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abstract

Programming environments are used to bridge the gap between actual
computers and development of their application programs. Most parallel
programming environments currently in use focus on a specific parallel
programming tool. This paper examines programming eavironments,
languages, tools, and techniques used for programming of paraliel
computers.

In this paper, several topics are examined. First, a brief survey of
parallel computer architectures and typical application programs is
performed. Then, a survey of available environments, languages, and tools
is conducted to determine how parallel programming is currently performed.
Finally, by considering architectures, applications, and environments, an
attempt is made to find desirable characteristics for a parallel programming
environment and a useful set of parallel programming tools.
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L. Introduction

Programming parallel computers is a difficult skill. A programmer must not only develop an
algorithm to solve a given problem, but must also implement that algorithm as a program (o run on a
machine composed of multiple processing elements. Success is measured by how quickly this program
runs, compared to a program that solves the same problem on a sequential, single processor computer.

The purpose of a programming environment is to support and aid the development of programs. The
characteristics of an environment for parallel programming are different than that for sequential
programming, and are not as well known. Most literature on parallel programming environments focuses
on a specific tool. There is little emphasis on tool sets and an overall environment architecture to support
parallel programming.

A survey of parallel programming environ;nents, tools, and techniques was conducted. The purpose
was to determine how parallel programming is performed and to find desirable characteristics of an
environment architecture and a useful set of tools (over and above that for sequential computer
programming). The simple “waterfall model” of the software lifecycle was used as a basis for program

design and development, and steps for parallel program development were derived.

2. Parallel C ter Architect { Applicati
In this section, a brief introduction to parallel computer architectures and application programs is

presented. Parallel computing is unique in that it represents a whole new field within computer science, yet

is being driven by a specific set of applications. Programs written for sequential (Von Neumann-type)




computer architectures have wide application to many fields (¢.g., the sciences, business, etc.). But
programs written for parallel computers are generally either simulations of physical systems (e.g., weather
forecasting, fluid flow, etc.) or numerical analysis problems (e.g., image and signal processing, matrix
multiplication, etc.). Such applications derive benefit from parallel computers by running more quickly,

thereby allowing finer simulation resolution or larger problem sizes.

2.1 Panallel Computer Architectures
Computer architectures were classified in [Fly66] (also see [SMS88]) by the number of instruction
and data streams executing on a computer, where an instruction stream is a sequence of instructions, and a

data stream is a sequence of data values utilized by an instruction stream. Four classes of machines were

defined:
« SISD single instruction stream, single data stream
« SIMD single instruction stream, multiple data stream
*« MISD multiple instruction stream, single data stream
* MIMD multiple instruction stream, multiple data stream

Sequential, single processor computers are considered to be SISD computers. When an SISD computer
executes, it executes a single application program on a single set of data values.

Parallel, bit-serial computers fall into the SIMD computer category. A typical SIMD computer
consists of a control unit and a number of interconnected processing elements (PEs) (each with a local
memory). The same program is executed on each PE over different data items. Communications between
PEs occurs over the interconnection network. The control unit controls sequencing of the program on each
PE, so that each PE is executing the same instruction (of the same program) at any given time.

Typical SIMD-type computers use hundreds of simple, small PEs, interconnected as a grid, cube, or

other regular structure. These computers work very well for applications that can be partitioned into

smaller tasks that fit well into the computer’s interconnection structure. Typical applications include




problems using matrices, and image processing.

There are no commonly used MISD-type computers. Such a computer would execute different
programs (simultaneously) over the same set of data. There are few problems of this type, and could be
executed on more flexible MIMD computers.

