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Causal mediation analysis with multiple causally non-ordered 
mediators

Masataka Taguri1,2, John Featherstone2, and Jing Cheng2

1Department of Biostatistics, School of Medicine, Yokohama City University, Yokohama, Japan

2School of Dentistry, University of California, San Francisco, San Francisco, CA, USA

Abstract

In many health studies, researchers are interested in estimating the treatment effects on the 

outcome around and through an intermediate variable. Such causal mediation analyses aim to 

understand the mechanisms that explain the treatment effect. Although multiple mediators are 

often involved in real studies, most of the literature considered mediation analyses with one 

mediator at a time. In this article, we consider mediation analyses when there are causally non-

ordered multiple mediators. Even if the mediators do not affect each other, the sum of two indirect 

effects through the two mediators considered separately may diverge from the joint natural indirect 

effect when there are additive interactions between the effects of the two mediators on the 

outcome. Therefore, we derive an equation for the joint natural indirect effect based on the 

individual mediation effects and their interactive effect, which helps us understand how the 

mediation effect works through the two mediators and relative contributions of the mediators and 

their interaction. We also discuss an extension for three mediators. The proposed method is 

illustrated using data from a randomized trial on the prevention of dental caries.

Keywords

Causal inference; effect decomposition; mediation analysis; multiple mediators; natural direct 
effect; natural indirect effect

1 Introduction

In many health studies, researchers are interested in estimating the treatment effects on the 

outcome around and through an intermediate variable (called a mediator), where the 

corresponding effects are called direct and indirect effects, respectively, and their sum is the 

total effect of the treatment on the outcome of interest. Such mediation analyses aim to 

understand the mechanisms that explain the treatment effect. Robins and Greenland1 

originally put forward a formal study of causal mediation analysis. Following their work, 
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Pearl2 showed that a total effect can always be broken down into a natural direct and indirect 

effects. There is growing literature on evaluating natural direct and indirect effects.3–11 

Although a treatment often affects the outcome through multiple mediators in real studies, 

most of the literature considered a mediation analysis with a single mediator only.

When multiple intermediate variables are involved in a study, Daniel et al.12 summarized 

existing approaches as the following three types in the setting of two mediators, M1 and M2 

(see Figure 1(a) and (b)): (1) M2 is the mediator of interest, and M1 is treated as a mediator-

outcome confounder affected by treatment, leading to a two-way decomposition into an 

effect (indirect) through M2 and an effect (direct) not through M2 13–17; (2) path-specific 

effects are estimated, but not in such a way that their sum equals the total effect18,19; and (3) 

the multiple mediators do not causally affect one another,20–22 that is, the arrow from M1 to 

M2 in Figure 1(a) is assumed absent (Figure 1(b)). Imai and Yamamoto23 considered 

approaches for all the three conditions assuming a linear structural equation model for the 

outcome and mediator. Daniel et al.12 considered the finest possible decomposition of the 

total effect when there are two causally ordered mediators and evaluated each path-specific 

effect. In addition, VanderWeele and Vansteelandt24 considered the multiple mediators one 

at a time as joint mediators and defined the “joint” natural direct and indirect effects as an 

extension of the usual two-way decomposition of the total effect with regression-based 

approach and weighting approach.

In this article, we will focus on the setting (3), that is, there are causally non-ordered 

multiple mediators, and provide an analytic approach to express the direct and indirect 

effects independent of models. Multiple mediators can be non-causally ordered when the 

treatment has multiple components targeting on multiple non-causally related mediators. For 

example, a cavity prevention plan for high-risk patients often has an antibacterial component 

to reduce oral bacteria as well as fluoride therapy to strength the teeth, where the two 

mediators oral bacteria level and fluoride level are not causally related.25 With two causally 

non-ordered mediators involved, there are three path-specific effects from treatment (A) to 

outcome (Y): the direct pathway (A→Y), the indirect pathway through M1 only 

(A→M1→Y), and the indirect pathway through M2 only (A→M2→Y).

We can then estimate the three corresponding path-specific effects by separate analyses. 

Although the individual path-specific effects allow us to understand how the treatment works 

through individual paths alone, it may not give us the whole picture of the treatment effects 

involving multiple mediators. For example, consider the pathway through M1 only. The 

indirect effect will be the indirect effect of the treatment through M1, and the direct effect 

will thus be the effect through all other pathways including the effect through M2. However, 

in a real study, researchers are often interested in how the treatment works through 

individual mediators (M1 and M2) at the same time, including their possible interaction if 

there is any. In such a case, a joint natural indirect effect through (M1, M2) will be of 

interest. We might then think that the sum of the two natural indirect effects for M1 and M2 

considered separately should equal the joint natural indirect effect through (M1, M2). In fact, 

even if the two mediators do not affect each other, the sum of two indirect effects considered 

separately may diverge from the joint indirect effect when there are additive interactions 

between the effects through the two mediators on the outcome.24 Therefore, in this article, 
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we aim to provide an analytical approach to express the total effect as a function of the 

indirect effects through two causally non-ordered mediators (M1, M2) and the direct effect 

around (M1, M2) independent of models. The derived expression will help us understand 

how the mediation effect works through the two mediators and the relative contributions of 

different components and their interaction. Assumptions for identification, model-based 

estimation, and extension to more than two mediators will also be discussed in the article.

The remainder of this article is organized as follows: In Section 2, we briefly review the 

direct and indirect effects in the single mediator setting. In Section 3, we present the 

identification assumptions and review two existing approaches in the presence of two 

causally non-ordered mediators. In Section 4, we present a novel three-way decomposition 

of the joint natural indirect effect. In Section 5, we give the identification formula for our 

estimands. In Section 6, we discuss extensions to the three mediators settings, and to the 

vector-valued mediators. In Section 7, we apply the proposed method to data from a 

randomized trial evaluated the effect of a combined antibacterial and fluoride therapy on the 

prevention of dental caries. Finally, in Section 8, we conclude with a discussion.

2 A brief review of single mediator case

We first briefly review the direct and indirect effects for a single mediator. See Imai et al.9 

for a more detailed explanation. Let Y denote an observed outcome for an individual, A 
denote a binary treatment or exposure (1: treatment or exposed, 0: control or non-exposed), 

C denote a set of confounding variables that may affect the treatment, mediator, and/or 

outcome, and M denote a single potential mediator that may be on the pathway from the 

treatment to the outcome (Figure 2). There may be other mediators as well but when 

focusing on only one mediator, the effect through other mediators would be included in the 

direct path from A to Y not through M.

