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ABSTRACT: The importance of metal oxide photoanodes in solar fuels technology has garnered 

concerted efforts in photoanode discovery in recent decades, which complement parallel efforts in 
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development of analytical techniques and optimization strategies using standard photoanodes such 

as TiO2, Fe2O3 and BiVO4. Theoretical guidance of high throughput experiments has been 

particularly effective in dramatically increasing the portfolio of metal oxide photoanodes, 

motivating a new era of photoanode development where the characterization and optimization 

techniques developed on traditional materials are applied to nascent photoanodes that exhibit 

visible light photoresponse. The compendium of metal oxide photoanodes presented in the present 

work can also serve as the basis for further technique development, with a primary goal to establish 

workflows for discovery of materials that perform better against the critical criteria of operational 

stability, visible light photoresponse, and photovoltage suitable for tandem absorber architectures. 

TOC GRAPHICS

The generation of chemicals and fuels from CO2, N2, and H2O in photoelectrochemical reactors 

would enable sustainable energy infrastructure with decreased reliance on photovoltaic and battery 

technologies that pose challenges for energy storage and transport.1 The source chemical CO2 is 

used for generation of C-containing chemicals such as CO and formate as well as higher-order 

fuels such as liquid hydrocarbons and alcohols that could displace fossil-based liquid fuels while 

leveraging existing infrastructure.2 The source chemical N2 is used for generation of NH3 and less 
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often N2H4, which may serve as fuels but can serve a more pressing need of sustainable fertilizer 

production.3 These families of reactions involve electrochemical reduction of the source 

chemicals, generally referred to as CO2 reduction reactions (CO2RR) and N2 reduction reactions 

(N2RR), respectively. These reduction reactions require protons and electrons, and liberation of 

those reactants from H2O via the O2 evolution reaction (OER) has been adopted as the primary 

strategy for establishing broadly-deployable solar fuels technologies. The H2 evolution reaction 

(HER) can also be coupled to the OER without CO2 or N2 reactants, making solar 

photoelectrocatalysis of the OER a cross-cutting technology for generation of H2, C-containing, 

and N-containing fuels. Metal oxide photoanodes can also be used for anodic reactions other than 

the OER, resulting in synthesis of other chemicals,4 although the present work considers solar fuels 

photoanodes to be photoelectrocatalysts for the OER in aqueous electrolyte.

While photoelectrocatalysis of the HER and OER can occur with a single wide-gap 

semiconductor, as demonstrated in the seminal water splitting work utilizing TiO2,5 the broad 

consensus, supported by multi-physics device modelling,6 is that efficient utilization of the solar 

spectrum requires tandem light absorbers with band gap energies in the visible spectrum. While a 

number of device architectures utilizing a pair of visible-gap semiconductors have been proposed, 

a grand challenge of the solar fuels community has been the identification of a suitable solar fuels 

photoanode, i.e. a semiconductor that can utilize visible light to effect photoelectrocatalysis of the 

OER and circumvent a broad range of deactivation processes such as corrosion. 

Photovoltaic-grade semiconductors, most notably III-V semiconductors, have enabled a variety 

of high efficiency solar water splitting demonstrations.7 While protective coating8 of photovoltaic 

semiconductors has been effective in increasing operational stability from minutes to over 100 

hours,7 semiconductors that don’t self-passivate under operational conditions will always be 

Page 3 of 23

ACS Paragon Plus Environment

ACS Energy Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

susceptible to device failure upon damage in the protective coating(s). This type of single point 

failure is difficult to circumvent in systems engineering and can render the technology untenable 

for deployment. Intrinsic stability of the semiconductors is the most reliable way to achieve a 

durable solar fuels generator, which has motivated the persistent and continuing effort to 

understand metal oxide semiconductors and identify those that can serve as solar fuels 

photoanodes. No fundamental limit on the efficiency of metal oxide photoanodes has been 

established beyond those dictated by the thermodynamics of solar energy conversion, and BiVO4–

based devices with ca. 5% efficiency are approaching these limits given its 2.4 eV band gap.9 

Photoanode band gap energies no larger than 2 eV are required to realize the 15%-20% solar to 

fuel conversion efficiencies, the target range per technoeconomic and device models,6, 10  requiring 

the community to pursue a combination of low band gap energy and high radiative efficiency that 

has yet to be approached by metal oxide photoanodes.

