction stress τ f becomes small relative to internal shear
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Topological Transitions in Flow Structure

Manifold B

Manifold C

Velocity 
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Figure 5.4: Topological Transitions in the Flow Structure. As the shapes of the manifolds

deviate more from the sphere the velocity field of the hydrodynamic flow undergoes a topological

transition with the creation of new vortices and saddle-points. The topological structures

appear to correspond with the flow reorganizing to recirculate fluid in a more localized manner

relative to the global recirculation seen on the sphere. This is especially pronounced in the

elongated geometries that form for the Manifold C shapes. We show configurations for Manifold

B and Manifold C when r0 = 0.0, 0.15, 0.25, 0.4 in equation 5.1.1. We quantify the Rayleigh-

Dissipation associated with each of these flows in Figure 5.5.93



Rayleigh-Dissipation (Manifold B)

Push-Forward

Stokes Flow

Rayleigh-Dissipation (Manifold C)

Push-Forward

Stokes Flow

Figure 5.5: Rayleigh-Dissipation Rates of Hydrodynamic Flows. Hydrodynamic flows v on

surfaces are obtained by solving the Stokes equations 2.5.3 as r0 is varied. We take µm = 0.1

and γ = 0.1 for the manifolds in Figure 5.1. RD rates for v are shown as solid curves. For

comparison we consider the rates obtained from the velocity field v̂ of flow on the sphere

(case r0 = 0) obtained by the pushed-forward ṽ = φ∗v̂ to the manifold shape with given r0.

RD rates for ṽ are shown as dotted curves. We find that as the geometry deviates from the

sphere the rates for the Stokes flow on the manifold become significantly smaller than the push-

forward flow fields from the sphere. We find the two cases begin to diverge significantly in the

regime where the velocity field transitions topologically with the addition of new vortices and

saddle-point stagnation points as in Figure 5.3. This transition occurs for Manifold B around

r∗0 = 0.105 and for Manifold C around r∗0 = 0.085 (vertical dashed line). These results indicate

some of the ways that surface geometry can contribute to dissipation rates and hydrodynamic

flow responses [8].
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stresses and the hydrodynamic responses prefer now to rotate the entire interface

rigidly within the bulk fluid with relatively less internal hydrodynamic flows that

would result in intra-interfacial shear stresses.

We investigate hydrodynamic responses by performing a study that finds for

each hydrodynamic flow the best approximating rigid-body rotational motion

and then look at the counter-rotated velocity so the rotational motion can be

subtracted from the hydrodynamic velocity field. This conversion of the velocity

corresponds to making observations in a moving reference frame that rotates in

agreement with the rigid rotational motion of the fluid interface. We show the

flows in this moving reference frame for the spherical case (Manifold A) and

Manifold B and Manifold C in Figure 5.6.

We find the rigid-body rotational motion when subtracted from the hydrody-

namic response results within the interface in a localize flow pattern for the sphere

case (Manifold A), see right-panel of Figure 5.6. We see this counter-rotation has

less of a qualitative impact on the hydrodynamic responses for Manifold B and

C. This in part arises since the complex shapes have larger surface area and thus

larger external traction stresses that further inhibit rigid-body rotational motions

relative to internal flows. These results have important implications for how the

hydrodynamic flow fields are to be interpreted depending on the circumstances

and reference-frame of interest in a given problem or application. When consid-

ering internal mixing or transport within the hydrodynamic interface itself, or
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Figure 5.6: Counter-Rotated Hydrodynamic Flows. We consider the case of three particles

configured at the locations x1 = (−1, 0, 0), x2 = (1, 0, 0), x3 = (0,−1, 0) embedded within an

interface and subjected to force F = (0, 0, 1) for the sphere and tangent for the other manifolds.

We use our extended immersed boundary method for manifolds we introduced in [6]. In the

left panel, we show the hydrodynamic responses for µ = 0.1,γ = 0.1 and Q = 5810. In the

middle panel, we show the rotational field that best counters the rigid-body rotation of the

fluid interface. In the right panel, we have combining the velocity fields to arrive at a counter-

rotated velocity field that would be observed in the moving reference frame. We visualize the

streamlines of the hydrodynamics flows using Line Integral Convolution (LIC) [7].
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when the interface is immobilized to prevent it from rotating, the interpretation

in the reference-frame associated with the rigid-body rotational motion of the

fluid interface may be the most appropriate. When considering laboratory mea-

surements or how outside entities in the bulk fluid, such as particles or polymers,

interact with the moving interface the rotational motions may play a significant

role and the reference frame in the ambient space may be most appropriate. Our

numerical solvers can be utilized in either of these cases to resolve the hydro-

dynamic flow responses. As we see from Figure 5.6, these rigid-body rotational

motions can in part account for the quantitative and topological transitions in

stream-lines exhibited from the perspective of the ambient space reference-frame.

These results show for compact geometries the importance of considering the role

of the rigid-body rotational motions in flow responses captured by our solvers and

in the mechanics of the interfacial hydrodynamics. Additional discussions and

details can also be found in [8, 6].

5.5 Implications of Our Experiments

These results indicate some of the rich mechanics and related phenomena

captured by our solver that can arise when going beyond the often considered

setting of infinite fluid sheets to instead consider hydrodynamic flows confined

within compact geometries.
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The numerical results we have present here to demonstrate our hydrodynamics

solver indicate some of the rich ways geometry could have implications for hydro-

dynamic coupling and possible kinetic consequences for the motions of inclusion

particles immersed in curved fluid interfaces. Further investigations also could be

performed readily into the role of geometry in surface hydrodynamic phenomena

using our introduced solver. We also mention that our solver can be used as the

basis for developing extended immersed boundary methods for manifolds [6] and

drift-diffusion simulations of particles and microstructures within curved fluid

interfaces building on our fluctuating hydrodynamics approaches [146, 147, 6].

These approaches could be useful in computing interfacial mobilities and surface

kinetics for many systems, such as proteins within curved lipid bilayer mem-

branes, polymeric networks in cell biology like the spectrin network of the red-

blood cell, or self-assembly for colloidal systems immersed in fluid interfaces. We

also expect many of the underlying ideas used in our solver could be used to

develop solvers for other PDEs on radial manifolds.
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Chapter 6

Generalized Moving Least
Squares for Discretizing Surface
PDEs

6.1 Generalized Moving Least Squares (GMLS)

We use a Generalized Moving Least Squares (GMLS) approach for approxi-

mating partial differential equations on manifolds to approximate hydrodynamic

flow responses as in our recent work [9]. GMLS is a non-parametric functional

regression technique to construct approximations of functionals from scattered

samples of an underlying field by solving local least-square problems [98]. Con-

sider a function u from a Banach space V. We assume that u is characterized

by a scattered collection of sampling functionals Λ(u) := {λj(u)}Nj=1 ⊂ V
∗, where

V∗ is the dual of V. For the purposes of this work, we will sample from point

functionals, i.e. λi(u) = δxi ◦ u. We thus may associate with the collection of

samples the point cloud Xh := {xj}Nj=1. We further assume that Xh ⊂ Ω ⊂ Rd,
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for some compactly supported Ω. We characterize the distribution of points by

the fill distance

hX,Ω = sup
x∈Ω

min
1≤j≤N

||x− xj||2. (6.1.1)

The || · ||2 denotes the Euclidean norm. We define the separation distance of Xh

by

qX =
1

2
min
i 6=j
||xi − xj||2. (6.1.2)

We characterize the point set as being quasi-uniform(with respect to a constant

cqu) if there exists cqu > 0 such that the following holds

qX ≤ hX,Ω ≤ cquqX. (6.1.3)

For the purposes of our current work, we will assume Xh to be quasi-uniform; such

a condition is necessary to prove existence and accuracy of the GMLS process

[98, 102].