To conduct a causal mediation analysis, we use the potential outcome framework.26,27 Let 

Y(a) and M(a) denote the potential outcome and potential mediator, respectively, that would 

be observed if, possibly contrary to the fact, A were set to a. Likewise, let Y(a,m) denote the 

potential outcome that would be observed if, possibly contrary to the fact, A were set to a 
and M were set to m. We also make assumptions referred to as the consistency and 

composition assumptions.7 The consistency assumption for (A, M) is that among the 

subgroup with the observed treatment A=a and the observed mediator M=m, the observed 

outcome Y is equal to Y(a,m). The consistency assumption for the effect of the treatment on 

the mediator is that among the subgroup with the observed treatment A=a, the observed 

mediator M is equal to M(a). The composition assumption is that Y(a)=Y(a, M(a)).

Robins and Greenland1 and Pearl2 considered the natural direct effect of treatment A on 

outcome Y, {Y(1, M(0))−Y(0, M(0))}. This natural direct effect compares the potential 

outcome under treatment and control given the mediator M at its natural level under control 

M(0), so is also referred as the “pure direct effect.”1 The natural indirect effect {Y(1, M(1))

−Y(1, M(0))} they considered compares the potential outcome that would be observed when 

the subject is treated and mediator is changed from M(0) to M(1). This natural indirect effect 

is also referred as the “total indirect effect.”1 The total effect can then be decomposed into 
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the natural direct and indirect effect as: Y(1)−Y(0)=Y(1, M(1))−Y(0, M(0))={Y(1, M(1))

−Y(1, M(0))}+{Y(1, M(0))−Y(0, M(0))}. Alternatively, we can also decompose the total 

effect as: Y(1)−Y(0)={Y(1, M(1))−Y(0, M(1))}+{Y(0, M(1))−Y(0, M(0))}, where {Y(1, 

M(1))−Y(0, M(1))} is referred as the “total direct effect” and {Y(0, M(1))−Y(0, M(0))} as 

the “pure indirect effect.”

Because we are not able to observe all the potential outcomes for one subject in a real study, 

the individual level effects cannot be identified. On the other hand, under some assumptions, 

the population average effects can be identified. Given confounders C=c, the population 

average effects are conditional expectations of the individual level effects E[Y(1)−Y(0)|c], 

E[Y(1, M(1))−Y(1, M(0))|c], and E[Y(1, M(0))−Y(0, M(0))|c]. Various assumptions have 

been proposed for the identification of the population average natural direct and indirect 

effects. Most literature first assume no unmeasured confounding on three relationships.

A1 No-unmeasured confounding of the A-Y relation.

A2 No-unmeasured confounding of the M-Y relation.

A3 No-unmeasured confounding of the A-M relation.

In addition, Pearl2 made the following assumption for identification:

A4 A cross-world independence assumption.

If we assume that data are generated from Pearl’s nonparametric structural equation model 

(NPSEM),28 then A4 will hold if there is no mediator-outcome confounder that is affected 

itself by the treatment. If a mediator-outcome confounder is affected by the treatment, then 

without additional assumptions, natural direct and indirect effects cannot be 

nonparametrically identified even under Pearl’s NPSEM irrespective of such a confounder is 

measured or not.18 Figure 2 shows a causal diagram that is compatible with assumptions 

A1–A4 under Pearl’s NPSEM.

3 Natural direct and indirect effects for two causally non-ordered mediators

3.1 Notation and assumptions

We now consider the situation that there are two causally non-ordered mediators M1 and M2, 

meaning that the causal relationship between M1 and M2 is absent as in Figure 1(b). In 

contrast, Figure 1(a) corresponds to a case where M2 is causally affected by M1. In this 
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article, we will focus on the case illustrated in Figure 1(b). Let M1(a), M2(a), and 

Y(a,m1,m2) be obvious extensions of the potential outcomes defined in Section 2. We also 

assume the consistency and composition assumptions for these potential outcomes. The 

observed outcome Y is equal to Y(A,M1(A),M2(A)). We assume that the potential mediator 

M2(a,m1)=M2(a) does not depend on the value of m1, implying that M2 is not causally 

affected by M1.

We extend Assumptions A1–A4 to B1–B4 for two causally non-ordered mediators M1 and 

M2.

B1 No-unmeasured confounding of the A-Y relation.

B2 No-unmeasured confounding of the (M1, M2)-Y relation.

B3 No-unmeasured confounding of the A-(M1, M2) relation.

B4 An extended cross-world independence assumption.

Again, under the NPSEM, B4 will hold if there is no mediator-outcome confounder that is 

affected by the treatment. See Robins and Richardson29 for a more detailed discussion on 

the NPSEM and its relation to other graphical causal models. Assumptions B1–B4 are 

sufficient to identify E[Y(a,M1(a*), M2(a**))|c] for all (a, a*, a**), as shown later in Section 

5. In the remaining two subsections, we will review two existing approaches for mediation 

analysis in this context, and point out some counter-intuitive results.

3.2 A two-way decomposition of the total effect into the joint natural direct and indirect 
effects

Under the causal relationships in Figure 1(b), one may consider M1 and M2 as a joint 

mediator.24 According to VanderWeele and Vansteelandt,24 the natural direct and indirect 

effects with (M1, M2) as the mediator is defined by {Y(1, M1(0), M2(0))−Y(0, M1(0), 

M2(0))} and {Y(1, M1(1), M2(1)) −Y(1, M1(0), M2(0))}, respectively. The joint natural 

indirect effect here is the treatment effect mediated through M1 or M2, and the joint natural 

direct effect is the effect through neither M1 nor M2. Then, the total effect is decomposed 

into the joint natural direct and indirect effects as follows:
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(1)

The definitions given in (1) are natural extensions of the decomposition of the total effect 

into the total indirect effect and the pure direct effect to the two mediators setting. Another 

similar decomposition of the total effect into the joint total direct effect and the joint pure 

indirect effect is given as: Y(1) −Y(0)={Y(1, M1(1), M2(1)) −Y(0, M1(1), M2(1))}+{Y(0, 

M1(1), M2(1)) −Y(0, M1(0), M2(0))}=total natural direct effect+pure natural indirect effect.

