
UCLA
Papers

Title
Virgil: Objects on the Head of a Pin

Permalink
https://escholarship.org/uc/item/13r0q4fc

Journal
Center for Embedded Network Sensing, 41(10)

Author
Titzer, B L

Publication Date
2006-10-22

DOI
10.1145/1167473.1167489

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13r0q4fc
https://escholarship.org
http://www.cdlib.org/

Virgil: Objects on the Head of a Pin
Ben L. T itzer

UCLA Compilers Group
4810 Boelter Hall

Los Angeles, CA 90095
1-310-206-3844

titzer@cs.ucla.edu

Abstract
Embedded microcontrollers are becoming increasingly
prolific, serving as the primary or auxiliary processor in
products and research systems from microwaves to sensor
networks. Microcontrollers represent perhaps the most
severely resource-constrained embedded processors, often
with as little as a few bytes of memory and a few kilobytes of
code space. Language and compiler technology has so far been
unable to bring the benefits of modern object-oriented
languages to such processors. In this paper, I will present the
design and implementation of Virgil, a lightweight object-
oriented language designed with careful consideration for
resource-limited domains. Virgil explicitly separates
initialization time from runtime, allowing an application to
build complex data structures during compilation and then
run directly on the bare hardware without a virtual machine or
any language runtime. This separation allows the entire
program heap to be available at compile time and enables three
new data-sensitive optimizations: reachable members
analysis, reference compression, and ROM-ization. Experi-
mental results demonstrate that Virgil is well suited for
writing microcontroller programs, with five demonstrative
applications fitting in less than 256 bytes of RAM with fewer
than 50 bytes of metadata. Further results show that the
optimizations presented in this paper reduced code size
between 20% and 80% and RAM size by as much as 75%.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features –Classes and
Objects, Dynamic Storage Management, Inheritance

General Terms Algorithms, Management, Performance,
Design, Experimentation, Verification.

Keywords Embedded systems, microcontrollers, static
analysis, data-sensitive optimization, heap compression,
systems software, standalone programs, multi-stage
computation, whole-program compilation, dead code
elimination, sensor networks

1. Introduction

1.1 Background
Microcontrollers are tiny, low-power processors that contain a
central processing unit, flash memory, RAM, and I/O devices
on a single physical chip. Marked by limited computational
power and very small memories, they often serve as the central
or auxiliary control in systems where the presence of a

computer may not be readily apparent, such as a fuel-injection
system. Microcontrollers represent one of the most extreme
instances of a software-programmable resource-constrained
embedded system. For example, the 8-bit AVR architecture
offers chips with flash sizes between 8 and 128 kilobytes and
just 64 to 4096 bytes of RAM, with clock rates usually
between 4 and 20mhz.

Microcontrollers allow for software programmability by
storing a program’s instructions in a flash memory that allows
infrequent, coarse-grained updates, usually done only during
testing. Software for the smallest of microcontrollers i s
generally written in assembly language, but medium to large
microcontrollers are often programmed in C. Generally there i s
not enough code space or memory to fit a true operating
system that provides processes, threads, and semaphores; thus
most programs run directly on the microcontroller without any
of the protection mechanisms that are common on desktop
computing platforms.

Microcontrollers are gaining increased attention in the
research community because they are an ideal fit for sensor
networks, where programmability, physical size, and power
consumption are important design criteria. Within the sensor
network domain, a number of parallel and distributed
languages and programming paradigms have been proposed
[25]. Virgil is not an attempt to solve the distributed problems
in sensor networks but rather a compiler/language system for
programming resource-constrained embedded systems, of
which sensor nodes are one example. In this space the most
popular sensor systems are either programmed in C or nesC
[16], an extension to C that includes module capabilities and a
simple task model.

1.2 Motivation
Microcontroller-class devices represent an extreme setting for
the challenges inherent in building embedded systems. These
challenges include not only resource constraints such as code
space, data space, and CPU performance, but also the lack of
supporting software and hardware mechanisms to enforce
safety, the need to access low-level hardware state directly, and
the concurrency introduced by handling hardware interrupts.
This paper considers the question of how object technology
can benefit developing software in this domain. I believe that
objects have much to offer embedded systems software where
events, queues, packets, messages, and many other concepts
exist that lend themselves naturally to being expressed with
object concepts. Unfortunately the domain constraints have
thus far limited the adoption of new languages and paradigms.

The Virgil programming language is an attempt to address the
challenge of matching objects to microcontrollers at the
language and compiler level. The most important design
consideration when taking this approach is the space overhead
that language features add to the program implementation. For
the purposes of this paper, this overhead can be divided into
two categories: runtime, which consists of libraries, routines

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
OOPSLA’06, October 22–26, 2006, Portland, Oregon, USA.
Copyright © 2006 ACM 1-59593-348-4/06/0010…$5.00.

and subsystems needed to implement language features like
garbage collection, class loading, reflection, dynamic
compilation, and serialization; and metadata, which consists
of data structures added to the program such as dispatch
tables, string constants, type signatures, and constant tables.
Virgil avoids heavyweight features that require a runtime
system or significant metadata and selects features that admit a
straightforward, low-overhead, constant-time implementation
that is both clear to programmers and can be accomplished
without sophisticated compiler analyses. The lack of
supporting hardware and software mechanisms for enforcing
safety is overcome by enforcing strong type-safety at the
language level with some dynamic checks. Finally, Virgil’s
compilation model allows for complex application
initialization at compile time and enables three new aggressive
optimizations that further increase application efficiency.