MIMD-type parallel processing computers typically consist of several PEs and several memory
modules, connected by an interconnection network. Each PE can execute its own program on the data
assigned to it. MIMD computers with relatively few PEs often have the PEs interconnected by a bus.
MIMD computers with larger numbers of PEs are usually interconnected into a regular structure. Just as
with SIMD computers, performance of the MIMD computer on a problem depends on how well the
problem can be partitioned to fit the interconnection structure,

There are two basic types of MIMD computers: shared memory and message passing computers. In
a shared memory MIMD computer, many, if not all, memory modules are organized into a global memory
. which is accessible by all PEs (although access time to any memory location may not be the same for all
memory locations). PEs communicate by leaving data stored in global memory. Message passing MIMD
computers do not have a global memory. Instead, each PE has a local memory which is not accessible to

any other PE. PEs communicate by sending messages across the interconnection network to other PEs.

2.2 Parallel C Applicati
As mentioned previously, applications will have the best performance when partitioned to match the
structure of the parallel computer architecture. In [Sto87), several important problem areas are noted which

have need for high performance computation. These are:
* Highly structured numeric computations — weather modeling, fluid flows, finite
element analysis;
»  Unstructured numeric computations — Monte Carlo simulations, sparse matrix

problems;
* Real-time multifaceted problems — speech recognition, image processing, and




computer vision;

» Large-memory and input/output-intensive problems — database systems,
transaction systems;

 Graphics and design systems — computer-aided design; and

* Artificial intelligence — knowledge-base-oriented systems, inferencing systems.
A search through the current literature on parailel processing algorithms finds that most research in
applications is concentrated in the first three areas listed above, and in particular the first one.

Most simulations of physical systems can be classified as highly structured numeric computations.
This is due to the fact that since they are physical systems, they are usually models of two or three
dimensional systems in space, varying over time. Each spatial dimension and time usually can be
discretized into regular intervals, and so these models become implemented as highly structured numeric
computations. |

[Hos86] and [Sto87] note that physical computation models fall into one of two categories:
continuum models and particle models. The continuum model is used to capture continuously varying
‘ quantities (e.g., force, temperature) over space and' time, and is usually implemented by dividing up space
and time into discrete regions and assigning the desired quantity a value by taking an average over the
region. Further, continuum models typically are models of systems which follow from partial differential
equations, so that changes in a quantity’s value for a region are dependent on the values in neighboring
regions. An application which can be classified as a continuum model can be matched to an architecture by
assigning a region to a PE such that it’s neighbors (over the interconnection network) are assigned regions
whose values the (first) PE needs.

The particle model is used to capture quéntities associated with discrete particles of the system.
Typically, the quantity associated with each particle will be dependent upon the influence of several (and
possibly all other) particles in the system. The particle model is difficult to match to a non-fully connected
architecture (in a fully-connected architecture, each PE can communicate directly, and at minimum cost,

with every other PE), since if a particle is assigned to a PE, the PE will need to communicate with some




(or all) other PEs to receive information on their assigned particles. Fully connected architectures typically
are very expensive (due w0 the large number of interconnections), and so are not in great use.

It should be noted that even though the continuum model and the particle model are different, they
have one very important factor in common. That is that the interactions of one region with others in the
continuum model, and of one particle with others in the particle model, usually can be described in the same
manner for all regions or particles. In other words, only one program need be written for a partition of
regions or particles over PEs. Both models can be described (programmed) relatively easily for SIMD
computers. In considering parallel programming environments, and realizing that most applications will be
implementations of physical computation models, a general parallel programming environment should
provide a large amount of support for computations typical for SIMD computers.

Computations typical for SIMD computers have been termed Single Program, Multiple Data
(SPMD) computations, in order to distinguish them from the term “SIMD,” which relates to an

. architecture. Although SIMD computers usually have their PEs execute programs in a lock-step manner,
SPMD computations are not so rigidly executed. SPMD computations can be executed on MIMD
computers. Since MIMD computers have PEs which can operate independently of one another, SPMD
programs may contain conditional paths which allow somewhat different processing for different data on
PEs (e.g., data for boundary regions, instead of interior regions). However, at some point PEs have to
become synchronized with each other.