The differences between the “pure” and “total” direct (indirect) effects are due to the 

differential inclusion of the interaction between the treatment and the mediators. In a single 

mediator case, VanderWeele30 showed that the difference {total natural direct effect–pure 

natural direct effect}={total natural indirect effect–pure natural indirect effect} corresponds 

to a “mediated interaction” between A and M, which is the product of an additive interaction 

of the treatment and the mediator on the outcome, {Y(1,1) −Y(1,0) −Y(0,1)+Y(0,0)}, and 

the effect of the treatment on the mediator, {M(1) −M(0)} (see Section 2 for the notation). 

This mediated interaction is arguably part of the effect that is mediated in the sense that it 

requires that the treatment changes the mediator.31 In addition, under certain assumptions, 

the total indirect effect, in contrast to the pure indirect effect, would give more evidence for 

the actual operation of mediating mechanisms.32,33 Thus, we will focus on the 

decomposition (1) in the remainder of this article for illustration. However, the methods 

discussed in the article should be directly applied to the other decomposition.

3.3 Two three-way decompositions of the joint natural indirect effect into path-specific 
natural indirect effects

If our aim is to compare the relative importance of M1 and M2 as a mediator, then we are 

interested in three path-specific effects from treatment to outcome: (i) the direct effect 

around the two mediators (A→Y), (ii) the indirect effect through M1 only (A→M1→Y), 

and (iii) the indirect effects through M2 only (A→M2→Y) (Figure 1(b)). Then, the joint 

natural indirect effect in (1) can be further decomposed into two path-specific effects as 

follows:

(2)
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(3)

where the first terms in (2) and (3) are indirect effects through M1, whereas the second terms 

in (2) and (3) are indirect effects through M2. Daniel et al.12 showed that there are six 

decompositions of the total effect into three path-specific effects. Of these six 

decompositions, Lange et al.22 focused on (2) and (3) in conjunction with (1), whereas Imai 

and Yamamoto23 considered other two decompositions. In this article, we will focus on (2) 

and (3) because these are only two decompositions such that the sum of the indirect effects 

through M1 and through M2 is equal to the joint total natural indirect effect in (1). For the 

notational convenience, we use PSE1(a)=Y(1,M1(1), M2(a)) −Y(1, M1(0), M2(a)) (a=0,1) to 

denote indirect effects through M1. Likewise, we use PSE2(a)=Y(1, M1(a), M2(1)) −Y(1, 

M1(a), M2(0)) (a=0,1) to denote indirect effects through M2. Using this notation, 

(2)=PSE1(1)+PSE2(0) and (3)=PSE1(0)+PSE2(1).

Note that there would be no clear reason on which decomposition is preferred between (2) 

and (3), if we are interested in both M1 and M2. However, the decompositions (2) and (3) 

will not necessarily give the same results when PSEk(1) ≠ PSEk(0) (k=1,2). If the analysis 

results from (2) and (3) diverge in the sense that indirect effects for M1 (M2) are different 

between these two decompositions, then there is no clear guidance on which decomposition 

to use. Note also that using obvious notation, the total natural indirect effect through M1 

only, {Y(1, M1(1))−Y(1, M1(0))}, can be written as24:

(4)

which is equal to the first term of (2). Likewise, the total natural indirect effect through M2 

only, {Y(1, M2(1))−Y(1, M2(0))}, can be written as:

(5)

which is equal to the second term of (3). From (2)–(5), we can understand that the sum of 

the two total natural indirect effect through M1 (=PSE1(1)) and M2 (=PSE2(1)) considered 

separately is not equal to the joint total natural indirect effect in general. As discussed in 

VanderWeele and Vansteelandt24 and in Section 4, the sum of two indirect effects separately 

may diverge from the joint natural indirect effect when there are additive interactions 

between the two mediators on the outcome. Note that such interaction can arise even if the 

mediators do not affect each other.
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4 A three-way decomposition of the joint natural indirect into path-specific 

natural indirect effects and an interactive effect

In Section 3, we have reviewed the existing approaches and discussed some potential 

problems. In this section, we present a new three-way decomposition of the joint natural 

indirect effect (and thus a four-way decomposition of the total effect) to resolve these 

problems. Here, we consider the setting of two binary mediators. Similar results are obtained 

for non-binary mediators (see Appendix 2). In Appendix 1, we show that the joint natural 

indirect effect can be further decomposed into the following three components:

(6)

The first component in the decomposition (6) is the indirect effect through M1 when the 

other mediator M2 is set to the control level, that is, PSE1(0). Likewise, the second 

component in the decomposition (6) is the indirect effect through M2 under the other 

mediator M1 is set to the control level, that is, PSE2(0). The third component in (6) is the 

product of the additive interaction between M1 andM2 with A=1, {Y(1,1,1) −Y(1,1,0) 

−Y(1,0,1)+Y(1,0,0)}, the effect of the treatment onM1, {M1(1) −M1(0)}, and the effect of 

the treatment on M2, {M2(1) −M2(0)}. This interactive effect is nonzero if and only if the 

treatment affects both the two mediators and the additive interaction between M1 and M2 on 

Y is nonzero. Following the terminology of VanderWeele,30 who considered a similar 

decomposition of natural direct and indirect effects in the case of a single mediator, we refer 

to this interactive effect as a “mediated interactive effect” or “mediated interaction” (MI) 

between M1 and M2. This three-way decomposition includes the mediated interactive effect, 

so that it can be explicitly evaluated in a study and also resolves the ambiguity concerning 

the choice between (2) and (3). By definition, it follows that MI=Y(1, M1(1), M2(1)) −Y(1, 

M1(1), M2(0)) −Y(1, M1(0), M2(1))+Y(1, M1(0), M2(0))=PSE1(1) −PSE1(0)=PSE2(1) 

−PSE2(0). Using these equalities, we obtain the following relations: PSE1(1)=PSE1(0)+MI 

and PSE2(1)=PSE2(0)+MI. Thus, we can understand that the difference between (2) and (3) 

are the differential inclusion of the mediated interaction for the indirect effect of M1 

(decomposition (2)) or for the indirect effect of M2 (decomposition (3)). Thus, the results 

from (2) and (3) may diverge when there exists large additive interaction between the two 

mediators. Furthermore, using decomposition (6), we can understand how much of the joint 

natural indirect effect is explained by the interactive effect of the mediators as well as by 

each separate indirect effect.
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Note that if the mediated interactive effect is equal to zero, then PSE1(1)=PSE1(0) and 

PSE2(1)=PSE2(0) hold. We then have that the joint total natural indirect effect in 

(6)=PSE1(0)+PSE2(0)=PSE1(1)+PSE2(1), the same as the sum of the two separate total 

indirect effects, (4) and (5). Conversely, if the mediated interactive effect is nonzero, then (6) 

diverges from the sum of (4) and (5). This fact was noted by VanderWeele and 

Vansteelandt24 by a similar but slightly different argument.

