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Simple Summary: The heterogeneity of tumors is one of the primary obstacles to successful treat-
ment. Although the examination of tumor heterogeneity is essential for comprehending tumor
characteristics and planning therapeutic strategies, it remains challenging to assess and evaluate
heterogeneous tumor populations. Here, we propose the self-assembly-based evaluation method,
which is capable of predicting inter/intracellular heterogeneity in glioblastoma. Depending on their
self-assembly pattern, heterotypic multicellular aggregates (hMA) are formed by mixed populations
of glioblastoma cells. The cells located at the outermost hMA exhibit a diminished temozolomide
response, and are related with poor patient survival. Our findings imply that the multicellular self-
assembly pattern is indicative of the intertumoral and intra-patient heterogeneity of glioblastomas,
and is also prognostic of the therapeutic response.

Abstract: Phenotypic heterogeneity of glioblastomas is a leading determinant of therapeutic resistance
and treatment failure. However, functional assessment of the heterogeneity of glioblastomas is
lacking. We developed a self-assembly-based assessment system that predicts inter/intracellular
heterogeneity and phenotype associations, such as cell proliferation, invasiveness, drug responses,
and gene expression profiles. Under physical constraints for cellular interactions, mixed populations
of glioblastoma cells are sorted to form a segregated architecture, depending on their preference
for binding to cells of the same phenotype. Cells distributed at the periphery exhibit a reduced
temozolomide (TMZ) response and are associated with poor patient survival, whereas cells in the
core of the aggregates exhibit a significant response to TMZ. Our results suggest that the multicellular
self-assembly pattern is indicative of the intertumoral and intra-patient heterogeneity of glioblastomas,
and is predictive of the therapeutic response.

Keywords: multicellular self-assembly; tumor heterogeneity; glioblastomas; heterotypic cultivation;
prognosis prediction

1. Introduction

Heterogeneity is evident within a tumor (intratumoral heterogeneity), as well as
between tumors (intertumoral heterogeneity) in terms of cellular morphology, gene expres-
sion, metabolism, motility, proliferation, and metastatic potential [1]. Tumors become more
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heterogeneous as they progress, developing a diverse collection of cells with distinct molec-
ular signatures that exhibit varying levels of treatment sensitivity [2]. Such heterogeneity
is associated with different drug responses of tumor cell populations across and within
disease sites, as well as over time [3]. Glioblastomas are characterized by marked intratu-
moral and inter-patient heterogeneity [4]. As such, glioblastoma heterogeneity renders the
development of effective therapies challenging; additionally, accurate delineation of tumor
heterogeneity is critical in planning for proper therapy.

Immunohistochemistry has been utilized as a widely applicable approach for detecting
various subtypes based on their genetic properties [5,6]. Recent analytical approaches,
such as bulk expression-based subtyping [7] and single cell-based analyses [1,8], have the
ability to give high-resolution information on genomic, transcriptomic, and epigenetic
variations within glioblastoma populations. To evaluate tumor heterogeneity, limitations
are placed on selective marker-based analysis and site-dependent marker expression.
Moreover, omics-based analyses are impractical in the majority of clinical situations due
to experimental challenges and the underlying phenotypic plasticity of cells [9]. Context-
based functional evaluation techniques, such as the cell-migration assay, have proven
inter-patient heterogeneity and predicted patient-specific therapeutic outcomes [10,11] to
address these limitations. In order to design therapeutic regimens for glioblastoma patients,
faster assessment approaches that can predict intratumoral heterogeneity within the same
tumor specimen are still required.

Cell affinity has been proposed as a notion relating to the tendency of cells to inter-
act preferentially with cells of the same type [12]. The cells in a mixed aggregate form a
well-segregated population by recognizing the identity of their neighbors and congregating
with cells of the same type [13]. Cell–cell adhesion molecules (CAMs), such as homotypic
cell–cell adhesion, have become one of the most important regulators for cell–cell affin-
ity and tissue segregation [14]. Different gene expression levels of cell affinity mediate
the formation of spatially discrete compartments in multicellular aggregates during the
developmental process [15].