To establish the outlook for this grand challenge, we first summarize the progress to date. Recent 

reviews have highlighted a broad portfolio of materials, techniques and devices. Abdi and 

Berglund11 recently reviewed metal oxide photoanodes with focus on the optimization of BiVO4 

and its implementation into water splitting devices, along with summary of several other V, W and 

Fe-based oxide photoanodes, covering in total 9 metal oxide photoanode phases. Chu et al.12 

focused more on classes of materials and the integration of photoelectrodes into devices. He et 

al.13 compiled a more detailed survey of metal oxide photoanodes with 33 phases discussed and 

critical analysis of several topics including the electronic character of the conduction and valence 

bands and other electronic structure considerations. Our literature survey, summarized in Fig. 1 

and detailed in the SI, identified 109 OER metal oxide photoanode phases, including recent 

discoveries from our labs. Of these, we find 70 visible light-active phases, corresponding to 
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photoanodes demonstrated to be photoactive with only sub-3 eV illumination.§ The breadth of 

elements utilized in photoanode studies is rapidly expanding, and the number of visible light-active 

metal oxide photoanodes has increased 5-fold in the past 20 years, an acceleration in discovery 

driven by the concerted efforts in the community, including our high throughput discovery 

program in the Joint Center for Artificial Photosynthesis (JCAP). During these 20 years, there has 

also been substantial effort to develop and deploy the present champion visible-gap metal oxide 

photoanode, BiVO4.11, 14 These parallel community efforts in discovery of new metal oxide 

photoanodes and in optimization and understanding of BiVO4, both of which have been 

remarkably successful, provide the framework for the future of the field.

BiVO4 is an exemplar of a complex metal-oxide, visible-light photoanode whose study has 

established the basis for accelerating development of metal oxide photoanodes.15 In addition to 

optimization schemes such as defect engineering for charge transport and selective carrier 

extraction,16 research on BiVO4 has resulted in development of a broad range of materials and 

device-level solar fuels characterization techniques.17 A recent review of strategies for enhancing 

the photocurrent, photovoltage, and stability of photoelectrodes highlights the breadth and 

effectiveness of feedback between synthesis and characterization of device-relevant parameters to 

optimize materials, as illustrated in Fig. 2.17 The breadth of these materials development strategies 

far exceeds the breadth of candidate photoanodes for which they have been deployed. The general 

bias in scientific research towards continued investigation of well-researched materials is both 

broadly known and recently evaluated as a limitation on creativity and discovery,18 motivating our 

effort in the present work to establish the set of known visible light-active photoanodes and discuss 

opportunities for improving performance both within this set of materials and beyond, via new 

materials discovery strategies.  
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Of the 70 visible light-active metal oxide photoanodes, historically Fe2O3 and more recently 

BiVO4 are arguably the only materials for which the community has deeply invested in detailed 

understanding and optimization, motivating further study on the other 68 phases, or some 

principled selection of a subset thereof. Some notable efforts in this area include detailed 

experimental investigation of α-SnWO4,19 Fe2WO6,20 copper vanadates such as β-Cu2V2O7 and γ-

Cu3V2O8,21 and computational investigation of β-Cu2V2O7
22 to elucidate performance-limiting 

properties. Of these, only the copper vanadates exhibit a photon energy onset of photoactivity near 

2 eV, the desired upper-limit described above. Fig. 3 summarizes the photon energy onset for 49 

metal oxide photoanodes that exhibit external quantum efficiency (EQE) in excess of 0.01% in our 

experiments. Two notable phases with photoactivity at 2.1 eV (but insufficient to meet the EQE 

threshold) are VCrO4-orth23 and V2CoO6-tri.24 The 4 phases that exceed the threshold at 2.1 eV 

are FeBiO3, discovered by Chen et al.,25 as well as FeWO4,26 γ-V2Cu3O8,27 and Y3Fe5O12,24 

highlighting the challenge of identifying metal oxide photoanodes with broad spectral response. A 

chopped illumination voltage sweep is shown for each of these 4 phases, demonstrating that the 

photocurrent decreases quickly with decreasing bias for most phases. Anecdotal examples 

demonstrating improvement in operational photovoltage, i.e. beyond that exhibited in this figure, 

include the observation of a turn on potential (lowest potential with observed photocurrent) near 

0.6 V vs RHE for FeBiO3
25 and near 0.4 V vs RHE for Bi-alloyed FeWO4.26 More detailed 

understanding of the semiconductor-liquid junctions and band energy alignment are needed to 

elucidate the limiting photovoltage and associated efficiency of each photoanode, as discussed 

further below. 