Note that we can consider another three-way decomposition of the joint natural indirect 

effect in (6) using PSE1(1) and PSE2(1) as follows: (6)=PSE1(1)+PSE2(1) −MI. In this 

article, we focus on the decomposition in (6) for illustration. However, the methods can be 

directly applied to the alternative decomposition. Here, we prefer the decomposition (6) for 

the following two reasons. First, these two three-way decompositions give essentially the 

same information considering the relations PSEk(1)=PSEk(0)+MI (k=1,2) and it will be 

more natural and easier to interpret the result as the sum of PSE1(0), PSE2(0), and MI rather 

than the difference between the sum of PSE1(1), PSE2(2), and MI. Second, substantially, 

PSEk(0) can be approximately interpreted as the effect if we had intervened only one 

mediator Mk while the other mediator held fixed at the control level. By contrast, PSEk(1) 

can be approximately interpreted as the effect if we had intervened one mediator Mk with 

the other mediator held fixed at the intervention level. In our dental example in Section 7, 

PSE1(0) would be interpreted as the indirect effect through M1 (bacteria level) if we had 

only implemented the antibacterial treatment (although the actual intervention was the 

combined antibacterial and fluoride therapy). On the other hand, PSE1(1) would be 

interpreted as the indirect effect through M1 if we had implemented the antibacterial 

treatment for the population with the fluoride therapy uniformly implemented. Then, 

PSE1(0) will be the more interesting quantity for understanding the effect through 

antibacterial therapy only. Similarly, we are also interested in the effect through fluoride 

therapy only when antibacterial therapy was not offered, that is, PSE2(0). Therefore, 

equation (6) provides a natural decomposition as the sum of effect through antibacterial 

therapy, effect through fluoride therapy, and their interactive effect.

Given the individual level decomposition (6), we can obtain a similar decomposition in the 

population average effect conditional on C=c by using B4 as follows:

(7)

In Appendix 2, we show the general formula which can be used for any type (i.e., non-

binary) of mediators.
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5 Identification

Under B1–B4, we obtain the following identification formula of E[Y(a, M1(a*), M2(a**))|c] 

for all (a, a*, a**):

(8)

For continuous mediators, we simply replace sums by integrals in (8). Note that (8) is a 

special case of Theorem 1 in Daniel et al.,12 but we show the derivation in Appendix 3 for 

completeness. In addition, under B1 and B2, we have E[Y(a,m1,m2)|c]=E[Y|a,m1,m2,c], and 

Pr(Mk(a)=mk |c)=p(mk|a,c) for k=(1,2). Then, the all components in (6) as well as the joint 

natural direct effect can be identified from the observed data by the formulas given below:

(9)

See Appendix 2 for the general identification formula of the mediated interactive effect for a 

non-binary mediator.

With counterfactual average potential outcome (8) identified, we then consider a regression 

approach for the estimation of observables. Suppose that Y, M1, and M2 are all continuous, 

and the following linear regression models hold for k=(1,2):

Then, by (8), we can show that for treatment levels a and a*, the following equalities hold:
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(10)

From (10), we can see that the mediated interactive effect is equal to zero if the additive 

interaction between M1 and M2, that is, θ4, is equal to zero. We can also see that if θ4 is 

equal to zero, then the indirect effects through M1 and M2 are  and 

, respectively. These are consistent with the results for the total 

indirect effect derived by VanderWeele and Vansteelandt7 in a single mediator case. 

Standard errors of the estimators for (10) can be obtained using the delta method.

So far we considered effects conditional on the level of the covariates C=c. To obtain 

marginal effect estimates, we average the expressions in (8) over the marginal distribution of 

C. If at least one of the mediators is continuous and a linear regression model for Y does not 

hold, then we cannot generally obtain analytical formulas of (8) because we have to evaluate 

the integral on mediators. In such a case, we can use a Monte Carlo approach according to 

the method described in Imai et al.8 to obtain marginal effect estimates. See Section 7 for the 

details in the application to the dental study. Standard errors and confidence intervals can be 

obtained based on the nonparametric bootstrap.

Another possible approach for the estimation is the inverse probability weighting (IPW).22 

We can obtain an estimator of E[Y(a,M1(a*),M2(a**))] by taking a weighted average of the 

outcome Y with the following weight wi for the individual i:

where I(●) denotes the indicator function. In Appendix 4, we derive the asymptotic 

distribution of the IPW estimator. The regression approach above requires that the models 

for the outcome and mediators are correctly specified, whereas the weighting approach 

requires that the models for the treatment and mediators are correctly specified. The 

weighting approach will be more attractive if the mediation effects given in (10) is 

moderated by the confounders, in other words, if these effects depend on the value of c. This 

is because when we use the regression approach, it is difficult to specify the correct model 

for the outcome in the presence of the moderation by the confounders. However, the 

weighting approach will be unstable if some of the weights take very large values. When 

either the treatment or at least one of the mediators is continuous, then it is best not to use 

the weighting approach.
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6 Extensions

6.1 Extension to the case of three mediators

Suppose that there are three causally non-ordered mediators (Figure 3(a)). Let 

Y(a,m1,m2,m3) be a potential outcome if A, M1, M2, M3 were set to a, m1, m2, m3, 

respectively. For notational convenience, define

where α12(c), α13(c), and α23(c) denote the two-way additive interaction between M1-M2, 

M1-M3, and M2-M3, respectively. α123(c) denotes the three-way additive interaction 

between M1-M2-M3. At the individual level, the three-way additive interaction can be 

rewritten as follows: {Y(1,1,1,1) − Y(1,1,0,1) − Y(1,0,1,1) + Y(1,0,0,1)} − {Y(1,1,1,0) − 

Y(1,1,0,0) − Y(1,0,1,0) + Y(1,0,0, 0)}. It will be nonzero if the two-way interaction between 

M1 and M2, {Y(1,1,1,m3) − Y(1,1,0,m3) − Y(1,0,1,m3) + Y(1,0,0,m3)}, is not constant 

across the level of m3. Equivalently, it will be nonzero if the two-way interaction between 

M1 and M3, {Y(1,1,m2,1) − Y(1,1,m2,0) − Y(1,0,m2,1) + Y(1,0,m2,0)}, is not constant 

across the level of m2, or if the two-way interaction between M2 and M3, {Y(1,m1,1,1) − 

Y(1,m1,1,0) − Y(1,m1,0,1) + Y(1,m1,0,0)}, is not constant across the level of m1. Thus, 

α123(c) describes how the two-way interactions vary across the level of the other mediator.

