
UC Irvine
UC Irvine Previously Published Works

Title
Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for Low-Power 
Neuromorphic Hardware

Permalink
https://escholarship.org/uc/item/13q1461t

Authors
Diehl, Peter U
Zarrella, Guido
Cassidy, Andrew
et al.

Publication Date
2016-10-01

DOI
10.1109/icrc.2016.7738691
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13q1461t
https://escholarship.org/uc/item/13q1461t#author
https://escholarship.org
http://www.cdlib.org/


Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for
Low-power Neuromorphic Hardware

Peter U. Diehl∗1, Guido Zarrella†1, Andrew Cassidy‡, Bruno U. Pedroni§ and Emre Neftci§¶
∗Institute of Neuroinformatics

ETH Zurich and University Zurich, Switzerland
Email: peter.u.diehl@gmail.com

†The MITRE Corporation, Bedford, MA, USA
‡IBM Research Almaden, San Jose, CA, USA

§Institute for Neural Computation, UC San Diego, La Jolla, USA
¶Department of Cognitive Sciences, UC Irvine, Irvine, USA

1 Peter U. Diehl and Guido Zarrella have contributed equally to this work

Abstract—In recent years the field of neuromorphic low-power
systems gained significant momentum, spurring brain-inspired
hardware systems which operate on principles that are fun-
damentally different from standard digital computers and
thereby consuming orders of magnitude less power. However,
their wider use is still hindered by the lack of algorithms that
can harness the strengths of such architectures. While neuro-
morphic adaptations of representation learning algorithms are
now emerging, the efficient processing of temporal sequences or
variable length-inputs remain difficult, partly due to challenges
in representing and configuring the dynamics of spiking neural
networks. Recurrent neural networks (RNN) are widely used in
machine learning to solve a variety of sequence learning tasks.
In this work we present a train-and-constrain methodology that
enables the mapping of machine learned (Elman) RNNs on a
substrate of spiking neurons, while being compatible with the
capabilities of current and near-future neuromorphic systems.
This "train-and-constrain" method consists of first training
RNNs using backpropagation through time, then discretizing
the weights and finally converting them to spiking RNNs by
matching the responses of artificial neurons with those of the
spiking neurons. We demonstrate our approach by mapping
a natural language processing task (question classification),
where we demonstrate the entire mapping process of the
recurrent layer of the network on IBM’s Neurosynaptic System
"TrueNorth", a spike-based digital neuromorphic hardware
architecture. TrueNorth imposes specific constraints on con-
nectivity, neural and synaptic parameters. To satisfy these
constraints, it was necessary to discretize the synaptic weights
to 16 levels, discretize the neural activities to 16 levels, and
to limit fan-in to 64 inputs. Surprisingly, we find that short
synaptic delays are sufficient to implement the dynamical
(temporal) aspect of the RNN in the question classification task.
Furthermore we observed that the discretization of the neural
activities is beneficial to our train-and-constrain approach.
The hardware-constrained model achieved 74% accuracy in
question classification while using less than 0.025% of the
cores on one TrueNorth chip, resulting in an estimated power

consumption of ≈ 17µW .

1. Introduction

The ever growing availability of large-scale neuromor-
phic hardware systems [1], [2], [3], [4] enables large-scale
simulations of neural networks in real-time on an extremely
low power budget. One interesting application of such neuro-
morphic systems is to use them for pattern recognition tasks
such as handwritten digit recognition or natural language
processing, which on the long-term could prove useful for
example for mobile devices or robotic systems where energy
efficiency is very important.

Currently, the best recognition performance of spiking net-
works on the most widespread machine learning benchmark
MNIST (handwritten digit recognition) is based on a machine
learning technique called convolutional neural network [5].
Those networks are pre-trained on a conventional computer
and then converted to spiking neural networks (SNN) [6].
Convolutional neural networks work extraordinarily well
for vision [7], [8], [9] and auditory tasks [10]). While
convolutional neural networks have proven successful for
some challenges in natural language processing [11], [12],
the sequential nature of language lends itself to solutions that
explicitly model histories of arbitrary length with complex
dependencies across time.

During the recent renaissance in machine learning neural
network (NN) research, machine learning recurrent neural
networks (RNN) have proven to be an essential tool for
learning to interpret and generate language. RNNs have been
trained to state-of-the-art performance on many challenging
NLP tasks including language translation [13], image caption
generation [14], estimation of semantic similarity [15], and
language modeling [16]. Note that despite also being called
"recurrent neural network" this type of RNN is very different
from the type of RNN typically seen in computational
neuroscience and neuromorphic engineering (see discussion
section for more details on other types of RNNs). Therefore
we will say explicitly if we refer to machine learning RNNs.

ar
X

iv
:1

60
1.