With regards to the opportunity space for further discovery, it is interesting to consider the 

fraction of the metal oxide search space that has been explored. The 70 visible light photoanodes 
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utilize 25 cation elements from the periodic table. Considering only ternary metal oxides, which 

account for all but 6 of these phases, only 34 of the 300 pairwise combinations of these cations 

have been reported. While some may have been explored without discovery, most remain 

uncharted territory. High Throughput (HiTp) experimental screening of OER photoanodes, 

pioneered by Parkinson28 and McFarland29 and advanced by others,30 accelerates exploration of 

this broad class of photoanode candidates, although the search space remains too large to be 

comprehensively searched with brute force screening. Our research has, thus, focused on guidance 

of high throughput experiments via theory-based identification of promising materials systems for 

photoanode discovery.

The photoanodes identified by our high throughput screening (see SI) include 4 copper vanadates 

that were identified simultaneously by HiTp theory and experiment.23 These initial discoveries 

motived theory screening of Materials Project entries31 based on electronic structure and stability, 

leading to experimental demonstration of photoanodic activity in 8 additional ternary metal 

vanadates32 and 5 ternary metal manganates.27 Experimental screening in composition spaces 

related to these theory predictions resulted in the identification of an additional 29 photoanode 

phases.24, 33 Perhaps the most important lesson from this work is that computational screening not 

only identifies target phases but also promising composition regions that are sufficiently specific 

to enable exploration by HiTp experiments, which are in turn sufficiently broad in scope to identify 

materials beyond the computational search.

The fringe cases in these photoanode discovery campaigns offer insights for guiding future 

discovery efforts. FeWO4 was identified through combinatorial investigation of non-equilibrium 

synthesis conditions.26 This Fe+2-containing metal oxide is stabilized against oxidation by a self-

passivation surface layer that includes Fe+3, highlighting the role of self-passivation in enabling 
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stable operation of thermodynamically unstable photoanodes. Self-passivation was also observed 

in copper vanadates, where the degradation in photocurrent was found to depend on the thickness 

of the developed passivating film.34  Passive surface films are of intense interest in the metals and 

alloy industry and provide a fruitful research area in themselves as their formation and 

functionality are still not entirely understood.35 A range of phenomenological models have been 

developed to explain the evolution of passivation layers, which display varying morphology, short-

range order and chemical constitution depending on the growth process and chemical 

environment.36  The stability of a passivating surface film, and hence that of the underlying bulk 

material, is explicitly linked to ionic transport through the film which in turn depends critically on 

the film morphology. Establishing thermodynamic and kinetic criteria for classifying a photoanode 

as being operationally stable and supporting photoelectrocatalysis is a key area for designing the 

next-generation of photoanode screening. In previous work,34, 37 we have found that well-

benchmarked Pourbaix diagrams38 can provide a qualitative guide as to the likely formation of, as 

well as general chemical composition of, a passive surface film. Furthermore, first-principles 

methods have been shown to provide quantitative estimates for the relative Gibbs free energy and 

corresponding aqueous regimes where a candidate photoanode material may form inert passivating 

films, or steadily corrode to aqueous species.37 Detailed understanding of the growth process, 

evolution, and structure of these complex, self-passivation films is presently lacking, motivating 

development of new computational and experimental techniques that lead to a predictive model 

for how the near-surface of a given material will evolve under operational conditions. 