Suppose that the NPSEM and the mechanism shown in Figure 3(a) hold for the full data 

including potential outcomes. Then, following a similar argument for the derivation of (6) 

and (7) (see Appendices 1 and 2), we obtain the following decomposition of the joint natural 

indirect effect:

(11)

where δk(c) (k=1,2,3) denotes the effect of the treatment on Mk, E[Mk(1) − Mk(0)|c]. We 

refer to the last term of (11) as the mediated interactive effect between M1, M2, and M3. 

Note that the corresponding decomposition also holds at the individual level. From (11), we 

see that the joint natural indirect effect is decomposed into the three indirect effect through 

each mediator with the other mediators at the control level, three two-way mediated 

interactive effects, and one three-way mediated interactive effect. Note that the three-way 

mediated interactive effect at the individual level, {M1(1) − M1(0)}{M2(1) − M2(0)}{M3(1) 

− M3(0)}{Y(1,1,1,1) − Y(1,1,1,0) − Y(1,1,0,1) + Y (1,0,1,1) + Y(1,1,0,0) + Y(1,0,1,0) + 
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Y(1,0,0,1) − Y(1,0,0,0)}, is non-zero if and only if the treatment affects all three mediators, 

and the three-way additive interaction is non-zero.

6.2 Relaxing the identification assumptions

In previous sections, we have discussed mediation analysis when the mediators do not affect 

each other. In this section, we will consider the effects when two mediators lie on a causal 

pathway. Suppose that there are three mediators and that M2 causally affects M3 as in Figure 

3(b). Then, the result described in Section 6.1 does not apply. Nevertheless, we consider M2 

and M3 as a joint mediator, M2=(M2, M3). Let M2(a) be the potential value of mediator M2 

that would be observed when the subject had treatment a, and let Y(a,m1,m2) denote the 

potential outcome that would be observed when the subject had treatment a and mediators 

m1 and m2. We can define the joint natural indirect effect in a similar way as before but 

simply replace M2 with the vector of two mediators M2: {Y(1,M1(1), M2(1)) − Y(1, M1(0), 

M2(0))}. Then, the joint natural indirect effect can be decomposed into the indirect effect 

throughM1, the indirect effect throughM2, and the mediated interactive effect between M1 

and M2: {Y(1, M1(1), M2(1)) − Y(1, M1(0), M2(0))}={Y(1, M1(1), M2(0)) − Y(1, M1(0), 

M2(0))} + {Y(1, M1(0), M2(1)) − Y(1, M1(0), M2(0))} + Σm1 Σm2 Y(1,m1, m2){I(M1(1) = 

m1) − I(M1(0) = m1)}{I(M2(1) = m2) − I(M2(0) = m2)}. Note that we can easily see that the 

mediated interactive effect above is non-zero only if the treatment affects M1 and M2, and 

the additive interaction between M1 and M2 is non-zero, that is, {Y(1,1,m2) − Y(1,0,m2)} is 

not always constant across the levels of m2. A sufficient condition for identification of 

E[Y(a, M1(a*), M2(a**))|c] for all (a, a*, a**) is similar to B1–B4 in Section 5, but now we 

need to replace M2 with M2. These conditions hold in Figure 3(a) to 3(c).

Note that M2 in Figure 3(b) may not be a mediator of interest but be treated as a confounder 

for the M3-Y relation,16 where M2 confounds the M3-Y relation and, at the same time, it is 

affected by the treatment A. In this case, B4 is violated even if M2 is included in the 

confounder set C so that the results derived in Section 4 cannot be used if M1 and M3 are the 

two mediators we are interested in. However, we can consider M2=(M2, M3) and then the 

result described in this section can still apply.

Moreover, consider a situation that there is an unmeasured common cause U of M2 and M3 

as in Figure 3(c). In this case, even if M2 does not affect M3 (i.e., there is no arrow from M2 

to M3), the estimates of effects through the mediators M1, M2, and M3 separately will be 

biased because when M2 (M3) is considered alone, U will be an unmeasured confounder for 

the M2-Y (M3-Y) relation. However, when M2 and M3 are considered jointly, U no longer 

serves as a confounder. See VanderWeele and Vansteelandt24 for a related discussion on the 

merit of considering mediators jointly.

7 Application

In this section, we will use the methods developed in this article to understand the mediation 

effects in The Caries Management by Risk Assessment (CAMBRA) randomized controlled 

clinical trial.34 CAMBRA was a randomized controlled trial, which aimed to assess whether 

combined antibacterial and fluoride therapy based on risk assessment has beneficial effects 

on preventing new caries over 24 months follow-up in adults with one to seven baseline 
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cavitated teeth which were treated before initiating preventive therapies: the antibacterial 

therapy aimed to reduce oral bacteria whereas the fluoride therapy aimed to increase the 

fluoride level to strengthen teeth. In the study, participants in the control group (A=0) 

received conventional treatment per usual practices (e.g., oral hygiene instruction, periodic 

dental cleaning and oral examination scheduled every 6 month, radiographs scheduled every 

24 month, and restorative treatment as needed), whereas participants in the intervention 

group (A=1) received a combined antibacterial (0.12% chlorhexidine gluconate mouth rinse) 

and fluoride therapy (1100 ppm sodium fluoride toothpaste, 0.05% sodium fluoride mouth 

rinse, and topical 1.1% NaF gel application). The primary analyses showed that the 

intervention group had a statistically significantly lower caries risk at follow-up and 

suggested a lower average caries increment compared with control over 24 months.34 Our 

interest in this mediation analysis is whether this overall intervention effect was due mainly 

to bacteria reduction through antibacterial therapy, fluoride increase through fluoride 

therapy, or both. If observed, mediation through these mechanisms would provide further 

evidence for focusing future caries prevention efforts on these components.

