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Over the last century or so, the diffraction of X-rays from periodic structures such

as crystal lattices has yielded a vast number of breakthroughs in our understanding of con-

densed matter systems and how they are ordered. Over the course of this history, technical

advances in the way X-rays are produced and measured have allowed for the structural

characterization of solids to occur more and more rapidly. While clearly yielding an im-

provement in efficiency, the true scientific value of these advances is to allow determination

of structural changes at shorter and shorter intervals. The capabilities of modern X-ray
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sources are now becoming so advanced that it is possible to measure dynamics on the or-

der of picoseconds, allowing scientists to measure “fundamental” phenomena not possible

before, such as fast phase transformations and shockwaves. Dynamical studies of solids

are naturally grouped into two categories: equilibrium, and non-equilibrium. This thesis

is divided along the same lines. In the first part, a proposal is presented describing a new

statistical method for studying equilibrium dynamics that could be implemented in the

near future. In the second, experimental results showing the ultrafast propagation of an

induced acoustic shockwave in a Chromium thin film are presented. This experiment was

performed at the cutting-edge Linac Coherent Light Source (LCLS) at Stanford.
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Chapter 1

A Very Brief Overview of X-ray

Scattering and X-ray Sources

It is not my purpose here to provide an even remotely comprehensive exposition

of x-ray scattering theory or a complete history of x-ray sources. Rather, I will briefly

remind the reader why x-rays are important, highlight a couple important results from

theory and discuss some features of modern x-ray sources that enable experiments such

as those discussed in later chapters. A complete treatment of this subject matter can be

found in many texts, both new [1] and old [2] [3].

“X-rays” are simply photons that have wavelengths which lie in a particular range

of the electromagnetic spectrum. This range is roughly between a tenth of an Angstrom

(10−10 m) and ten nanometers. This happens to be the lengthscale of atomic bond dis-

tances in solids, which is the reason for the profound importance of x-rays in the study

of condensed matter systems. The discovery of this type of light is attributed to Wilhelm
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Röntgen, for which he was awarded the first Nobel Prize in 1901. The discovery of x-rays

owed to its high differential absorption in high-Z vs. low-Z materials. This can be used

to cast shadows with an x-ray source on a chemical or electronic recording medium, a

technique which still has profound importance in the medical profession. Physics, on the

other hand, has benefitted largely from the diffraction effects that x-rays produce when

they interact with the atoms in solid matter.

When x-rays are incident on the periodic structure known as a crystal, the light will

scatter very intensely at certain special angles, forming a diffraction interference pattern

in the far field. This effect was discovered by W.L. Bragg and W.H. Bragg (father and

son) in the early 20th century, and was explained by them theoretically as well. The key

insight was to consider a crystal, in a fixed orientation relative to some coordinate system,

as a set of identical, repeating atomic planes. The planes obey Fresnel’s law of reflection,

so that light they reflect (emit) is at the same angle as the incident light relative to surface

normal. When this angle is such that reflections from successive planes of atoms are out of

phase by exactly one full cycle (or any integer multiple), constructive interference occurs.

The now famous equation summarizing this simple two dimensional picture is known as

Bragg’s law: nλ = 2dSin(θ), where d is the spacing of the interatomic planes, θ the angle

of incidence, λ the x-ray wavelength and n being a positive integer.

The pioneering work of the Braggs ushered in an entire field of study known as

crystallography, using x-rays to characterize crystalline matter. Their first great achieve-

ment was to solve the crystal structure of table salt, NaCl, which has a cubic structure

and a two atom basis. Later in the twentieth century, complex structures such as the DNA
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double helix were solved. A complete description of x-ray scattering from solids combines

two main ingredients: a mathematical formalism describing the positions of the electrons

throughout the material/crystal, and a treatment of the (typically assumed to be elastic

“Thomson”) scattering of electromagnetic radiation from the individual electrons. There

are multiple approaches to this, but the end result may be expressed as follows:

I(~q) = [

∫
V

ρ(~r)e−i~q·~rd~r]2 (1.1)

This elegant result may be expressed simply in words as well: the measured inten-

sity at a point in reciprocal space (~q) in an x-ray diffraction experiment is given by the

square of the Fourier transform of the electron density. The entire field of crystallography

centers around characterizing the various regular structures found in nature that make up

ρ(~r), and to characterize them mathematically in groups according to their symmetry. The

work described in this thesis does not involve complicated crystal structures or experimen-

tal geometries, so I will not spend much more time on this subject. In fact, simply having

knowledge of the two dimensional Bragg’s law picture is probably sufficient to understand

the scattering experiments and thought experiments I describe. Let me show a simple one

dimensional example of this equation at work that qualitatively reproduces the diffraction

pattern produced by the Chromium thin film described later in this thesis. In MATLAB,

I define a 1-D perfect crystal of 100 atoms as follows (with a lattice spacing of 2.88 Å):

>>a = 2.88;

>>N = 100;
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>>r = a * (0:N-1);

I then create a reciprocal space vector of the appropriate range:

>>q = 4.36 + linspace(-.25,.25,1024);

Then we take the Fourier transform of our “lattice”:

>>for m = 1:numel(q)

>>A(m) = sum(exp(-1j*q(m)*r));

end

Then we square this quantity and plot it in Q-space:

>>semilogy(q,abs(A).ˆ2)

The result of this is shown in figure 1.1. The global maximum is this plot is known

as a Bragg peak, the location of which is fixed by the width of the unit cell specified. The

oscillations on either side of this maximum are known as Laue fringes, and their periodicity

is determined by the width of the finite crystal.

I will now briefly discuss the history of x-ray production and detection, and where

those technologies have now progressed, which is important to understanding this work.

The first laboratory x-ray sources were what are often now referred to as “tube” sources.

They are still widely used because of their simplicity and size. These devices consist of

of a vacuum tube containing an anode and cathode separated by a large potential, across

which electrons are accelerated. Upon crashing into the anode (typically composed of

Tungsten or Copper), the electrons emit radiation in a broad range of energies as they are

decelerated. This is known as bremsstrahlung or “braking radiation.” On top of this broad

4
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Figure 1.1: The simulated diffraction from a perfect one dimensional “crystal” that is
100 atoms thick, with a 2.88 Å “unit cell.”

background, at two orders of magnitude higher intensity, are narrow emission “lines.”

These result when the incident electrons knock bound electrons in the inner shells of the

atoms from their orbitals, whereafter less tightly bound electrons transition to the core

shell, and a corresponding x-ray photon is emitted. This so-called characteristic radiation

is typically the most desirable experimentally because of its well defined energy and high

intensity. Monochromators are often used to isolate this radiation from the background in

experiments. The most commonly used emission line is that corresponding to the K-edge

of copper, having an energy of about 8000 eV.

The invention of the cyclotron and the synchrotron in the mid nineteenth century

ushered in a revolution in x-ray science. Although they were created to be particle accel-

erators, the scientific community soon realized they were very useful sources of x-rays as

well. At first, these x-rays were simply produced as a by-product of particle experiments
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and used “parasitically” for diffraction experiments. Today, there are now many large

storage rings created for the sole purpose of producing x-rays. In actuality, they are not

truly rings, but rather many-sided polygons. Bending magnets curve the electrons paths

into the straight sides, where they pass through so-called “insertion devices,” which are

periodic arrays of permanent magnets. This produces an x-ray beam with a very narrow

energy spread and angular divergence. The intensity of the beam is also orders of mag-

nitude brighter than what is possible from a tube source. The majority of cutting-edge

x-ray experiments are performed at such facilities today. One important feature of storage

rings is the time structure of the x-ray beam produced. Rather than being a continuous

wave source like a tube, x-rays are emitted intermittently in short periodic bursts of about

100 picoseconds. This is because the electrons circling the ring are grouped together in

bunches, because of the way they are accelerated and stored. This is quite important for

what I discuss later in this thesis. Another important feature of these sources is that they

produce partially coherent beams, so that some of the emitted photons are in phase with

each other. This makes possible certain experiments that simply cannot be performed

with a tube source, where each photon has a random phase with respect to the others.

In the last decade or so, a new technique for producing x-rays has been developed

called a “free electron laser” (FEL). In actuality, it is not a laser, but it is capable of

producing an almost fully coherent beam. It is similar to a synchrotron source in that it

uses alternating permanent magnetic arrays to generate radiation, but it is built with a

linear accelerator rather than a storage ring. The coherence properties owe to a process

whereby the electrons interact with the photons they emit, becoming more and more or-

6



dered spatially and closer in phase. The pulses generated by such devices can be extremely

short as well, down to tens of femtoseconds. This allows measurements with extraordinary

temporal resolution to be made, such as those described later in this thesis.

The technology used in the detection of x-rays has closely mirrored that of visible

light photography. The earliest methods were based on light sensitive chemistry (film).