We aim to recover a given linear, bounded target functional τx̂, where x̂

denotes a position associated with the functional. For example, when approx-

imating the point evaluation of a differential operator with multi-index α, one

may select τx̂ = Dαu(x̂). We do this by solving the following local weighted

`2-optimization problem to find the best reconstruction of the samples over some

finite dimensional subspace Vh ⊂ V,

p∗ = argmin
q∈Vh

N∑
j=1

(λj(u)− λj(q))2 ω(λj, τx̃). (6.1.4)
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Here, ω is a compactly supported positive function establishing the correlation

between the information at the sample locations xj and the target location x̃.

We take throughout a radially symmetric form for our weight function given by

ω(λj, τx̃) = Φ(||xj − x̃||2). (6.1.5)

We select Φ(r) = (1− r/ε)p̄+ , where f+ denotes the positive part of a function f

and p̄ > 0 is an integer parameter used to control the decay of the weighting. The

ε parameter controls the support of ω, and thus the compactness of the resulting

approximation.

Assume a basis for Vh = span{φ1, ..., φdim(Vh)}, and denote as P(x) as the

vector whose ith entry is φi(x). Then the solution to equation 6.1.4 may be

expressed in terms of a coefficient vector a(u),

p∗ = P (x)ᵀa(u). (6.1.6)

We define the GMLS approximation of τx̃

τhx̃ (u) = τx̃(P)ᵀa(u) (6.1.7)

We summarize the GMLS approximation approach in Figure 6.1.

An error analysis of the GMLS process involves a number of factors. A solu-

tion to the reconstruction problem requires that Λ be unisolvent over Vh, meaning

that any element of Vh is uniquely determined by the collection of samples in the

support of ω [98].
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Figure 6.1: GMLS Approximation of Target Functionals. In the Generalized Moving Least

Squares (GMLS) approach a collection of scattered data samples of the function values u is

approximated by multiple local reconstructions. This is done by building an ε-graph between

the points within an ε-neighborhood around a base point x̃ (shown on the left). A function

space Vh is used to reconstruct u by finding the best fitting function p∗ ∈ Vh that matches

the values of the sampling functionals {λj} in the optimization problem given in equation 6.1.4

(shown on the right). For approximating a target functional τ acting on u at the base point x̃,

we obtain the approximating GMLS functional τh by evaluating the target functional on the

reconstruction space at p∗. In this manner we can obtain approximations to general functionals

acting on u [9].
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The GMLS estimate of τx̃ in equation 6.1.7 may be expressed analytically as

τhx̃ (φ) = τx̃(P)ᵀ (Λ(P)ᵀWΛ(P))−1 Λ(P)ᵀWΛ(u). (6.1.8)

We use the following notation throughout our discussions of GMLS

• τx̃(P) ∈ Rdim(Vh) denotes the vector with components consisting of the

target functional applied to each of the basis functions φk.

• W ∈ RN×N denotes the diagonal matrix with entries {ω(λj, τx̃)}Nj=1.

• Λ(P) ∈ RN×dim(Vh) denotes the rectangular matrix whose (j, k)-entry is

λj(φk) corresponds to the application of the jth sampling functional λj

applied to the kth basis function φk.

• Λ(u) ∈ RN denotes the vector consisting of entries {λj(u)}Nj=1 corresponding

to the N sampling functionals λj applied to the function u.

In practice, we remark that a particular advantage of GMLS over other least-

squares approaches is that it requires only local information to build up approx-

imations. Algorithmically, this amounts over the base points x̃ to inversion of

many separate small dense systems of normal equations given by equation 6.1.8.

The GMLS approach is very well-suited to hardware acceleration and paralleliza-

tion using packages such as the recent Compadre toolkit [109].

We shall consider here primarily the case when the target functional τ is

selected to approximate point evaluations of either the function (i.e. regression)
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or of differential operators acting on manifolds. In the case where the manifold

is in Rd, Mirzaei provides the following convergence result [102].

‖Dαu−Dαp∗‖2 ≤ Chm+1−|α|, (6.1.9)

assuming reconstruction over the space of mth−order polynomials. When we

extend this process to the manifold setting in the subsequent section, we will

obtain a nonlinear target functional due to metric-dependent terms, thus violating

the assumptions of Mirzaei’s analysis. Nevertheless, we will informally refer to

such estimates as optimal if they numerically demonstrate convergence consistent

with Mirzaei’s analysis.

For our purposes, we will consider point clouds of two-dimensional manifolds

embedded in R3. It is easily shown (see e.g. [98]) for the Euclidean setting in R2

that there exists constants c1, c2 > 0 such that c1hX,
 ≤ 1√
n
≤ c2hX,
, and thus

the fill distance scales as h ∼ 1/
√
n, where n is the number of points. We will

therefore use the notation h̄−1 :=
√
n to characterize the refinement of a given

quasi-uniform point set.

6.2 GMLS Reconstruction of Geometries from

Point Clouds

Consider a smooth manifold M ⊂ Rd and assume a quasi-uniform point

cloud representation Xh ⊂ M. At each point xi ∈ Xh, we shall construct an
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approximation to the tangent space Txi
[98, 88]. For this purpose, we use a

principal component analysis (PCA) of the point set consisting of xi and nearby

nieghbor points xj such that j ∈ Ni. We define Ni = Nε(xi) as the collection

of points xj that are in an ε−ball about xi, which can be expressed as Nε(xi) =

Xh
⋂
Bε(xi). To perform PCA we must center the data set and we define the

centering point as

x̄i =
1

|Ni|
∑
j∈Ni

xj. (6.2.1)

We remark that while in general we will have that x̄i 6= xi, these are typically

close in practice. We refer to Ni = Nε(xi) as the patch of points at xi. We use

for C in PCA the empirical estimate of the covariance of the patch of points given

by

C = Cov({xj}) =
1

|Ni|
∑
j∈Ni

(xj − x̄i) (xj − x̄i)
ᵀ . (6.2.2)

This provides in practice a good estimate to the local geometry when we assume

that hX and ε are chosen sufficiently small so that the set of points Nε(xi) is

nearly co-planar. We estimate the tangent space TMxi
of the manifold using the

(d−1)-largest eigenvectors of C. These provide when d = 3 a basis for the tangent

plane that we denote by ψ1
i and ψ2

i and normalize to have unit magnitude. These

also give the unit normal as ηi = ψ1
i ×ψ2

i . We show this reconstruction approach

in Figure 6.2.

It is important to note that the PCA-approach can arbitrarily assign an ori-

entation in the reconstruction of the tangent space. This can have the undesir-
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Tangent Plane Estimation

local coordinate chart

q

surface

base 
point tangent plane

Surface Reconstruction

Point Set of the Manifold

Figure 6.2: GMLS Surface Reconstruction and Local Parameterization. For a manifold repre-

sented as a point set, we use a GMLS approach to obtain local patches and coordinate charts

for parameterizing the surface. At a given base point x̃ we collect all neighbors within an

ε-ball and perform Principle Component Analysis (PCA) to determine a local tangent plane

and normal for the surface. We parameterize the surface locally using (ξ1, ξ2, q(ξ1, ξ2)), where

we obtain q(ξ1, ξ2) by performing a GMLS reconstruction of the surface [9].
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able property that neighboring patches have opposite orientations resulting in

sign changes for some surface operators, such as the curl. In the general case,

globally orienting the surface is a challenging NP-hard problem, as discussed in

Wendland [98]. Many specialized algorithms have been proposed for this pur-

pose which are efficient in practice, including front-marching and voronoi-based

methods [151, 98]. We shall assume throughout that at each point xi there is a

reference normal ñi either determined in advance algorithmically or specified by

the user. We take in our PCA procedures that the normals ηi are oriented with

ñTi ηi > 0.