In a similar vein, computations typical for MIMD computers will be referred to as Multiple
Program, Multiple Data (MPMD) computations. An MPMD computation would have a different program
assigned to each processing element, operating on different data. An MPMD computation might consist of
a collection of different tasks. A program assigned to a PE would consist of a subset of those tasks being
scheduled and mapped together. With such a model for MPMD computation, by casting an SPMD

computation as a collection of tasks (even though many tasks would be the same, just operating on

different data items), an SPMD computation can be transformed into an MPMD-like computation.




However, the converse cannot be performed.

3, Parallel P ing Tool { Envi |
This section provides a brief survey of tools and environments currently available to support parallel

programming. These tools have been classified by function.

3.1 Task and Task Interface Design

Tasks are defined to be a part of the program that performs a certain function. Task interfaces are
defined to be the structures used to transfer information (i.e., communicate) between tasks. .

Polylith [PRG87] is an environment which supports prototyping of algorithms in an architecture
independent manner by separating the specification of task interfaces from the underlying architecture. To

‘ implement a program, the programmer first specifies the tasks and task interfaces. Then the programmer

specifies the implementation of the computer’s architecture by specifying the PEs, memory modules, and
the interconnection structure. This allows for portability of programs across different architectures, and
allows experimentation with differeni architectures for determining optimal program performance, by
modifying the architecture specification.

POKER ([SnS86] is a parallel programming environment for mcssage passing, MIMD computers.
It requires a set of interprocessor communication primitives and a scqucntial language for task description.
To program an application using POKER, the programmer specifics a task graph, where each node
corresponds to a task, and edges correspond to communications. The programmer then binds a task to each
node and an (inter-task) message to each edge. Additionally, graphs may have “dangling” edges, which
provide for data input and output to the graph. The complete graph description is called a phase. A

program is composed of a scquence of one or more phases (phascs communicate with each other via the

dangling edges) and an exccution scheduler that describes how tasks are assigned to PEs. A significant




feature of the POKER environment is that it provides a graphical view of the program with interactive
graphical program editing. The environment also provides a trace facility which allows the programmer to
start, stop, and single step the program while viewing the values of trace variables.

MUPPET [MKL87] is an environment targeted for the West German SUPRENUM supercomputer
project. Programs are written in the Concurrent MODULA-2 language for an abstract message passing
computer by specifying processes and inter-process communications. The abstract computer is then mapped
onto the SUPRENUM architecture to create the program. MUPPET also provides a graphical interface,
GONZO, which provides for graphical program specification and animation of program execution.

HYPERTOOL [WuG88] is a programming environment for hypercube message passing computers.
Programs are written in a subset of C by specifying tasks and their communications. HYPERTOOL then
constructs a data flow graph of the program, schedules tasks, and maps the tasks onto PEs. The program is
then executed on a hypercube simulator, which provides some exccution trace information. An interesting
. feature of HYPERTOOL is that the program is initially debugged on a sequential computer.

Examination of these environments shows some common features. Each of these is intended for
use on an MIMD computer. Programming is performed by specifying tasks and their interfaces, with no
mention of the intended target architecture. The tasks are then scheduled and mapped from an underlying
abstract computer onto a real computer. Graphical interfaces are uscd to edit the task graph, which is really

a data flow graph with tasks as nodes and inter-task communications as edges, and to provide visualization

of program structure.

3.2 Languages and Compilers
Most programming languages for parallel processing currcntly in use are modified versions of
sequential programming languages. The most widely used is FORTRAN, with C as a distant second

favorite. There have been some alternate languages proposed. A bricf summary of the language choices

available are summarized bclow.




3.2.1 FORTRAN

[KaB88] provides a survey of FORTRAN dialects available for use on commercial parallel
computers. Most of these dialects merely provide extensions for parallel synchronization and control, such
as cobegin and coend statements, fork and join statements, barrier synchronization statements, lock and
unlock statements for shared memory locations, and facilities for sharing data in shared memory systems. It
is left to the programmer to control task and data partitioning, scheduling, and synchronization. This is not
a satisfactory state of affairs, as partitioning, scheduling, and synchronization are what make parallel
programming difficuit. The programmer is given little support.