The heterogeneous composition and structure of the photoanode as a function of depth from the 

electrolyte surface complicates the already complex model of semiconductor-liquid junctions, as 

the effect on these surface layers on band alignment and carrier transport have been insufficiently 
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studied to date. The standard thermodynamic requirement of band alignment, i.e. the vacuum 

energy of the photoanode’s valence band being sufficiently negative such that the photo-generated 

holes are sufficiently oxidizing to drive the OER, is complicated by electrolyte pH-dependent 

surface dipoles.39 The polar surfaces of metal oxides introduce the additional complications of 

facet and termination-dependent dipoles that alter this band alignment, as exemplified by 

BiMn2O5
40 where band level calculations for each of 6 low-energy surfaces indicate more than 1.4 

eV variation in work function, making the assessment of band alignment with respect to OER as 

much of a property of the surface as it is of the bulk electronic structure. Further study of facet-

dependent and interfacial layer-dependent properties are likely to identify optimal photoanode 

surfaces and guide synthesis and device implementation by designating desirable and undesirable 

facets at the electrolyte interface. Initial demonstrations of this concept include facet-dependent 

charge separation in BiVO4
41 and SrTiO3.42 

This aforementioned BiMn2O5,40 as well as β-Mn2V2O7,43 provide additional opportunity to 

investigate performance-limiting attributes of metal oxide photoanodes. The 1.8 eV direct gap of 

each phase is ideal with respect to solar absorption, but they have yet to be demonstrated as OER 

photoanodes. While operational stability is a prime suspect for a lack of photoactivity, these are 

among the most electrochemically stable low-gap metal oxides, with Pourbaix-stable regions in 

the approximate ranges 0.3-0.7 and 0.3-1.2 V vs RHE, respectively. Despite these desirable 

attributes, these phases are not classified as photoanodes in the present work due to their 

photoactivity only in the presence of sacrificial hole acceptors. The modest photoactivity obtained 

with sacrificial hole acceptors also indicates that the photoanode performance limitations extend 

beyond poor OER catalysis. From an electronic structure point of view, these are exemplary 

photoanode candidates, motivating detailed inspection as to whether materials optimization can 
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confer higher photoactivity, and/or identification of fundamental properties that limit photoactivity 

with commensurate design of associated screening techniques. 

Ternary manganate phases also illustrate the challenges of treating high-temperature or 

disordered magnetic states in electronic structure calculations. For these ternary manganates, zero-

temperature calculations with judiciously-chosen magnetic configurations were required to gauge 

the possible electronic structure of each phase’s ambient temperature paramagnetic state; 
40, 43 

paramagnetic states, in which the local magnetic moments on each open-shell cation are nonzero 

but their configurational average is zero, are not trivially-compatible with periodic supercells. 

Typically, high-throughput computational screening employs a computationally less expensive 

model of the magnetic state, e.g. the ferromagnetic configuration, which can induce significant 

changes to the electronic structure44 of the material compared to the paramagnetic state. In our 

experience, this approximation can lead to exclusion of promising low-gap metal oxides that 

exhibit a metallic character in their ferromagnetic state.  Antiferromagnetic (AF) ordering is 

typically a better approximation of the paramagnetic state, and currently the Materials Project is 

pursuing a large computational survey of the magnetic state of its materials including at least one 

AF ordering for each transition metal oxide.44 Other approaches for computational modelling of 

paramagnetic materials have been introduced in the literature,45 creating an opportunity to evaluate 

the electronic structure of photoanode materials at relevant operating temperatures.  

The compendium of photoanode phases described in the SI offers various opportunities for 

identifying trends and descriptors for photoactivity. A seldom-discussed materials property that is 

well characterized by our combinatorial experiments is cation off-stoichiometry of metal oxide 

photoanodes. Fig. 4 shows the EQE under 3.2 eV illumination for 55 A1-xBx oxide phases, where 

B is taken to be the higher valent cation produced by the Materials Project oxidation state 
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interpreter, and each phase is plotted by the difference in x between XRF measurements of thin 

film composition and that of the formula unit (FU). In addition to showing the considerable 

variation in EQE over the collection of metal oxide photoanodes, the observation of appreciable 

EQE at substantial composition deviations is quite striking. There are 5 phases with composition 

deviation more than 0.18 from the composition of the prototype structure. With this level of 

composition deviation, nanocrystalline secondary phases (not detected by XRD) may be present, 

although such composition differences often occur with a multi-valent cation such that the host 

structure can support substantial alloying. For example, the phases with an excess of the higher 

valent cation include formal valences A+2 (A = Ca or Mg) and either Mn+3 or Mn+4, where excess 

Mn appears to alloy as Mn+2 on the A+2 site. There are also cases where the structure of interest is 

only observed in off-stoichiometric conditions, such as V2Ag0.33O5 where an excess of Ag is 

needed to form the structure under our synthesis conditions, likely resulting in some metallic Ag 

in the thin film sample. This level of off-stoichiometry in solar energy conversion materials has 

been most extensively studied with Cu-based p-type semiconductors such as Cu(In,Ga)Se2,46 

Cu2SnZnS4,47 and CuBi2O4
48 where alloyed variants improve phase stability with respect to 

competing phases and/or alter the electronic structure. These phenomena underlie the composition 

variations of photoanodes in Fig. 4, where alloying can additionally optimize a catalytic activity 

and/or electrochemical passivation.