Likewise, cell affinity is highly involved during tumorigenesis; the loss of intercellular
affinity in the tumor mass endows neoplastic subpopulations with an invasive phenotype.
Cells within a heterogeneous population exhibit diverse associative preferences; thus,
cells tend to cohere with neighbor cells, self-organizing into suitable configurations and
patterns [15,16]. Consequently, we hypothesized that differential intercellular affinity could
serve as a valuable phenotypic marker of intratumoral heterogeneity. We postulated, based
on the notion of self-organization through variable cell–cell cohesive contacts [17,18], that
the patterns of self-assembled glioblastoma cells could be a morphometric indicator for
identifying cells with heterogeneous phenotypes within tumors (Figure 1).
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Figure 1. Illustrative overview of morphometric assessment of heterogeneous tumor cell popula-
tions based on intercellular affinity preferences. Multicellular aggregation of heterogeneous cell 
populations may result in a spontaneous 3D spatial configuration of cell aggregates, depending on 
the differential intercellular affinity. 

2. Materials and Methods 
2.1. Cell Culture 

Tumorspheres (TSs) of pdGCs were provided by the laboratory of Dr. Seok-Gu Kang 
at Yonsei University of College of Medicine, and were derived as previously reported [19]. 
Approval was given by the Institutional Review Board of Severance Hospital, Yonsei Uni-
versity College of Medicine (4-2014-0649). Informed consent was provided according to 
the Collaborative Institutional Training Initiative (CITI) Program, as specified in the Dec-
laration of Helsinki (K-2014-13752477). 

After the specimens from human GBM patients were freshly obtained from the op-
eration room, the pdGCs were isolated using a mechanical dissociation method. The spec-
imens were minced and dissociated with a scalpel in DMEM/nutrient mixture F-12 
(DMEM/F12), and then filtered through a series of 100-μm nylon mesh cell strainers. 
pdGCs (listed in Table 1) were cultured on DMEM/nutrient mixture F-12 (DMEM/F12) 
(Welgene, Gyeongsan, Republic of Korea) supplemented with 1% P/S (Welgene), 1 × B27 
(Invitrogen, Carlsbad, CA, USA), 20 ng/mL basic fibroblast growth factor (Invitrogen), 
and 20 ng/mL epidermal growth factor (Invitrogen). Confluent TSs were passaged every 
5 days (1:5 ratio) by dissociating with Accutase (Invitrogen). pdGCs were maintained at 
37 °C in an atmosphere of 5% CO2 and 95% air. U87 and U251 glioblastoma cells were 
cultivated in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% fe-
tal bovine serum and 1% penicillin/streptomycin (P/S) (Welgene, Gyeongsan, Republic of 
Korea). For the experiments, U87 and U251 cells were passaged every 3–5 days (1: 5 ratio) 
after they were dissociated using trypsin/EDTA solution (Welgene). To visualize subpop-
ulations, cells for heterotypic culture were labeled with CellTracker™ (Invitrogen), with 
different fluorophores. 
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Figure 1. Illustrative overview of morphometric assessment of heterogeneous tumor cell populations
based on intercellular affinity preferences. Multicellular aggregation of heterogeneous cell popu-
lations may result in a spontaneous 3D spatial configuration of cell aggregates, depending on the
differential intercellular affinity.

2. Materials and Methods
2.1. Cell Culture

Tumorspheres (TSs) of pdGCs were provided by the laboratory of Dr. Seok-Gu Kang
at Yonsei University of College of Medicine, and were derived as previously reported [19].
Approval was given by the Institutional Review Board of Severance Hospital, Yonsei
University College of Medicine (4-2014-0649). Informed consent was provided according
to the Collaborative Institutional Training Initiative (CITI) Program, as specified in the
Declaration of Helsinki (K-2014-13752477).

After the specimens from human GBM patients were freshly obtained from the op-
eration room, the pdGCs were isolated using a mechanical dissociation method. The
specimens were minced and dissociated with a scalpel in DMEM/nutrient mixture F-12
(DMEM/F12), and then filtered through a series of 100-µm nylon mesh cell strainers.
pdGCs (listed in Table 1) were cultured on DMEM/nutrient mixture F-12 (DMEM/F12)
(Welgene, Gyeongsan, Republic of Korea) supplemented with 1% P/S (Welgene), 1 × B27
(Invitrogen, Carlsbad, CA, USA), 20 ng/mL basic fibroblast growth factor (Invitrogen), and
20 ng/mL epidermal growth factor (Invitrogen). Confluent TSs were passaged every 5 days
(1:5 ratio) by dissociating with Accutase (Invitrogen). pdGCs were maintained at 37 ◦C in
an atmosphere of 5% CO2 and 95% air. U87 and U251 glioblastoma cells were cultivated
in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% fetal bovine
serum and 1% penicillin/streptomycin (P/S) (Welgene, Gyeongsan, Republic of Korea).
For the experiments, U87 and U251 cells were passaged every 3–5 days (1: 5 ratio) after
they were dissociated using trypsin/EDTA solution (Welgene). To visualize subpopu-
lations, cells for heterotypic culture were labeled with CellTracker™ (Invitrogen), with
different fluorophores.
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Table 1. List of patient-derived glioblastoma cells (pdGCs) used in this study.