FORTRAN compilers provided by Alliant, Cray, and IBM go a step beyond by providing for some
automatic parallelization of code. The Alliant FORTRAN compiler can vectorize some types of loops, that
is, remove data dependencies between loop iterations so that each iteration’s results can be calculated

_independently, organize the data required by the loop iterations into vectors, and schedule the vectors for
processing. The Cray and IBM FORTRAN compilers can support parallelization of some types of loops
(called microtasking) and parallelization of subroutine calls (called multitasking). These two features allow

for some detection of parallelism, and semi-automatic scheduling. However, much work is still left to the

programmer.

3.2.2 Other algorithmic languages

HYPERTOOL [WuG88), as previously mentioned, allows programming using a subset of C. The
programmer partitions the program into tasks, and identifies the input and output parameters of each task.
HYPERTOOL then compiles the program, schedules the tasks, and inscrts the communcation and
synchronization primitives automatically. This is a definite improvement, as proper handling of

communication and synchronization is the cause of many parallel programming errors, and generally such

errors cannot be found until the program is executed.




ADA, Concurrent PASCAL, and Concurrent MODULA-2 are other algorithmic programming
languages which provide for concurrent program execution. These languagces are interesting because they
supposedly allow for architccture independent parallel processing. However, programs must still be
scheduled and mapped efficicntly onto an actual architecture. This is a difficult problem, and currently must

be performed manually, which removes the primary advantage of using these languages.

3.2.3 Single assignment languages
In a single assignment language, memory locations may have a value assigned only once, although
they may read multiple times. This provides for program sequencing by data dependence, only allowing
program statements and proccdures to be executed when the data requircd is available. As a result, race
condlitions and data cohercnce problems are avoided. Programming for parallelism occurs as a result of data
usage and availability, and does not have to be explicitly programmed. In some ways this method is
- similar to the task-oriented programming methods previously described, except at a lower level. |
SISAL [BoG87] is a single assignment language originally intendcd for description of data flow
computation. It is used in within an environment which includes a compiler, several computer simulators,
and a graphical program cxccution monitor. The program execution monitor can display a procedure call
graph (a display of the program’s procedures and data dependences as thcy arc executed) and can display PE
utilization statistics over time. These help the programmer to visualizc their program’s execution over

time.

3.2.4 Functional languages

Id Nouveau [ArE87] is a new version of the Irvine Dataflow language, and is based upon a
functional programming approach, that is, program code is writtcn as a sct of functions (in a manner
similar to LISP programming), where each function has a task and a cicarly defined set of input and output

parameters. Id Nouveau also utilizes single assignment. Program scquencing in Id Nouveau occurs as a




result of function calls and data dependences. This can be considered another method where the programmer
separates the tasks to be performed, and the task interfaces, from the underlying architecture.

The Gibbs Project [Nic87] [Wil86] is an effort to program parallel computers in a method similar to
how physical sciemists describe systems. For example, a physicist might describe the motion of a set of
objects by writing down the general equations of motion for each object, recording the attributes of each
object, recording any initial and boundary conditions, and then describing the fineness of resolution desired
(e.g., a time step between each iteration). Computer scientists might write a program for such a system by
first describing a data structure to represent the system, then breaking up the overall problem into tasks and
their interfaces, and then finally describing exactly the equations of motion, initial and boundary conditions,
and resolution. Clearly, there is a great difference in how each approaches a problem. Research is being

performed to find a language suitable for this kind of problem expression.

Static data flow analysis tools perform data flow analysis of a program based on the program’s
source code only (dynamic analysis tools make use of information from program execution). Such tools are _
typically used to uncover data dependences and find parallelizable code.

The CAMP tool [PGW87] is used to analyze loops and remove data depcndences between iterations, so that
individual loop iterations may be executed in parallel. A performance cstimator is also included so that the
programmer can analyze the c{fect of various data partitioning schemes on loop performance.