04
18

7v
1 

 [
cs

.N
E

] 
 1

6 
Ja

n 
20

16



In this article, we extend the application of machine
learning RNNs to the neuromorphic domain by converting
them to spiking RNNs. Specifically, the goal is to show
how to convert machine learning RNNs to spiking ones, for
the purpose of simulating them on power-efficient hardware
while maintaining high classification performance. Equipped
with this approach, future advances in the development
of machine learning RNNs can lead to higher performing
spiking RNNs. Our workflow for solving this conversion task
consists of first training Elman RNNs (a simple machine
learning RNN) [17] on a conventional computer and then
using the trained weights with the defined connectivity to
create a spiking equivalent. This spike-based RNN is then
implemented on IBM’s Neurosynaptic System "TrueNorth".

Some of the issues that arise during the conversion of
Elman recurrent networks to spiking neural networks have
been addressed by the conversion of convolutional neural
networks and fully-connected networks, e.g. the substitution
of artificial neurons with spiking neurons by using rectified
linear units (ReLU) and replacing them with integrate-and-
fire neurons [6], [18], [19]. However, RNNs feed back
the activity of the hidden-neurons to themselves. This is
a distinguishing feature of RNNs that serves as a memory
of previous inputs. In spiking RNNs, this feedback must
be represented in a spiking fashion and presents one of the
most challenging aspects of spike-based RNNs. Surprisingly,
we find that using synaptic delays lasting only 15 time steps,
effectively corresponding to a 4 bit discretization of the
hidden-state, does not impair the functionality of the RNN.

While it already represents a challenge to design high-
performance spike-based recurrent networks, implementing
those on neuromorphic hardware adds another layer of com-
plexity. Most neuromorphic systems pose several constraints
on the types of networks that can be implemented like
limited connectivity or limited resolution of the synaptic
weights. Therefore only a few recognition systems have been
implemented on neuromorphic hardware [20], [21], [22].

2. Material & Methods

In this section we describe the chronological process
of creating a spike-based RNN. We start by explaining the
exact task and the associated dataset, then describe the pre-
processing of the data and after that the architecture of
the machine learning RNN. All parts described in these
subsections (sections 2.1 up to 2.3) are, with some modifi-
cations, based on existing work. The following subsection
2.4 describes the main contribution of this work (besides
the introduction to TrueNorth itself). We explain how the
input is converted from rates to spikes and how the spikes
are converted back to rates to calculate the output. After
that we cover the discretization of the trained weights for
use on TrueNorth. The last (and most important) part of
the TrueNorth subsection covers how the hidden state of
the recurrent layer is represented on TrueNorth. Finally, the
last subsection covers two different versions of the machine
learning RNN that are used for comparison to our TrueNorth
implementation.

2.1. Question Classification Task

Here we use the question classification data set pre-
sented in [23]. The goal of this task is to classify question
sentences into one of six coarse categories and potentially
into finer grained subcategories. For example, the question:
"How much does the human adult female brain weigh ?"
expects an answer of the type "Number". In the previous
example, "Number" is the coarse category, while "fine" type
is the "weight" category. In this project we used only the
coarse categories which included: Abbreviation, Description,
Number, Entity, Human, and Location. The training dataset
consisted of 5000 labeled sentences, and a evaluation (test)
set that is not used during training consisting of 500 labeled
sentences. For training and testing of the recurrent network
we also added a special End Of Sentence (EOS) word (a
vector of zeros) at the end of every input sentence.

2.2. Pre-Processing and Word Vectors

We aim to train our system to generalize from a narrow
training set to the entire universe of possible questions. It
must be robust to many forms of natural linguistic variation
that may occur. For example, if the question above were
instead submitted as "What is the mass of an average man’s
brain ?" the system would benefit from understanding that
mass and weight have similar attributes. Therefore we equip
our algorithm with a model of word semantics trained in
advance using the word2vec [24] library. Word vectors
such as these have been employed in many state-of-the-art
language processing systems in both academia and industry
[25], [26].