We use this approach to define a local coordinate chart for the manifold in the

vicinity of the base point x̃ = xi. For this purpose, we take as the origin the base

point xi and use the tangent plane bases ψ2
i ,ψ

2
i and normal ηi obtained from the

PCA procedure. We then define a local coordinate chart using the embedding

map σ

σ(ξ1, ξ2; q) = xi + ξ1ψ1
i + ξ2ψ2

i + q(ξ1, ξ2)ηi. (6.2.3)

This provides a family of parameterizations in terms of local coordinates (ξ1, ξ2),

defined by choice of a smooth function q. Without loss of generality we could

always define the ambient space coordinates so that locally at a given base point

x̃ we have σ = (ξ1, ξ2, q(ξ1, ξ2)). This can be interpreted as describing the surface

as the graph of a function over the (ξ1, ξ2)-plane where q is the height above the

plane, see Figure 6.2. This parameterization is known as the Monge-Gauge repre-

107



sentation of the manifold surface [152, 4], and we will use GMLS to approximate

derivatives of σ through the following choices:

• We take for our sampling functionals Λ = {λj}Nj=1 point evaluations λj = δxi

at all points xj in the ε-ball neighborhood Ni of xi.

• We use the target functional τ [α] is the point evaluation of the derivative

Dασ at xi, where Dα denotes the partial derivative of σ in {ξc} described

by the multi-index α [153].

• We take for the reconstruction space the collection of mth
1 -order polynomi-

als.

• We use for our weighting function the kernel in equation 6.1.5 with support

matching the parameter ε used for selecting neighbors in our reconstruction

and for defining our ε-graph on the point set.

We use these point estimates of the derivative of σ to evaluate non-linear

functionals of σ characterizing the geometry of the manifold. Consider the metric

tensor

gab = 〈σξa ,σξb〉g. (6.2.4)

The 〈a,b〉g corresponds to the usual Euclidean inner-product a · b when the

vectors σξc = ∂σ/∂ξc are expressed in the basis of the ambient embedding space.

Other geometric quantities can be similarly calculated from this representation

once estimates of Dασ are obtained.

108



6.3 Monge Gauge Differential Geometry

To compute in practice the action of our operators during the GMLS recon-

struction of the geometry of the manifolds or differential operators on scalar and

vector fields on the surface, we use local Monge-Gauge parameterizations of the

surface. To obtain high-order accuracy we further expand expressions involving

derivatives of the metric and other fields explicitly using symbolic algebra pack-

ages, such as Sympy [144]. This allows us to avoid some of the tedium notorous

in differential geometry to compute on-the-fly needed expressions for computing

the action of our operators. We summarize here the basic differential geometry

of surfaces expressed in the Monge-Gauge and the associated expressions we use

in such calculations.

In the Monge-Gauge we parameterize locally a smooth surface in terms of the

tangent plane coordinates u, v and the height of the surface above this point as

the function h(u, v). This gives the embedding map

x(u, v) = σ(u, v) = (u, v,h(u, v)). (6.3.1)

We see that this parameterization of the surface is closely related to equation 6.2.3.

We can use the Monge-Gauge equation 6.3.1 to derive explicit expressions for ge-

ometric quantities. The derivatives of σ provide a basis ∂u, ∂v for the tangent
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space as

∂u = σu(u, v) = (1, 0,hu(u, v)) (6.3.2)

∂v = σv(u, v) = (0, 1,hv(u, v)). (6.3.3)

The first fundamental form I (metric tensor) and second fundamental form II

(curvature tensor) are given by

I =

E F

F G

 =

σu · σu σu · σv

σv · σu σv · σv

 =

 1 + hu(u, v)2 huhv(u, v)

hu(u, v)hv(u, v) 1 + hv(u, v)2

 .
(6.3.4)

and

II =

L M

M N

 =

σuu · n σuv · n

σvu · n σvv · n

 =
1√

1 + h2
u + h2

v

huu huv

huv hvv

 . (6.3.5)

The n denotes the outward normal on the surface and is given by

n(u, v) =
σu(u, v)× σv(u, v)

‖σu(u, v)× σv(u, v)‖
=

1√
1 + h2

u + h2
v

(−hu,−hv, 1). (6.3.6)

We use throughout the notation for the metric tensor g = I interchangeably.

In practical calculations whenever we need to compute the action of the inverse

metric tensor this should be done with numerical linear algebra (Gaussian elim-

ination with pivoting) [133, 134]. For notational convenience, we use the tensor

notation for the metric tensor gij and for its inverse gij. These correspond to the

first and second fundamental forms as

gij = [I]i,j , gij =
[
I−1
]
i,j
. (6.3.7)
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For the metric tensor g, we also use the notation |g| = det(g) and have that

√
|g| =

√
det(I) =

√
1 + h2

u + h2
v = ‖~σu(u, v)× ~σv(u, v)‖. (6.3.8)

The provides the local area element as dAu,v =
√
|g|dudv. To compute quantities

associated with curvature of the manifold we construct the Weingarten map [4]

which can be expressed as

W = I−1II. (6.3.9)

The Gaussian curvature K can be expressed in the Monge-Gauge as

K(u, v) = det (W(u, v)) =
huuhvv − h2

uv

(1 + h2
u + h2

v)
2
. (6.3.10)

For further discussions of these tensors and more generally the differential ge-

ometry of manifolds see [4, 80, 3]. We use these expressions as the basis of our

calculations of the action of our surface operators.

6.4 GMLS Approximations of Surface Opera-

tors

We now show how to formulate GMLS problems to recover estimates of the

metric tensor and other geometric quantities associated with the shape of the

manifold. The metric tensor and geometric quantities must first be extracted

from the point cloud representation of the manifold, and may then be used in the

approximation of differential operators on the surface.
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6.4.1 GMLS Reconstructions of Our Manifold Geome-

tries

We now utilize this process to estimate Gaussian curvature, as a representative

geometric quantity of interest, which we will later need to discretize the Stokes

equations. To demonstrate in practice the convergence behavior of our techniques

as the fill-distance is refined, we consider the four example manifolds shown in

Figure 6.3.

Manifold A Manifold B Manifold C Manifold D

Figure 6.3: Point Set Representations of Manifolds. Manifold A is an ellipsoid defined by

the equation x2/a2 + y2/b2 + z2 = s20 with a = 1.2, b = 1.2, s20 = 1. Manifold B is a radial

manifold defined in spherical coordinates by (θ, φ, r(θ, φ) where r(θ, φ) = 1 + r0 sin(3φ) cos(θ)

with r0 = 0.1. Manifold C is a radial manifold defined in spherical coordinates by (θ, φ, r(θ, φ)

where r(θ, φ) = 1 + r0 sin(7φ) cos(θ) with r0 = 0.1. Manifold D is a torus defined by the

equation (s21 −
√
x2 + y2)2 + z2 = s22 with s21 = 0.7, s22 = 0.3. Each of the manifolds shown

are represented by quasi-uniform point sets with approximately n = 104 samples. For quasi-

uniform sampling we expect the fill-distance h to scale as h ∼ 1/
√
n. When reporting our

results, we use throughout the notation h̄−1 =
√
n. We discuss further details of the point

sampling of the manifolds in Section 7.0.1.
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We utilize the Weingarten map W = I−1II to estimate the Gaussian curvature

via the formula K = det(W) when using the GMLS estimate of σξc to calculate

I and II, as in Equation 6.3.10. We investigate the convergence of the estimated

curvature to analytic results for the manifolds A-D, shown in Figure 6.4. We plot

the estimated curvature on the surface of each of the manifolds in Figure 6.5.