Today, as in medicine, two dimensional charge-coupled devices (CCDs) are the most com-

mon area detectors. As in action photography, the ability to make shorter exposures while

still capturing enough light to make a serviceable image is of tremendous importance.

Even today, the fastest x-ray cameras cannot be read out as fast as scientists would like

to capture changes in diffraction patterns. Some of the work described in this thesis is

aimed at using clever statistical techniques to make inferences about these changes in cases

where detectors are indeed too slow to make sequential measurements. This work is inher-

ently targeted toward capturing equilibrium fluctuations/changes in systems/diffraction

patterns. The experiment presented in the final chapter of this thesis, on the other hand,

involves non-equilibrium measurements, which are not limited by camera speed. In this

case, a stroboscopic image making technique is used, much like how photographers exploit

the shortness of light burts from flash bulbs compared to the speed of mechanical camera

shutters. In our case, the flash bulb is a mutli-billion dollar free electron laser producing

50 femtosecond light bursts. The camera used to record them, on the other hand, operates

at only 120Hz, more than 10 orders of magnitude slower.
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Chapter 2

An Overview of Dynamic Light

Scattering Techniques

The technique known as dynamic light scattering (DLS) is a technique that mea-

sures the time-dependent diffraction pattern created by coherent laser light incident on a

moving sample to characterize the dynamics of the scatterers in that sample [4]. Here,

a simple exposition of the quantitative methods involved are presented. Also, its appli-

cation to critical opalescence of mixtures near their critical point is discussed. Finally,

a technique known as speckle visibility spectroscopy (SVS) is discussed that is useful for

studying systems with fast dynamics.

When coherent light is incident on a sample of non-uniform refractive index or

thickness, an interference pattern is generated in the far-field that is known as speckle [5].

The speckle pattern from a perfectly static sample will be constant in time, aside from

fluctuations due to noise. Figure 2.1 shows an example of speckle from a static sample
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(scotch tape) produced in our laser lab. If, however, the scatterers themselves are in

motion, then the speckle pattern will evolve in time. This connection between the sample

and speckle dynamics can be made mathematically rigorous, so that much can be learned

about the statistical properties of the motion of the scatterers.

Figure 2.1: Speckle generated from scotch tape illuminated by laser light.

The simplest “textbook” scenario that can be presented is an ergodic system of

mono-disperse (equal size/shape) particles that undergo Brownian motion. Many systems

that can easily be prepared in a laboratory setting are well approximated by these as-

sumptions. For example, a standard system used for calibrating a dynamic light scattering

9



(DLS) setup is a solution of polystyrene (PS) spheres, on the order of 100nm, suspended

in glycerol.

In any photon correlation technique, such as DLS, which uses visible light, or x-ray

photon correlation spectroscopy (XPCS), which uses x-rays, the quantity that is measured

is the intensity of the scattered light in the far field. The intensities are measured with

either a 2-D area detector, a 1-D “linescan” detector, or a 0-D “point” detector, and

recorded as a function of time. This is done at some fixed angle of incidence, chosen

appropriately for the system being studied. Whatever instrument is used, the time series

of intensities measured is typically analyzed on a per-pixel basis and averaged, so it is

sufficient to have in mind a one pixel point detector for the discussion that follows. As

in many other fields where time series are important, the quantity of interest in photon

correlation techniques is the (second-order) autocorrelation function:

g2(τ) =
〈I(t)I(t+ τ)〉t
〈I(t)〉2t

. (2.1)

Aside from the normalization factor in the denominator, this is simply the product

of intensities at some fixed lag time, averaged over a sufficiently long time period. The

first-order autocorrelation function, g1, has the same form as the above, but is for the

electric fields themselves:

g1(τ) =
〈E(t)E∗(t+ τ)〉t

〈I(t)〉2t
. (2.2)

Experimentalists begin by calculating g2, since a photodetector measures intensities

rather than fields. However, there is a frequently used and very important relationship
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between these quantities, known as the Siegert relation:

g2(τ) = 1 + β|g1|2 (2.3)

Ideally, one has β = 1, but in practice it is a parameter that is adjusted to fit the

data and is less than unity. The statistical nature of the sample’s dynamics will determine

the specific shape of the autocorrelation functions. Regardless of this shape, however, in

the limit as τ →∞, g2 will always decay to zero.

Let us now suppose that our sample is composed of spherical Brownian particles.

In this case, each individual particle makes numerous small steps from its initial position

that are independently distributed and numerous enough for the central limit theorem to

apply. In such a situation, the probability that the particle has moved a distance r from

its starting point is given by the Gaussian form

P (r) = (4πDt)−3/2e−r
2/4Dt, (2.4)

where D is the diffusion constant. In this special case, one can show that [6]

g2(τ) = 1 + βe−2Dq2τ , (2.5)

where q is the momentum or wave-vector transfer, which is the standard quantity that

scatterers work with. It is completely determined by the angle of incidence of the beam

on the sample and the energy of the incident light. Mathematically, it is given by

q =
4π

λ
Sin

θ

2
. (2.6)
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Equation 2.5 is where the connection is made between what is measured experi-

mentally and the properties of the scatterers themselves. By collecting data for several

values of the parameter τ , a curve can be fitted to this simple exponential function, and

D can be determined. Once D is known, if the experimenter knows either the viscosity

of the fluid or size of the particles, the other can be inferred. This is typically done by

exploiting the Einstein relation for self-diffusion [4]

D =
kBT

ζ
, (2.7)

along with the Stokes approximation,

ζ = 6πηa, (2.8)

where η is the fluid viscosity and a is the particle radius.

DLS and XPCS would clearly be of limited utility if they could only be applied to

monodisperse suspensions of spherical particles. In fact, the techniques are of great utility

for a wide range of systems. Analytical extensions are possible for polydisperse systems

(different particle sizes) and for non-spherical particles. Many complicated systems turn

out to relax in a way that is described by a simple exponential decay. For example, figure

2.2 shows the autocorrelation function g2 that was computed from data measured near the

[400] Bragg peak of a lead crystal heated to near its melting point using coherent x-rays

at the Advanced Photon Source.

Other systems that can be studied using DLS include those that exhibit critical

opalescence [7], which occurs when a system approaches a second-order (continuous) phase

transition. For example, many binary fluid mixtures will have a critical temperature at

12
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Figure 2.2: The autocorrelation function g2 computed from data taken near the [400]
Bragg peak of a single-crystal lead sample below its melting point.

which the equilibrium state switches from a one-phase state to a two-phase state. Single

compounds also have a critical temperature separating the gas and liquid phases. At

temperatures very near the critical point, where the free energies of the one and two phase

states are equal, random thermal fluctuations will cause small volumes that are rich in one

phase or the other to momentarily develop and then dissipate. The closer the system gets

to the critical temperature, Tc, the larger the radius of the random volume fluctuations

become. When these volumes exceed the wavelength of light (they can become much

larger), the fluctuating refractive index in the sample gives rise to dynamic speckle, just
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as the random motion of Brownian particles does. In fact, the mathematical form for

the autocorrelation functions will be exactly the same as for the Brownian particles. The

expressions involving the diffusion constant D still hold, and the theory is amended by

replacing the particle radius with the characteristic size of the volume fluctuations.

As the critical temperature of a compound or binary mixture are approached, in

addition to fluctuations in the speckle pattern, the total fraction of light scattered increases

as well. This is observed as a pronounced cloudiness that develops at the critical point.

Experimentally, it is measured as a sharp minimum in the intensity of light transmitted

through the sample. Because this divergence is often so strong, and of narrow width

around Tc, the fraction of light absorbed by the sample can be used as a sensitive probe

to measure changes in Tc. For example, in [8], the effect of an applied electric field on the

critical opalescence is studied. The field induces a change in the free energy associated

with concentration fluctuations in a binary mixture, so that more work is required to

create a fluctuation of a given volume in the presence of the field. (The way this arises is

complicated mathematically, and is related to the non-linear curvature of the expression

for the dielectric constant of the mixture of two fluids.)

In recent years, the extension of DLS techniques to x-ray wavelengths has allowed

for the study of these fluctuations of binary fluids near their critical points at extremely

short length scales, on the order of angstroms, as in ref. [9]. As they point out in that study,

the binary fluids are in the same universality class as the 3-D Ising model, and an analytical

connection between the scattered intensity of the light at various angles and the physical

correlation length in the fluid can be made. (This connection occurs through the so-called
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structure factor, S(q), the fourier transform of which gives the scattered intensity.) The

correlation length ξ is represented by a power law in the reduced temperature, t = T/Tc−1,

so that ξ = ξ0t
−ν , and in the particular case of the hexane-nitrobenzene binary fluid

studied, ν ≈ 0.6 and ξ0 ≈ 3.5Å.