The goal of word2vec is to embed each word into a
high-dimensional space such that words with latent semantic
similarity ("good", "awesome") are near each other but distant
from dissimilar words ("terrorist", "aardvark"). We used the
word2vec skipgram variant with negative sampling, which
effectively learns to model word meaning by predicting
word coocurrences from a large text corpus. Specifically,
we trained 64-dimensional word vectors using 3.4 billion
tokens from text of the English Wikipedia. The preprocessing
included removing punctuation, setting all letters to lower
case, and substituting uncommon words with an ’unknown’
token. Our training process resulted in vector representations
for 324264 commonly occurring words. Input questions were
then transformed to the sequence of their word vectors, with
one vector for each word in the input, and with unknown
words mapped to the average word vector.

2.3. Neural Network Architecture and Training

The machine learning RNN we train as a basis for the
spiking RNN exclusively uses standard techniques from
machine learning. Besides using ReLUs there are no special
requirements for the architecture itself and can therefore be
modified easily, for example to use convolutional features or
a deeper or bigger network to achieve better performance.



Figure 1. Recurrent Neural Network model for solving the question
classification task. The network consisted of a projection layer (48 units), a
recurrent layer (16 units) and a softmax layer for classification (6 units). At
each time step, the recurrent layer takes an input from the projection layer
and the previous step of the recurrent layer. The output the recurrent state
is used for classification. The scope of our implementation is indicated by
the shaded box.

The network consists of a projection layer (48 units), a re-
current layer (16 units) and a softmax layer for classification
(6 units), see figure 1. This combination of different types of
layers, here a so called fully-connected (or projection) layer,
an Elman or simple RNN and a softmax layer is common in
machine learning NNs [27]. The dimension of the projection
layer and the recurrent layer were constrained to fit on one
core of a TrueNorth chip (see below). Furthermore, due to
good performance and to ease the mapping to TrueNorth
spiking neurons, the network utilized rectified linear units
(ReLU) without biases [28] throughout. The neural network
was trained using "backpropagation through time" with
stochastic gradient descent [29]. This was trained using the
Pylearn2 and Theano packages [30].

All of the 48 neurons in the projection layer receive
the 64-dimensional word vector as inputs. The output of
those 48 neurons are then used as 48-dimensional input for
each one of 16 neurons in the recurrent layer. Additionally,
each neuron in the recurrent layer receives input from all 16
neurons in the recurrent layer, hence the name recurrent. The
output of the recurrent layer neurons are then fed as input
to a softmax layer that computes the final classification.

2.4. TrueNorth Implementation

2.4.1. TrueNorth and Neuron Conversion. The IBM Neu-
rosynaptic System "TrueNorth" is a non-von Neumann
architecture that integrates 1 million programmable spiking
neurons [1]. The system consists of 4096 cores with 256
neurons per core, and each core can accommodate up
to 65536 synapses in a crossbar fashion. Each neuron’s
equations and synaptic states are updated every millisecond,
which we will call 1 tick. Note that although a continuous
time neural network is being simulated, those discrete updates

0 1 2 3 0 1 2 3

G0
G1
G2
G3

G0
G1
G2
G3

G3

G0

Axons
[0,...,255]

Neurons
[0,...,255]

A
xon T

ype 

D
elay =

 15

16 (64)

48 (192)

16 (64)

P
ro

je
ct

io
n 

La
ye

r

Softmax

Figure 2. TrueNorth implementation of a recurrent neural network. The
feedback in the recurrent network is implemented using the synaptic delays
(delay of 15 ticks, the maximum supported on TrueNorth). The effect
of the maximum delay is to limit to 16 ticks the time window during
which the spikes are counted (15 ticks from the delay plus 1 tick for
transmission). For every connection, we used 4 axons per dimension to
implement 4-bit weights. The input to the recurrent neural network and the
output to the softmax classifier is computed offline on the computer. This
architecture can support recurrent neural networks that verify the condition
Nin +Nhid <= 256/Ns.

are a common way to numerically approximate the change
of a continuous system.

By using four synapses per actual input, 4-bit precision
synapses can be implemented, which leads to a fan-in of
64 per neuron. As a proof of concept, we focused on
implementing the recurrent layer on TrueNorth, see figure
2. We only used a single core since it is sufficient to
understand the conversion method and the main challenge
when converting RNNs compared to other networks like
convolutional neural networks. We chose to only convert the
recurrent layer (i.e. the part with solid blue background in
figure 1 or its TrueNorth implementation in figure 2) and not
convert the other layers since those have been successfully
implemented on TrueNorth in the past [6], [18], [22].

Using Ns-bit weights, the dimension of the recurrent
layer is limited to Nin +Nhid ≤ 256/Ns, where Nin is the
number of inputs, Nhid is the number of (hidden) units in
the recurrent layer and Ns is the resolution of the connection
weights in bits.