We tabulate the results in Table 6.1. We find our GMLS methods with m = 6

yields approximations having 5th-order accuracy. While there is currently no

convergence theory for our non-linear estimation procedure, the results for k = 2

for Gaussian Curvature are consistent with the suggestive predictions m+ 1− k

similar to equation 6.1.9.

Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 2.1351e-04 - 1.1575e-01 - 1.2198e-01 - .08 5.5871e-02 -
0.05 3.0078e-06 6.07 1.6169e-02 2.84 4.7733e-03 4.67 .04 6.5739e-04 6.51
0.025 5.3927e-08 5.77 8.3821e-04 4.26 1.6250e-04 4.88 .02 1.3418e-05 5.67
0.0125 1.1994e-09 5.48 2.3571e-05 5.14 4.5204e-06 5.17 .01 3.1631e-07 5.37

Table 6.1: Convergence of GMLS Approximation of the Gaussian Curvature K. The GMLS

reconstruction of the manifold is used with polynomial order m1 = 6. Our GMLS methods

involve operations with k1 = 2nd-order differentiation. We find ∼ 5th-order asymptotic

convergence rate. The target sampling distance h is discussed in Section 7.0.1.
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Figure 6.4: GMLS Estimate of the Gaussian Curvature vs Point Set Resolution. We show

on log-log scale the convergence of the GMLS-based estimation of Gaussian Curvature as the

number of sample points is increased. The h̄−1 =
√
n, where n is the number of points. Manifold

B and Manifold C present the greatest challenge given localized regions of particularly large

Gaussian Curvatures, see Figure 6.5. We find the accuracy is 5th-order in agreement with the

suggestive prediction m + 1 − k similar to equation 6.1.9, where in our GMLS approximation

m = 6, k = 2, see Table 6.1.
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6.4.2 GMLS Approximations of Geometry-Dependent Op-

erators

We finally have the requisite information to perform GMLS estimates of dif-

ferential operators on the manifold. We consider the approximation of a target

functional which may depend nonlinearly upon the estimate of the inverse metric

tensor. Consider as an example the Laplace-Beltrami operator, which may be

expressed in local coordinates as

∆LBφ =
1√
|g|
∂i

(√
|g|gij∂jφ

)
. (6.4.1)

We assume an estimate of g to be calculated at each particle following the

process outlined in the previous sections. We then approximate the action of

Manifold A Manifold B Manifold C Manifold D

Gaussian Curvature: GMLS Estimation

Figure 6.5: Gaussian Curvature from GMLS Estimation. We use a GMLS reconstruction

approach to estimate the Gaussian Curvature of each of the manifolds using Equation 6.3.10.

Shown are results for the case of a quasi-uniform sampling of the surface with approximately

n = 104 samples for each manifold. We show the L2-error of the GMLS approximation of the

Gaussian curvature and convergence rate in Figure 6.4.
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the operator on scalar and vector fields through the following GMLS approach.

First, we find locally the best approximating reconstruction P of the scalar or

vector field components on the manifold. In the second, we apply the target

functional for the differential operator to P using geometric quantities from our

initial GMLS reconstruction of the manifold. This can be expressed as

τhx̃ (φ) = τx̃(P)ᵀax̃(u). (6.4.2)

The optimal coefficient vector a is given by.

ax̃(u) = (Λ(P)ᵀWΛ(P))−1 Λ(P)ᵀWΛ(u). (6.4.3)

We note that in the general setting, the sampling functionals λj may also depend

nonlinearly upon the geometric information. In the case where λj are selected as

point samples however the sampling functionals are in fact linear.

We remark that the two components ax̃(u) and τx̃(P) encode different types of

information about the approximation. The τx̃(P) encodes the action of the target

functional on the basis for the space Vh. The ax̃(u) encodes the reconstruction of

the function u by the best approximating function p∗ in Vh according to the best

match between the sampling functionals λj acting on u and p∗, see equation 6.1.4.

As a consequence, for each of the target operators τ , the ax̃(u) will not change

since this term only depends on the function u. As a result, we need only compute

fresh for each operator the τx̃(P) which represents how the differential operator

on the manifold acts on the function space Vh.
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As a summary our GMLS approximation of the operators on the manifold

involve the following steps

• We take Λ = {λj}Nj=1 with λj = δxj
the point evaluations of λjφ = φ(xj)

for xj in the neighborhood j ∈ Ni around the point xi.

• We use target functionals τ for surface differential operators by utilizing for

evaluation the parameterization and approximate metric tensor.

• We take the reconstruction space Vh by selecting the collection of mth
2 -

order polynomials p(x, y) over R2 where m2 is an integer parameter for the

maximum degree.

• We use the weight function ω(λj, τxi
) = w(‖xj−xi‖) by selecting a positive

kernel w(r) with support contained within an ε-ball of xi. We also shall use

ε to define an ε-graph on the points.

We remark that the reconstruction space Vh consists of polynomials of order m2

which need not be chosen to be the same order as in the geometric reconstructions.

In general we can choose m2 6= m1, however, in practice given that the operators

on the manifold often involve differentiating geometric quantities we will typically

need in practice to choose m1 ≥ m2 to achieve convergence.

As an illustration of our approach, we discuss in detail our GMLS approxi-

mation of the Laplace-Beltrami operator. The other differential operators for the

manifold follow similarly, but have much more complicated expressions which
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we evaluate symbolically. The Laplace-Beltrami operator can be expressed in

coordinates as

∆LBφ =
1√
|g|
∂i

(√
|g|gij∂jφ

)
. (6.4.4)

To obtain an approximation at the base point x̃, we compute the action of the

operator on the space Vh to obtain the representation

τx̃(P; g) =
1√
|g|
∂i

(√
|g|gij∂jP

)
, (6.4.5)

where P represents the vector of basis functions of Vh and the differentials act

component-wise.

It is necessary to consider how to choose a reconstruction space Vh of sufficient

richness that a differential operator on the manifold Lg can be adequately cap-

tured. For instance, a differential operator of order k should have a polynomial

space of order m2 satisfying m2 ≥ k, as suggested by the bounds in equation 6.1.9.

Further, larger choices of m2 will necessitate a larger kernel support to ensure

unisolvency therefore solvability of the GMLS problem. As may be expected,

this suggests that GMLS will perform better having more accuracy and requiring

less computational effort when working with lower order differential operators.

Therefore, we should prefer schemes which avoid higher order differential oper-

ators whenever possible. As we shall discuss in Chapter 7, this can be achieved

to some extent by splitting equations into systems of lower order equations or by

choosing alternative formulations.
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Chapter 7

Convergence of our GMLS
Methods

We numerically solve for the velocity of the hydrodynamic flow based on equa-

tions 7.1.1 or 7.1.2 using the GMLS approximations detailed in Chapter 6 and [9].

We briefly discuss the overall steps used in our numerical methods to obtain so-

lutions. We formulate the hydrodynamics using a vector-potential formulation

to obtain a gauge that intrinsically enforces the incompressibility constraints of

the flow appearing in equation 2.5.3. For steady-state hydrodynamic flows, we

derived conditions for the vector potential of the flow resulting in equation 7.1.1.