pdGC Pathology Age Gender IDH1
Mutation

MGMT
Promoter

TS13-20

Glioblastoma

61 M

Wild type

Methylated

TS13-61 57 M Unmethylated

TS13-64 56 F Unmethylated

TS14-15 67 M Methylated

TS14-48 42 F Unmethylated

TS15-87 75 F Unmethylated

TS15-88 61 M Unmethylated

TS16-139 62 M Unmethylated

2.2. Preparation of the Multicellular Aggregation System

The multicellular aggregation system was prepared by the process of replica molding
of SpheroFilmTM on agarose hydrogels in order to generate a 15-by-15 array, composed
of 225 microwells of 500-µm diameter and 500-µm depth, as described in our previous
study [20]. SpheroFilmTM was coated with Trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane
(Sigma) to create an anti-stiction layer with hydrophobic properties as a master pattern.
Prepolymers of polydimethylsiloxane (PDMS) (10:1 ration of w/w resin:crosslinking agent)
were poured onto the silane-coated SpheroFilmTM and solidified in a convection oven
(70 ◦C, 1 h). Solidified PDMS was cut into a 15-by-15 array and used as the master template.
The master templates were sterilized in a sterile biosafety cabinet using 70% ethanol with
UV light, then washed with cell culture grade water and dried prior to each experiment.

To prepare the multicellular aggregation system, 3% (w/v) agarose powder (LPS
Solution, Daejeon, Republic of Korea) was dissolved by boiling in high-glucose DMEM
(Welgene, Korea) in order to provide a non-adhesive substrate. The dissolved agarose-
DMEM solution (3 mL) was poured into 35 mm cell-culture dishes (SPL, Pocheon, Republic
of Korea) to produce agarose microwell plates. The patterned surface of a sterilized master
pattern was carefully placed atop the agarose-DMEM solution to stamp out the microwell
array pattern. After solidification, the master pattern was carefully removed and hydrated
with cell culture grade water, leaving a 15-by-15 array (225-microwell) patterned agarose-
DMEM surface. For cell cultivation, the aggregation system was sterilized in a biosafety
cabinet with UV light.

2.3. Three-Dimensional Circular Sector Analysis of MAs

For image-based analysis of heterogeneous cell populations, we used CellTracker™
(Thermo Fisher Scientific, Waltham, MA, USA) to distinguish cell types. According to the
manufacturer’s manual, CellTracker Green CMFDA Dye, CellTracker Red CMTPX Dye,
and CellTracker Blue CMAC Dye were used to stain the U87 and U251 cells and the pdGCs,
respectively. After heterotypic cultivation for 24 h, the self-assembled MAs were inspected
under a confocal microscope (Nikon, Tokyo, Japan). The 3D spatial distribution of the MAs
was quantitatively characterized by dividing a single 500 µm microwell into five concentric
zones. The target pixel area in each image was calculated separately for each channel.

2.4. Proliferation and Drug-Resistance Assays

We used the conventional WST-1 method and EZ-Cytox assay (water-soluble tetra-
zolium salt method) to evaluate cell proliferation and viability. Briefly, pdGCs were incu-
bated with 10 µL of EZ-Cytox solution for 3 h. After the formation of formazan crystals, the
absorbance at 550 nm of the culture supernatant was measured using a microplate reader
(Bio-Rad, Hercules, CA, USA). Cell proliferation and viability were measured based on the
optical density compared to non-reacted EZ-Cytox solution.



Cancers 2022, 14, 5910 5 of 15

2.5. Characterization of pdGC Invasion

pdGCs were first seeded for 24 h to promote multicellular aggregation. In order
to create microscale niches, the pdGCs were embedded in a hyaluronic acid-rich ECM
hydrogel to evaluate their invasiveness. Briefly, a 4 mg/mL collagen hydrogel was prepared
on ice immediately prior to use by diluting stock collagen type I from rat tails (Corning,
NY, USA) with hyaluronic acid solution (Lifecore, Chaska, MN, USA). NaOH (1 M) was
added to raise the pH to 7.4. The solutions were mixed thoroughly prior to gelation on
pdGCs. Hydrogels were incubated at 37 ◦C for 1 h prior to the addition of cell culture
medium. For every 24 h period, cells invading the ECM hydrogels were inspected via
confocal microscopy (Nikon). The z-axis scanned images of the invading pdGCs were
reconstructed as 3D images and presented as top and cross-sectional views.