1.3 Structure
The rest of this paper is structured as follows. Section 2 sets
out the most important design criteria that have guided the
development of the Virgil language. Section 3 discusses the
language features that have survived the crucible of design
criteria and how each can be implemented efficiently with
known techniques. Language features that were rejected are
also discussed. Section 4 describes the compilation model of a
Virgil program, including the initialization time concept.
Section 5 explores the implications of the compilation model
by describing three new optimizations that it makes possible.
Section 6 discusses experience with the language and its
implementation, providing experimental results. Section 7
discusses related work. Section 8 gives a conclusion and
Section 9 describes future work.

2. Design Principles / Constraints
In this section, we will explore the design principles for the
Virgil language and the constraints that the domain imposes.
Each principle is oriented toward easing the difficult task of
building embedded software through modularity, static
checking, and expressive features. To this end, Virgil’s design
principles are:

i . Objects are a good fit. The object-oriented
programming paradigm has successfully led to better
designed programs that are more modular, flexible, and
robust. Embedded software often uses events, queues,
packets, and messages; objects are a natural fit to represent
such entities.

ii. Static detection of errors is best. Strong static
type systems catch a large class of errors that are still
embarrassingly prevalent in embedded systems software.
The weak type systems in languages like C and C++ fail to
catch an avoidable class of bugs in the interest of allowing
direct control over data representations, manual memory
management, and access to hardware state for software at
the lowest level. Ironically, these kinds of systems have
the greatest need for static checking, because errors are the
hardest to find and the most damaging. Strong static safety
guarantees in this domain are paramount.

i i i . Objects are not always perfect. Although
object-oriented concepts are a good fit for many tasks, new
expressiveness problems continually stress object-
oriented constructs. For some problems, functional or
procedural programming styles still have important
advantages that should not be overlooked. The language

should afford programmers some degree of flexibility to
seek elegant solutions.

i v . Some dynamic checks are OK. An object-
oriented language cannot usually avoid all potential
safety problems statically, particularly when indexable
arrays, null references, or type casts are allowed. In this
case the language must fall back on some dynamic checks
that may generate language-level exceptions. Although
microcontrollers often lack hardware safety checks and
thus require explicit checks to be inserted by the compiler,
modern compiler optimizations are now advanced enough
that this overhead is usually acceptably small.

While the design principles outline desirable properties of
such a language, the domain imposes an important set of
constraints. The resource challenges of an embedded system
require a systematic design approach that avoids introducing
unacceptable resource consumption in implementing the basic
language and libraries. In Virgil, one of the primary
underlying efficiency considerations is to ensure that
overheads introduced by the language are small and
proportional to usage in the program. This affords
programmers control over resource consumption by avoiding
uncontrollable costs like a large runtime system. Where and
when language feature overheads occur will be apparent to
moderately skilled programmers and therefore can be reduced
or avoided by restructuring the program if needed. This leads
to the imposition of the following design constraints on the
language and compiler:

i . No runtime. Virgil programs will run as the
lowest layer of software, so the notion of a language
runtime underlying a Virgil program is a bit problematic.
Secondly, because of the severe resource limitations of a
microcontroller, any language runtime system can
represent a significant cost in terms of both code space,
data space and execution efficiency. Because the runtime
system is often implemented “under the language,” it i s
generally not under the control of the application or
system programmer and may vary from implementation to
implementation. For the microcontroller domain, a
programmer needs to have control over all of the code that
will end up on the device.

i i . No intrinsics. Intrinsics are library code and
types, other than primitives, that are needed to implement
basic language features and are generally established by a
language standard. For example, in Java, the entire
java.lang.* set of classes are needed by both the
compiler and runtime system to implement a Java program.
Transitively, these classes pull in a nontrivial part of the
JDK. Despite the positive effect that standardizing basic
libraries can have, like a runtime, the implementation of
intrinsics isn’t supplied by the programmer, and thus
represents yet another uncontrollable source of resource
consumption.

i i i . No dynamic memory al location. Manual
memory management, aside from concurrency, is perhaps
the most error-prone part of software. While a general-
purpose garbage collector eliminates most problems in
modern languages, most microcontroller programs are
already written to statically pre-allocate all the memory
that will be needed during execution. For example, one of
the nesC language’s primary design criteria was that
dynamic memory allocation is unnecessary for the targeted
class of systems. Thus even without dynamic allocation,

nearly all microcontroller and sensor network programs are
realizable, though some must resort to statically allocated
and manually managed object pools of fixed size.

iv. Minimal metadata. Metadata associated with a
program, such as runtime type information, virtual
dispatch tables, and object headers should be small and
proportional to the program’s complexity. The
programmer is likely willing to trade some space for better
language features, provided the overhead is acceptably
small and readily apparent during implementation and
tuning.

3. Virgil Language Features
In this section, we examine the features of the Virgil
programming language, both those features selected for
inclusion and those rejected. In this design space there i s
significant tension between expressiveness and its runtime
cost, with RAM usually the scarcest resource. For example,
embedded programmers have often felt the need for explicit
control of data representations in order to save space, while to
save execution time and code space, they often shy away from
language constructs that appear inefficient. The common rule
of thumb in C++ is “you get what you pay for,” which leads
programmers concerned about efficiency to avoid exceptions,
runtime type information, templates, and many other language
features. Most microcontroller programmers avoid higher-
level languages altogether, preferring C because developing a
standalone program is relatively easy, and C is perceived as an
inherently efficient language because it is very low-level.
Worse yet, some microcontrollers are so tiny they are still
developed primarily in assembly language.