We summarize the steps used in our solution approach in Figure 7.1.

To determine numerically the hydrodynamic flow in response to a body force

density b acting on the surface fluid, in our approach, we first convert force fields

into co-variant form b[. We next use our exterior calculus formulation of the

generalized curl to obtain the corresponding vector-potential for the body force
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Vector-Potential Formulation of the Hydrodynamics and Solver

GMLS 
Solver

(ii) (iii) (iv) (v)

fluid velocity

force 
density

force

(i) (vi)

GMLS 
Operator

GMLS 
Operator

surface
flow

Figure 7.1: Approach for Computing Numerically the Surface Hydrodynamic Flows. For a

given body force density or stresses b acting on the surface fluid we convert the fields to

covariant form b[, shown in (i),(ii). To handle incompressibile flows, we convert all fields to

a divergence-free gauge using the generalized surface curl − ? db[, shown in (iii). We solve

for the vector potential Φ of the surface hydrodynamic flow using equations 7.1.1 or 7.1.2 and

our GMLS collocation methods for the differential operators, shown in (iv). We construct the

covariant form of the velocity field of the hydrodynamic flow response using the generalized

surface curl v[, shown in (v). We obtain our final results by converting the covariant form v[

to the velocity field by v =
(
v[
)]

. This yields the surface hydrodynamic flow shown in (vi) [9].
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Ψ = C1b
[ where C1 = − ? d acts on 1-forms. We numerically compute Ψ = C̃1b

[

where C̃1 is our GMLS approximation of the curl operator C1.

We will utilize equation 7.1.1 to specify the differential equation for the steady-

state velocity response. We use GMLS to assemble in strong form a stiffness

matrix A using a collocation approach. The full differential operator that appears

on the left-hand-side is computed at each base point x̃ of the point set of the

manifold. This results in the system of equations linear in Φ̃

AΦ̃ = C̃0b. (7.0.1)

We solve the large linear system using GMRES with algebraic multigrid (AMG)

preconditioning.

The velocity field is given from the vector potential Φ by the generalized

surface curl operator v[ = C0Φ, where C0 = − ? d acts on 0-forms. From the

solution Φ̃ of equation 7.0.1, we construct numerically the co-variant velocity

field of the flow using ṽ[ = C̃0Φ̃. The C̃0 is our GMLS approximation of the

generalized curl operator C0. Finally, using the metric tensor obtained from the

GMLS reconstruction, we obtain the surface velocity field ṽ by converting the

covariant field v[ into the contravariant field by ṽ =
(
ṽ[
)]

. We use this approach

to numerically compute incompressible hydrodynamic flows in response to applied

driving forces or stresses acting on the surface fluid. We remark that our approach

can also be combined with other computational methods and solvers to compute

coupling to bulk three dimensional hydrodynamics or more generally for resolving
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in other physical systems interactions that occur at interfaces having non-trivial

geometries.

All tangent plane approximations, local chart calculations, and GMLS prob-

lems were set up and solved using the Compadre toolkit [109]. We were able to

extend the capability of the toolkit by implementing our symbolically generated

target operators into it. The toolkit provides domain decomposed distributed

vector representation of fields as well as global matrix assembly. Through the

Compadre toolkit, we had access to iterative block solvers (Belos [154]), block

preconditioners (Teko) and AMG preconditioning (MueLu [155, 156]), all in the

Trilinos software framework [157].

7.0.1 Manifold Point Cloud Refinements Used

We provide a summary of the sampling resolution h used for each of the

manifolds in Table 7.1. We refer to h as the target fill distance. For each of the

manifolds, we achieve a nearly uniform collection of the points as in equation 6.1.3

using the DistMesh code [158]. We emphasize this approach was used only for

convenience to obtain quasi-uniform samplings and other sampling techniques

can also be utilized for this purpose of representing the manifolds. We specify

h and the algorithm produces a point sampling of the manifold. In practice,

we have found this yields a point spacing with neighbor distances varying by
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only ≈ ±30% relative to the target distance h. We summarize for each of the

manifolds how this relates to the number of sample points n in Table 7.1.

Refinement Level A: h n B: h n C: h n D: h n

1 .1 2350 .1 2306 .1 2002 .08 1912
2 .05 9566 .05 9206 .05 7998 .04 7478
3 .025 38486 .025 36854 .025 31898 .02 29494
4 .0125 154182 .0125 147634 .0125 127346 .01 118942

Table 7.1: Sampling Resolution for each of the Manifolds A–D. Relation between the target

distance h and the number of sample points n used for each of the manifolds. In each case, the

neighbor distances between the points sampled were within ≈ ±30% of the target distance h.

7.1 Optimizing The Stokes Equation for GMLS

7.1.1 Biharmonic Formulation of the Hydrodynamics

As discussed in Chapter 2, we can formulate the hydrodynamics equations 2.5.3

in terms of an unconstrained equation for the scalar vector potential Φ. We sub-

stitute equation 2.6.3 into equation 2.5.3 and apply the generalized curl operator

curlM = − ?d to both sides. This gives the biharmonic hydrodynamic equations

on the surface

−µm∆2
HΦ− γ∆HΦ− 2µm(− ? d(K(− ? d)))Φ = − ? db[. (7.1.1)

The Hodge Laplacian now acts on 0-forms as ∆HΦ = δdΦ and is related

the surface Laplace-Beltrami operator by ∆HΦ = −∆LBΦ. As before, µm is the

123



surface shear viscosity, γ the drag with the surrounding bulk fluid, and K the

Gaussian curvature of the manifolds. The b[ is the covariant form for the body

force acting on the fluid. We see the pressure term no longer plays a role relative

to equation 2.5.3.

We shall refer in our numerical methods to this approach to the hydrodynam-

ics as the biharmonic formulation. Additional discussion of this formulation of

the hydrodynamics can be found in our previous papers [6, 8].

7.1.2 Split Formulation of the Hydrodynamics

While the equation 7.1.1 is expressed in terms of biharmonic operators, for

numerical purposes we can reformulate the problem by splitting it into two sub-

problems each of which only involve the Hodge Laplacian. This is helpful since

for our numerical methods this would require us to only need to resolve second

order operators with our GMLS approximations. This has the practical benefit

of greatly reducing the size of the GMLS stencil sizes (ε-neighborhoods) required

for unisolvency for the operator as discussed in Section 6.4.2.

We reformulate the hydrodynamic equations by defining Ψ = ∆HΦ, which

allows us to split the action of the fourth-order biharmonic operator into two

equations involving only second- order Hodge Laplacian operators as

−µm∆HΨ− γΨ− 2µm(− ? d(K(− ? d)))Φ = − ? db[. (7.1.2)

∆HΦ−Ψ = 0. (7.1.3)
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As we shall discuss, the lower order of the differentiation has a number of bene-

fits even thought we incur the extra issue of dealing with a system of equations.

This reformulation results in less sensitivity to errors in the underlying approx-

imations in the GMLS reconstructions of the geometry and surface fields. This

reformulation also requires much less computational effort and memory when

assembling the stiffness matrices since the lower order permits use of smaller ε-

neighborhoods to achieve unisolvency as discussed in Section 6.4.2. We refer to

this reformulation of the hydrodynamic equations as the split formulation.

7.2 Convergence of Surface Operators in GMLS

We investigate the convergence of the operators required to solve these hy-

drodynamic equations. An important consideration is that our target functionals

involve a non-linear dependence on the geometry. This results in approximations

that arise from two different GMLS procedures. The first is the GMLS recon-

struction of the geometry of the manifold from the sampled point set and the

calculation of associated geometric quantities. The second is the GMLS approx-

imation of differential operators acting on the surface scalar and vector fields.