2.6. Microarray Experiment

Total RNA was extracted from glioblastoma TSs and their matched patient tissues
using a Qiagen RNeasy Plus Mini kit, according to the manufacturer’s protocol, and then
loaded onto an Illumina HumanHT-12 v4 Expression BeadChip (Illumina, San Diego,
CA, USA). After applying a variance-stabilizing transformation, the data were quantile-
normalized using the R/Bioconductor lumi package (https://pubmed.ncbi.nlm.nih.gov/
18467348, accessed on 10 October 2022).

2.7. RNA-Seq Experiment

We extracted total RNA using the NucleoSpin RNA XS kit (Macherey-Nagel) (Fisher
scientific, Waltham, MA, USA) from the first-, second-, and third-screened TS14-48 and
TS15-88 pdGC subpopulations, and ensured the quality of RNA using Tapestation 4200
(RIN values > 7.5) for all samples. RNA-seq libraries were constructed using an Illumina
Truseq Stranded mRNA Library Prep kit (Illumina, San Diego, CA, USA). Briefly, mRNA
was purified using oligo-dT beads and fragmented in an enzymatic reaction. After fragmen-
tation, cDNA was generated by reverse transcription. The cDNA libraries were constructed
and sequenced in 75-bp paired-end mode on the Illumina Nextseq 550 platform (Illumina,
San Diego, CA, USA). External RNA controls consortium and RNA spike-in mixes (Thermo
Fisher, 4456740, Waltham, MA, USA) were included for quality assurance purposes.

2.8. Bioinformatics Analysis

Visualization and analysis of gene expression was performed using Morpheus software
(https://software.broadinstitute.org/morpheus, accessed on 10 October 2022). GSEA was
performed using the Molecular Signatures Database (MSigDB) to classify KEGG pathways.
Finally, a GO enrichment analysis with results ranked by p-value (http://geneontology.org,
accessed on 10 October 2022) was performed.

2.9. Statistical Analysis

Data are presented as the mean ± standard error of the mean. Levels of significance
for comparisons between two independent samples were determined using Student’s t-test.
Groups were compared using one-way analysis of variance with Tukey’s post hoc test for
significant main effects.

3. Results
3.1. Three-Dimensional (3D) Heterotypic Cultivation of Heterogeneous Cell Populations Based
on Self-Assembly

Figure 2a shows an overall schematic illustration of the assessment procedure. To pro-
mote self-assembly, a microwell-based array (15-by-15 array composed of 225 microwells
of 500-µm diameter and 500-µm depth) was introduced. When individual cells are aggre-
gated into a single cluster within a microwell, each aggregate may exhibit a distinct spatial
configuration resulting from self-assembly events. We hypothesize that the distribution

https://pubmed.ncbi.nlm.nih.gov/18467348
https://pubmed.ncbi.nlm.nih.gov/18467348
https://software.broadinstitute.org/morpheus
http://geneontology.org
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of cells in a microwell would rely on cell affinity, resulting in spatial arrangement of the
multicellular aggregation.
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Figure 2. Three-dimensional (3D) heterotypic cultivation for rapid screening of heterogeneous cell
populations based on intercellular affinity preferences. (a) Schematic overview for assessing the
intercellular affinity of patient-derived tumor cells. (b) Morphologies of two distinct glioblastoma
cell lines in two-dimensional plates and 3D multicellular aggregates. U87MG and U251MG: the
two distinct cell lines used in the multicellular aggregation assay system. (c) Representative fluo-
rescence images of the 3D spatial distribution of glioblastoma heterotypic multicellular aggregates
(MAs). U251 (red), U87 (green). Scale bar: 100 µm. (d) Quantitative analysis of fluorescence images
of the 3D spatial configurations and the spatial configurations of MAs based on the evaluation of
circular zones. (e) Time-lapse photographs of the U251–U87 MA assembly. (f) Time-lapse of the
invasion of U251–U87 heterotypic MAs over 72 h. Scale bar: 100 µm.

In order to quantify morphometric information, we categorized the spatial configu-
ration of cells using five concentric zones, of which the most internal was Zone I and the
most external was Zone V (Figure 2a). For example, when cells are distributed near Zone
I, we presume that the cell subpopulation is of the internal type. By contrast, cells at the
periphery of the aggregate, close to Zone V, are of the external type in terms of spatial
configuration. Based on the self-assembly pattern of multicellular aggregates, we sought
to identify meaningful correlations between morphological information and other tumor
hallmarks, including cell proliferation and invasiveness, drug responses, and genotype.