Many of the systems physicists are currently interested in do not relax in the sim-

ple exponential fashion. So-called “stretched” and “compressed” exponential forms are

represented by [10]

g2(τ) = 1 + βe−Γτα , (2.9)

where α is greater (compressed) or less (stretched) than unity. Also, “jammed” systems are

of great interest in soft-matter physics currently. A jammed system will typically exhibit

a two-step decay process. The first relaxation is due to diffusive motion by the scatterers,

but it is incomplete because the scatterers are confined to diffuse within a local region of

the sample, as often occurs in gels or glasses. The final long-term relaxation to g2 = 1

only occurs when a large scale rearrangement of the system takes place. Because many

particles rearrange at once when this happens, this final decay is very rapid when it does

occur. Interestingly, many different systems exhibit a value of α = 1.5 for the final decay

[11].

Many physical processes occur on fast timescales such as picoseconds or even fem-

toseconds, but no existing detectors are able to be read out so rapidly. This means that

the techniques described above cannot be implemented. There is, however, an alternative

approach to measuring fast dynamics. It is based on studying the contrast of speckle
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patterns.

What is typically meant by the “contrast” of an image is the standard deviation of

the intensity, normalized by the mean. That is, C = σI/Ī [5]. Here, we will be working

primarily with the square of this quantity, V2 = V ar(I)/Ī2 = C2. These quantities are

useful for analyzing speckle patterns in two ways. Firstly, they can be used to characterize

the degree of beam coherence when the scatterers are static. Secondly, they can be used to

analyze sample dynamics by quantifying the degree to which speckle patterns are“blurred

out” when the scatterers are in motion.

Fully developed speckle results from large flux, perfect coherence, and a static

scattering medium. In this speckle regime, contrast (and thereby V2) should both equal

unity. This is a result of the speckle intensities following an exponential distribution, for

which the mean and variance are equal.[5] However, when the average number of photons

per pixel (P ) is small, V2 can greatly exceed 1, and in fact diverges as P → 0. Therefore,

in the low-photon limit, it becomes impossible to detect either partial coherence or sample

dynamics by measuring speckle contrast. This is due to the contribution of Poisson noise

to the variance of the image. Formally, when static speckle from a beam possessing M

coherent modes is overlaid with Poisson noise, the distribution of speckle intensity will

have a Negative Binomial [M,P] distribution.[5] V2 will then have an expected value of

< V2 >= 1/M + 1/P. (2.10)

In the technique known as speckle visibility spectroscopy (SVS), exposure times are

16



systematically varied to determine the resulting effect on speckle contrast. If shot noise is

ignored, the following fundamental equation relates V2 to the electric field autocorrelation

function[12]:

V2(T ) =
1

β
[
< I2 >T

< I >2
− 1] =

∫ T

0

2(1− t/T )[g1(t)]2dt/T (2.11)

The left-hand side of eq.3.2 is evaluated by recording multiple speckle patterns,

with different exposure times. This can also be accomplished by computing the arithmetic

mean of pixel values for a variable number of exposures/frames to create synthetic images

with various effective exposure times (hereafter, “merging”). The right-hand side of (1) is

evaluated either analytically or numerically after specifying a functional form for g1. For

example, choosing g1(τ) = e−Γt will result in

V2 = β
e−2Γt − 1 + 2Γt

2(Γt)2
(2.12)

This can be fitted to the measured values of V2 to obtain an estimate of the parameter

Γ = 1
τ
. If multiple images, which are separated in time, are merged together to generate

synthetic exposures, or if the light source is strobed (as it is for free electron laser (FEL)

sources), the right hand side of eq.3.2 will need to be replaced by a discrete sum.

SVS techniques were originally developed using visible-light laser sources, where

there are typically a sufficient number of photons to reduce the effects of shot noise dras-

tically. However, when SVS is performed using an x-ray source (XSVS), shot noise will

often have a considerable impact on contrast. Inoue et. al. [13] have recently been the

first to demonstrate the feasibility of XSVS using a continuous-wave source (Spring-8)
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with polystyrene spheres in glycerol by appropriately correcting for shot noise.

In the future, it is hoped that split-and-delay techniques will allow the ∼100 fem-

tosecond x-ray pulses produced at FEL sources such as LCLS to arrive at the sample with

arbitrarily short delay times, making it possible to probe dynamics on picosecond time

scales. This will necessitate the use of SVS techniques, as no current detectors can be read

out on picosecond timescales.[14]
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Chapter 3

Contrast of Static and Fluctuating

Speckle Patterns

3.1 Introduction

Analysis of the contrast (or variance) of speckle patterns is useful for many purposes.

For example, the contrast of a speckle pattern produced by static scatterers indicates the

degree of coherence of the illuminating beam. When dynamics are present, the dependence

of speckle contrast on exposure time can be used to fit autocorrelation functions. This

technique, known as speckle visibility spectroscopy (SVS), is particularly useful when

detector readout speeds exceed the timescales of the system’s dynamics. However, the

analysis of speckle contrast is greatly complicated in the low-photon regime, where the

contribution of Poisson (or “shot”) noise dominates the signal. At a recent experiment at

the Linac Coherent Light Source (LCLS) studying the dynamics of Polystyrene films [15],
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we systematically varied the number of x-ray pulses hitting the sample during a single

exposure, and analyzed the contrast of the resulting speckle. I show at what point it

becomes possible to differentiate the genuine speckle from shot noise. Also, I show how

the contrast analysis of a single frame can be used to identify sample damage. Finally, as

a proof of principle, I show it is possible to fit autocorrelation functions directly from the

time-dependent measurement of speckle variance.

What is typically meant by the “contrast” of an image is the standard deviation of

the intensity, normalized by the mean. That is, C = σI/Ī [5]. Here, we will be working

primarily with the square of this quantity, V2 = V ar(I)/Ī2 = C2. These quantities are

useful for analyzing speckle patterns in two ways. Firstly, they can be used to characterize

the degree of beam coherence when the scatterers are static. Secondly, they can be used to

analyze sample dynamics by quantifying the degree to which speckle patterns are“blurred

out” when the scatterers are in motion.

Fully developed speckle results from large flux, perfect coherence, and a static

scattering medium. In this speckle regime, contrast (and thereby V2) should both equal

unity. This is a result of the speckle intensities following an exponential distribution, for

which the mean and variance are equal.[5] However, when the average number of photons

per pixel (P ) is small, V2 can greatly exceed 1, and in fact diverges as P → 0. Therefore,

in the low-photon limit, it becomes impossible to detect either partial coherence or sample

dynamics by measuring speckle contrast. This is due to the contribution of Poisson noise

to the variance of the image. Formally, when static speckle from a beam possessing M

coherent modes is overlaid with Poisson noise, the distribution of speckle intensity will
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have a Negative Binomial [M,P] distribution.[5] V2 will then have an expected value of

< V2 >= 1/M + 1/P. (3.1)

In the technique known as speckle visibility spectroscopy (SVS), exposure times are

systematically varied to determine the resulting effect on speckle contrast. If shot noise is

ignored, the following fundamental equation relates V2 to the electric field autocorrelation

function[12]:

V2(T ) =
1

β
[
< I2 >T

< I >2
− 1] =

∫ T

0

2(1− t/T )[g1(t)]2dt/T (3.2)

The left-hand side of eq.3.2 is evaluated by recording multiple speckle patterns,

with different exposure times. This can also be accomplished by computing the arithmetic

mean of pixel values for a variable number of exposures/frames to create synthetic images

with various effective exposure times (hereafter, “merging”). The right-hand side of (1) is

evaluated either analytically or numerically after specifying a functional form for g1. For

example, choosing g1(τ) = e−Γt will result in

V2 = β
e−2Γt − 1 + 2Γt

2(Γt)2
(3.3)

This can be fitted to the measured values of V2 to obtain an estimate of the parameter

Γ = 1
τ
. If multiple images, which are separated in time, are merged together to generate

synthetic exposures, or if the light source is strobed (as it is for free electron laser (FEL)

sources), the right hand side of eq.3.2 will need to be replaced by a discrete sum.
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SVS techniques were originally developed using visible-light laser sources, where

there are typically a sufficient number of photons to reduce the effects of shot noise dras-

tically. However, when SVS is performed using an x-ray source (XSVS), shot noise will

often have a considerable impact on contrast. Inoue et. al. [13] have recently been the

first to demonstrate the feasibility of XSVS using a continuous-wave source (Spring-8)

with polystyrene spheres in glycerol by appropriately correcting for shot noise.

