Title
Fluorescence Fluctuation Microscopy Techniques to Study mRNA Synthesis and Dynamics

Permalink
https://escholarship.org/uc/item/13r043bt

Journal
Biophysical Journal, 108(2)

ISSN
0006-3495

Authors
Annibale, Paolo
Gratton, Enrico

Publication Date
2015

DOI
10.1016/j.bpj.2014.11.1765

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
Probing Short-Range Protein Brownian Motion in the Cytoplasm of Living Cells

Carmine Di Rienzo1,2, Enrico Gratton3, Fabio Beltram1,2, Francesco Cardarelli2.

1NEST, Scuola Normale Superiore, Pisa, Italy, 2Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy, 3Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA.

The translational motion of small molecules in cells appears to be suppressed compared to what is observed in dilute solutions. Although, the rotation of small proteins is almost unhindered, pointing out a local aqueous environment. Different theoretical models provide explanations for this apparent discrepancy but with predictions that drastically depend on the nanoscale organization assumed for macromolecular crowding agents. A conclusive experimental test of the nature of the translational motion in cells is still missing owing to the lack of techniques capable of probing protein motion with the required temporal and spatial resolution. We show that fluorescence-fluctuation analysis of raster scans at variable time scales can provide this information. By using GFP, we measure protein translational motion at the unprecedented time-scale of 1 micro-second, unveiling unobstructed Brownian motion from 25 to 100 nanometers, and partially-suppressed diffusion above 100 nm. Experiments on in vitro model systems attribute this effect to the presence of relatively immobile structures rather than to diffusing crowding agents. In this regard, internal membranes (e.g. the ER sheets, vesicles, Golgi apparatus, etc.) appear to be the more likely candidates as selective disruption of the microtubules network by treatment with Nocodazole did not significantly alter GFP behavior in the cytoplasm. Also, the same measurement in a structurally-different (e.g devoid of membranes) intracellular environment, such as the nucleoplasm, yields a different behavior, in which GFP motion is never coincident with that in a dilute solution. Finally, we believe the present findings coupled with use of genetically-encoded fluorescent markers pave the way to novel studies of biomolecular processes in live cells at the physiologically-relevant spatio-temporal scale. Supported by grants NIH P41-GM103540 and NIH P50-GM076516 (grants to EG), MIUR under FIRB-RBAP11X42L and Fondazione Monte dei Paschi di Siena (grants to FB).
The availability of a system such as the MS2-GFP fusion protein, which directly labels the mRNA, has allowed obtaining an estimation of the RNA polymerase elongation rates in a range from a few to hundreds of basepairs per second. It is however a large heterogeneity observed in RNA Polymerase II (PolII) elongation rates measured from fluorescence assays. To shed further light on the source of this heterogeneity we introduce and discuss here a novel method based on the phasor analysis of steady state MS2-mRNA fluorescence trajectories. When applied to the study of PolII kinetics, we demonstrate that this approach allows resolving PolII elongation rates in a range from a few to hundreds of basepairs per second.

In order to couple this information to mRNA molecules once they leave the active transcription site, we combine 3D orbital particle tracking with Pair Correlation Analysis to investigate the diffusive routes taken by mRNA molecules within the nucleoplasm. With this approach we observe that the time an mRNA molecule takes to leave the transcription site is highly variable, ranging from a few to tens of minutes. This work supported in part by Grants NIH P41-GM103540 and NIH P50-GM076516.

1630-Pos Board B581
Nanoscale Protein Diffusion by STED-Based Pair Correlation Analysis
Ranieri Bizzarri1, Paolo Bianchini1, Francesco Cardarelli1, Mariagrazia Di Luca1, Alberto Diaspro1, Anja Nohe1. 1Laboratorio NEST, Istituto Nanoscienze, CNR, Pisa, Italy; 2Nanophysics, IIT—Italian Institute of Technology, Pisa, Italy; 3Center for Nanotechnology Innovation @NEST, IIT - Italian Institute of Technology, Pisa, Italy; 4Nanophysicis, 3IT - Italian Institute of Technology, Genova, Italy.

We describe for the first time the combination between cross-pair correlation function analysis (pair correlation analysis or pCF) and stimulated emission depletion (STED) to obtain diffusion maps at spatial resolution below the optical diffraction limit (super-resolution). Our approach was tested in systems characterized by high and low signal to noise ratio, i.e. Capsid Like Particles (CLPs) bearing several (>100) active fluorescent proteins and monomeric fluorescent proteins transiently expressed in living Chinese Hamster Ovary cells, respectively. The latter system represents the usual condition encountered in living cell studies on fluorescent protein chimeras. Spatial resolution of STED-pCF was found to be about 110 nm, with a more than twofold improvement over conventional confocal acquisition. We successfully applied our method to highlight how the proximity to nuclear envelope affects the mobility features of proteins actively imported into the nucleus in living cells. Remarkably, STED-pCF unveiled the existence of local barriers to diffusion as well as the presence of a slow component at distances up to 500-700 nm from either sides of nuclear envelope. The mobility of this component is similar to that previously described for transport complexes. Remarkably, all these features were invisible in conventional confocal mode.

1631-Pos Board B582
Analysis of Trabecular Bone Architecture using Two Photon Fluorescence Microscopy
Hemanth Akkiraju1, Christopher price1, Liyun Wang2, Jeffrey Caplan3, Anja Nohe1. 1Biological sciences, University of Delaware, Newark, DE, USA; 2Mechanical Engineering, University of Delaware, Newark, DE, USA; 3Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.