Similar analysis tools were embedded in some of the FORTRAN compilcrs previously mentioned.

These tools typically do not work when the loop contains procedure calls, since such calls may
contain implicit data dependcences to other loop iterations. In {Tri87], analysis of interprocedural data flow
information is also performed. This provides the additional information nccessary to analyze the effects of a

procedure call in a loop, possibly allowing the data dependences between loop iterations to be removed and

the loop iterations to be exccuted in parallel.




Another use for static data flow analysis is described in (TaO80]. Here, analysis may uncover
programming anomalies, that is, errors in variable definition or use duc to race conditions. Since the
analysis is not dynamic, actual instances of race conditions cannot be found, but potential instances can be

located.

3.4 Scheduling and mapping

There are two basic mcthods available for scheduling and mapping tasks onto processing elements:
static and dynamic. Scheduling of a task refers to the assignment of an execution time for a task. Mapping
of a task refers to the assignment of a task to a certain processing element for execution. Static methods
must know or have an estimatc of the execution time of each task, and must know the information that
must be present to execute a ask (i.e., the data dependences). The tasks can then be scheduled into time
slots. Once all tasks are scheduled, collections of tasks are assigned to individual PEs. Static scheduling is

" done at compile-time.

HYPERTOOL [WuGS88] utilizes a static scheduling and mapping method. A data flow graph is
constructed, with nodes corresponding to tasks and edges to messages. Nodes are assigned a weight equal to
the corresponding task’s exccution tifne, and edges are assigned a weight cqual to the corresponding
message’s transmission time. The graph is then traversed, the critical path identified, and nodes assigned
the earliest possible execution times. The nodes are then scheduled onto a virtual PE. After all nodes are
scheduled, each virtual PE is assigned to an actual PE to minimize communication time.

In dynamic scheduling, task execution times are not known, and tasks are scheduled and mapped at
run time onto a PE when its data dependences are satisfied. In [Pol88], a data flow graph is constructed, and
communication primitives arc inserted before and after each task’s program code. Tasks are initially placed
into a queue, depending on their depth in the graph (root nodes are located at the front of the queue). A host
processor administers the qucuc, examining tasks in the queue to sce if their data dependences have been

satisfied, and if so, the tasks arc scnd to a PE for execution. PEs that arc not cxecuting tasks are available
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for task assignment by the host.

3SE . itoring and d .

There are few techniques available for debugging parallel programs. Most are based upon execution
monitoring and profiling the programs as they run. In Belvedere {HoC87], a multiprocessor simulator is
used to execute a parallel program, and an execution trace is produced. The trace contains a list of
time-stamped events, such as message transmission and reception, and task initiation and completion. This
list is treated as a database, and queries are made by the programmer for certain patterns of events. The
results of these queries can be graphically displayed and animated. For example, one might look for certain
communication patterns corresponding to information transfer between neighboring PEs. Belvedere would
find the corresponding events and display the PEs, the interconnection network, and source and destination
of the messages. This can provide the programmer with a visualization of how the program executes,

-which can be compared to how it should be executing.

In [ALP87], a dynamic data flow analysis tool is presented which utilizes program source codg and
execution trace information to uncover actual and potential race conditions. Static data flow analysis is
utilized to find potential racc conditions. Analysis of the execution trace can determine if any of the
potential race conditions were actually realized (for a particular set of input data). The analysis can also
check for potential race conditions which are possibly hidden, due to the effects of the actual race condition,
although in general no conclusions can be drawn until the actual race condition is eliminated.

Other previously mentioned execution monitoring tools are in POKER, MUPPET, and the program

execution monitor for SISAL.

3.6 Performance analysis
Parallel program performance analyzers, like debuggers, have fcw techniques available, and are derive

their analysis from execution information. In [SBD87], static and dynamic data flow analysis is used to
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produce a weighted data flow graph (similar to that used for scheduling in HYPERTOOL) which represents
the parallel program. This graph is then scheduled and mapped over a range of numbers of PEs to show
program speedup versus number of PEs used. This can be used by the programmer to improve program
performance and to find a number of PEs that provides good program performance.