In the future, it is hoped that split-and-delay techniques will allow the ∼100 fem-

tosecond x-ray pulses produced at FEL sources such as LCLS to arrive at the sample with

arbitrarily short delay times, making it possible to probe dynamics on picosecond time

scales. This will necessitate the use of SVS techniques, as no current detectors can be read

out on picosecond timescales.[14]

3.2 Some examples from LCLS data

At a recent experiment conducted at the XCS (X-ray Correlation Spectroscopy)

beamline at LCLS (Linac Coherent Light Source), we studied the dynamics of polystyrene

at temperatures approaching the melting point. Because split-and-delay techniques are

not currently operational at LCLS, we worked with the standard 120 Hz repetition rate

of the pulses for this experiment, which corresponds to a pulse separation of 8.3 ms. The

number of pulses, N , that were scattered and recorded by a Princeton Instruments LCX

CCD detector (1300 x 1300 pixels, 20 µm x 20 µm) before reading out could be varied. For

one of the samples studied, the number of shots before readout was set to N = 2, 5, 10,
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20, 50, and 100 to determine the effect this had on speckle contrast. The sample chosen

consisted of gold nanoparticles (Au-NPs) of ∼10 nm in diameter embedded in polystyrene

with a molecular weight of 42k (PS 42k), and held at a temperature of 170◦C. The sample

was studied in transmission at a photon energy of 8.7 keV, with the beam focused to a

spot of approximately 3 µm. The sample to detector distance was chosen to be 685.8 mm,

so that the speckle size at the detector would correspond as nearly as possible to the pixel

size. For this sample, dynamics on the order of many seconds were anticpated, so for even

the longest “exposure” in this set (∼800 ms), it was expected behave as an essentially

static scatterer, assuming the beam was stable and sample damage did not occur. For the

following analysis, unless otherwise noted, a small annulus of the image was used, centered

at Q = 0.034Å−1, with a width of ∆Q = 0.1Q.

At LCLS, the intensity of each individual pulse varies greatly, as can be seen in

figure 3.1. In this particular run, only 2 x-ray pulses are recorded per frame, so the total

intensity is very low. At such low intensities, almost all of the variation in V2 is accounted

for by these variations in intensity, and so it too will exhibit a similarly large variance.

Figure 3.2 shows V2 for the same data as figure 1.

Despite the very large variability in intensity and V2, a log-log plot of V2 vs. intensity

for this data shows a clear linear trend with a slope of −1. This is shown in figure 3.3,

plotted alongside 1/P . At such low values of P , the contribution of the 1/M term is

negligible, and the points should lie on the 1/P line. (See equation 3.1.) However, the

points are uniformly offset from this line by roughly 1/4. This can be attributed to

the spread of the electron cloud produced by individual photons across multiple pixels
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Figure 3.1: Frame-by-frame average intensity with 2 pulses hitting the sample per
frame.
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Figure 3.2: Frame-by-frame values of V2 with 2 pulses hitting the sample per frame.
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(“bleeding”). Figure 3.4 shows a histogram of pixel values for all frames of a measurement

of the same sample, with 10 pulses per frame. Since only 8.7 keV photons are detected,

an ‘ideal’ detector would simply have a discrete distribution of point-masses located at

integer multiples of the analog-digital-unit (adu). However, the ccd registers a continuous

distribution of pixel values, with strong peaks at the adu value, approximately equal to

1650 here. This smearing-out of the ideal delta function peaks results in the data having

a lower variance than a true Poisson distribution. To show that this indeed explains the

discrepancy, we have binned the data into multiples of the adu1 and repeated the same

calculations. Figure 3.5 shows V2 vs. intensity for the binned data, where the values now

lie almost exactly on the predicted shot noise line. In demonstrating the feasibility of

XSVS, [13] corrects for the effects of electron cloud bleeding by introducing a constant of

proportionality ε/N, (0 < ε < 1) for the shot noise contribution to V2. The value of ε is

determined by the relative sizes of the electron charge cloud generated by a photon and

the pixel size. Our results are consistent with ε ≈ 0.73.

When the number of photons per pixel (P ) is low, a log-log plot of V2 vs. intensity

will not show the influence of beam coherence or sample dynamics. In this limit, it is truly

impossible to distinguish between genuine speckle and noise. However, as P increases, and

the true speckle begins to emerge, V2 will asymptotically approach the value 1/M from

above. This can be seen when the data from the runs with varying numbers of shots per

frame is plotted together, as in figure 3.6. Along with the raw data, curves are plotted for

1/M = 1, 1/M = 0.05, 1/M = 0.1, and 1/M = 0.15 These are labeled according to the

1Values between 0.5 adus and 1.5 adus are assigned to the adu value, etc.
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Figure 3.3: V2 vs. average frame intensity with 2 pulses hitting the sample per frame.
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Figure 3.4: Histogram of pixel values for the run with 10 pulses recorded per frame.
The full-frame images were used.

value of C that would result as P →∞, which we will call C∞(= 1/M). To give a clearer

view of the data for larger P values, a zoomed-in region of the graph is shown in figure
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Figure 3.5: V2 vs. average frame intensity for the binned data.

3.7. For each of the runs, the contrast of the speckle patterns appears to be consistent

with a value of C∞ = 0.1. As the LCLS source has perfect coherence for a single shot,

this value seems surprisingly low. Sample damage and dynamics can both reduce contrast.

However, both the N = 50 and N = 100 runs are consistent with C∞ = 0.1, which would

not be expected if sample dynamics/damage explained the reduction in contrast, because

the N = 100 exposure is twice as long as the N = 50 exposure. Therefore the sample

does indeed appear to behave as a static scatterer for the exposure times considered here.

To illustrate this more clearly, figure 3.8 shows the same data alongside two data points

that were generated by merging together many frames from the 5 shot per frame run.

These points represent synthetic exposures of hundreds of seconds, which is presumably

longer than the characteristic timescale of the dynamics. Therefore, only the component

of contrast that is “static” is still present (approximately 5 percent). Beam “jitter” may
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be a plausible explanation for the low contrast of the single frame exposures. However,

our present purpose is simply to identify where the V2 vs. intensity curve reveals the

presence of real speckle. This clearly depends on the value of C∞. If perfect coherence

were preserved for multi-pulse exposures, speckle would become distinguishable just above

P = 0.1, but with C∞ = 0.1, this occurs closer to P = 1. This justifies our choice to

use 50 pulses or greater per frame for the runs intended to study dynamics during this

experiment.
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Figure 3.6: V2 vs. average photoevents/pixel, with curves shown corresponding to
various values of contrast in the high photon limit.

Plots of V2 vs. average intensity are also able to reveal sample damage. One of the

samples we measured consisted of Au nano-rods in PS 1000k. This sample scattered much

more strongly than the Au-NP samples. With 100 shots per frame incident on the sample,

an order of magnitude more counts were detected than for the Au-NP sample previously

discussed. Figure 3.9 shows V2 vs. average intensity for this sample, along with the curve

28



10
0

10
0

Photons/Pixel (Average)

V
2

 

 

2 shots/frame

5 shots/frame

10 shots/frame

20 shots/frame

50 shots/frame

100 shots/frame

C=0.15C=0.1

C=0.05

C=1

Figure 3.7: Zoomed-in view of a smaller region of the previous figure.

10
0

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

10
−0.1

10
0

10
0.1

Average Photons/Pixel

V
2

 

 

50 shots/frame
100 shots/frame
Sum of 50 frames (5 shots/frame)
Sum of 10 frames (5 shots/frame)

C=0.1

C=0.15

C=0.05

Figure 3.8: Zoomed view with data points included for many frames merged together.

0.1 + 1/P that best fit the Au-NP visibility data. Instead of asymptotically approaching

10 percent, the contrast falls abruptly at higher intensities. Since all of the data points

correspond to exposures of equal length, this intensity dependence of V2 is evidence of the
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beam heating or damaging the sample. Because plots of this type are easy to generate,

they are a potentially useful way to determine quickly whether the flux per frame is both

adequate to produce good signal noise and below the radiation damage threshold.
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Figure 3.9: V2 vs. average frame intensity for the Au nano-rods in PS 1000k at 120◦C
with 100 shots/frame. The sharp drop-off at higher intensities is indicative of sample
damage.

To demonstrate the feasibility of the SVS technique with a pulsed FEL source,

we also examined the contrast of synthetic images formed by merging together multiple

frames. Figure 3.10 shows V2 vs. frames merged for speckle patterns recorded with 100

pulses per frame incident on a PS 42k sample containing Au-NPs at a temperature of

120◦C. The shot noise contribution to the variance has been subtracted. To produce an

approximate fit to the data, a simple exponential distribution was assumed for the electric

field autocorrelation function, and a discrete analog of eq.3.2 was used. Additionally, a

static component of V2 was included in the fit, so that V2 = α + βV2(T ).
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Figure 3.10: V2 vs. frames merged for Au NP sample at 120◦C with 100 pulses/frame.
β = 0.035, α = 0.062, and τ = 75 were chosen to qualitatively best fit the data.
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Chapter 4

A New Method for Studying

Sub-Pulse Dynamics at Synchrotron

Sources

4.1 Introduction

We investigate the possibility of studying dynamics on time-scales on the order of

the pulse duration (∼100 ps) at synchrotron x-ray sources with present avalanche photo-

diode point detection technology, and without adopting pump-probe techniques. We find

that sample dynamics can be characterized by counting single and double photon events

and an analytical approach is developed to estimate the time required for a statistically

significant measurement to be made. We indicate the amount of scattering required to

make such a measurement possible within a few days, and show that at next generation
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synchrotron sources this time would be reduced dramatically – by more than 3 orders of

magnitude. We confirm our analytical results with simulations in the frame of Gaussian

statistics. We forsee that in the future our approach can be extended to even shorter

time-scales with the implementation of ultrafast streak cameras.