To solve the hydrodynamic flows on the surface as formulated in equation 7.1.1

and 7.1.2, we require the following operators

• Laplace-Beltrami Operator: LLB = −∆H = −dδ.
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• Biharmonic Operator: LBH = L2
LB = ∆2

H .

• Curvature Operator: LK = curlM (K · curlM) = − ? d (K · (− ? d).

• Surface Curl C0 for 0-Forms: LC0 = curlMΦ = − ? d0.

• Surface Curl C1 for 1-Forms: LC1 = curlMv = − ? d1.

We mention that in the case of the split formulation of the hydrodynamic equa-

tion 7.1.2 this simplifies slightly, and we no longer need to compute numerically

LBH .

To study the accuracy of our GMLS approximation of these operators, we

investigate the action of these operators when acting on the test scalar field

Φ(X) = Φ(x, y, z) = z(x4 + y4− 6x2y2) and test vector field v[ = C0Φ = − ?d0Φ.

The function we have chosen Φ(x, y, z) is in fact a smooth continuation of a

spherical harmonic mode to the full space R3. Since our manifoldsM are smooth,

we can obtain a smooth surface scalar field Φ by simple evaluation of the function

Φ(X) on the surface. More formally, this would correspond to using the inclusion

map ι : R3 ↪−→ M to obtain Φ(x) = ιxΦ(·). We find this approach convenient

since it provides a way for us to define scalar fields and vector fields independent

of coordinate charts on the manifold.
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We investigate the accuracy of the GMLS approximation of these operators.

We study the `2-errors

εop0 =
∥∥∥L̃gΦ− LgΦ

∥∥∥
2

(7.2.1)

εop1 =
∥∥∥L̃gv − Lgv

∥∥∥
2
. (7.2.2)

The `2-norm is computed by averaging the error over all n sample points of the

manifold ‖u−v‖2
2 = 1

n

∑
i (u(xi)− v(xi))

2. The L̃g denotes the numerical GMLS

approximation of the operator Lg. In practice, we evaluate to high precision the

action of the operators Lg for the purposes of the convergence studies by using

symbolic calculations using SymPy [144]. In general, we emphasize that such
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Figure 7.2: GMLS Approximation of Operators vs Resolution. We show log-log plot of the

L2-error of the GMLS approximation of the surface operators with m1 = m2 = 6. We find in

each case our GMLS numerical methods converge with a high order of accuracy in h̄ as reported

in Table 7.2– 7.4 [9].
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calculations of expressions symbolically is prohibitive. What makes these sym-

bolic calculations tractable here is that both the manifold geometry and surface

fields we have chosen are symbolically representable using elementary functions

for which we have relatively brief initial expressions. Using this approach, we

investigate the accuracy of the GMLS approximation of the operators for each of

the manifolds in Figures 7.2–7.3.
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Figure 7.3: GMLS Approximation of Operators vs Resolution. We show log-log plot of the

L2-error of the GMLS approximation of the surface operators with m1 = m2 = 6. We find in

each case our GMLS numerical methods converge with a high order of accuracy in h̄ as reported

in Table 7.2– 7.4 [9].

We report tabulated results for these convergence studies in Table 7.2– 7.4.

We estimate approximate convergence rates by fitting in the log-log plot the

error between the reported h value and the previous h value. While there is no

theory given that the operators have a non-linear dependence on the manifold
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geometry, we do have the suggestive predictions that for an operator of order

k and GMLS approximation of order m the convergence might be expected to

be on the order m + 1 − k similar to equation 6.1.9. Since our GMLS methods

involve approximations both of the geometry and the surface fields, for purposes

of most of the comparisons we take k = max(k1, k2) and m = max(m1,m2). The

k1 denotes the order of the differentiation involved in obtaining the quantities

associated with the geometry and k2 with the order of differentiation of the surface

fields. The m1,m2 are the polynomial orders used for the approximations for the

manifold geometry and surface fields, as discussed in Section 6.4.2.

Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 4.2208e-04 - 2.2372e-02 - 1.3580e-01 - .08 4.7880e-02 -
0.05 7.503e-06 5.74 1.2943e-03 4.11 4.8597e-03 4.80 .04 5.5252e-04 6.54
0.025 1.8182e-07 5.34 5.8300e-05 4.46 1.2928e-04 5.24 .02 1.3877e-05 5.36
0.0125 4.8909e-09 5.21 1.7364e-06 5.06 3.7508e-06 5.11 .01 3.7568e-07 5.17

Table 7.2: Convergence of GMLS Approximation of the Laplace-Beltrami Operator LLB . We

use GMLS with (k = 2,m = 6) and find the methods have ∼ 5th-order asymptotic convergence.

The target sampling distance h is discussed in Section 7.0.1.

We find to a good approximation our GMLS methods exhibit convergence

rates in agreement with the suggestive prediction m + 1 − k. For the Laplace-

Beltrami operator LLB with (k = 2,m = 6), we find ∼ 5th-order convergence rate,

see Table 7.2. For the Biharmonic operator LBH with (k = 4,m = 6), we find

3rd-order convergence rate, see Table 7.3. In the case of the Curvature Operator

LK we have (k1 = 3, k2 = 2,m = 6). The k1 = 3 arises since the operator
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Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 1.7177e-01 - 1.1102e+01 - 6.9226e+01 - .08 4.0566e+01 -
0.05 1.0768e-02 3.94 2.1455e+00 2.37 9.6017e+00 2.85 .04 1.3004e+01 5.04
0.025 9.3281e-04 3.51 3.4556e-01 2.63 7.8738e-01 3.61 .02 1.0736e-01 3.63
0.0125 9.3585e-05 3.31 3.5904e-02 3.26 7.7925e-02 3.34 .01 1.0722e-02 3.30

Table 7.3: Convergence of GMLS Approximation of the Biharmonic Laplace-Beltrami Operator

LBH = L2
LB . We use GMLS with (k = 4,m = 6) and find the methods have ∼ 3rd-order

asymptotic convergence.

Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 3.7004e-03 - 1.0621e+01 - 6.1440e+01 - .08 6.5445e-01 -
0.05 1.9863e-04 4.16 1.7987e-01 2.56 3.9161e-01 3.97 .04 1.6209e-02 5.42
0.025 1.1937e-05 4.03 1.9796e-02 3.18 2.9043e-02 3.76 .02 8.4581e-04 4.30
0.0125 7.3369e-07 4.01 1.6147e-03 3.61 2.0897e-03 3.80 .01 5.6742e-05 3.87

Table 7.4: Convergence of GMLS Approximation of the Curl-K-Curl Operator LK . We use

GMLS with (k1 = 3, k2 = 2,m = 6) and find the methods have ∼ 4rd-order asymptotic

convergence.
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involves estimation not only of the surface Gaussian Curvature K but also its

first derivatives. For LK , we find ∼ 4th-order convergence rate, see Table 7.4.

7.2.1 Convergence of Curl Operators in GMLS

We also report tabulated results for the GMLS approximations of the opera-

tors LC0 and LC1 shown in Figure 7.2– 7.3.

Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 2.7152e-05 - 1.5075e-03 - 4.8243e-01 - .08 2.1570e-03 -
0.05 3.8309e-07 6.07 3.0281e-05 5.64 2.4465e-04 10.9 .04 2.2565e-05 6.68
0.025 5.8491e-09 6.00 6.9649e-07 5.43 6.1779e-06 5.31 .02 3.3550e-07 6.13
0.0125 8.8291e-11 6.04 1.3078e-08 5.72 1.1817e-07 5.71 .01 4.9708e-09 6.04

Table 7.5: Convergence of GMLS Approximation of the Surface Curl Operator on Scalars

LC0. We use GMLS with (k = 1,m = 6) and find the methods have ∼ 6th-order asymptotic

convergence.

The Manifolds B and C have more complicated geometry and require more

resolution to see behaviors in the asymptotic regime with a high-degree basis. We

see that by lowering the degree of the basis these operators exhibit more readily

behaviors in the asymptotic regime in Table 7.7 and 7.8.

Again, we emphasize while there is currently no rigorous convergence theory

given the non-linear dependence on geometry in our GMLS approximations, we

do find in each case agreement with the suggestive predictive rates m + 1 − k

similar to equation 6.1.9.
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Manifold A Manifold B Manifold C Manifold D
h `2-error Rate `2-error Rate `2-error Rate h `2-error Rate

0.1 9.2312e-04 - 1.5887e-02 - 5.2497e+01 - .08 1.9686e-02 -
0.05 1.4851e-05 5.88 1.2736e-03 3.64 1.3126e-02 8.65 .04 2.0410e-04 6.70
0.025 2.3374e-07 5.96 1.2597e-04 3.33 5.6087e-04 4.55 .02 3.0223e-06 6.13
0.0125 3.5970e-09 6.01 5.1267e-06 4.61 1.4082e-05 5.32 .01 4.3847e-08 6.07

Table 7.6: Convergence of GMLS Approximation of the Surface Curl Operator on Vectors LC1.

We use GMLS with (k1 = 2, k2 = 1,m = 6) and find the methods have ∼ 5th-order asymptotic

convergence or greater. It is notable that in the case of Manifold A and D we in fact see ∼ 6th-

order convergence. This manifests since the manifolds have a relatively symmetric geometry

compared to Manifold B and C, see Figure 6.3. This results in a simplification with fewer non-

zero terms and derivatives associated with the contributions of the geometry to the operator.

As a consequence, the GMLS approximation at a given order m becomes more accurate by one

order for Manifold A and D.

Manifold B Manifold C
h `2-error Rate `2-error Rate

0.1 5.2558e-03 - 1.2083e-02 -
0.05 3.6359e-04 3.85 1.0345e-03 3.54
0.025 2.3078e-05 3.97 7.3790e-05 3.81
0.0125 1.4569e-06 3.98 4.8316e-06 3.93

Table 7.7: Convergence of GMLS Approximation of the Surface Curl on Scalars LC0. We use

GMLS with (k = 1,m = 4) and find the methods have ∼ 4th-order asymptotic convergence.
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7.3 Convergence of GMLS Stokes Solvers on Spher-

ical Topologies

We investigate the convergence of our GMLS methods for the surface hy-

drodynamic equations formulated in Section 7.1. We study convergence of our

solvers for hydrodynamic flows by developing manufactured solutions using high

precision symbolic calculations of the incompressible flow field v[ = −?dΦ = C0Φ

with the specific choice of Φ given in Section 7.2.

We calculate symbolically the expressions of the forcing term b using equa-

tion 2.5.3 where µm(−δd + 2K)v[ − γv[ − dp = −b[. We manufacture the data

b needed on the RHS of equation 2.5.3 using

b[ = µmδdv[ + (γ − 2µmK)v[. (7.3.1)

Since generating both the velocity field v and force density b this way will already

be incompressible, we have used that we can set p = 0 when manufacturing our

Manifold B Manifold C
h `2-error Rate `2-error Rate

0.1 6.3586e-01 - 7.6579e-01 -
0.05 1.6568e-01 1.94 2.1680e-01 1.82
0.025 4.1633e-02 1.99 5.6498e-02 1.94
0.0125 1.0399e-02 1.99 1.4336e-02 1.98

Table 7.8: Convergence of GMLS Approximation of the Surface Curl on Vectors LC1. We use

GMLS with (k = 1,m = 2) and find the methods have ∼ 2nd-order asymptotic convergence.
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Hydrodynamic Flows on Manifolds
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Figure 7.4: Surface Hydrodynamic Flows on Manifolds A–D. For a given force density, shown in

(i), we use our GMLS solver to compute numerically the surface hydrodynamic flow responses,

shown in (ii)–(iv), on each of the manifolds, defined in Section 6.4.1. Manifold A−D solutions

were computed at a resolution with number of sample points nA = 38, 486, nB = 147, 634, nC =

127, 346, and nD = 118, 942 [9].
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data. In practice, we evaluate equation 7.3.1 to high precision using the symbolic

package SymPy [144].

We investigate the convergence of the GMLS solvers using the `2-error

εhydro = ‖ṽ − v‖2 /‖v‖2 (7.3.2)

ṽ = C0(S−1(C0b)). (7.3.3)

The v denotes the exact solution, C0 approximates numerically − ? d0, C1 ap-

proximates numerically − ? d1, and S−1 denotes the numerical solution operator

corresponding to use of our GMLS solver. We use the hydrodynamics equations

both formulated using the biharmonic form in equation 7.1.1 or in the split form

in equation 7.1.2.

For each of the manifolds A−D, we computed manufactured solutions with

the parameters µm = 0.1, γ = 0.1 in equation 7.3.1. We used the surface force

density b to numerically compute surface hydrodynamic flow responses ṽ using

our GMLS solvers discussed at the begining of the Chapter. We show the hydro-

dynamic surface flows in Figure 7.4. We show our convergence results for both

the case of the biharmonic formulation and split formulation in Figure 7.5. We

give tabulated results for each of these convergence studies in Tables 7.9– 7.16.

We emphasize that these convergence studies take into account the full pipeline

of our GMLS numerical methods as shown in Figure 7.1. This involves not only

the solution of biharmonic or split equations, but also the GMLS reconstruction

of the surface velocity field v from the computed vector-potential Φ and the cal-

135



Manifold A

h-1

biharmonic splitorder

-e
rr

o
r

-e
rr

o
r

Manifold B

h-1

biharmonic splitorder

h-1

-e
rr

o
r

-e
rr

o
r

h-1

biharmonic splitorder biharmonic splitorder

Manifold C Manifold D

Convergence of Surface Hydrodynamics

Figure 7.5: Convergence of GMLS Solvers for the Hydrodynamic Velocity Field. We use the

GMLS methods with m1 = m2 = m polynomial orders for approximating the surface geometry

and surface velocity field v. We study convergence for the GMLS solver when using the bihar-

monic formulation in equation 7.1.1 verses when using the split formulation in equation 7.1.2 [9].
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m = 4 m = 6 m = 8
h `2-error Rate `2-error Rate `2-error Rate

0.1 1.6072e-01 - 1.1597e-03 - 1.0648e-03 -
0.05 1.8027e-02 3.11 8.4190e-05 3.73 1.8627e-06 9.04
0.025 4.9155e-03 1.86 1.1655e-05 2.84 4.4796e-08 5.35
0.0125 2.0873e-03 1.23 7.1161e-07 4.02 1.9263e-07 -2.10

Table 7.9: Convergence on Manifold A of our GMLS solver based on the biharmonic formu-

lation of the hydrodynamics in equation 7.1.1. The target sampling distance h is discussed

Section 7.0.1.

m = 4 m = 6 m = 8
h `2-error Rate `2-error Rate `2-error Rate

0.1 1.5578e-02 - 2.6826e-04 - 1.0756e-04 -
0.05 7.0783e-04 4.40 1.2065e-05 4.41 3.7309e-07 8.06
0.025 1.2151e-05 5.83 4.4532e-07 4.74 3.0556e-09 6.90
0.0125 4.3056e-06 1.49 1.0349e-08 5.42 1.7664e-10 4.10

Table 7.10: Convergence on Manifold A of our GMLS solver based on the split formulation of

the hydrodynamics in equation 7.1.2.
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culation of the vector-potentials Ψ = − ? db for the body force density b which

drives the flow. These steps also each have a non-linear dependence on the ge-

ometry which contributes through our GMLS reconstructions from the point set

sampling of the manifold.