The potential mediators of interest are two salivary oral bacteria (mutans streptococci (MS) 

and lactobacilli (LB)) levels and salivary fluoride level at 12 months. To make our 

identification assumptions more plausible, we consider MS and LB levels as a vector of 

mediators (M1) and consider fluoride level as the other mediator (M2), where M1 and M2 

are assumed work through independent pathways. The outcome of interest (Y) was the 

increment from baseline in the number of decayed, missing, and filled permanent surfaces 

(ΔDMFS) at 24 months. ΔDMFS is a nonnegative integer count with higher values 

indicating worse dental outcomes. From a total of 231 participants randomized, 101 

(intervention group: 51; control group: 50) patients who had completed data on ΔDMFS and 

relevant covariates were analyzed in this article.

Table 1 shows participants’ characteristics at baseline by intervention group. Variables that 

were included in the set of C were: age, sex (male/female), race (Asian/black/white/Hispanic 

and others), education (high school/college/graduate or professional), timing of last dental 

visit (less than 1 year/2 to 3 years/3 years or more), brushed 2 times or more yesterday (yes/

no), used fluoride toothpaste (yes/no), fair or poor oral health (yes/no), drank alcohol in past 

week (yes/no), and smoked cigarette within 30 days (yes/no). Because of the positively 

skewed distributions, all of the three mediators were log-transformed before the mediation 

analysis.

To assess whether the mediators do not affect one another (or more precisely, whether the 

mediators are independent of one another conditional on intervention and covariates), we 

first modeled p(m2| m1, a, c) using a linear regression model including main effects of M1, 

A, and C. The p-values for MS and LB levels were 0.345 and 0.542, respectively, indicating 

no evidence for the violation of the assumption in the data. We therefore used the result 

described in Section 6.2 to estimate the direct effect, indirect effect, and mediated 

interaction. We modeled p(y | a, m1, m2, c) with a negative binomial regression and the 

conditional distributions of the three mediators with linear regression models assuming 

normally distributed errors. In addition to the main effects of all the covariates, we included 

interaction terms between A and M1, A andM2, andM1 andM2, in the model for the 
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outcome. According to Imai et al.,8 we conducted the analyses using the following steps for 

the estimation of the marginal effect E[Y(a,M1(a*), M2(a**))]: (1) Fit the mediators and 

outcome models with observed data as described above. (2) Draw m1* and m2* from p̂(m1|

a*, c) and p̂(m2|a**, c). (3) Draw y* from . (4) Perform Monte Carlo 

replications by repeating (2) and (3) 1000 times each. (5) Compute the mean of y* over all 

individuals and Monte Carlo replications. 95% confidence intervals (CIs) were constructed 

based on the nonparametric bootstrap with 1000 resamples.

Table 2 shows various estimated direct and indirect effects of the intervention on ΔDMFS at 

2 years around and through its effect on participants’ salivary bacteria and fluoride levels at 

12 months. The estimated joint natural direct effect was −0.298 (95% CI: −1.894 to 1.805), 

and the joint natural indirect effect was −0.490 (95% CI: −1.652 to 0.172), and thus the total 

effect was −0.298 + (−0.490) = −0.788 (95% CI: −2.108 to 0.847). Applying the proposed 

three-way decomposition of the joint natural indirect effect, the indirect effect through M1 

only was −0.373 (−1.541 to 0.195), the indirect effect through M2 only was −0.022 (95% CI: 

−0.366 to 0.789), and the mediated interactive effect of M1 andM2 was −0.095 (95% CI: 

−0.807 to 0.171). Thus, of the total effect, −0.298/−0.788=37.8% was attributable to the 

joint natural direct effect, −0.373/−0.788=47.3% was attributable to the indirect effect 

through M1 only, −0.022/−0.788=2.8% was attributable to the indirect effect through M2 

only, and −0.095/−0.788=12.1% was attributable to the mediated interaction. The overall 

proportion mediated was 47.3 + 2.8 + 12.1=62.2%. The results indicate that the effect of the 

intervention (A) on ΔDMFS (Y) was mainly through its effect in decreasing salivary oral 

bacteria levels (M1), although the effect is not significant due to smaller sample size for this 

analysis compared with primary analysis. Of the mediated effect, only a small portion of the 

effect was due to the effect in increasing salivary fluoride levels (M2). However, the 

moderated size of the mediated interactive effect of M1 and M2 (more than 10%) indicates 

the effect of increased salivary fluoride level on ΔDMFS through its interaction with 

decreased oral bacterial level, which agree with the results by Cheng et al.,25 where a single 

composite mediator “overall caries risk” was considered based on the joint values of salivary 

bacterial and fluoride levels with more participants included in the analysis.

8 Discussion

In this article, we consider the joint natural indirect effect between two mediators as a 

function of the indirect effect for each mediator and the mediated interactive effect under the 

assumption that the mediators are not causally ordered. This relation holds even in cases 

when there is nonzero mediated interaction and thus a joint natural indirect effect cannot be 

a simple sum of the two individual natural indirect effects through the two mediator 

considered separately. Compared with the existing approaches described in Section 3, our 

proposed decomposition provides us an additional insight into the importance of the 

interaction among the mediators on the mediation mechanism. Such an insight may help the 

researchers or policymakers make a decision for a better intervention. As an example, 

consider a situation that there are two mediators and their mediated interactive effect is large 

relative to the sum of two individual mediation effects under the reference condition of the 

other mediator. This additional knowledge can help researchers or policymakers understand 
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that an intervention that affects one mediator but not the other may not be the optimal option 

because an intervention works best when it affects both of these mediators.

We have focused on cases where the mediators do not affect each other in this article. This 

assumption may hold when the intervention consists of multiple independent components, 

which work together to improve the outcome but one component would not causally affect 

the other component. As in our example, in the dental study, the intervention has two 

components: a combined antibacterial and fluoride therapy, where the antibacterial treatment 

reduced oral bacteria whereas the fluoride treatment made the teeth strong. Then, the oral 

bacterial load and fluoride level measured at follow-up time point after the intervention 

would be causally non-ordered mediators between the intervention and dental outcomes, as 

the oral bacterial load mainly captures the effect of the antibacterial therapy, whereas the 

fluoride level captures the effect of the fluoride therapy.