The uncertainty in the XRF compositions is nominally 5 at.%, so phases appearing outside the 

±0.06 window are confidently off-stoichiometric, bringing into question whether traditional 

methods would discover these photoanodes. Of the 23 such phases, 7 are also photoactive within 

the ±0.06 window, so discovery may have been possible with synthesis at a composition matching 

the target FU. The remaining 16 phases required composition deviation to be discovered in our 
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experiments, highlighting the utility of composition libraries in photoanode discovery and 

motivating further study of how substantial alloying optimizes photoanode performance. 

Intertwined with the cation off-stoichiometry is the oxygen stoichiometry, or oxygen vacancy 

concentration, which is not amenable to high throughput characterization, resulting in a lack of 

observable trends over the set of known photoanodes. Recent work on BiVO4 has demonstrated 

that over various time scales, the sub-band-gap states created by oxygen vacancies trap holes and 

electrons, ultimately requiring thermal de-trapping to produce photoactivity.49 These results 

highlight the complexity of carrier transport in metal oxide photoanodes, which often involves 

small polaron hopping50 and may additionally involve more complex phenomena over a range of 

time scales. An opportunity arising from these recent advances is determination of the extent to 

which the observed conduction mechanisms of BiVO4 are universal to ternary vanadates and other 

metal oxide photoanodes, and if the electronic structure contributions of oxygen vacancies, for 

example, can be used as a functional descriptor of metal oxide photoanodes. Our HiTp screening 

work includes a concerted exploration of ternary vanadates where we demonstrated tuning of band 

gap energies across the visible range through band edge hybridization with various open-d-shell 

cations.23 These are specific examples of a general property of metal oxide photoanodes: nontrivial 

orbital character (particularly d orbital character) at band edges creates opportunities for tuning the 

band-edge electronic structure in new ways, potentially leading to electron and hole conductivities 

that are not well described by semi-classical, Boltzmann-based band transport theory.

Traditional semiconductor characterization of conductivity or effective carrier mobility is 

necessary but insufficient for specific identification of the transport-limiting phenomenon. Recent 

developments in ultrafast spectroscopy have demonstrated direct observation of polaron 

formation,51 and application of such techniques to a broader class of photoanodes will help 
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13

establish trends in the roles of defects, excited states, etc. in metal oxide semiconductor transport. 

Disentangling the transport mechanisms can also be facilitated by theory, although the highly-

localized and strongly correlated electronic states (e.g. states with d orbital character) typically 

require rigorous treatment beyond that of standard theories and computational methods. Metal 

oxides often exhibit such electronic states, and as noted above, photoanodes of interest often 

encompass additional structural and chemical complexity that may alter transport properties and 

may require treatment of many-atom systems, creating substantial computational expense. 

Although DFT calculations are often used to compute band structures in practice, rigorous 

calculations of spectroscopic properties of metal oxide photoanode candidates require formalisms 

beyond the ground-state, time-independent DFT. In materials physics, the formalism of choice for 

quantitative prediction of the band structure and optical properties is ab initio many-body 

perturbation theory (MBPT).52 MBPT has been historically computationally prohibitive for 

complex materials, but it is beginning to be applied to complex systems, such as the metal oxide 

photoanodes BiVO4 and β-Cu2V2O7,22, 53 and interfaces involving photoanode materials and 

water.54 Additionally, detailed ab initio calculations of photoexcited carrier dynamics, limited by 

phonon scattering, are now possible for simple semiconductors,55 and have more recently been 

extended to oxides.56 A growing number of recent methodologies are being proposed for more 

rigorous calculations of polaron formation energies.57 Collectively, advances in these methods 

promise a significantly deeper and richer understanding and assessment of photogenerated carrier 

phenomena in existing candidate photoanodes, which will also lead to new descriptors for 

discovery of photoelectrode materials.