To map the ReLUs onto TrueNorth, we used linear neu-
rons, whose membrane state follows the following dynamics:

V (t+ 1) = V (t) +

255∑
i=0

Aiwijs
Gi
j

if V (t) < 0 : V (t)← 0

if V (t) > T : V (t)← V (t)− T

(1)

where Ai(t) is the input spike on axon i, sGi
j is the

synaptic weight, Gi ∈ {0, 1, 2, 4} is the axon type and wij ∈
0, 1 is the synaptic connectivity between axon i and neuron
j. For the full neuron equation see [31]. The above equations
imply that, after a spike is elicited, the membrane state is



subtracted an amount corresponding to the firing threshold.
This enables the neuron to fire a number of times that is
proportional to the synaptic input.

The model was written in MATLAB, using the integrated
programming environment for IBM’s Neurosynaptic System.
One parameter of the model is the simulation platform. By
switching this parameter between "TN" and "NSCS" the exact
same program can be run on a connected TrueNorth chip or
it can be run using the NSCS simulation environment. Note
that there is an exact one to one correspondence between
the results of the simulation environment and the TrueNorth
chip, which means the code can be run using either system
(given that the user has a TrueNorth chip available).

2.4.2. Input Encoding and Output Decoding. During the
training of the Elman RNN, the input to the recurrent layer
is encoded by the output of the projection layer. However,
after conversion to a spiking network, the input needs to be
provided in the form of spikes. Here we use a simple rate
code of the output, i.e. the higher the input of the recurrent
layer the higher the number of input spikes. More specifically,
we use Poisson spike trains with firing rates corresponding to
the rate of the represented input dimension of the projection
layer. Each word in an example sentence is presented for
16 ticks. This means there can be up to 16 input spikes for
each of the 48 inputs and for each input word. Therefore the
input resolution is discretized from 32 bit to 4 bit. Between
different sentences we reset the neuron and synapse state.

Similarly, we use a rate code for the output of the
recurrent layer, i.e. each of the 16 neurons can fire up to 16
spikes which again represents a discretization of the 32 bit
precision used for training to 4 bit.

2.4.3. Weight Discretization. The weight discretization
method described here is the same as described in [18].
Since each synapse on TrueNorth is either present or not but
its weight can only be one of the 4 chosen types, the weight
resolution could be interpreted as being single bit. However,
by using 4 axons for each actual input, it is possible to
achieve a 4-bit accuracy for each actual input. For example,
by choosing the 4 axon types to be {1,2,4,-8} and then
combining them appropriately any number between -8 and
7 can be represented.

To accommodate the network parameters on TrueNorth,
the weights of the machine learning RNN were bounded to
(-1, 1), scaled and discretized to 4 bit. To cancel the effect
of the scaling, the input to the recurrent layer was scaled by
1/16.

2.4.4. Hidden State Encoding. The encoding of the hidden
state represents a crucial part of this work since this is
(besides the different training for the Elman RNN) the main
difference to fully-connected networks. The challenge is that
the hidden state in the Elman RNN is the output of the
recurrent layer for the last input word. While this is easy
to implement on traditional hardware, it is not immediately
clear how to "store" this for the next input.

time (msec)
0 20 40 60 80 100 120 140 160

N
e
u
ro

n

0

2

4

6

8

10

12

14

16
how weighbrainhumanfemalethedoesmuch ?
LOC LOC LOC DESC DESC NUM NUM NUM NUM

Figure 3. Sample Raster Plot of the TrueNorth for the recurrent units. The
question class for the question "How much does the female brain weigh ?
" is correctly identified as "Number" (NUM). Note that the shown neurons
are located in the recurrent layer and do not represent the output neurons.
The shown 16 neurons are combine in the output layer to determine the
class with the highest response.

We decided to represent the hidden state of the spiking
RNN using synaptic delays. Using a single connection, True
North has the ability to implement delays up to 15 ticks,
i.e. the spike will arrive 16 ticks (1 tick from transmission
and 15 ticks from delay) after the source neuron fired at the
destination neuron. Therefore, 16 ticks of the spiking RNN
correspond to one time step in the machine learning RNN.
Note that this is the reason we chose a duration of 16 ticks
for each input word.