COSMIC [CaF87] uses timed Petri nets to analyze program performance. A weighted data flow
graph is produced from the program, and is simulated as a Petri net. Several Petri nets can be produced,
which contain some or all of the constraints associated with the program, such as resource access, memory

access, etc. The Petri nets can demonstrate how the execution time and critical path can vary with different

overhead costs.

378 ¢ parallel : Is and envi

There are many tools and environments available to support parallel programming. However, none
- of the environments seems to be complete, in that the environment can support all aspects of program
development. This is examined more in Sections 4 and 5. There was much use of graphics to visualize
program execution, which programmers can use to compare with their own idea of how the program should
be executing. Visualization is a powerful concept, because it is very difficuit to put together a picture of
program execution from textual information. Time, communication and synchronization, tasks, and
processing elements combine into a picture with too many dimensions for a programmer to uncover in all
but the simplest cases.

Many of the programming techniques support a task oriented, architecture independent approach to
program development. This approach is useful because there are many different parallel computer
architectures available, none of which has emerged as a standard. However,this approach is troubling
because it runs counter to the intuition developed in Section 2 — that programs must be well matched to
the architecture for best performance. Presently, good automatic techniques for transforming programs

written for abstract parallel computers to those for real computers have not been found.
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' p ing Envi | the Sof Lifecyel

In this section, we examine how development of sequential and parallel programs are different, and

the support that should be provided by in a parallel programming environment.

41s ial P ing Envi

Figure 4-1 shows the common, simple view of the software lifecycle. The parts of the lifecycle
that correspond to the steps involved with development of program code are illustrated. These steps can be
des. .:bed in a more detailed manner, as shown in Figure 4-2. It is in the detailed design phase that the
program is broken up into modules, where each module performs some task. The actual program code will
have an implemention of each module, and so will be a reflection of the detailed design. The detailed &esign
also reflects the (as yet unwrittcn) program code, since the design will consider details of the program’s
implementation. Thus, we can say that program code development starts in eamnest in the detailed design

‘ phase. The purpose of a programming environment is to support program code development, and so a
logical place to start to provide support would be in (the later
stages of) the detailed design phase.

In the program coding phase of the software lifecycle, the detailed design of the program becomes
implemented in a chosen programming language. However, it is rare for a program to become implemented
without debugging and testing. Program debugging and testing is considered to be a part (the initial stages)
of the maintenance phase of the software lifecycle. Debugging and testing occurs for each module of the
design as it is coded, and as it is integrated into the overall program. Thus, there is much feedback between
the program coding phase and the initial stages of the maintenance phase. A logical place to end support of
program development would be in the early stages of the maintenance phase.

A programming environment for sequential programming shouid provide support in the detailed

design phase for module design and interfacing, the program coding phase, and in the maintenance phase for

debugging and (some) testing.
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4.2 Parallel Programming Environments

The software lifecycle can also be applied, in general, to the development of parallel programs.
However, parallel programming is more complex. Figure 4-3 illustrates the steps to be performed in
parallel programming. Tasks to be performed, and the interfaces between tasks, are developed in the detailed
design phase. This is similar to the sequential detailed design phase.

In the program coding phase, tasks and task interfaces are implemented as program code. However,
in parallel programs, tasks must be scheduled in time and then mapped for execution on specific processor
elements. This is one difference that distinguishes paralle! program development from sequential program
development. A parallel program is not complete until it is scheduled and mapped.