To validate our approach, we tested two glioblastoma cell lines (U87 and U251), which
exhibit distinct intercellular affinities (Figures 2b and S1–S3). Under non-adhesive three-
dimensional (3D) culture conditions, aggregates of adjacent cells formed a single cluster of
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distinct shapes. U251 cells (with strong mutual affinity) formed packed clusters, whereas
U87 cells clusters (with weak mutual affinity) exhibited relatively dispersed morphology
(Figure 2b). This differential intercellular affinity was also observed in a conventional
two-dimensional (2D) culture system (Figure 2b). Such differences between cells impacted
the self-assembly pattern. U251–U87 heterotypic multicellular aggregates (MAs) became
spatially segregated (Figure 2c–e). U251 cells aggregated internally and U87 cells moved to
the periphery within 24 h. Almost 90% of U87 cells were resident in Zones II (48%) and III
(45%), while most U251 cells were found in Zones I (57%) and II (42%), as shown in the
distribution histogram and the circular sectoral graph (Figure 2d). Thus, cells preferentially
sought cells of the same type through space and time.

We then explored whether the self-assembly pattern of aggregates reflected the sub-
sequent course of tumor cell invasion in the presence of cell–ECM interactions. Notably,
invasion of heterotypic MAs commenced with the outer U87 cells, followed by the inner
U251 cells (Figures 2f and S4). U87 cells in the outer zones led the invasion, followed
by U251 cells from the inner zones. A similar tendency of invasive potential was shown
by homotypic aggregates of each cell. Dissociated U251 aggregates spread throughout
the matrix, whereas U87 cells became individually disseminated from the proliferating
aggregate core (Figure S5). Therefore, the 3D spatial configuration was reflected in the
invasive behavior of each cell type.

Taken together, the data showed that selective affinity between two different cell subpop-
ulations induced a spatially segregated self-assembly process; thus, the spatial configuration
within aggregates can be used as a morphometric indicator of cellular heterogeneity.

3.2. Heterotypic Cultivation of Patient-Derived Glioblastoma Cells MAs to Assess Intertumoral Heterogeneity

Next, we introduced unknown-phenotype cells (i.e., patient primary cells) with
two pre-characterized cell lines as references (Figure 3a). We tested primary glioblastoma
cells from eight patients diagnosed with wild-type IDH1 (Table 1). When the patient-
derived glioblastoma cells (pdGCs) were co-cultured with U87 and U251 cells, the cells
self-assembled into single clusters within 24 h (Figure S6). Because the affinities of U87 and
U251 cells are known, as examined in Figure 2, we divided the spatial configurations of the
U87–U251–pdGC MA clusters into three types that reflected their intercellular affinities
(Figure 3b). If their affinity was the strongest among cells in the MA, the patient’s primary
cells would be found in the MA core, surrounded by U251 and U87 cells (in that order).
Conversely, pdGCs located near the outside of MAs would exhibit the weakest cell–cell
affinity. If the pdGCs were of intermediate affinity, U87 cells would be on the periphery,
U251 cells internal, and pdGCs in between. We analyzed the 3D spatial configurations
of all eight pdGCs via circular section analysis (Figure 3c). TS14-48 cells were located
at the centers of the MAs, whereas TS15-88 cells were found on the outer surfaces. To
semi-quantify the spatial configurations, we ranked all pdGCs from 1 (internal, strongest
cell–cell affinity) to 8 (external, weakest affinity) and sub-grouped the pdGC MAs into
internal (1–4) and external (5–8) types (Figure 3d).

In order to compare the biological characteristics of cells with varying affinities, we
performed microarray data analysis (transcriptome profiling). Hierarchical clustering re-
vealed that the internal and external subgroups exhibited different gene expression profiles
(Figure S7). When significant (p < 0.05) differential gene expression levels of the internal
and external subgroups were compared, the results were diametrically opposed. To further
evaluate these differences, we performed gene set enrichment analysis (GSEA) (Figure 3e).
The Kyoto Encyclopedia of Genes and Genomes (KEGG) cell cycle, DNA replication, and
mismatch repair pathways were upregulated in the external versus the internal subgroup.
Notably, these pathways frequently vary among patients with high-grade glioblastomas
exhibiting therapeutic resistance. The internal types exhibited upregulated expression
of KEGG pathways involving cell adhesion molecules (CAMs), antigen processing and
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presentation, and focal adhesion. Thus, self-assembly pattern-based morphometric analysis
using the multicellular aggregation system revealed strong linkages with gene expression.
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Figure 3. Formation and analysis of MAs of patient-derived glioblastoma cells (pdGCs) and the
phenotypic associations thereof. (a) Multicellular self-assembly of pdGCs with unknown intercellular
affinity compared to those of the U251 and U87 glioblastoma cell lines. (b) Representative fluorescence
images of pdGC–U251–U87 MAs. Scale bar: 100 µm. (c) Spatial configurations (3D) within pdGC–
U251–U87 MAs. (d) pdGC scoring based on 3D spatial configuration. (e). Enrichment score plots of
the distinct KEGG phenotypes of the internal and external subgroups.