Virgil balances this design tension at a unique point, carefully
selecting features according to the design principles and
constraints, increasing expressiveness while retaining an
efficient implementation that builds programmer trust. Each
feature is considered carefully against the efficiency and
straightforwardness of its implementation. This will allow a
programmer to trust that a basic compiler will implement
objects efficiently. Advanced optimizations as presented here
will further reduce program footprint, lightening the burden
on the programmer, leading to higher productivity and more
robust systems.

3.1 Inheritance Model
Virgil’s inheritance model is motivated primarily by the need
to allow a straightforward and very efficient object
implementation with minimal metadata, while retaining strong
type safety. Because programmers in this domain often face
tension between program flexibility and implementation
efficiency, Virgil makes the efficiency tradeoff more explicit
and controllable.

Virgil is a class-based language that is most closely related to
Java, C++ and C#. Like Java, Virgil provides single inheritance
only, with all methods virtual by default, except those
declared private, and objects are always passed by reference,
never by value. However, like C++ and unlike Java, Virgil has
no universal super-class akin to java.lang.Object from
which all classes implicitly inherit. But Virgil differs from
C++ in two important ways; it is strongly typed, which forces
explicit downcasts of object references to be checked
dynamically, and it does not provide pointer types such as
void* . The implications of lacking an Object class are
explored in the next subsection.

Java provides limited support for multiple inheritance
through the use of interfaces, which increase the flexibility of
object classes. However, the implementation efficiency of
interfaces can be troublesome, particularly in terms of the
metadata needed for interface dispatch. In some cases, altering
a single class to implement a new interface can result in a
significant increase in the size of dispatch tables across
multiple types. [3] Discusses efficient implementation
techniques for Java interface dispatch in the Jikes RVM; it
uses a hashing scheme that works well in practice, but can
require generating code stubs that perform method lookup. In
general, most interface dispatch techniques are either constant-
time (e.g. two or three levels of indirection), or space-efficient
(e.g. linear search, hashing, caching), but not both. Because of
these limitations, Virgil does not support interfaces.

Restricting Virgil classes to single inheritance and removing
features such as interfaces and monitors reduces the amount of
metadata needed for each object instance. A Virgil object
requires only a single-word header that holds a pointer to its
class’s meta-object containing an integer type id and a virtual
dispatch table. Class-based inheritance, whether Java, C++, or
Virgil, requires the meta-object for a class to be at least as large
as the meta-object for its super-class, plus the number of new
methods declared in the class. Because Virgil has no universal
super-class, a root class inherits nothing and contains only a
type id and the virtual methods declared in the class.
Additionally, Virgil meta-objects are read-only and can be
stored in ROM, saving precious RAM space.

Single inheritance also allows subtype tests to be
implemented by using the well-known range-check technique
where each class is assigned a type id and range of type ids
that contains its subclasses. A dynamic type test of object O
against type T is implemented as a check of O ’s type id
against the range of type ids for T. For leaf types T, only one
comparison is necessary. This approach, first presented in [28],
is more efficient than dynamically searching O’s list of parent
types, but requires the availability of the complete inheritance
hierarchy. This technique is a good fit for Virgil; it guarantees
every cast is a constant-time operation, regardless of the depth
of the class hierarchy, and requires at most one integer type id
per meta-object. Virgil’s compilation model ensures the entire
class hierarchy is available at compile time.

3.1.1 To Object or Not to Object
One important design choice in Virgil is the lack of a universal
super-class such as Object that all classes implicitly extend.
In Java, Object includes a host of features including
monitors, first-class metadata (the getClass() method),
hashing, equality, etc. A number of these services require meta-
data in object headers, in addition to mark bits needed by the
garbage collector. Bacon et al [6] discuss in detail the
challenges inherent in implementing the Java object model
efficiently. Even in high performance virtual machines, two or
more words of space are needed for object headers. For meta-
objects, as we saw in the previous section, inheritance requires
the meta-object for a class to be at least as large as that of its
super-class. Object in Java 5 contains 11 virtual methods,
which bloats every meta-object in the application.

As an alternative to the Java model, one could consider an
empty Object that contains no methods and no capabilities.
An empty Object that is the root of the hierarchy would
prevent bloating of all meta-objects and allow generic

collections such as a list to hold any kind of objects, at the
cost of forgoing the convenience of default functionality. At
first, this seems like a reasonable tradeoff. However, this still
forces all objects to retain a header that contains type
information because objects can be implicitly cast to Object
and then later explicitly downcast, which requires type
information for a dynamic safety check.

The decision to eliminate the universal super-class in Virgil
allows some objects to be implemented without any metadata.
Virgil programmers can write what are termed orphan classes:
classes that have no parent class and no children classes. An
instance of an orphan class is a degenerate case of an object; i t
can be represented as a record without any object header, like a
C struct, since it is unrelated to any other classes. Because
the Virgil type system, as in Java, rejects casts between
unrelated classes, an object of an orphan class never escapes to
a point where its exact type is not known. The compiler can
also statically resolve method calls on orphan objects,
removing the need for a virtual dispatch table.