Debugging and testing of parallel programs (in the maintenance phase) is also more complex than
for sequential programs. For sequential programs, debugging and testing (for program development) is
performed to remove coding errors, uncover errors in functionality, and to integrate the pieces of the design

"into a whole. For parallel programs, debugging and testing also includes the uncovering of

errors due to improper sequencing of tasks, execution monitoring of the program, and and performance
analysis for the improvement of program performance. Improper task sequencing is more likely to occur in
parallel programs than in sequential ;;rograms, because control is more difficult. Tasks may execute
simultaneously in a parallel program, and in an arbitrary order, whereas in a sequential program tasks
execute one at a time, and in a specific, fixed order. Improper task sequencing can lead to race conditions,
where a data item might have values stored by multiple tasks, and the execution sequence of future tasks
will depend upon the order that the values are stored. Some race conditions can be very difficult to uncover
when the time between possible value storages is small, because the amount of time for task execution
may vary for reasons not under the programmer’s control (such as the operating system or resource access).
Debugging, testing, and execution monitoring tools are necessary for detecting possible race conditions, and
for monitoring task sequencing, task interfacing, and processing element utilization.

Improvement of program performance is another difference that distinguishes parallel from -
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sequential program development. On the surface, if a parallel computer has N processing elements, then
one would think that a parallel program should run N times as fast as its sequential equivalent. In practice,
this is extremely rare, as it is difficult to keep all N processing elements busy all the time, and there are
various overhead costs (e.g., communication) accrued by dividing up the problem among different
processing elements that slow the program. To maximize computer usage and efficiency, the program

should be improved until it can run as fast as possible.

4.3 Parallel Programming Tool Sets

Figure 4-3 and Section 4.2 presented outlined the support that a parallel programming environment
should provide. Section 3 presented various tools useful for parallel programming. This section will
discuss what kinds of tool sets should be provided.

It was previously mentioned that SPMD computations are well suited for SIMD computers, and
‘that MPMD computations are well suited for MIMD computers, and that SPMD computations could be
transformed into MPMD-like computations (allhodgh they probably would not execute as efficiently), and
so could be executed on SIMD or MIMD computers. The implication is that between SIMD and MIMD
computers, MIMD computers are mofe flexible since they can execute either type of computation.
However, SPMD computations seem to represent the majority of applications for parallel processing. This
suggests that a parallel programming environment on an MIMD computer should contain separate tools for
both SPMD and MPMD program development.

However, such tools would differ somewhat in function, but not form. Both SPMD and MPMD
program development would benefit from interactive, graphical tools. The primary difference lies in how
tasks and task interfaces are described. SPMD programs will be made from a collection of tasks, which will
be assembled into a program that will execute on all PEs. Communications between PEs should be
relatively simple, in that they should occur at about the same time (since programs executing on each PE

will be identical). MPMD programs utilize a task oriented, architecture independent approach. An MPMD
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program will contain of subset of tasks from a larger collection. Input and output data for tasks serve as the
method of communication. Graphical tools are best used to show communications and task relationships.
A graphical tool for SPMD programming should exhibit how PEs communicate with each other. A
graphical tool for MPMD programming should exhibit how tasks are grouped into programs, and how data
is passed between tasks (and PEs). Graphical methods have been demonstrated to support task and task
interface design for MPMD programming (e.g., POKER and MUPPET). It should be straightforward to
utilize these methods to support SPMD programming, too. A potential problem with graphics based tools
is that it is not clear how well they would handle large programs or architectures, since a screen can only
hold so much data before it becomes too cluttered. If this is in fact a problem, a tool to provide some sort
of automatic scaling of solutions from a small size to a large size would be helpful in overcoming that
problem.

Task and task interface design for SPMD programming should be simpler than for MPMD
* programming, due to the regular structure of tasks, communications, and architecture. Communications
should be simpler, and race conditions much more easily avoided. Thus, there should be little need for data
flow analysis tools for SPMD programming. There will be great need for static data flow analysis tools to
support MPMD programming. Static data flow analysis can be utilized on the tasks to find more
parallelism (as described in [Tri87]), and on task interfaces to find potential race conditions (as described in
[T2080]).