Even if M2 is causally affected by M1 as Figure 1(a), our proposed decomposition of the 

joint natural indirect effect still holds. To be more precise, let M2(a)=M2(a, M1(a)) denote 

the potential outcome of M2 if A were set to a. Then, we obtain exactly the same expression 

as (6). However, (6) is not based on a finest possible decomposition in this case, because 

{Y(1, M1(0), M2(1)) − Y(1, M1(0), M2(0))}={Y(1, M1(0), M2(1, M1(1))) − Y(1, M1(0), 

M2(0, M1(0))} is the sum of the two path-specific effects A→M2→Y, {Y(1, M1(0), M2(1, 

M1(1))) − Y(1, M1(0), M2(0, M1(1))}, and A→M1→M2→Y, {Y(1, M1(0), M2(0, M1(1))) − 

Y(1, M1(0), M2(0, M1(0))}. Furthermore, E[Y(a,M1(a*),M2(a**))|c] is not 

nonparametrically identified under Pearl’s NPSEM and Figure 1(a) except for the special 

case a*=a**.12 Thus, we must impose additional strong assumptions for identification, or 

need to conduct a sensitivity analysis as described in Daniel et al.12 Further research is 

needed on how to extend our method to the case of causally ordered multiple mediators.

We assume that there are no unmeasured confounders between the treatment and outcome 

(Assumption B1), the mediators and outcome (Assumption B2), and the treatment and 

mediators (Assumption B3). Although Assumptions B1 and B3 usually hold in a 

randomized trial, Assumption B2 does not necessarily hold even under the randomization of 

the treatment because the mediator cannot be randomized in a real study. In our analysis, we 

accounted for many potential confounders that may affect both the mediators and outcome. 

Even so, there may be utility in conducting sensitivity analyses that examine the effect of 

violations of B2. In the single mediator setting, there are many works that propose a 

sensitivity analysis method,15,17,23,35,36 including the derivation of bounds for the natural 

direct and indirect effects.4,5,11,17,37 Investigation into how such methods can be adapted to 

this setting is another important area for future research.
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Appendix 1. Derivation of (6)

We first note that the difference between the joint natural indirect effect, {Y(1, M1(1), 

M2(1)) − Y(1, M1(0), M2(0))}, and sum of the indirect effects for M1, {Y(1, M1(1), M2(0)) 

− Y(1, M1(0), M2(0))}, and that for M2, {Y(1, M1(0), M2(1)) − Y(1, M1(0), M2(0))}, are 

given by:

(12)

For our objective, it is enough to show that (12) is equal to the third component of (6).

First, we consider to evaluate M1(1) and M1(0) under the fixed values of M2(1) and M2(0). 

If M1(1) = M1(0), then (12) = Y(1, M1(1), M2(1)) − Y(1, M1(1), M2(0)) − Y(1, M1(1), 

M2(1)) + Y(1, M1(1), M2(0)) = 0. If M1(1) − M1(0) = 1, that is, M1(1) = 1 and M1(0) = 0, 

then (12) = Y(1,1, M2(1)) − Y(1,1, M2(0)) − Y(1,0, M2(1)) + Y(1,0, M2(0)) = {Y(1,1, 
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M2(1)) − Y(1,1, M2(0)) − Y(1,0, M2(1)) + Y(1,0, M2(0))}{M1(1) − M1(0)}. If M1(1) − 

M1(0) = − 1, that is, M1(1) = 0 and M1(0) = 1, then (12) = Y(1,0, M2(1)) − Y(1,0, M2(0)) − 

Y(1,1, M2(1)) + Y(1,1, M2(0)) = − {Y(1,1, M2(1)) − Y(1,1, M2(0)) − Y(1,0, M2(1)) + Y(1,0, 

M2(0))} = {Y(1,1, M2(1)) − Y(1,1, M2(0)) − Y(1,0, M2(1)) + Y(1,0, M2(0))}{M1(1) − 

M1(0)}. Thus, (12) can be expressed as follows:

(13)

Next, we consider to evaluate M2(1) and M2(0). If M2(1) = M2(0), then (13) = {Y(1,1, 

M2(1)) − Y(1,1, M2(1)) − Y(1,0, M2(1)) + Y(1,0, M2(1))}{M1(1) − M1(0)} = 0. If M2(1) − 

M2(0) = 1, that is, M2(1) = 1 and M2(0) = 0, then (13) = {Y(1,1,1) − Y(1,1,0) − Y(1,0,1) + 

Y(1,0,0)}{M1(1) − M1(0)} = {Y(1,1,1) − Y(1,1,0) − Y(1,0,1) + Y(1,0,0)}{M1(1) − M1(0)}

{M2(1) − M2(0)}. If M2(1) − M2(0) = − 1, that is, M2(1) = 0 andM2(0) = 1, then (13) = 

{Y(1,1,0) − Y(1,1,1) − Y(1,0,0) + Y(1,0,1)}{M1(1) − M1(0)} = − {Y(1,1,1) − Y(1,1,0) − 

Y(1,0,1) + Y(1,0,0)}{M1(1) − M1(0)} = {Y(1,1,1) − Y(1,1,0) − Y(1,0,1) + Y(1,0,0)}{M1(1) 

− M1(0)}{M2(1) − M2(0)}. Thus, (12) is always equal to {Y(1,1,1) − Y(1,1,0) − Y(1,0,1) + 

Y(1,0,0)}{M1(1) − M1(0)}{M2(1) − M2(0)}, as desired.

Appendix 2. General expression of the mediated interactive effect for two 

mediators

We consider general types of treatments and mediators. We will compare two treatment 

levels, a and a*. The mediated interactive effect between M1 and M2 at the individual level is 

defined as the difference between the joint natural indirect effect, {Y(a, M1(a), M2(a)) − 

Y(a, M1(a*), M2(a*))}, and sum of the indirect effects for M1, {Y(a, M1(a), M2(a*)) − Y(a, 

M1(a*), M2(a*))}, and that for M2, {Y(a, M1(a*), M2(a)) − Y(a, M1(a*), M2(a*))}. It is 

given by,

(14)

By taking the conditional expectation of (14) given C = c, we obtain:
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where the second equality follows from B4.