Orphan classes can arise intentionally and unintentionally in a
Virgil program; a programmer need not restrict a class to be an
orphan explicitly. In fact, each class is an orphan by default,
unless it extends some other class, in which case neither class
is an orphan. My personal experience with large applications
in Java gives me the impression that a substantial number of
classes tend to be orphans without purposeful contemplation.
The Virgil compiler extends this tendency to a guarantee that
orphan instances will be represented without an object header.
Orphans therefore give the careful programmer a way to extract
maximum efficiency, at some cost to the program’s flexibility.

The advantages of this lack of a universal super-class and the
special support for orphans include:

i . Removes the need for intrinsics. There is no
need for a special root class that is built into the language.
Such special built-ins have a tendency toward feature
bloat, which reduces the programmer’s ability to make
efficient implementation decisions and goes against the
design criteria of Virgil.

i i . Orphan objects are very efficient. Orphan
instances require no object header and no meta-object that
contains runtime type information for the class. A
programmer can use objects like structures without
penalty in a way that is statically type-safe.

i i i . Improves type-based analysis . Several
compiler analyses use the static type information as an
approximation of aliasing and flow information [13][26]
and lose precision when references are typed Object. Such
analyses get a precision boost by the virtue that objects
cannot escape beyond their ultimate root class.

iv. Lightweight confinement. Virgil’s strong type
system affords a kind of lightweight confinement. By
introducing a new class hierarchy unrelated to the rest of
the program, the programmer can confine objects to a
region of code, because such objects cannot escape
through implicit casting to super-classes. Confinement, in
addition to security benefits, helps modularize program
reasoning for programmers and tools [37][39].

v. Documentation and understanding. Static types
of fields and parameters provide valuable documentation
to programmers. When finding uses of a class in a Virgil
program, the programmer need only consider places where

the class is mentioned by name and need not reason about
objects escaping through subsumption.

v i . Reference compression. Covered in detail in
section 5, the compiler can exploit the confinement
properties of disparate class hierarchies to compress object
references in order to save RAM.

On the other hand, the lack of a unifying super-class has
important disadvantages. First, it is difficult to write generic
collections and data structures such as lists, maps, and sets
that work with any kind of objects. A library might address
this problem by reintroducing a base class for “collectible”
classes that client code must extend in order to use the
functionality—its own Object class, for example. Classes that
choose to extend this Object class would forgo the efficiency
benefit of orphans. A second problem is that as different
libraries emerge, competing versions of Object could
complicate programs that use multiple libraries. However,
since Virgil is focused on building systems rather than
applications, a Virgil program will likely be mostly self-
contained or tightly coupled with a single library like a small
microcontroller operating system.
Clients also have the option to employ the Adapter [15]
pattern by writing wrapper classes to adapt their classes to the
API of various libraries. Delegates (Section 3.3) reduce this
problem by allowing limited functional programming, but as
Virgil applications are scaled up, developers begin to stress
the language and a more robust solution is needed. One
implementation technique is fat pointers, which encode the
type information for an object in the reference itself rather than
in the header of the object, allowing orphan objects to still be
represented without a header. However, fat pointers can
increase the size of references and may negate the space saved
by omitting headers for orphans. I believe the best future
solution overall is generic types [8], which will allow library
designers to write classes that are polymorphic over any type,
including primitives, while providing static type safety. The
implementation issues for this change are discussed briefly in
the future work section.

3.2 Components
In addition to classes and simple inheritance, Virgil contains a
singleton mechanism called a component that serves to
encapsulate global variables and methods. While Java allows
static members, all class members in Virgil are instance
members. Components are used to encapsulate those members
that would be declared static in Java. This provides for
global state and procedural style programming, but within
modules. This explicit separation of static and instance
concepts reduces problems of incomplete abstraction (e.g.
hidden static state in classes), and makes the separation
apparent to both programmers and program reasoning tools.
Components require no metadata to implement, since they are
not first-class types. Components also serve an important
purpose that will be explored more in Section 4: they
encapsulate the initialization portion of the program and their
fields serve as the roots of the live object graph.

3.3 Delegates
Purely class-based languages have one important drawback
that design patterns such as the Adapter, Observer, and Visitor
[15] attempt to address; for different modules to communicate,
they must agree not only on the types of data interchanged,
but the names of the operations (methods). This is manifest in
the proliferation of interfaces that serve to name both types

and methods for interchange between modules. In my opinion,
this is a language flaw that can lead to needlessly
complicating applications and libraries with interfaces.
Parametric types are only a partial solution to this problem.
Functional programming paradigms have a more elegant
solution to this problem and allow first-class functions to be
used throughout the program based only on types.
Unfortunately, implementing higher-order functions in
general can require allocating closures on the heap, and Virgil
does not allow any dynamic memory allocation.

Virgil makes a compromise between the functional paradigm
and the object paradigm by borrowing from C# the delegate
concept, which is a first class value that represents a reference
to a method [1]. Delegates in Virgil are denoted by the types of
their arguments and their return type, in contrast to C# where
in addition to the argument and return types, a delegate type
must be explicitly declared and given a name before use. Thus
a delegate in Virgil is more like a first-class function in any
statically typed functional language than an object concept as
it is in C#. A delegate in Virgil may be bound to a component
method or to an instance method of a particular object; either
kind can be used interchangeably provided the argument and
return types match.