Studying fast dynamics with x-rays is of ultimate importance in many areas of

research including chemistry [16], condensed matter physics [17] and atomic physics [18].

The recent development of new generation x-ray sources allows for the combination of

atomic resolution due to x-ray wavelengths and fast time-scales due to the pulsed nature of

these sources. Conventional x-ray photon correlation spectroscopy (XPCS) measurements

rely on correlating sequential intensity measurements. For this reason, the time separating

the individual pulses of the source (on the order of 100 ns) is often viewed as a lower limit on

the time-scales that can be measured. Pump-probe experiments at storage ring sources are

inherently limited by the pulse duration, about 100 ps, and suffer from the low repetition

rate of pump laser systems. To go beyond this limit, slicing techniques are applied with

an increase of temporal resolution by two orders of magnitude, however, at a significant

expense of photon flux [19]. The development of x-ray free-electron lasers (XFELs) [20,

21, 22, 23] with ultrashort pulse durations (10-100 fs) has led to an improvement in time

resolution by about three orders of magnitude. However, today XFELs suffer from intrinsic

fluctuations and are still rare and highly overbooked. Here we propose an alternative

method, i.e. by utilizing coherent x-ray scattering to enhance the time resolution at

synchrotron sources and go below the pulse duration without sacrificing flux.

Coherent x-ray radiation is a superb probe for studying dynamics on the atomic
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scale. In a typical XPCS experiment, speckle is observed due to interference [24] and small

changes of the sample can be tracked using intensity correlation techniques. Dynamics for

times ranging from fractions of a microsecond to hours [25, 26, 27] have been studied

using XPCS. However, similar to intensity interferometry experiments [28] at synchrotron

sources, the time resolution is limited by the pulse duration of the source [29]. This is

significantly shorter than the time-scales that can be observed using conventional XPCS,

with which it is not possible to study time-scales shorter than the inter-pulse separation.

Synchrotrons are nowadays the principle sources of high-brilliance x-ray beams and we

anticipate that our technique can extend the application of these sources to the sub-

100 ps time regime, without using pump-probe methods. At present, only pump-probe

experiments are able to access time-scales shorter than the pulse separation, but these are

inherently out-of-equilibrium studies.

Studying dynamics at time-scales on the order of the pulse duration at synchrotron

sources will necessitate working in a low photon regime. In the very low photon limit,

the basis for assessing the dynamics within a sample will naturally be cast in terms of

the relative frequency of single and double photon events measured at a detector. Single

and double photon events can be counted using an avalanche photodiode (APD) point

detector [30]. Such a device can be read out rapidly, so that a separate measurement is

possible for each synchrotron pulse. For synchrotron x-ray intensities, the vast majority

of the recorded intensities will be dark noise, along with some rare single photon events.

Also, very rarely, an intensity corresponding to two photons from the same pulse will be

recorded. We will call such an event a “double,” while measurements registering a single
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photon will be called “singles,” and those with a dark noise value “zeros.” Figure 4.1(a)

depicts these three possibilities.

Recently, the feasibility of making XPCS measurements within the time-scale of a

single synchrotron pulse has been considered by employing a “streak camera” [31, 32, 33].

Simplistically, such a device “sweeps” the signal along a column of pixels over the duration

of a single pulse so that the vertical direction represents time (see Figure 4.1 (b)). Unlike

the point-detector approach, this allows the time separating individual photons that arrive

in a single pulse to be identified. This can be done with an area detector as well so that

multiple measurements are made simultaneously. To be attractive, such a device would

need to be read out at the ring repetition rate of present synchrotron sources (often about

6.5 MHz), which may prove the most difficult aspect of its implementation. However, it

should be noted that this might be made less challenging by the extremely sparse nature

of the data, which may lend itself to reduction by some appropriate hardware.

The approach we develop for studying sub-pulse dynamics does not require the

implementation of the streak camera concept, although it is a very exciting prospect

that we discuss. We show that sample dynamics can still be studied without resolving

the temporal separation of the two photons that comprise the doubles, and this is our

most important result. Existing APD point-detectors are the best candidate for the first

measurements to implement our approach. By varying the time-scale (τ) of the dynamics

of interest, for instance by changing the temperature, one could establish a crossover point

for the type of relaxation being studied. The signature of the crossover will be a transition

in the relative frequency of the doubles.
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Figure 4.1: Two approaches to studying intrapulse dynamics. (a) depicts separate
measurements made with a simple point detector, and three possible outcomes. (b)
shows the streak-camera approach to the same measurements. A single point detector
measurement is equivalent to integrating the counts on the streak camera.

Because the APD technique does not depend on correlating individual intensity

measurements in time, it becomes possible to go below the “fundamental” limit of roughly

100 ns imposed by the pulse frequency all the way into the 100 ps regime. This is an

impressive 3 order of magnitude improvement in the measurable time-scale. However,

because all of the photons are concentrated into short pulses, no extra flux is required to

make a measurement with comparable signal-to-noise as the case where intensities from

sequential pulses are being correlated. The proposed technique fully utilizes the capabilities

of synchrotron sources.

The feasibility of studying dynamics that occur within a single pulse has already

been demonstrated at XFEL sources [14, 34]. The much larger coherent flux from such

sources results in multiple photons frequently being counted per pixel. Our method is very
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similar conceptually, but our analysis differs as a result of the lower flux from synchrotrons,

which necessitates that we only consider one and two photon events.

4.2 Estimating Number of Measurements and Time

Required

We reduce the correlation analysis applied in XPCS to counting single and double

photon events. The statistical distribution that generates the speckle will determine how

rare the doubles are relative to the singles, and will form the basis of our analysis. Our

goal here is to estimate the minimum amount of time required in order to draw statistically

significant conclusions about the presence of dynamics in a sample of interest. To do so, we

perform some straightforward statistical calculations comparing the relative frequency of

doubles to singles for two extreme cases: speckle from a sample with dynamics significantly

slower, and much faster, than the pulse length. In these extreme cases, the spacing of the

two photons that make up the double is irrelevant (all spacings are equally probable), so

it is best to have in mind point-detector measurements for the following.

We begin our analysis by presenting the distributions corresponding to the two

extreme cases. A quasi-static sample (static on the time-scale of the pulse) will generate

a persistent speckle pattern, as in figure 4.2(a), whereas a highly dynamic sample will

produce a speckle pattern that is “washed out,” as in figure 4.2(b). For speckle generated

by a quasi-static sample, illuminated by a beam with r transverse coherent modes and

scattering an average of m photons per speckle, the probability of k photo events per
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speckle is given by the negative binomial distribution [5]:

PS(X = k) =

(
r

m+ r

)r
Γ(k + r)

k!Γ(r)

(
m

m+ r

)k
, (4.1)

where Γ(k) is the gamma function. The negative binomial distribution applies to

the intensity distribution of each point in a single speckle pattern. However, it will also

describe the distribution in time for one individual speckle in that pattern if the entire

pattern varies on time-scales (even many decades) longer than the pulse duration. This

will clearly be the case for any system being investigated in the ultrafast regime. It would

also be true for a completely static sample if either the sample or detector were translated

occasionally.

For x-rays scattered by a sample that de-correlates much faster than the duration

of a pulse, there will no longer be genuine speckle, and the distribution of intensities will

simply be given by the well-known Poisson distribution:

PD(X = k) =
e−mmk

k!
(4.2)

The ratio of doubles to singles forms the basis of our analysis, as it allows one to

determine whether some given data is generated by one distribution or the other. The

probability of a double, in the quasi-static case, is PS(X = 2), given by equation (4.1).