3.3. Phenotypic Correlations of pdGC MAs to Temozolomide Response

To evaluate the clinical implications, we explored the correlations of the self-assembly
patterns of pdGC aggregates with the phenotypes of pdGCs, including temozolomide
(TMZ) response, cell proliferation, and cell invasion. TMZ response was evaluated based
on dose-dependent cell viability with TMZ therapy, and then ranked by gradient color
coding (Figure 4a,d). Cell viability monitoring over time permits the ranking of pdGC
proliferation (Figure 4b,d). Invasion of pdGC was also analyzed by calculating the invaded
area from 0 h to 72 h, and the rank was derived by quantifying the change in invasion area
(Figure 4c,d and Table S1). Intriguingly, pdGCs that self-assembled at the margins of MAs
containing U251 and U87 cells demonstrated elevated levels of drug resistance (Figure 4d).
Moreover, the rank by spatial configuration (internal vs. external) and TMZ responses
(sensitive vs. resistant) resulted in the same two pdGC groups (Figure 4d), and the Kaplan–
Meier curve of spatial configuration and TMZ response revealed that patients with more
resistant, external-type pdGCs had a lower survival rate (Figure 4e). The survival rate of
patients with internal-type pdGCs was substantially higher than that of patients with the
external-type pdGCs (Figure 4e). The Kaplan–Meier curve of the two groups, by the rank
of cell proliferation and cell invasion (high vs. low), revealed no statistically significant
difference in survival (Figure 4f). The aggregate core had more TMZ-sensitive pdGCs
than the outermost layer. Self-assembly patterns of pdGC aggregates correlated positively
with the extent of TMZ resistance (Figure 4g). When pdGCs were organized from internal
type to external type, the TMZ response heatmap resembled that of the self-assembly
phenotype (Figure 4h).
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Figure 4. Phenotypic correlations with spatial configuration of pdGCs MAs. (a) pdGC viability
in response to temozolomide (TMZ). (b) Graphs for all pdGCs proliferation over time for 72 h.
(c) Fluorescent images and quantification of pdGCs after 72-h invasion. Scale bar: 100 µm.
(d) Ranking of pdGC TMZ response (sensitive to resistance), pdGC proliferation (low to high), and
pdGC invasion (low to high) by color-code. (e) Kaplan–Meier survival plot of patients whose pdGCs
were classified in terms of MA TMZ response and 3D spatial configuration. Statistical significance:
* p < 0.05. (f) The Kaplan–Meier survival graph of patients whose pdGCs were classified in terms of
MA proliferation and invasion. (g) Correlation between the drug response and 3D spatial configura-
tion. (h) Comparative pdGC heatmap of the associations of cellular proliferation and invasion, as
well as TMZ response, with 3D spatial configuration in MAs.

Taken together, the results show that morphometric assessment of self-assembled MAs
enables the characterization of inter-patient heterogeneity, in terms of both response to
TMZ treatment and patient outcome.
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3.4. Heterotypic Cultivation of pdGC MAs to Assess Intratumoral Heterogeneity

Next, we investigated whether self-assembly pattern-based assessment enables the
elucidation of intratumoral heterogeneity. Because the poor prognosis and treatment
failure associated with glioblastoma have been attributed to intratumoral heterogeneity
and the presence of diverse cell subpopulations within tumors [1], we hypothesized that
pdGC intratumoral heterogeneity might be correlated with the drug response and spatial
configuration (Figure 5a). Presumably, a cell subpopulation exhibiting strong self-affinity
will aggregate more rapidly, compared to other subpopulations, with the culture.