Delegate uses in Virgil do not require any special syntactic
form for their use. Rather, delegate syntax generalizes the
common expr.method(args) notation for instance method
calls, by allowing expr.method to denote a delegate value
and expr(args) to denote applying the delegate expression
expr to the arguments. This retains the familiar method call
syntax of Java, but allows delegates to be created by simply
referring to the method name as if it were a field. See Figure 1
for an example.

The Virgil compiler implements all delegate operations,
including creating, assigning, and applying delegates as
efficient, constant-time operations that do not require
allocating memory. At the implementation level, a delegate i s
represented as a tuple of an object pointer and a function
pointer. A delegate tuple is not allocated on the heap, but i s
represented transparently as two scalar variables or two single-
word fields, depending on where it occurs. When the
programmer uses an object’s method as a delegate, the receiver
method is resolved dynamically as in a virtual dispatch, and
the object reference and the resolved method constitute the
delegate tuple. Referring to a component method as a delegate
creates a tuple with null as the object. Applying a delegate to
its argument is implemented as a simple indirect function call,
passing the bound object reference as the hidden this
parameter if necessary. Since method resolution takes place at
creation time rather than invocation time, delegate invocations
actually require one fewer memory access than a virtual
dispatch. Further, the scalar variables representing the object
reference and the method reference of a delegate tuple can be
subjected to standard compiler optimizations such as
constant/copy propagation, code motion, etc.

In contrast, delegates in C# are compiled to an intrinsic
Delegate class supplied by the compiler; using delegates
requires both dynamic memory allocation and reflection
mechanisms in the runtime system. However, C# also supports
multi-cast delegates, where a delegate can refer to multiple
methods and invoking it invokes all methods. Virgil does not
support multi-cast delegates.

3.4 Hardware Registers and Interrupts
Although hardware access is beyond the scope of this paper,
Virgil has support for directly accessing hardware I/O registers
in a controlled way, without having to resort to calls to native
methods, indirect accesses through pointers, “fake” classes,
VM tricks, or other magic holes in the type system. Instead, the
hardware registers with fixed memory addresses in the I/O
space are exposed to the program as fields of a special
component named device that can be read or written with
primitive types only. The compiler will arrange the heap in
memory so that objects and data structures do not overlay the
I/O space. Accesses to these registers are always direct, by
name, and thus the program cannot inadvertently alter the
contents of the heap through indirect pointers. Hardware
interrupts can be handled directly by component methods,
allowing a complete hardware device driver to be written
entirely in Virgil, without any underlying unsafe code.

3.5 Virgil Anti-Features
There are a number of language features available in modern
object-oriented languages that have important expressiveness
benefits but nevertheless cannot be comfortably supported
given the design constraints. Section 3.1 has already
discussed the Virgil inheritance model that allows efficient
object implementations by removing features such as
interfaces, but the design constraints have led Virgil to omit a
number of features that entail large metadata and runtime
overheads, such as:

i . Locks. Synchronization primitives require
runtime support in the form of locking and unlocking
operations. This includes natively implemented atomic
instruction sequences and spin loops, but most
importantly queues, which consume memory. Wait queues
also assume a threading model; a microcontroller i s
generally a one-stack system without real threads.

class List {
 field head: Link;
 method add(i: Item) { . . . }
 method apply(f: function(Item)) {
 local pos = head;
 while (pos != null) {
 f(pos.item);
 pos = pos.next;
 }
 }
}
component K {
 method printAll(l: List) {
 l.apply(print);
 }
 method append(src: List, dst: List) {
 src.apply(dst.add);
 }
 method print(i: Item) { . . . }
}

Figure 1: Example code in Virgil that demonstrates the use
of components and delegates. Component K contains static
members and data. The List class provides an apply()
method that accepts a delegate, which K uses to implement
printAll() and append().

ii. Class loading. Dynamically loading new classes
into the program is generally not needed for the types of
programs that are written for microcontrollers.
Additionally, dynamic class loading requires attaching
significant metadata to the classes so that the host system
can integrate the code into the program’s type system. This
requires a significant runtime support structure.
Additionally, dynamic loading can invalidate essentially
any compiler optimization, which forces a static compiler
to be overly conservative.

iii. Reflection. The ability to inspect the members of
objects, modify them, search by name, and various other
things that reflection allows requires a substantial runtime
support system that carries significant metadata with the
program. Large cost aside, the development model of
microcontroller programs would tend to suggest that
runtime reflection and dynamic configuration techniques
such as [23] should rather be replaced with static
configuration mechanisms.

i v . Garbage collection. Garbage collection i s
unnecessary under the current design constraints, because
no dynamic memory allocation is allowed.

v . Method Overloading. C++, Java, and C# all
allow overloading methods by their parameter types.
Although overloading is a purely static form of
polymorphism and thus has no inherent runtime cost, i t
conflicts with Virgil’s delegate mechanism. Virgil
supports using a method as a delegate by simply referring
to its name; the presence of overloading would introduce
ambiguity that would require a resolution mechanism that
detracts from the simplicity of Virgil delegates.

What remains in Virgil is a simple but elegant set of object-
oriented, procedural, and functional concepts that all require
very little metadata, no runtime support, and all support
strong type checking, with minimal dynamic safety checks.
The dynamic checks required in Virgil are inserted
automatically by the compiler and optimized where possible.
These are explicit null checks, array bounds checks, subtype
tests for explicit downcasts, and division by zero.

4. Program Initialization
Many embedded and real-time programs have a natural
separation between application start up, where global data
structures are allocated and initialized, and steady state
execution where events are handled and the main computation
is carried out. For example, an operating system allocates data
structures associated with process tables, memory
management, device management, caches, and drivers once
when it boots and then reuses them through its lifetime.