In the convergence studies, we find in all cases that the GMLS solvers are able

to resolve the surface hydrodynamic fields to a high level of precision. The Mani-

folds B and C presented the most challenges for the solvers with largest prefactors

in their convergence. This is expected given the increased amount of resolution

required to resolve the geometric contributions to the differential operators in the

hydrodynamic equations 7.1.1– 7.1.2. In all cases, we found our GMLS solvers

m = 4 m = 6 m = 8
h `2-error Rate `2-error Rate `2-error Rate

0.1 3.1890e-01 - 1.0457e-01 - 1.6845e+00 -
0.05 3.1951e-01 -0.002 7.4388e-03 3.81 1.9954e-02 6.40
0.025 2.4571e-02 3.69 1.2081e-03 2.62 2.9917e-04 6.05
0.0125 5.6309e-03 2.12 6.9269e-05 4.11 2.6601e-05 3.48

Table 7.11: Convergence on Manifold B of our GMLS solver based on the biharmonic formula-

tion of the hydrodynamics in equation 7.1.1.

m = 4 m = 6 m = 8
h `2-error Rate `2-error Rate `2-error Rate

0.1 9.7895e-02 - 6.5222e-02 - 2.8024e-01 -
0.05 1.4383e-02 2.77 2.8402e-03 4.52 1.2100e-02 4.53
0.025 3.6243e-03 1.98 3.9929e-04 2.82 4.9907e-04 4.59
0.0125 7.8747e-04 2.20 1.2357e-05 5.00 5.7023e-06 6.44

Table 7.12: Convergence on Manifold B of our GMLS solver based on the split formulation of

the hydrodynamics in equation 7.1.2.
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based on the split formulation performed better when using equation 7.1.2 rela-

tive to our GMLS solvers based on the biharmonic formulation of equation 7.1.1.

Interestingly, for Manifold B and C these differences for m = 8 where not as

pronounced, see Figure 7.5. We think this is a manifestation of the challenges

in capturing the geometric contributions to the differential operator that with

limited resolution will not benefit as much from the higher order approximations

or split formulations relative to the case of less complicated geometries.

We find in the case of Manifold A that the GMLS solver for sufficiently large

order (m ≥ 6) converges at a rate of approximately∼ 4th-order for the biharmonic

formulation and at a rate of approximately ∼ 5th-order for the split formulation.

m = 4 m = 6 m = 8
h `2-error Rate `2-error Rate `2-error Rate

0.1 2.9886e+00 - 8.0650e-01 - 3.3799e-01 -
0.05 1.2926e+00 1.21 2.3277e-01 1.79 1.0993e+00 -1.70
0.025 2.8576e-01 2.18 2.1497e-02 3.44 7.1166e-03 7.28
0.0125 4.2226e-02 2.76 1.4986e-03 3.84 9.8921e-05 6.17

Table 7.13: Convergence on Manifold C of our GMLS solver based on the biharmonic formula-

tion of the hydrodynamics in equation 7.1.1.

m = 4 m = 6 m = 8
h `2-error Rate `2-error Rate `2-error Rate

0.1 1.1346e+00 - 8.8130e+01 - 4.6473e+00 -
0.05 7.7801e-02 3.86 1.0276e-02 13.0 3.7375e-02 6.96
0.025 1.6751e-02 2.22 1.8764e-03 2.45 4.2722e-04 6.46
0.0125 1.7381e-03 3.27 4.2181e-05 5.48 9.1845e-06 5.54

Table 7.14: Convergence on Manifold C of our GMLS solver based on the split formulation of

the hydrodynamics in equation 7.1.2.
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We base these conclusions on the overall trends, and some of this is a little ob-

scured by the noise of the convergence after acheiving a high level of accuracy. We

suspect the last up tick of the error observed for m = 8 for the biharmonic formu-

lation is likely a consequence of the conditioning of the linear system becoming

a limiting factor. We note the overall high level of precision already achieved by

that data point with errors on the order of 10−8, see Figure 7.5 and Table 7.9.

We find there is a particular advantage of our GMLS solvers when based on the

split formulation. Our GMLS methods in this case are able to converge to much

higher levels of precision achieving errors on the order 10−10 in the case of m = 8

at the largest resolutions considered, see Table 7.9.

m = 4 m = 6 m = 8
h `2-error Rate `2-error Rate `2-error Rate

0.08 3.3170e-01 - 1.5154e-01 - 1.2223e+01 -
0.04 2.4421e-02 3.82 4.6233e-03 5.11 3.9632e-03 11.7
0.02 4.5705e-03 2.44 3.0246e-04 3.97 4.2784e-05 6.60
0.01 1.4748e-03 1.62 1.9067e-05 3.96 5.4137e-07 6.26

Table 7.15: Convergence on Manifold D of our GMLS solver based on the biharmonic formula-

tion of the hydrodynamics in equation 7.1.1.

m = 4 m = 6 m = 8
h `2-error Rate `2-error Rate `2-error Rate

0.08 1.7719e-02 - 1.4221e-02 - 6.6061e+00 -
0.04 1.5473e-03 3.57 1.2632e-04 6.92 1.3431e-04 15.8
0.02 1.3575e-04 3.54 3.2125e-06 5.35 5.0041e-07 8.15
0.01 2.5891e-05 2.37 1.9018e-07 4.05 4.5906e-09 6.72

Table 7.16: Convergence on Manifold D of our GMLS solver based on the split formulation of

the hydrodynamics in equation 7.1.2.
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Our results show that both formulations of the GMLS solvers are able to

achieve high order convergence rates in approximating the hydrodynamic fields.

We emphasize that these results assess contributions from the entire pipe-line

that includes not only the GMLS solve but also the pre-processing and post-

processing steps involving the curl operators that arise in our vector-potential

formulation for incompressible hydrodynamic flows. We expect that many of

our GMLS methods can be extended to obtain other high order solvers for the

solution of related scalar-valued and vector-valued partial differential equations

on surfaces. Additional discussion and details can also be found in [9].
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Chapter 8

Conclusion

We developed meshfree solvers for manifolds for investigating hydrodynamic

flows on curved surfaces. We formulated GMLS methods both for adaptive han-

dling of the geometry on-the-fly of the manifold and for solving general scalar-

valued and vector-valued PDEs on surfaces. We demonstrated our approaches

for hydrodynamic flows on curved surfaces in the Stokesian regime. We studied

how our solvers perform in each of these different settings by performing conver-

gence studies for manifolds having non-trivial geometries of spherical topology.

We found our GMLS solver were able to achieve high-order convergence rates on

these geometries.

We expect our solvers to be useful for applications involving hydrodynamic

transport and coupling on curved fluid interfaces. We are currently working on

extending our GMLS solver to general smooth compact topologies. Additionally

we plan to use this framework to develop fluctuating hydrodynamics simulations
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on these surfaces, and to leverage the full parallel computing power of the Com-

padre toolkit. Additional discussions and details can also be found in [9].
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