Solar fuels photoanodes pose substantial challenges for materials discovery due to the combined 

needs of solar absorption, charge carrier separation and transport, chemical and electrochemical 
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stability under operating conditions, as well as catalytic activity for the OER. The recent increase 

in chemical diversity of metal oxide photoanodes presents both challenges, for example 

determining which phases are amenable to optimization and integration into solar fuels generators, 

and opportunities, for example developing new theory and experiment campaigns to better 

understand fundamental properties that give rise to photoanodic activity. Despite the prolific 

photoanode discovery efforts of the last 20 years, solar fuels photoanodes are still rare compared 

to other types of functional materials, motivating continued identification of such materials to 

formulate models that relate fundamental materials properties to photoanode performance, 

enhancing scientific understanding as well as development of deployable solar fuels materials. The 

photoactivity of off-stoichiometric variants of phases is notable, motivating application of defect 

and transport characterization techniques, which have been recently developed via study of Fe2O3 

and BiVO4, to a broader set of metal oxide phases. Combining the recent proliferation of both 

photoanode discoveries and advanced characterization techniques will advance fundamental 

understanding of metal oxide photoelectrocatalysts and the design of next-generation photoanodes.

Figure 1: (top) Summary of OER photoanodes from literature (blue), as well as our previous 

reports integrating HiTp theory and experiment (green) and additional HiTp experiment 
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discoveries (red). (bottom) Using all photoanodes, the year in which each element was first used 

in a photoanode is shown on the periodic table, with the saturation of each circle corresponding to 

the number of times the element appears in the list of 109 photoanodes.

Figure 2: Illustration of synthesis and processing-based optimization of a litany of materials 

properties, with feedback provided by an ever-expanding suite of materials and device-level 

characterizations. Adapted from Ref. 17 with permission.

Figure 3: The pie chart shows the distribution of photon energy onset for photoactivity, for 49 

metal oxide photoanode phases from combinatorial libraries with EQE in excess of 0.01% (see 

SI). The photon energy onset is determined via photoelectrochemistry at 1.23 V vs RHE with a 
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series of light emitting diodes, and due to their spectral breadth the boundaries between the 4 

ranges have ca. ±0.1 eV uncertainty. For the 4 photoanodes with photoactivity at 2.1 eV, the 

cathodic sweep from a cyclic voltammogram is shown with toggled 3.2 eV illumination (variable 

illumination intensity, see SI). These data were acquired in pH 13 (0.1 M NaOH) for γ-V2Cu3O8 

and Y3Fe5O12 and borate-buffered pH 9.3 electrolyte for FeWO4 and FeBiO3, as reported 

previously.24, 26-27

Figure 4: Summary of 55 photoanode phases from combinatorial libraries with available XRF 

measurement of composition. For each identified ternary oxide, the cation stoichiometry x is taken 

as A1-xBxOz where B is generally the higher valent cation. The quantity xXRF-xFU is the difference 

in x between the composition of the most photoactive sample and that of the formula unit. The 

EQE at 3.2 eV is shown as the metric for photoactivity as this is the only illumination source used 

for all photoanode samples.
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Supporting Information. Table of 109 metal oxide photoanodes from the literature survey 

summarized in Fig. 1. Table of HiTp composition and photoelectrochemical data for 58 phases 

measured in our labs.
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QUOTES TO HIGHLIGHT

Theoretical guidance of high throughput experiments has been particularly effective in 
dramatically increasing the portfolio of metal oxide photoanodes, motivating a new era of 
photoanode development where the characterization and optimization techniques developed on 
traditional materials are applied to nascent photoanodes that exhibit visible light photoresponse.

Computational screening not only identifies target phases but also promising composition 
regions that are sufficiently specific to enable exploration by high throughput experiments, 
which are in turn sufficiently broad in scope to identify materials beyond the computational 
search.

The photoactivity of off-stoichiometric variants of phases is notable, motivating application of 
defect and transport characterization techniques, which have been recently developed via study 
of Fe2O3 and BiVO4, to a broader set of metal oxide phases. 

Combining the recent proliferation of both photoanode discoveries and advanced 
characterization techniques will advance fundamental understanding of metal oxide 
photoelectrocatalysts and the design of next-generation photoanodes.
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