Because the core Virgil language has been carefully designed
to allow applications to execute on the bare hardware without
any supporting software or language runtime, it provides an
explicit separation between initialization time, where data
structures are allocated and initialized to a consistent state,
and run-time, where data structures will be manipulated but no
longer created or destroyed.

Each component in a Virgil program can optionally contain a
constructor, much like an object’s constructor, that contains
code that initializes the component. The Virgil compiler
contains an interpreter for the complete language and provides
an initialization environment for this constructor that i s
richer than the run-time environment. Constructors execute

inside the Virgil compiler, before any code is generated. The
initialization environment allows unrestricted computation
using all the language features; in particular the constructor
may access other component’s fields, allocate and initialize
objects and arrays, call component and object methods, create
delegates, etc. Because the initialization phase represents
Turing-complete computation, a constructor might not
terminate, which of course is undecidable. The Virgil compiler
makes no attempt to enforce that the initialization phase
terminates; this is left to the programmer. In the future, a
timeout option could be provided along with other debugging
facilities to examine the operation of the program’s
initialization phase.

In Virgil, initialization is considered an inseparable part of the
compilation process for a program. Initialization requires the
entire program to be available, since initialization code can
transitively reference any part of the program. The assumption
of whole-program compilation is justified in this domain
because when building a standalone program for an embedded
device there is always a point, traditionally link time, where
the complete binary is put together. The Virgil compilation
model recognizes this as inevitable and makes it an integral
part of the compilation process.

4.1 Initialization Order
The order in which component constructors are executed i s
deterministic and given by their order in the master program
declaration in which the programmer lists the components that
are part of the program. However, dependencies between
components can force initialization to happen earlier. For
example, if the field of an unconstructed component K i s
accessed during the initialization of an earlier component J,
then K 's constructor is invoked before the field operation
completes. A cycle in constructor invocations cannot occur
because a component is marked as constructed at the
beginning of its constructor. Fields not explicitly given an
initialization value, or fields that have not yet been initialized
because of a cycle in dependent initialization, have a default
value given by their type (e.g. 0 for int; null for arrays and
objects). One drawback of persistent systems such as Smalltalk

class List {
 field head: Link;
 method add(i: int) { . . . }
}
component K {
 field a: List = new List();
 field b: List;
 constructor() {
 b = new List();
 add(a, 0);
 add(b, 1);
 }
 method add(l: List, i: int): int {
 l.add(i);
 return i;
 }
}

Figure 2: Example initialization code in Virgil that
demonstrates the use of component constructors.
Component field initializers and the constructor()
method are run inside the compiler before generating code.

has been that replicating the initialization environment for a
particular program can be nontrivial. In Virgil, the program
does not depend on the compilation environment’s objects,
but instead builds its own object heap.

4.2 Initialization Garbage
When the constructors of the components have terminated, the
compiler will perform a garbage collection phase that removes
objects that were allocated by the initialization code but are
unreachable. The fields of components serve as roots into the
graph of objects that represents the entire heap of the program.
The compiler traces from the component fields through objects
and object fields to discover everything transitively reachable
from the roots. Temporary objects allocated during
initialization that are not reachable are discarded. Only the
code and metadata associated with live objects are included in
the final program binary.

4.3 Code Generation and Runtime
After the initialization phase and garbage collection, the Virgil
compiler will compile both the code and the heap of the
program together into a single binary that can be loaded onto
the device or executed in a simulator. When the program
begins execution on the device, the entire initialized heap i s
available in memory and the program can manipulate these
objects normally, reading or writing fields, invoking methods,
creating delegates, etc. However, the program will not be
allowed to allocate new objects, which eliminates the need for
a runtime memory manager or a garbage collector.

5. Optimizations
Careful adherence to the design constraints allows Virgil to be
implemented straightforwardly and efficiently without a
language runtime and with minimal metadata. In addition to
the base efficiency of the straightforward implementation,
basic optimization techniques can be applied. For example,
every Virgil compiler is required to employ Class Hierarchy
Analysis [12] to devirtualize calls and delegate uses, as well as
to identify degenerate orphan classes to be represented
without object headers.

The availability of the complete program heap enables an
advanced Virgil compiler to substantially improve on the base
implementation with three new optimizations that are
described in this section. The first, reachable members
analysis, removes code, objects, and fields of objects that are
unused in the program. Reference compression exploits the
language’s type safety to represent object references in a
compact way, and ROM-ization reorganizes object layouts to
move read-only fields into the larger ROM memory. All three
optimizations exploit the type-safe nature of the Virgil
language and are made possible by the availability of the
program heap at compile time.

5.1 Reachable Members Analysis
Initialization time allows a Virgil program to build complex
data structures such as lists, queues, pools, maps, and trees
during compilation for use at runtime. Garbage collection
following program initialization uses the standard notion of
transitive reachability through object references to discover
the reachable heap and discard temporary objects. However,
libraries or drivers used by a Virgil program may create data
structures that are statically reachable but are not used by the
program.