In order to collect subpopulations derived from single pdGCs, we sorted the cells based
on the size of cellular aggregates, which hypothetically depends on the aggregation speed;
cells with high affinity have faster cellular aggregates. Cell subpopulations exhibiting
strong affinity could aggregate more rapidly compared to other subpopulations. Thus,
during pdGC cultivation, we filtered the cellular aggregates by time once they were formed.
We filtered the pdGC to separate and screen it with large micropores (>70-µm), denoting the
first (1st)-screened. We re-cultivated flowthrough and repeated the filtration procedure to
obtain the second (2nd)-screened. We used the last flowthrough as the third (3rd)-screening
directly after filtration for the 2nd-screened subpopulation (Figure 5b).

We stained the 1st-, 2nd-, and 3rd-screened pdGC subpopulations with CellTracker
(red, green, and blue, respectively) to index the internal and external features (Figure 5c),
and evaluated the intratumor heterogeneity using TS14-48, TS13-20, TS15-88, and TS16-
139 pdGCs. There was no significant difference in the spatial configurations of TS14-48
and TS13-20, as observed. Only TS15-88 and TS16-139 exhibited distinctive assembly pat-
terns, and imaging confirmed that only the external-type pdGC subpopulations segregated
(Figure 5d). We then evaluated the drug responses of those subpopulations. Because aggre-
gate formation is dependent on cell density (Figure S8), we seeded pdGC subpopulations at
various densities and then added TMZ. Notably, the responsiveness of the third-screened
subpopulations of TS14-48 and TS15-88 cells to TMZ, at all tested concentrations, differed
between the two populations (Figures 5e and S9).

We further explored whether sequentially collected pdGC subpopulations exhibited
distinct gene expression signatures. First-, second-, and third-screened TS14-48 and TS15-
88 pdGC subpopulations were subjected to transcriptome (RNA-sequencing (RNA-seq))
analyses. The scatterplots and Pearson/Spearman correlations between subpopulation
global gene expression profiles revealed clear intertumoral differences between TS14-48
and TS15-88 (Figure S10). RNA-seq analysis revealed distinctive transcriptional changes
in the third-screened TS15-88 subpopulation (TS15-88_3rd) compared to the first- and
second-screened populations (TS15-88_1st and TS15-88_2nd) as well as all TS14-88 sub-
populations (TS14-88_1st, TS14-88_2nd, and TS14-48_3rd) (Figure 5f). In total, 178 genes
were upregulated and 112 were downregulated in the TS15-88_3rd population. The 29 en-
riched genes in the TS15-88_3rd population included COL19A1, ITGA2B, PDGFB, COL8A2,
ITGA8, ITGA1, COL5A3, and WNT3 (Figure 5g). GSEA revealed significant upregulation
of extracellular matrix (ECM)-related genes. KEGG pathway analysis identified genes
involved in ECM receptor interaction (Figure 5h). Gene Ontology (GO) analysis revealed
that TS15-88_3rd cells exhibited marked upregulation of the biological processes of ECM
organization, cell–matrix adhesion, and cell–cell adhesion, as well as the canonical Wnt
signaling pathway (Figure 5f). Notably, activation of the latter pathway is highly associated
with drug resistance in patients with glioblastoma [14]; pathway enrichment, together with
changes in secreted ECM components, in TS15-88_3rd cells may contribute to tumor het-
erogeneity and drug resistance. We found that genes related to ECM secretion, remodeling,
and molecular functions; cellular components; and reactomes were enriched in TS15-
88_3rd cells, indicating high-level intratumor heterogeneity among drug-resistant TS15-88
cell populations.
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Figure 5. Multicellular self-assembly assay of intratumoral heterogeneity in drug response.
(a) Schematic of the screening process used to identify phenotypic subpopulations within a sin-
gle pdGC population. (b) Screening of three subpopulations from a single pdGC population.
(c) Representative fluorescence images showing the formation of 3D spatial configurations in pdGC-
only MAs. Scale bar: 200 µm. (d) Spatial configurations (3D) of pdGC–U251–U87 MAs. (e) TS14-48
and TS15-88 cell viabilities (TMZ resistance levels); the subpopulations were those of single pdGCs
(initial density 1.0 × 105 cells). (f) A bar graph showing the numbers of upregulated genes in TS15-
88_3rd cells, compared to the other subpopulations (TS14-48 1st, 2nd, 3rd and TS15-88 1st, 2nd),
employing Gene Ontology terms in terms of biological process, cellular components, molecular
functions, and reactome. (g) Enriched gene expression heatmaps of sequentially screened TS14-88
and TS15-88 pdGCs. (h) Gene set enrichment analysis score plots for distinct phenotypes in the
third-screened TS15-88 subpopulation (TS15-88_3rd), compared to the other subpopulations.
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These results suggest that self-assembly-based assessment enables rapid, robust phe-
notypic screening of heterogeneous cell populations within a same tumor specimen; also in
addition, correlations with TMZ resistance were apparent.