An example time course is depicted in figure 3. At ticks
1 to 16, the input spikes from the projection layer to the
recurrent layer represent the word "how". There are no other
spikes arriving during those first 16 ticks. However, as soon as
one of the neurons in the recurrent layer spikes, all recurrent
neurons which are connected to this neuron will receive this
spike exactly 16 ticks later, e.g. the spike fired by neuron
13 at tick 10 which means that all neurons connected to
neuron 13 will receive a spike at tick 26 (in addition to other
possible spikes from recurrent neurons and in addition to
the input spikes from the projection layer). Note that the
spikes are not being aggregated but instead arrive always
with the exact time difference they were fired in. This is an
important difference to the machine learning RNN where
all information is aggregated before a result is calculated
and which potentially leads to decreased perfomance of the
spiking RNN compared to the machine learning RNN.

After the first word was presented, the spikes correspond-
ing to the next word "much" are used as input from the
projection layer during the ticks 17 to 32. Simultaneously,
the spikes that were fired by the neurons from the recurrent
layer during the first word "how" are arriving. Therefore the



delay lines are essentially storing the spikes fired during the
last input word.

The integration time effectively determines the discretiza-
tion of the activation function or how many spikes can be
fired for each example. Since the duration of the delay has
to be equal to the time intervals between new inputs, the
maximum delay limits the possible integration time. Note
that it is possible to increase this delay by chaining delays
of additional axons (16 more ticks per axon).

2.5. Setups for Comparison

In order to be able to better compare the performance of
the machine learning RNN with its TrueNorth counterpart,
we used two intermediate setups. The first one is equivalent
to the original machine learning RNN but the weights are
scaled and discretized to 4 bit (since the ReLUs have no bias,
the scaling actually has no influence on the performance).
The second setup uses, in addition to the weight discretization
to 4 bit, a discretization of the hidden state to 4 bit. This
is achieved by discretizing the ReLU function such that
the activation is one of 16 different values to mimic the
TrueNorth neuron.

3. Results

For all four setups we used the question classification
test set introduced in [23]. The respective accuracy of all
four setups is shown in table 3. Training of the original
ReLU NN with floating point weights yields a classification
accuracy of 85%. The variance of the results was obtained
by using different initializations of the parameters of the
original network. When reducing the precision of the weights
to 4 bit, the accuracy dropped to 72.2%. In the next step
we discretized the hidden state to 4 bit. To our surprise, this
modification increased the accuracy of the network to 78.4%.

Lastly, the network was implemented as TrueNorth
network by substituting the ReLUs by TrueNorth linear
neurons and converting the 48-dimensional real-valued inputs
to 48 Poisson spike-trains, each with a firing-rate proportional
to the values of the corresponding input dimension. The
resulting TrueNorth network shows an accuracy of 74% on
the question classification test set.

We also embedded this TrueNorth network in an inter-
active question classification system, where a user can type
in a question and the system outputs the question type as
well as a plot of the spike-responses of the hidden neurons.
Besides being able to classify more obvious questions like
"where was peter born" as "location", it can also deal with
more ambiguous cases where the question word does not
determine the question type. For example it classifies "what
city was peter born in" also as a "location", "what is the
meaning of life" as "description", and "what is the company
that created truenorth" as "entity". Since ’peter’ is a word
that often occurs in Wikipedia, it is represented in the word
space and can therefore be part of a query. On the other hand,
the word ’truenorth’ is not often mentioned in the Wikipedia
corpus and is therefore not represented in the word space.

In our interactive system we substitute such words with the
average over all word vectors to minimize distortion.

4. Discussion

4.1. Result Interpretation

Our results demonstrate a proof-of-concept recurrent
neural network that can be trained offline and afterwards
mapped onto the highly power-efficient TrueNorth chip.
Furthermore, we show that synaptic delays are sufficient
for supporting the temporal dynamics of simple recurrent
neural networks. Using a 15 tick delay for "storing" the state
of the neurons corresponds to discretizing the state to 4 bit.
However, while the accuracy of the machine learning RNN is
comparable to reported results in the original and following
studies (84% - [23], 86.2% - [32] and 85.6% - [33]), there is
a performance gap between the machine learning RNN and
the TrueNorth network. By having a closer look at the four
different models we can understand why this gap exists.

The biggest drop in performance is due to the discretiza-
tion of the synaptic weights, as can be seen by comparing
the first and the second model in table 3. However, this
performance decrease due to discretization is expected and
has been the topic of other studies. In order to reduce
performance losses due to weight discretization, it is possible
to choose better discretization methods than simple rounding.
For example, it is possible to include discretization in the
training of the network [21] (by using rounded weights
during the forward pass of backpropagation) or by rounding
probabilistically after training [34].