This can arise in a number of scenarios. For example, a software
device driver may create data structures that are only used if
the hardware device is used by the program. Imagine a timer
driver with an event queue used to trigger application events
at specific future times; the queue is only necessary if the
application actually uses this feature of the timer. Another
example is when a device with many different modes of
operation is used in only one particular mode. In other
situations, an application may only use a subset of the
functionality provided by a complex data structure; a doubly
linked list that is only traversed forward will never use the
back pointers, or a tree that is only searched and not modified
may not need parent pointers in its nodes. To encapsulate this
problem, we need a more general notion, semantic
reachability, where objects and their constituent fields are
considered live only if they are accessed at runtime.

A compiler may employ semantic reachability to slice the
program and remove objects and fields that are dead. This i s
especially important when compiling an application that
reuses drivers, modules, and data structures that provide more
functionality than is needed for the program. The compiler
need only generate the code and include live data structures,
reducing the total memory footprint of the program.

There are numerous techniques for dead code elimination and
data structure reduction [32][35], but they require
conservative assumptions due to the consideration of
initialization code, because dynamic memory allocation in the
program may cause object constructor code to be invoked. In
general, removal of dead code requires computing a sound set
of reachable methods and requires approximating the possible
receiver methods of dynamic dispatches in the program.
Unlike all previous work, the explicit separation of
initialization time and run time in Virgil eliminates the need
to consider initialization code: the availability of the
complete program heap provides access to all of the objects
that will be manipulated by the program at run time.

Now we are ready to state the reachable members problem and
begin exploring possible solutions.

Reachable Members Problem: Given (P a Virgil program, R a
set of initialized root fields, H the initial heap of objects, and
E initial methods representing entrypoints into the program),
which methods in P and which fields F of object instances in H
might be accessed on some execution of P? As stated, the
problem is clearly undecidable, reducible to the halting
problem. So we will consider sound approximations that are
less precise.

5.1.1 Classical approaches
Let’s first sketch a general idea of how a compiler might
approach this problem. The classical solution would be to
begin analyzing the code of the entrypoint methods E and
build a call graph that represents the set of reachable methods.
At virtual method and delegate invocation sites in the
program, the algorithm would use some conservative
approximation of possible receiver methods, leading to a
conservative approximation of the reachable methods that may
include some methods that are dead. Then the code of each
method would be inspected for accesses of root fields R and
instance fields of objects. Unused fields would be considered
dead and removed from the root set and from each object
instance in the heap.

Following this approach, what approximation is appropriate at
each invocation site? We might use a simple analysis such as
CHA, which considers the class hierarchy of the program and
the static type of the object reference at the call site to
determine a set of reachable method implementations.
However, this approximation may be too conservative because
CHA considers all the code of all classes declared in the
program, including ones that may not have instances in the
heap H . Another approach might be to only consider the
classes of objects that have live object instances in the heap H.
This would be similar to Rapid Type Analysis [7], which
maintains a set of possibly live types during analysis by
inspecting the object allocation points of the program. This
second approach is more precise than CHA because only
method implementations corresponding to live objects in the
heap are considered. However, simply using the existence of
any object of a particular class in the initial heap may be too
imprecise, because after removing dead objects, the set of live
types might also be reduced. Another iteration of the
algorithm may be able to further reduce the set of reachable
methods because the approximation of each call site may
become more precise. In general, the algorithm might need to
iterate to a fixpoint to get the least solution. However, a
liveness cycle can arise where a class has a method that
contains the only use of a root field, and that root field is the
only path by which objects of that class are reachable in the
heap. In this case, the existence of the object in the heap forces
consideration of the method, which forces the root field to
appear live, which forces the object to be considered live, even
if the field is not used elsewhere in the program. Iterating the
RTA analysis will not discover the field, and therefore the
method, is dead.

Figure 3 contains an example program for analysis that
illustrates this liveness cycle problem. Note that the
component field initializers are run in the compiler, and by the
time analysis begins, these fields refer to actual live object
instances in the heap, which we will call object A1, B1, and C1.
The initial assumption of CHA is to ignore the heap and
assume that the call to m() in Main.entry() can reach any of
the three implementations, considering them live; however i t
correctly discovers that field Main.h is unused because there

are no references to it in any of the code. Now consider RTA,
where the first iteration assumes that A.m, B.m, and C.m are
reachable because objects of those types exist in the heap;
RTA therefore concludes that Main.g is used because it i s
used in B.m. After the first iteration, RTA can eliminate field
Main.h and object C1. Upon beginning the second iteration,
C.m is no longer live because C has no live instances in the
heap; however, RTA still considers the code in B.m live and
therefore Main.g is still live.

The core imprecision of classical approaches to this problem is
that they are not data-sensitive, meaning they do not operate
in the context of the live object instances in the heap. The
main weakness of CHA is that it doesn’t consider live objects
at all. RTA, however, is too imprecise because in each pass a
class’s method implementation is considered live if at least
one instance of the class exists in the heap, even if the object
is later considered unreachable.

5.1.2 Reachable Members Analysis
Reachable members analysis addresses the imprecision of
classical approaches by analyzing code and objects together as
they become reachable from the entry points of the program.
RMA is an optimistic algorithm and initially assumes that
nothing is reachable. By pulling in objects, methods, and
fields in an on-demand fashion, it avoids the imprecision
inherent in the CHA and RTA analyses. Before beginning the
detailed algorithm, consider a conceptual outline. RMA begins
at the entrypoint methods analyzing the code of each method
by inspecting reads of root and object fields. For a use of a new
root field, it considers the field live and puts the referenced
object into a “live” object set. For a use of a new object field,
RMA considers that field live for every object of that type; for
every object in the live set, it transitively pulls in objects
reachable through the new field. For a new method invocation,
it considers only method implementations corresponding to
object types in the current live set. The algorithm iterates until
there are no new method implementations or objects to
analyze.