4. Discussion

In this study, a novel approach for characterizing tumor heterogeneity based on the
intrinsic characteristics of glioblastoma is proposed. In a heterogeneous tumor population,
the spontaneous formation of multicellular aggregates is dependent on the preferred self-
assembly of cells with similar intercellular affinities. Our method identifies preferential
intercellular affinity between diverse subpopulations of glioblastoma cells, which corre-
lates strongly with the TMZ response. Therefore, our findings imply that the pattern of
multicellular self-assembly can serve as an indicator of glioblastoma heterogeneity, thus
allowing the prediction of therapy response.

Our approach has various technical advantages; our multicellular aggregation system
may offer spatial information based on intercellular affinity within a relatively short culture
period (24 h). This method is based on the self-assembly and evaluation of morphometric
features of assembled MAs; both experimental and analytic processes are simple to execute.
In addition, this rapid evaluation enables an evaluation of context-based assessment with
intrinsic characteristics that are unaltered by the phenotypic plasticity of cells. These advan-
tages outweigh the disadvantages associated with marker-based immunohistochemistry
and omics-based approaches.

As a heterogeneous subpopulation with specific characteristics develops during the
evolution of a tumor, such heterogeneity impedes the development of effective treatments.
Based on association studies between phenotypic information and several tumor hallmarks,
we discovered a substantial correlation between the spatial arrangement of the cells and
TMZ resistance. In this respect, our technology can provide a clinically relevant approach.
The cell population with weak intercellular affinity exhibited a high level of drug resistance;
this is critical for patient survival. The patient’s cells can be directly cultured in our system,
and their heterogeneity can then be evaluated. On the basis of our intuitive assessment,
the spatial configuration of the cells can be used to forecast their chemosensitivity, thus
facilitating the establishment of an appropriate therapy approach for patients.

The adhesive affinity of cells for specific ligands is spatiotemporal in nature and deter-
mined principally by adhesion molecules [21–25]. Although receptor/ligand interaction
analysis of major CAMs (including the immunoglobulin superfamily (IgCAMs), cadherins,
and integrins) is typically conducted to evaluate cell–cell affinity, cells change their adhesive
properties in a context-dependent manner [26,27]. In this study, we provided heterogeneous
cell populations to an anchorage-independent environment in order to assess their intercel-
lular affinity capability. In contrast to the situation involving receptor/ligand interactions,
cell–cell contacts play a crucial role in determining the morphological characteristics of
self-assembled aggregates, resulting in a collection of cohering cells with similar affinity.
Our GSEA results suggested that internal types of cell subpopulations show strong cell
affinity in terms of upregulated pathways in CAMs and homotypic cell–cell adhesions. In
contrast, external types of cell subpopulations exhibit fewer cell–cell contacts, but high
ECM receptor interaction, with high ECM remodeling-related pathways. Since ECM of-
fers structural and biochemical support for tumor malignancies to govern proliferation,
self-renewal, and differentiation of stem cell-like subpopulation, in addition to chemore-
sistance [28–30], we collectively suggest that tumor subpopulations with low cell affinity
may develop an increased ECM remodeling mechanism that would likely contribute to the
resistant response to therapy.

Although our proposed system gives new insight into the analysis of tumor het-
erogeneity, it has certain drawbacks. Due to the restricted number of patients in this
investigation, we were only able to rank the phenotypic association between eight patients,
dividing them into two distinct groups for relative comparison. Only the link between TMZ
reaction and self-assembly pattern was demonstrated in this study, making it difficult to
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generalize the correlation between self-assembly pattern and therapeutic response. There-
fore, it would be useful to apply this evaluation system to assess other chemotherapeutic
drugs, such as Carmustine, Bevacizumab, or other prospective drugs, using a large sample
number from glioblastoma patients. In addition, it would be necessary to investigate the
mechanism behind the assembly process of hMAs with target gene editing.

5. Conclusions

This research offers valuable insights on tumor heterogeneity at both the inter- and
intra-cellular levels. Intrinsic cell affinity among diverse tumor subpopulations promotes
the spontaneous self-assembly of 3D multicellular aggregates, demonstrating a connection
between chemosensitivity and prognosis. For future precision medicine and pharma-
ceutical applications, our assessment approach can be broadly applied to a variety of
heterogeneous tumors.
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