The second step was to discretize the hidden state to
4 bit. Interestingly, this discretization does not decrease
the classification performance of the network but rather
increases it. While we do not assume that this holds true
in general for RNNs, the discretization might help in cases
where there is only a limited number of target labels (in
the presented example it was six). A possible explanation
is that the discretization prevents the drift between states
if not much relevant information is contained in the new
input. As an example, if a questions starts with "where", it
is highly likely that the answer is a location. This "location"
state of the hidden neurons then needs to be maintained in
the face of irrelevant information like "is" or "the" which
is especially challenging for recurrent networks for longer
input sequences.

Lastly, the mapping and the corresponding conversion to
a spiking network caused a drop in performance of 4.4%.
While this is much less than the drop caused by the weight
discretization, it is still significant. However, other studies
that investigated the performance loss due to conversion
from ReLUs to spiking units shows that the goes to zero
as integration times increase, see [6], [18]. This increase in
integration time is very easy to achieve in systems that do not
rely on feedback from a recurrent layer by simply presenting
each example for a longer period. When using the delay
mechanism presented here it is also necessary to be able to



Configuration Accuracy
ReLUs, 32bit weights, 32bit hidden state (PC) 85%
ReLUs, scaled 4bit weights 32bit hidden state (PC) 72.2%
ReLUs, scaled 4bit weights, 4bit hidden state (PC) 78.4%
TrueNorth neurons, scaled 4bit weights, 4bit spiking hidden state (TrueNorth) 74%

TABLE 1. ACCURACY OF THE DIFFERENT NETWORKS

use delays which are as long as the desired integration time.
One possibility would be to use multiple axon in a chain (of
course this would come at the expense of available axons
and it might be more useful to instead increase the size of
the network).

4.2. Comparison to Recurrent Neural Networks

In this work we used established machine-learning tech-
niques, specifically Elman RNNs [17], and converted them to
spiking neural networks. The reason for using this approach
is that our goal is to achieve competitive performance on
practically relevant tasks and similar conversion methods
already have been shown to be very effective for vision
tasks [6], [19]. However, more biologically plausible recur-
rent neural networks have been used for decades [35]. In
contrast to machine-learning neural networks, learning more
biological neural networks for real-world pattern recognition
tasks only started to gain momentum recently [36], [37],
[38], [39], [40]. Such networks are usually trained using
spike-timing-dependent plasticity (STDP) [41] but there
are also studies suggesting the usage of morphological
learning [42]. At this point however, more biologically
realistic approaches are not (yet) competitive with deep
neural network to SNN conversion methods (in terms of
recognition performance). Specifically, MNIST which is the
most common benchmark in machine learning, the best
reported performance using conversion methods is above
99% [6] and the best performance using more biologically
plausible networks is 95% [40].

The decision to use Elman networks instead of more
sophisticated machine learning RNNs like long short term
memory networks (LSTM) [43] or gated recurrent units
(GRU) [44] was based on the short length of the input
sequences, which allowed us to train without a significant
risk of vanishing gradients. Additionally, recently Elman
networks have been shown to match the performance of
state-of-the-art LSTMs and GRUs when using some im-
provements on the basic structure such as restricting the
recurrent connectivity matrix [45] and correctly initializing
the recurrent connectivity matrix [46]. Since we are focusing
on the conversion and not optimizing the performance of
the machine learning RNN, we did not use those methods
here. Nor did we spent significant time optimizing our word
vectors to maximize performance on this particular task.
However, the advantage of the conversion method is that
such modifications can be applied to the underlying machine
learning RNN without needing to change any parts the
conversion method. Moreover, other improvements (possibly

found in the years to come) in training procedures, weight
initialization or better loss functions are equally easy to use
in conjunction with the presented framework since also all of
them require no changes in the presented conversion method.

4.3. Implications

We showed how to implement high-performance recur-
rent neural networks on neuromorphic hardware. This offers
great potential for a range of extremely low-power natural
language understanding applications. While the presented
conversion method was only tested for a question classifica-
tion task, the underlying machine learning RNN has been
successfully used in a wide variety of setups including vision,
audio and natural language processing tasks [47], [48], [49],
[50]. Since the presented conversion method is oblivious
to which task the machine learning RNN was trained on,
it can be easily applied to other domains and tasks. While
traditional hardware on computers such as CPU’s or GPU’s
easily consume 100 W or more, an entire TrueNorth chip
consumes up to 70 mW and contains 4096 cores [1]. Here,
we only used one of those cores, which means that our
system has an estimated power budget of only about 17
µW . Even assuming that there is overhead in using only
one core, there are orders of magnitudes difference in power
consumption between the used neuromorphic system (as
there would be with almost all other neuromorphic systems)
and traditional hardware.