Scheduling of SPMD programs is almost trivial, since each PE executes the same program.
Mapping would consist of assigning data to PEs so that communications distance is minimized. For
MPMD programming, a good scheduler and mapper are necessary to produce efficient parallel programs.
The task (data flow) graph describes how the program would execute if there were as many PEs as necessary
for maximal parallelism. The task graph must be scheduled and mapped onto a real architecture, with a
limited number of PEs. Efficient scheduling and mapping is a difficult task (optimal scheduling is an

NP-complete problem).
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Static scheduling is preferable to dynamic scheduling due to the overhead and control needed for
dynamic scheduling, however static scheduling requires a method of task performance estimation. A
versatile scheduling technique might utilize a dynamic scheduler or a performance estimator (for static
scheduling) for the initial program scheduling, but after execution would utilize the profiling information
available (from the program execution) to improve the scheduling for the next program execution.
Subsequent executions could continue to refine the program scheduling.

Graphical execution monitoring and debugging tools are needed to éssisl the programmer with
visualization of program execution and communication patterns. For SPMD programs, this would provide
a useful check against how the programmer thinks these occur. For MPMD programming, a programmer
would probably be able to visualize program execution by looking at a task (data flow) graph, but aftér
scheduling it probably would not be clear how the program executed. A tool such as Belvedere, which
provided a view of event patterns among PEs, would be useful in this regard. Belvedere provided a view
A suitable for SPMD programming, but it should be possible to provide a useful view of MPMD
programming, too. A graphical execution monitoring and debugging tool should be tightly integrated with
the graphical design tools.

For MPMD programming, dynamic data flow analysis tools for uncovering race conditions (as in
[AIP87]) would be extremely useful. As with scheduling, it should be possible with dynamic data flow
analysis to take information provided from program execution and feed back information into program
design.

Simulation (of program execution) is also useful technique for execution monitoring and debugging.
A simulator with start, stop, single step, and display capabilities (similar to a source level debugger) can
provide the programmer with direct control over program execution and a window into the program’s state.
However, it is difficult to accurately simulate muitiple PEs over time. For example, the SIMON
multiprocessor simulator {Fuj83] simulates by executing the assigned tasks of one PE until it becomes

blocked by a communication primitive. It then places the PE (and it’s state) into a queue, removes another
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PE from the queue, checks to see if it is blocked, and if not blocked then simulates it. The state of each PE
atagiven (simu!alor) time is not known. Only the state of one PE can be known.

Performance analysis tools are needed to analyze the effects of different partitioning schemes. In
[PeG86], comparisons were made of algorithm speedup and the aspect ratio (a measure of the block size) for
data partitions. This analysis allowed the programmer to choose a partitioning scheme that minimized
program execution time. Choosing a method of partitioning is a very intuitive task, and requires special
insight into the problem. It would be very difficult to develop a tool that could perform the necessary
analysis automatically, but would be extremely useful since partitioning skill is the most difficult (but
necessary) skill that a good parallel programmer must have.

In general, there were few debugging and performance analysis tools found in the literature. This is
disappointing, in that good debugging and performance analysis capabilities are necessary for improvement
of parallel programs. If fast parallel programs remain extremely difficult to develop, there will probably be

" litde effort in making parallel computing viable (the most effort would be placed on making sequential and

vector computers faster).

3. Future Research

Graphical techniques for parallel programming are just beginning to be utilized, and there is much
room for growth. Available graphical techniques tend to support MPMD program design (i.e., task
oriented, architecture independent). Work needs to be performed to extend this to SPMD programming, and
to provide well integrated graphical execution monitoring and debugging.

Good static scheduling algorithms have already been found that are known to provide schedules that
are within a constant factor of optimal. The challenge in utilizing static scheduling is to find ways of
obtaining task execution times short of actually executing the program. Dynamic scheduling and mapping

techniques are not well known, and there is much room for improvement. Most research being performed
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utilize heuristics to successively refine the scheduling and mapping.
As previously noted, there are few tools available for parallel program debugging and performance
analysis. The most useful techniques so far have been static and dynamic data flow analysis for detection of

parallelism and race conditions. Other techniques are needed to help improve performance of parallel

programs.
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