If τ is the time-scale of the physical process of interest, then in the τ → 0 limit (the

“dynamic” sample), the probability of a double will be PD(X = 2), according to equation

(4.2). In both cases, the number of doubles will be binomially distributed [35], with the
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(a) (b)

Figure 4.2: (a) A simulated speckle pattern from a quasi-static sample. (b) The
average of 1000 such random speckle patterns, representing a dynamic sample.

expected number of doubles given by µj = NPj(X = 2), and a variance of σj = NPj(X =

2)[1 − Pj(X = 2)] around this value, where j is D or S. In the low-photon limit, both

distributions have an expected number of singles equal to Nm. 1

We now want to calculate how many individual measurements need to be made to

discriminate between data coming from the quasi-static and dynamic samples for a given

set of parameters. To do so, we suppose that our sample is in fact quasi-static (our null

hypothesis), and ask how long one must measure in order to rule out the τ → 0 case

at a statistically significant level. A standard t-test[35] for this null hypothesis would

then compute t = (Y − µD)/σD, where Y is the actual number of doubles collected. The

expected value of this quantity, if the sample is truly quasi-static, will be

1In principle, one could consider number of triples, etc., but in the low-photon limit considered here
these will almost never occur.
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E(t) =
µS − µD
σD

. (4.3)

Using equation (4.3), we calculate the number of measurements N required to

discriminate between a quasi-static and dynamic sample. We choose to use a 3σ confidence

level for the calculation. Figure 4.3 shows a plot of the value of N that solves E(t) = 3

for different numbers of modes r on a log-log scale. The linear shape of the curve at low

m indicates an inverse-square dependence. In fact, it can be shown by a straightforward

calculation that for m� 1, the solution to equation (4.3) can be approximated by

N ≈ 18

m2(r2 + r − 1)2
. (4.4)

Notice that there is a minimum in N for each of the curves, which occurs at about

m = 0.19 for the r = 1 case. The reason for the minimum is that as m increases beyond

this value, the probability of a double for the Poisson distribution approaches that of the

negative binomial. The probability of a double becomes more likely with Poisson statistics

when m reaches about 0.47, for the r = 1 case. (See figure 4.3.)

To estimate actual measurement times for a realistic example we consider the Ad-

vanced Photon Source (APS), which is a state of the art synchrotron source. In our

calculation we assume full coherence, so that r = 1. We then estimate the coherent flux,

m, and compute the time required to discriminate between quasi-static and dynamic sys-

tems for four situations, which are summarized in Table 4.1. The first case corresponds

to an approximation for a generic experiment performed at APS with current operating
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Figure 4.3: (a) The difference in the probability of a double for the two distributions.
(b) The expected number of measurements, N , which must be collected for a 3σ result.
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parameters. We consider optimized experimental geometry with the speckle size being

matched to one pixel [36] and m is calculated by assuming 10 photons scattered into our

point-detector (or each speckle) per second. Whether this amount of scattering can be

achieved in a geometry that is suitable for measuring length-scales that corresponding to

the time-scales in question can be determined by the experimentalist. However, this level

of scattering represents an important cutoff, as it results in the measurement being achiev-

able on the order of several days, which is the length of a typical beam-time. The second

situation would correspond to 109 photons/s of coherent flux and a fraction of 10−4 of the

direct beam being scattered into the detector.2 The third and fourth scenarios are the

same as the first two, but are estimated for the proposed APS upgrade, where coherent

flux is expected to be about 2 orders of magnitude higher. In all cases, if the sample in

indeed quasi-static, and one collects the number of pixel values listed in Table 4.1, the

expected total number of doubles is about 20, compared to about 10 in the Poisson case.

It is worth discussing how the measurement times computed here change if we

do not assume full coherence. This is a practically important question, because present

synchrotrons are not currently fully coherent sources. It is possible, however, to apply

spatial filtering to reduce the number of coherent modes at the expense of flux. Our

calculations show that, if one is in a linear regime where modes and flux can be scaled by

the same factor,3 it is always preferable to have fewer coherent modes. However, for low

values of m, such as those listed as “typical” experimental values here, there is almost no

2This second situation is not intended to represent an achievable scattering cross-section for a realistic
experiment, but rather to set a sort of lower bound on the measurement time for comparison.

3So that one could choose between 10 photons/second and one coherent mode or 100 photons/second
and 10 modes.
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change (< 0.3%) in measurement time. For the values of m corresponding to partial direct

beam, measurement times could be reduced by more than a factor of two for spatially

filtered beams. Importantly, spatially filtering becomes less effective in the high coherence

regime[37] and an optimization of the experimental parameters will be required in this

case.

4.3 Numerical Simulations

To confirm our analytical findings we perform simulations in the frame of Gaussian

statistics [5]. In particular we simulate an ensemble of scatterers, whose dynamics can be

represented by a predefined time-scale. If we illuminate such a system with coherent x-

rays and the typical geometrical conditions for XPCS are met [36], the time dynamics can

be studied by intensity evolution of the speckle. For simplicity, we consider only a single

momentum transfer vector and assume the evolution of the speckle behaves according to

Gaussian statistics. This can be simulated using a model presented in [38]. The starting

point of the model is a signal in time with constant amplitudes and completely randomized

phases. To induce correlations in time, one can apply filtering in the Fourier space, i.e. the

signal is Fourier transformed, multiplied by a filter function, which is a Fourier transform

of the desired autocorrelation function in time, and Fourier transformed back. To obtain a

negative exponential autocorrelation function of the form e−αt, which is typical for diffusive

dynamics with a time constant τ = 1/α and is found in many systems,[4] we use a filter

function of the form 1/(α + iω), where ω is the frequency. By modifying the width
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(τ) of the autocorrelation function, we are able to define the time scale of the system.

Figure 4.4 shows the simulated time evolution of a speckle for the case of τ = 10 ps time

dynamics, if we interpret each data point as corresponding to 1 ps. The width of the

“spikes” corresponds to the aforementioned time scale. Note that for the limiting case of

fast dynamics, this intensity profile is simply replaced with a flat line.

In the point-detector approach to studying dynamics, it is not possible to measure

directly the spacing between photoevents within the sample; it is only possible to say how

many photons were incident on the detector per pulse. But by varying a physical parameter

related to τ , such as the temperature, the time-scale of the dynamics can still be studied.

This can be demonstrated by varying the “spike” width in our simulations. Figure 4.5(a)

shows the relative probability of a double vs. τ for different numbers of measurements.

For this figure, and the other simulation results shown here, we have chosen m = 0.01.

As the number of measurements increases, it becomes possible to see the transition from

the dynamic to the quasi-static regime. This occurs at about N = 106 for the simulations

shown, which is consistent with our analytical calculations. In future experiments of this

nature, given a sufficient quantity of data, it will be possible to estimate relaxation times

using this analysis.

If the data instead comes from a streak camera device, with time resolution better

than the pulse duration, it will be possible to measure directly the spacing of photoevents

that make up our doubles, and traditional XPCS methods become possible. This is equiv-

alent to interpreting the data shown in figure 4.4 as a single pulse (which would be a

double in this case), rather than a sequence of separate APD measurements (in which case
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it would count as two singles). In XPCS, the quantity of interest is

g2(τ) =
〈I(t)I(t+ τ)〉t
〈I(t)〉2t

, (4.5)

where I(t) is the intensity measured at time t and τ is the time delay. Typically,

g2 has its maximum value for zero time delay and the width of the function represents the

time scale of the dynamics of the system. In the extremely low photon regime we consider

here, the numerator will take on values of 0 or 1 almost exclusively, since nearly all pixel

values are either 0 or 1. In this case, g2 simply becomes the probability of a double at fixed

τ plus one, and should therefore reduce to a simple (normalized) histogram of the number

of doubles vs. separation time, τ . Any small difference between the histogram values and

the g2 function arise from the presence of a few pixels with a value greater than 1. Figure

4.5(b) shows a comparison of equation 4.5 with the histogram approach for the simulations

for τ = 10 ps. That the histogram approach is essentially equivalent to traditional XPCS

methods in the low photon regime may prove important, as it potentially allows for the

reduction of very large sets of data.

4.4 Conclusion

In conclusion, our analytical findings and numerical simulations show that the

analysis of sample dynamics shorter than a synchrotron pulse duration is possible using

current technology. The analysis of sample dynamics in such a regime consists of the

study of the relative frequency of single and double photoevents. We forsee that with
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Figure 4.4: A time series from the random Gaussian signal that generates the data and
the location of the discrete photoevents from the Poisson filter.

the future implementation of streak cameras, the determination of the complete shape

of the autocorrelation function will be achievable. Also, the results typically obtained

through XPCS analysis become possible using a simpler, less data-intensive histogram-

based approach. Extending the time-scales accessible at synchrotron sources into the

picosecond range would be a major advancement; many important physical and chemical

processes [39, 40, 41, 42, 43, 44, 45, 46, 47, 48] take place in an intermediate regime

that is much slower than FEL pulse durations (femtoseconds), but much faster than the

synchrotron pulse spacing (nanoseconds).

This chapter is, in full, is a reprint of the material as it appears in: J. Wingert, A.

Singer, and O.G. Shpyrko. A new method for studying sub-pulse dynamics at synchrotron
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doubles vs. the time separating them, plotted alongside g2.
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author was the primary investigator and author of this paper.
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Chapter 5

Direct time-domain determination of

electron-phonon coupling strengths

in Chromium

We report the results of an ultrafast, direct structural measurement of optically

pumped phonons in a Cr thin film using ultrashort x-ray pulses from a free-electron laser.