Considering this extremely low power-budget, such pat-
tern recognition systems can prove useful for low-power
applications like mobile devices or robotics but also for
server farms where power consumption presents a major
cost factor. In future work it would be interesting to see
how the discretization of the hidden state influences the
performance for more complex tasks, e.g. when predicting
more than one of six classes. Another point to be addressed
is to better understand the influence the discretization of the
hidden state has on the hidden state trajectory over time, i.e.
how it perturbs the occurring changes.

Acknowledgments

We thank the organizers and the participants of the
Telluride Neuromorphic Cognition Engineering Workshop
2015, and especially the natural language processing group
and Rodrigo Alvarez, John Arthur, Paul Merolla for fruitful
discussions and the stimulating working environment. We
also thank the reviewers for their very helpful comments.



Funding: PUD: SNF Grant 200021-143337 "Adaptive
Relational Networks." BUP: The Office of Naval Re-
search (ONR MURI 14-13-1-0205) and CNPQ Brazil (CsF
201174/2012-0) EN: the Office of Naval Research (ONR
MURI 14-13-1-0205)

References

[1] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communica-
tion network and interface,” Science, vol. 345, no. 6197, pp. 668–673,
2014.

[2] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of
low-power spiking neurons and bistable synapses with spike–timing
dependent plasticity,” IEEE Transactions on Neural Networks,
vol. 17, no. 1, pp. 211–221, Jan 2006. [Online]. Available:
http://ncs.ethz.ch/pubs/pdf/Indiveri_etal06.pdf

[3] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras, and
S. Furber, “Spinnaker: mapping neural networks onto a massively-
parallel chip multiprocessor,” in Neural Networks, 2008. IJCNN
2008.(IEEE World Congress on Computational Intelligence). IEEE
International Joint Conference on. IEEE, 2008, pp. 2849–2856.

[4] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. Merolla, and
K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for
large-scale neural simulations,” Proceedings of the IEEE, vol. 102,
no. 5, pp. 699–716, 2014.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[6] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in International Joint Conference on Neural
Networks (IJCNN),. IEEE, 2015, pp. 1–8.

[7] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep, big, simple neural nets for handwritten digit recognition,”
Neural Computation, vol. 22, no. 12, pp. 3207–3220, 2010.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. of NIPS, 2012, pp.
1097–1105.

[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“OverFeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint, vol. 312.6229, 2013.

[10] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications: An
overview,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE, 2013, pp. 8599–8603.

[11] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional
neural network for modelling sentences,” Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics,
June 2014. [Online]. Available: http://goo.gl/EsQCuC

[12] Y. Kim, “Convolutional neural networks for sentence classification,”
CoRR, vol. abs/1408.5882, 2014. [Online]. Available: http://arxiv.org/
abs/1408.5882

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” CoRR, vol. abs/1409.0473,
2014. [Online]. Available: http://arxiv.org/abs/1409.0473

[14] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

[15] G. Zarrella, J. Henderson, E. M. Merkhofer, and L. Strickhart, “Mitre:
Seven systems for semantic similarity in tweets,” Proceedings of
SemEval, 2015.

[16] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware
neural language models,” CoRR, vol. abs/1508.06615, 2015. [Online].
Available: http://arxiv.org/abs/1508.06615

[17] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[18] P. U. Diehl, B. Pedroni, A. Cassidy, P. Merolla, E. Neftci, and
G. Zarrella, “Truehappiness: Sentiment analysis on truenorth,” arXiv,
2016.

[19] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, pp. 1–13, 2014.

[20] D. Neil and S.-C. Liu, “Minitaur, an event-driven fpga-based spiking
network accelerator,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 22, no. 12, pp. 2621–2628, 2014.

[21] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and
S.-C. Liu, “Robustness of spiking deep belief networks to noise and
reduced bit precision of neuro-inspired hardware platforms,” Frontiers
in neuroscience, vol. 9, 2015.

[22] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
“Backpropagation for energy-efficient neuromorphic computing,” in
Advances in Neural Information Processing Systems, 2015, pp. 1117–
1125.

[23] X. Li and D. Roth, “Learning question classifiers,” in Proceedings of
the 19th international conference on Computational linguistics-Volume
1. Association for Computational Linguistics, 2002, pp. 1–7.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[25] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix
factorization,” in Advances in Neural Information Processing Systems,
2014, pp. 2177–2185.