Biomechanical competence of trabecular bone is dependent on the makeup of its architecture. Alterations in the trabecular architecture can lead to fractures in metabolic bone diseases like osteoporosis. Therefore, it is paramount to understand the signaling mechanisms that dictate these changes in bone growth and fracture repair. Two photon fluorescence microscopy revolutionized the imaging of biological specimens utilizing its unique capabilities. The three-dimensional (3D) imaging based on nonlinear excitation of the fluorophore brings multiple advantages for imaging skeletal tissue. However, noise generated by the subsurface signal and auto-fluorescence of the local tissue make it challenging to interpret the data. Here, we demonstrate how the proximity to nuclear envelope affects the mobility features of proteins actively imported into the nucleus in living cells. Remarkably, STED-pCF unveiled the existence of local barriers to diffusion as well as the presence of a slow component at distances up to 500-700 nm from either sides of nuclear envelope. The mobility of this component is similar to that previously described for transport complexes. Remarkably, all these features were invisible in conventional confocal mode.

1632-Pos Board B583
Non-Linear Microscopy of Mitochondrial Damage and Abnormal Lipid Metabolism in Beta-Amyloid Expressing Yeast
Nisha Rani Agarwal1,2, Xin Chen1, Kumaravel Ponnadai Shunmugavel1, Dina Petranovic1, Annika Enejder1. 1Molecular microscopy, Chalmers University of Technology, Gothenburg, Sweden; 2Plasmon technologies, Istituto Italiano di Tecnologia, Genova, Italy; 3Systems Biology, Chalmers University of Technology, Gothenburg, Sweden.

One of the earliest pathological hallmarks of Alzheimer’s disease is the formation of soluble beta-amyloid (Aβ) oligomers, also believed to be the primary neurotoxic agents long before the accumulation of amyloid plaques. However, the mechanisms by which the Aβ oligomers cause cell dysfunction and eventually cell death are poorly understood. The yeast Saccharomyces cerevisiae has here emerged as a valuable model for systemic studies of the intracellular cytotoxicity of Aβ species, revealing that Aβ transits through the different endocytic compartments and disrupts cell-, mitochondrial-, lysosomal- and ER membranes (for a review of the different aspects of amyloid-membrane interactions) finally activating the mitochondrial apoptotic pathway. In order to foster a deeper understanding of the cause and consequences of mitochondrial damage, seemingly one of the central cytotoxic mechanisms, we have done a multi-parametric study on living GFP-Aβ42 expressing yeast using non-linear microscopy. The intracellular distribution of GFP-labelled Aβ42 was correlated with the corresponding distribution and morphology of mitotracker-labelled mitochondria by means of 2-photon fluorescence microscopy. Furthermore, the consequences of the dysfunctional mitochondria and the resulting oxidative stress were visualized by the monitoring of the general NADH levels based on their 2-photon-excited intrinsic fluorescence and the content and distribution/morphology of lipid stores by means of CARS microscopy (probing natural carbon-hydrogen vibrations). We could observe how Aβ-expressing yeast accumulates significant amounts of lipid stores and follow their coalescence to larger store units, which can be recognized as a general stress response, in this case most likely due to oxidative stress.

1633-Pos Board B584
Using Surface Plasmon Resonance to Study Species Transport across Lipid Membranes
Cheng-Jung Kuo, Chao Ling, National Taiwan University, Taipei, Taiwan.

Studying species transport across lipid membranes by membrane transport proteins is important for various biological applications. Although patch-clamp technique is well developed for recording the ion transport across lipid membranes, the technique requires well trained personals for the challenging and demanding operation. In this study, we demonstrated using the surface plasmon resonance (SPR) based platform to detect the concentration change of the target species across the lipid membrane. We created sub-micron sized pore structure on the platform, in which the bottom surface is gold and the top surface is silica, and spanned lipid membranes over the pore. The process created a space inside the pore separated from the outside environment by the free-standing lipid membrane for further studying the species transport across the membrane. The platform geometry allowed us to combine plasmon-waveguide resonance (PWR) to the system to simultaneously monitor the refractive index change in the pore space, which is correlated to the target species concentration, and the refractive index change on the membrane above the top silica surface, which is correlated to the binding events occurring on the membrane surface. We expect to use this platform to monitor how various inhibitors or ligands could influence the transport dynamic of interested membrane transport proteins.

1634-Pos Board B585
Applications of High Resolution Surface Plasmon Resonance Imaging to Adherent Cells: Single Mammalian Cells to Bacterial Biofilms
Alexander W. Peterson, Michael Halter, Alessandro Tona, Nancy J. Lin, John T. Elliott, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA.

High resolution surface plasmon resonance imaging (SPRi) allows label-free imaging of subcellular features when performed using a high numerical aperture objective lens with a digital light projector to precisely position incident angle excitation. The SPRi signal is a result of the mass of material within fluorophores measuring Smad and ERK activity in trabecular bone growth in mice that are systemically injected with Bone Morphogenetic Protein 2 (BMP2). We optimized the conditions for in vivo imaging of bone tissue that is calcified and plasticized. We demonstrate here two photon fluorescence microscopy of the trabecular bone can be used for understanding the molecular mechanisms which control bone growth and development in vivo.