In addition to measuring and confirming the known long-wavelength dispersion relation

of Cr along a particular acoustic branch, we are able to determine the relative phase of

the phonons as they are generated. Our sample exhibits two generation mechanisms for

the phonons: the releasing of a pre-existing charge density wave at higher frequencies,

and the creation of an acoustic strain pulse via laser heating that dominates at lower

frequencies. For the later mechanism, we are able to measure the frequency dependence of

the time required to generate the phonons. To explain the observed magnitude and slope
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of the delays, we perform first principles simulations in the framework of perturbative

density functional theory and ab initio molecular dynamics. These results show that the

frequency dependence of the electron-phonon coupling is the driving mechanism behind

the delay times, and that they have the correct slope with respect to frequency. However,

the absolute magnitudes of the delay times measured are found to be much shorter than

the equilibrium electron-phonon coupling times we compute, indicating that the coupling

strength is greatly enhanced when the electronic system is out of equilibrium with the

lattice.

Understanding the interactions between electrons and phonons in condensed mat-

ter systems is of both fundamental and practical importance. Until quite recently, the

primary methods for studying phonons in solids have been inelastic scattering techniques.

Inelastic neutron scattering (INS) has been used extensively for several decades to charac-

terize the dispersion relations of a wide range of materials, including Chromium [49] [50].

More recently, frequency-domain studies using x-rays have also driven advances in our

understanding of phonons in condensed matter systems. [51] Ultrafast electron diffraction

has been employed to measure direct structural responses to optical excitation, but this

has primarily been limited to studying the time evolution of the central Bragg peak [52][53]

[54]. The direct time-domain measurement of structural changes in solids using x-rays on

ultrafast (< 1ps) timescales has only become possible in the last several years. Although

x-ray pump-probe techniques have been used for some time at synchrotron sources [55],

it is the extremely short pulses (< 50fs) that can be generated by free-electron lasers

(FELs) that have pushed these techniques into the ultrafast regime and allowed for the
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direct detection of picosecond lattice oscillations [56] [57] [58] [59] [60] [61] [62]. It has been

possible for some time to generate laser pulses of similarly short duration. For this reason,

ultrafast pump-probe experiments using a laser pump and a laser probe were possible long

before x-rays could be used as a probe to study the same timescales. It was these all-optical

pump-probe studies that allowed for the determination of electron-phonon relaxation times

in various materials, including Cr [63]. However, these studies, which typically measure

ultrafast changes in reflectivity, are only sensitive to the rate of electron cooling. Measur-

ing acoustic pulses propagate via reflectivity is also possible, but this approach effectively

integrates the phonon response across all frequencies [64]. Now, with the ability to use

ultrafast x-ray pulses to measure directly the phonons that are generated as the electronic

system cools with a variety of specific wavevectors, it is possible to determine the rate at

which phonons of different frequencies are generated, as in this study.

When an optical pulse is incident on a metal, it becomes absorbed primarily by the

free electrons that lie within the optical penetration depth (about 20nm at a wavelength of

800nm in Cr). In our experiment, the laser pulse is incident on the sample at an angle of

roughly 30◦ so that, normal to the film surface, the penetration depth is reduced to about

10nm. The hot electrons then diffuse further into the metal, during which time thermal

diffusion also takes place. The depth to which these hot electrons can diffuse (about

15nm for Cr) is determined by the strength of electron-phonon coupling in the particular

material [63]. Once the energy is transferred to the lattice, there is a displacement field

and associated strain profile created over a distance that is determined by these two length

scales (as well as a smaller contribution from thermal diffusion). If this distance is relatively
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short (as it is in Cr), the central frequency of the resulting acoustic pulse will be relatively

high. In bulk Cr, which demonstrates strong electron-phonon coupling, this is about 50

GHz, whereafter the amplitudes of the oscillations decline monotonically. In a thin film

such as ours, with a thickness not significantly longer than these length scales, the shape of

the acoustic pulse may be somewhat changed. However, our goal here is not to attempt to

recreate the precise spatio-temporal shape of the acoustic pulse we generate, but rather to

characterize the generation of the individual phonons that comprise it. It should be noted

that there are other mechanisms by which optical light can drive acoustic oscillations in

solids [65] [66], but our data clearly show this is a primary generation mechanism at work

in our experiment.

In materials that exhibit charge density wave (CDW) order, such as our Cr film,

there is another mechanism by which acoustic phonons are created. The band structure

of Cr results in spin density wave electronic ordering of the free electrons with a period

that is incommensurate with the lattice periodicity [67]. This results in a CDW whereby

the equilibrium positions of the atoms are sinusoidally modulated. Essentially, this is a

frozen phonon. When an optical pulse with sufficient energy is absorbed by the electrons,

the electronic order is destroyed, and there is an abrupt shift in the potential energy

environment of the atoms. This allows the frozen phonon to propagate. [60][68] Unlike

the optical heating mechanism that drives phonons in all metals, there is zero lag for this

generation mechanism, and the phonon begins to ring immediately after the electronic

temperature rises. We show that, rather than complicating our analysis, this “CDW

mechanism” of phonon generation provides a reference to which we can compare those
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generated via the “thermal mechanism.” It should be emphasized, for the reader comparing

this work (at room temperature) with our prior study of the same sample at cryogenic

temperatures [60], that because of the higher temperature, the CDW has a lower spatial

frequency and reduced amplitude, which are shifted by an amount consistent with previous

studies [67].

Our sample is a 28nm thick RF-sputtered Chromium thin film, annealed at 500◦C.

The crystal orientation of the film and MgO substrate are both [001], as determined by

x-ray diffraction. At the Advanced Photon Source (APS), the diffraction pattern around

the central [002] Bragg peak was recorded using a point detector [68]. The results of this

measurement are shown in figure 5.1 in black. Due to the highly uniform thickness of the

film, well-resolved Laue fringes with high intensity are clearly visible out to high-order. At

the XPP station of the Linac Coherent Light Source (LCLS) [58], the diffraction from this

sample was measured with a 2-D detector – the Cornell-SLAC hybrid Pixel Array Detector

(CSPAD). Throughout the experiment, the detector and incident beam were held fixed,

at an x-ray scattering angle of 2θ = 60◦. By rotating the sample slightly, we were able

to record images corresponding to different cuts through the fringes along the Bragg rod.

Three such images are also shown in figure 5.1 alongside the synchrotron data. Due to

the mosaic spread in the sample, several Laue fringes are visible simultaneously at a given

sample angle[60]. All measurements were carried out at room temperature. It should be

emphasized that the high intensity of the Laue fringes out to high order is what allows

us to measure a strong signal in regions of momentum space that would typically exhibit

only weak diffuse scattering.
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Figure 5.1: The axes and black data points are from data taken at APS. The central
peak is the [002] Bragg peak for Cr, and the Laue fringes around it have a periodicity
corresponding to the 28nm film thickness. Shown behind this are three separate area
detector images taken at LCLS, corresponding to different cuts through these fringes on
the Bragg rod, achieved by rocking the sample. On the right, a simple schematic of the
experimental setup is shown.

For our pump-probe measurements, the sample was optically pumped with an 800

nm, 40 fs duration laser pulse. The energy delivered to the sample was about 5 mJ/cm2, as

determined using a reference sample. Diffraction patterns were then collected by probing

the sample with a 15fs x-ray pulse (λ=0.14nm) at delay times ranging from -2ps to 10ps.

This was done at several sample angles, so that, on the “low-Q” side relative to the Bragg

peak, data was collected out to the 10th-order Laue fringe. The laser pump and x-ray

probe had beam diameters of 0.5mm and 0.2mm, respectively. Conveniently, although

the relative brightness of each fringe changes dramatically when the sample is rotated,

the fringe positions on the detector move by less than a pixel. This allows us to combine

multiple images directly, without making geometric corrections. After being summed, the

combined images are then integrated vertically (with respect to the images in figure 5.1).

This is done for the images collected at all possible delay times, so that we are left with

55



Time [ps]
-2 0 2 4 6 8 10

In
te

ns
ity

1.2

1.4

1.6

1.8

2

2.2

2.4
Q [r.l.u]

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Ti
m

e 
D

el
ay

[p
s]

-2

0

2

4

6

8

Fringe 1 Fringe 10

Fringe 10

Fringe 1

(a)

(b)

Figure 5.2: (a) All slices through the Bragg rod for the low-Q fringes combined in one
image, integrated vertically with respect to figure 5.1, normalized by the t < 0 values,
and plotted vs. time (Bragg peak not shown). (b) The extracted 1-D signals for the
fringes shown in (a).

intensity values as a function of Q and time. In figure 5.2(a), a combined image of all

measurements made on the low-Q side of the Bragg peak are shown. The intensities have

been normalized by the t < 0 values to make the oscillations more clearly visible for all

fringes.