[26] Y. Li, L. Xu, F. Tian, L. Jiang, X. Zhong, and E. Chen, “Word
embedding revisited: A new representation learning and explicit matrix
factorization perspective,” 2015.

[27] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[28] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le,
P. Nguyen, A. Senior, V. Vanhoucke, J. Dean et al., “On rectified
linear units for speech processing,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE,
2013, pp. 3517–3521.

[29] P. J. Werbos, “Backpropagation through time: what it does and how
to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560,
1990.

[30] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python
for Scientific Computing Conference (SciPy), vol. 4, 2010.

[31] A. S. Cassidy, P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson,
R. Alvarez-icaza, P. Datta, J. Sawada, T. M. Wong, V. Feldman,
A. Amir, D. B. dayan Rubin, E. Mcquinn, W. P. Risk, and D. S.
Modha, “Cognitive computing building block: A versatile and efficient
digital neuron model for neurosynaptic cores,” in in International Joint
Conference on Neural Networks (IJCNN). IEEE, 2013.

[32] V. Krishnan, S. Das, and S. Chakrabarti, “Enhanced answer type infer-
ence from questions using sequential models,” in Proceedings of the
conference on Human Language Technology and Empirical Methods
in Natural Language Processing. Association for Computational
Linguistics, 2005, pp. 315–322.

[33] Z. Huang, M. Thint, and Z. Qin, “Question classification using head
words and their hypernyms,” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 2008, pp. 927–936.

http://ncs.ethz.ch/pubs/pdf/Indiveri_etal06.pdf
http://goo.gl/EsQCuC
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1508.06615


[34] L. K. Muller and G. Indiveri, “Rounding methods for neural
networks with low resolution synaptic weights,” arXiv preprint
arXiv:1504.05767, 2015.

[35] H. Wilson and J. Cowan, “Excitatory and inhibitory interactions in
localized populations of model neurons,” Biophysical Journal, vol. 12,
pp. 1–23, 1972.

[36] S. Habenschuss, Z. Jonke, and W. Maass, “Stochastic computations
in cortical microcircuit models,” PLoS computational biology, vol. 9,
no. 11, p. e1003311, 2013.

[37] D. Kappel, B. Nessler, and W. Maass, “Stdp installs in winner-take-all
circuits an online approximation to hidden markov model learning,”
PLoS computational biology, vol. 10, no. 3, p. e1003511, 2014.

[38] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwen-
berghs, “Restricted boltzmann machines and continuous-time con-
trastive divergence in spiking neuromorphic systems,” May 2013.

[39] E. Neftci, C. Posch, and E. Chicca, Neuromorphic Engineering.
UNESCO Encyclopedia of Life Support Systems, 2014, ch. 23, (in
press).

[40] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in Computational
Neuroscience, vol. 9, p. 99, 2015.

[41] L. Abbott and S. Song, “Asymmetric hebbian learning, spike timing
and neural response variability,” in Advances in Neural Information
Processing Systems, vol. 11, 1999, pp. 69–75.

[42] S. Hussain, A. Basu, R. M. Wang, and T. J. Hamilton, “Delay learning
architectures for memory and classification,” Neurocomputing, vol.
138, pp. 14–26, 2014.

[43] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[44] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[45] T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. Ranzato,
“Learning longer memory in recurrent neural networks,” arXiv preprint
arXiv:1412.7753, 2014.

[46] Q. V. Le, N. Jaitly, and G. E. Hinton, “A simple way to ini-
tialize recurrent networks of rectified linear units,” arXiv preprint
arXiv:1504.00941, 2015.

[47] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual
attention,” in Advances in Neural Information Processing Systems,
2014, pp. 2204–2212.

[48] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE,
2013, pp. 6645–6649.

[49] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Audio chord
recognition with recurrent neural networks.” in ISMIR, 2013, pp. 335–
340.

[50] T. Mikolov and G. Zweig, “Context dependent recurrent neural network
language model.” in SLT, 2012, pp. 234–239.


	1 Introduction
	2 Material & Methods
	2.1 Question Classification Task
	2.2 Pre-Processing and Word Vectors
	2.3 Neural Network Architecture and Training
	2.4 TrueNorth Implementation
	2.4.1 TrueNorth and Neuron Conversion
	2.4.2 Input Encoding and Output Decoding
	2.4.3 Weight Discretization
	2.4.4 Hidden State Encoding

	2.5 Setups for Comparison

	3 Results
	4 Discussion
	4.1 Result Interpretation
	4.2 Comparison to Recurrent Neural Networks
	4.3 Implications

	References