In summary, at the population level, we obtain the following decomposition for the total 

effect:

(15)

where the first term in (15) is the joint pure natural direct effect, the second term is the 

indirect effect through M1 only, and the third term is the indirect effect through M2 only, and 

the fourth term is the mediated interactive effect between M1 and M2.

The identification formula of the first three components of (15) are given in (9) of the main 

text. Using the results in Section 5, the general identification formula for the fourth 

component is given as follows:

Appendix 3. Derivation of (8)

Under assumptions B1–B4, we have:

where the first equality follows from the law of conditional expectation and B4, the second 

from B3 and B4, and the third from B1 and B2.

Appendix 4. Asymptotic distribution of the IPW estimator

We use large sample theory to show that the IPW estimator is asymptotically normal and 

derive the asymptotic variance using the standard theory of M-estimation.38 This approach 
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uses models for Pr(A = a |c) = π(a |c; γ), Pr(M1 = m1 |a, c) = ξ1(m1 |a, c; β(1)), and Pr(M2 = 

m2 |a, c) = ξ2(m2 |a, c; β (2)). We assume these probabilities are estimated by the maximum 

likelihood method. We first derive the influence function of the IPW estimator for 

E[Y(a,M1(a*),M2(a**))] = μ(a, a*,a**) = μ. Let βT = (β(1) T, β (2)T)T and let U(μ, β, γ) = 

U(δ) be the estimating function corresponding to the IPW estimator:

Then, it follows from a Taylor series expansion that

(16)

where δ0 = (μ0, β0, γ0) are the probability limits of these estimators, Hβ(δ) = E[∂U(δ)/∂βT], 

Hγ(δ) = E[∂U(δ)/∂γT], S.,i(.) and I.(.) are the corresponding score functions and Fisher 

information matrices for β and γ. Using  and (16), we obtain,

(17)

where . From the 

representation (17), we say that n1/2 (μ̂IPW − μ0) is regular and asymptotically linear with 

influence function ψi. By replacing the unknown quantities in equation (17) with estimators, 

we obtain the estimated influence function ψ̂i. It now follows from application of the central 

limit theorem to the representation (17), n1/2(μIPW − μ0) has an asymptotically normal 

distribution with mean zero and variance given by var(ψi). The asymptotic variance 

estimator is obtained by calculating the sample variance of ψ̂i. For calculating the 

asymptotic variance estimators of Ê[PSE1(0)], Ê[PSE2(0)], and Ê[MI], we only need to 

calculate the sample variances of {ψ̂i(1, 1, 0) − ψ̂i(1, 0, 0)}, {ψ̂i(1, 0, 1) − ψ̂i(1, 0, 0)}, and 

{ψ̂i(1, 1, 1) − ψ̂i(1, 1, 0) − ψ̂i(1, 0, 1) + ψ̂i(1, 0, 0)}, respectively, where ψî(a, a*, a**) is the 

estimated influence function of the IPW estimator for μ(a, a*, a**).
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Figure 1. 
A causal diagram with treatment A, mediators M1 and M2, outcome Y, and confounding 

factors C under (a) M1 causally affects M2 and (b) M1 does not causally affect M2.
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Figure 2. 
A causal diagram in a single mediator setting with treatment A, mediator M, outcome Y, and 

confounding factors C.
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Figure 3. 
A causal diagram with treatment A, mediators M1, M2, and M3, outcome Y, and 

confounding factors C under (a) three mediators are causally non-ordered, (b) M2 causally 

affects M3, and (c) there is unmeasured common cause U of M2 and M3.
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Table 1

Subjects characteristics at baseline in the CAMBRA trial.

Variables Intervention (n = 51) Control (n = 50)

Age (years, mean ± SD) 40.2 ± 15.1 41.3 ± 14.9

Female (n, %) 35, 68.6 31, 62.0

Race (n, %)

 Asian, non-Hispanic 13, 25.5 9, 18.0

 Black, non-Hispanic 7, 15.7 7, 14.0

 White, non-Hispanic 8, 13.7 17, 34.0

 Hispanic and others 23, 45.1 17, 34.0

Education (n, %)

 High school 27, 53.0 25, 50.0

 Collage 15, 29.4 15, 30.0

 Graduate/professional 9, 17.7 10, 20.0

Last dental visit (n, %)

 Less than 1 year 24, 47.1 19, 38.0

 2 to 3 years 15, 29.4 20, 40.0

 3 years or more 12, 23.5 11, 22.0

Brushed 2 or more times yesterday (n, %) 38, 74.5 39, 78.0

Used fluoride toothpaste (n, %) 37, 72.6 38, 76.0

Fair or poor oral health (n, %) 19, 37.3 21, 42.0

Drank alcohol in past week (n, %) 26, 51.0 23, 46.0

Smoked cigarette within 30 days (n, %) 7, 13.7 6, 12.0

CAMBRA: Caries Management by Risk Assessment; SD: standard deviation.
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Table 2

Natural direct, indirect, and total effects of the intervention on the DMFS increment in the CAMBRA trial.

Intervention (n = 51), Mean ± SD Control (n = 50), Mean ± SD

Baseline Log10 MS 4.26 ± 1.50 4.48 ± 1.30

Log10 LB 3.72 ± 1.93 3.71 ± 1.99

Log10 fluoride (ppm) −1.59 ± 0.22 −1.62 ± 0.21

12 months Log10 MS 3.25 ± 1.97 4.58 ± 1.49

Log10 LB 2.92 ± 2.12 3.28 ± 2.00

Log10 fluoride (ppm) −1.38 ± 0.44 −1.54 ± 0.27

24 months DMFS increment 3.63 ± 3.54 4.46 ± 4.16

Joint natural direct effect (95% CI) −0.298 (−1.894, 1.805)

Joint natural indirect effect (95% CI) −0.490 (−1.652, 0.172)

 M1 −0.373 (−1.541, 0.195)

 M2 −0.022 (−0.366, 0.789)

 Mediated interaction −0.095 (−0.807, 0.171)

Total effect −0.788 (−2.108, 0.847)

CAMBRA: Caries Management by Risk Assessment; CI: confidence interval; DMFS: decayed missing filled permanent surfaces; LB: lactobacilli; 
MS: mutans streptococci; SD: standard deviation.
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