To extract a simple one-dimensional intensity signal vs. time for the separate

fringes, we identify for each of them a range of pixel values along Q that clearly do not

56



overlap with neighboring fringes, yet still fully contain the fringe as it shifts in Q slightly

during the measurement (due to a slow oscillation of the central Bragg peak). These regions

are then integrated over this small range of Q values, which results in a one-dimensional

vector of intensities as a function of time delay. These resulting time series are shown

in figure 5.2(b). After the signals are obtained for each fringe, we take their Fourier

transforms in time. We then fit Gaussians to the main peaks identified in the amplitudes

of the transforms. The means and standard deviations obtained from each of these fits

serve as our frequency data points and error bars, respectively. These are plotted versus

the Q value associated with each fringe (in units relative to QBragg) in figure 5.3. A linear

regression is performed to determine the slope of the best fit line for these points. Because

we are in the long-wavelength limit where phonons propagate at a velocity v = ω/K [69],

the slope of this line should give the speed of sound in our film, for longitudinal waves in

the < 001 > direction. This is found to be 7.45 nm/ps in our sample, which is in good

agreement with data from inelastic neutron scattering [49]. The amplitudes of the Fourier

transforms are also plotted in figure 5.3. The enhanced amplitude of the signal for fringe

6 and its neighbors is consistent with the existence of a residual charge-density wave with

a periodicity centered on fringe 6, which persists above the Néel temperature for our thin

film [60] [67]. A notable feature of the data is the reduced amplitude of the oscillations

that occurs at about 4ps. This corresponds to the time it takes sound to propagate across

the film at the velocity we observed, and confirms that we indeed generate an acoustic

pulse at the free interface which then travels across the film, before being reflected by the

MgO substrate.
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Figure 5.3: The dispersion curve points for all measured fringes on the low-Q side are
shown, along with their amplitudes. The height of the Gaussians fitted to the Fourier
transforms of the time signals give the amplitudes associated with each frequency. The
red curve is an exponential fit to the first 3 points. The blue line shown is a best fit
through all the frequency data points, whose slope gives the longitudinal speed of sound
in the Cr film normal to the surface, which is found to be 7.45 nm/ps for our sample.
The enhancement of the amplitude for fringe 6 and its neighbors is attributed to residual
charge density wave ordering that persists above the Néel temperature.
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Because we directly measure the phonon oscillations in the time-domain, we are

sensitive to their phase. To calculate the relative phase for each phonon frequency mea-

sured, we calculate the locations in time of the first 2 maxima in the oscillations, using

a smoothing filter. We then divide these times by the period of the signal, which is de-

termined from the Fourier analysis previously discussed, and subtract off an appropriate

integer multiple of 2π. As can be seen directly from the raw data in figure 5.2(b), the first

three fringes have a qualitatively different phase relation than the other fringes. Moreover,

one would expect the amplitudes of the signals to decrease monotonically in Q, as occurs

in bulk Cr after about 50 GHz, a far lower frequency than any measured here. Instead, the

amplitudes begin to rise again after the fourth fringe. We attribute these deviations from

expected bulk behavior to the presence of two distinct phonon generation mechanisms.

For the higher-order fringes, the response is driven by the presence of a CDW that begins

to ring in our sample immediately after the electrons become hot. For the lowest order

fringes, the generation mechanism is the typical heating/strain pulse mechanism. These

phonons are only generated on the timescale of the electron-phonon relaxation time, which

is known to be about 0.4 ps in Cr from reflectivity measurements [70]. For both mech-

anisms, if the proper effective t = 0 is identified, the response should be of a plus or

minus cosine form. If this is accepted, then we can determine where the effective t = 0

must lie to give our signals this phase relation. In particular, we require that the first

3 fringes have a cosine response, and the others a minus cosine response, and then shift

the effective t = 0 for each fringe to achieve this. The results are shown in figure 5.4(a).

The higher order fringes (4-10) need little adjustment to achieve the ideal phase relation
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we impose, because they are generated instantaneously upon laser heating, while the first

three fringes demonstrate a lag time that is close to the known global electron-phonon

relaxation time in Cr (It should be noted that for the higher order fringes, the periods

and phase adjustments become smaller than the the experimental timing uncertainty, so

they are of limited value). This lag time decreases with frequency, so that the longest

wavelength phonons take the longest to populate. This turns out to be primarily due to

the frequency dependence of electron-phonon interactions, as we will discuss. It may also

be partly attributed to a speed of sound effect, owing to the fact that establishing a longer-

wavelength collective mode requires communication between atoms at a longer distance,

which presumably occurs at the speed of sound. There may also be some anharmonic

phonon-phonon interactions driving the delay, but we show this effect is small.

To separate the processes involved in the ultrafast creation and dissipation of elec-

tronic and phononic states in Cr, we perform first principles simulations of the electron-

phonon coupling. The structural and vibrational properties of Cr are well described by a

spin-less DFT calculation (see SI for phonon band structures and spectral functions). We

start by calculating the Éliashberg coupling constant λ, which integrates the coupling of all

phonons with all electrons, and find λ ' 0.1 and λ〈ω2〉 ' 66.49 meV2. The electron-phonon

coupling (EPC) was previously extracted from experiment by Dresselhaus et al.[71], who

find a moderate λ of 0.13 and λ〈ω2〉 ∼128 meV2. The difference may be due to our neglect

of spin (see comments on Cr in Ref. [71]), or their use of a rough estimate for the average

frequency, but in any event we have a fair representation of the global EPC.

The creation of phonons by a thermal (300 K) distribution of electrons can be char-
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acterized by the inverse of the EPC phonon line-width γ. These are plotted as a function

of wave vector ~q in Fig. 5.4(b), with a dashed line delimiting the range corresponding to

the experimental reflections for the thin film. There is a universal phase space restriction

for small q phonon scattering: for small enough ~q the intersection of the phonon sphere

with a given portion of the Fermi surface becomes a circle of decreasing diameter. This

restricted phase space limits scattering and leads to the observed increase of the inverse

line-width, which should vary as 1/q2 for small q. A fit to the ab initio data below 0.01

r.l.u. gives an exponent of -1.78.

The decrease with ~q is qualitatively similar to experiment, but the inverse line-

widths are 2-3 orders of magnitude larger than the impulsive time delays measured in

experiment. This reflects the equilibrium statistical nature of the line-widths, and the

crucial difference with the decay of a non-equilibrium distribution of electrons. Zone edge

equilibrium line-widths are much larger, corresponding to lifetimes down to 4-5 ps. The

coupling time estimated from figure 1 in Dresselhaus et al. cumulates electrons scattering

out into all phonon modes (mainly large ~q to access the whole Fermi Surface). For small

~q phonons, the response time are dominated by the impulsive non-equilibrium effects, but

follow the same “phase space” dependency on ~q.

In order to discard that the observed response is not driven by phonon-phonon

interactions, we have performed a calculation of the phonon-phonon linewidth by ab initio

molecular dynamics and mapping the interatomic force constants to any order by using the

TDEP method as developed in Ref. [72]. Our calculations clearly show that the phonon-

phonon line-widths are at least one order of magnitude smaller than the electron-phonon,
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which implies that we can safely discard the phonon-phonon contribution and that the

observed process is led by the electron-phonon coupling.

To describe the electron-phonon interaction, we employ the ABINIT software pack-

age [73], which implements DFT and DFPT. We use the norm conserving pseudopotential

framework (using the ONCVPSP scheme of Hamann[74]) and a plane wave basis set up

to kinetic energies of 40 Ha. We have also used the Local Density Approximation (LDA)

to describe the exchange correlation functional and we also use the experimental value

of the cell parameter. Phonons and EPC are calculated within the density functional

perturbation theory[75, 76].

On the other hand, the phonon-phonon TDEP calculations were extracted from

ab-initio molecular dynamics calculations using the VASP code [77, 78]. This code relies

on the PAW representation for the wave function with an energy cutoff of 500eV, and the

same energy functional used in the ABINIT calculation.

In summary, we have demonstrated the generation of phonons in Cr via ultrafast

optical excitation attributed to two distinct generation mechanisms – the releasing of a

frozen CDW, and the generation of a coherent acoustic strain pulse. The CDW phonons

have a response that is instantaneous upon heating of the electronic system, whereas those

associated with the acoustic pulse demonstrate a generation lag and a dependence on the

phonon frequency. Through phase-space considerations and PDFT calculations, we show

that this frequency dependence is driven by the variable electron-phonon coupling strength,

and has the correct slope, but is three orders of magnitude faster than predicted by the

equilibrium calculations. This points to a greatly enhanced scattering rate when the hot
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electrons are out of equilibrium with the lattice. This might be explored experimentally

by varying the laser fluence and observing the effect on the phonon generation times.

Theoretically, a non-equilibrium description of the system may be able to explain the

observed electron-phonon coupling magnitudes in the future.
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