Figure 4 contains the core of the RMA algorithm. The two
central data structures used in the RMA algorithm are info, a
map from a class or component type to a set of used members,

component Main {
 field f: A = new A();
 field g: A = new B();
 field h: A = new C();
 method entry() {
 while (true) f = f.m();
 }
}
class A {
 method m(): A { return this; }
}
class B extends A {
 method m(): A { return Main.g; }
}
class C extends A {
 method m(): A { . . . }
}

Figure 3: Example Virgil program used to compare analysis precision. A liveness cycle exists involving the method
B.m and the field Main.g preventing CHA and RTA from computing the most precise result. The table on the right gives
the analysis results for CHA, two iterations of RTA, and RMA.

Analysis Methods Fields Objects

CHA

Main.entry
A.m
B.m
C.m

Main.f
Main.g

A1
B1

RTA (1)

Main.entry
A.m
B.m
C.m

Main.f
Main.g

A1
B1

RTA (2)
Main.entry

A.m
B.m

Main.f
Main.g

A1
B1

RMA Main.entry
A.m Main.f A1

instantiated subtypes, and object instances; and methods, a
set of the currently reachable methods.

The info data structure is initialized for every type in the
program with an empty entry, and the methods set is initially
empty. The analysis is organized into five different units of
work that are all inserted and removed from a central work list.
The work list is processed in order, and each kind of unit of
work may produce new units of work to be inserted in the list
and performed later. One can view the algorithm as recursive,

with the work list implementing memoization for termination.
The five types of work units are:

i. New Method. This unit represents a previously
unseen method that contains new code to analyze.

i i . New Type. This unit represents a new
instantiated type that has not been encountered before.

i i i . New Field Access. This unit represents a
previously unseen field access of a class or component.

iv. New Method Access. This unit represents a new
access to a method of a class or component.

v. New Object Instance. This unit represents a new
object instance that has been discovered to be reachable in
the heap.

When a new unit of work is available, the post() method i s
called with that unit. The post method is analogous to the
analyze() method, and is overloaded for each type of work
unit. The post() method always checks to see whether the
unit of work has already been performed or is already pending
before placing the unit in the work list.

Let’s examine the work units in detail. Imagine that we are
running the analysis algorithm by starting at (1), and initially
begin processing a work unit of type (2) on the entry method
of the program. At this point there are no objects yet
considered reachable, and nothing in the main data structures.
The work unit (2) iterates over the statements in the method; if
the program reads a component field, the analysis posts a new
unit of work of type (4) to analyze the component field later.
Similarly if (2) detects a read of an object field, then a work
unit (4) is posted on the type of the expression and the field
name. The analysis treats component and object field accesses
are together in (4) by considering a component to be a class
with a single instance in its instances list. Work unit (4)
analyzes the new field for all live objects in the instances
list, posting the objects those fields reference into the work
list, and then recursively posts a work unit (4) on each of the
instantiated subtypes with the same field. For a virtual method
call, the work unit (5) resolves the method implementation for
the static type and posts the method to be analyzed later by
(2). To process a new object instance, the work unit (6) first
posts a work unit on the object’s type (3), which integrates the
type into the lists of its parents and posts any fields or method
accesses performed on the parent on the new type, and then
analyzes the fields of the new object.

5.1.3 Algorithm Complexity
RMA’s worse case complexity is quadratic in the number of
declared fields in the program, but this only occurs for
pathological inheritance scenarios. The source of nonlinearity
is the repeated posting of field members from a super-class to
its instantiated subtypes (4), which happens at most once per
field per subtype, which in the worst case is quadratic. For
simple hierarchies, the algorithm runs in expected linear time.
RMA analyzes the code of each reachable method at most once,
since it need only glean from the body the static types of field
and method accesses. Secondly, each object instance that the
analysis considers is added to exactly one instances list,
since each object has exactly one dynamic type. The
instances list for a type may be processed multiple times,
but at most once per new field encountered, thus each field of
each reachable object is inspected at most once, either when
the object instance is first encountered, or when a new field
read is encountered in the program. A less precise result could

info: Map<Type, {members: Set<MemberName>,

 subtypes: Set<Type>,

 instances: Set<Object>}>

methods: Set<Method>

(1) analyze(Program p) =

 foreach(Method m in p.entrypoints)

 post(m)

 while(!empty(worklist))

 analyze(dequeue(worklist))

(2) analyze(Method m) =

 methods.add(m)

 foreach (Expr e in m.body)

if (e = read(C.f)) post(C, m)

if (e = read(e.f)) post(type(e), m)

if (e = call(C.m)) post(C, m)

if (e = call(e.m)) post(type(e), m)

(3) analyze(Type t) =

 info[t].subtypes.add(t);

 foreach(Type p in parents(t))

 info[p].subtypes.add(t)

 let pm = info[parent(t)].members

 foreach(Member m in pm)

 post(t, m)

(4) analyze(Type t, Field f) =

 info[t].members.add(f)

 foreach(Object o in info[t].instances)

 post(value(o.f))

 foreach(Type s in info[t].subtypes)

 post(s, f)

(5) analyze(Type t, Method m) =

 info[t].members.add(m)

 foreach(Type s in info[t].subtypes)

 post(resolve(s, m))

(6) analyze(Object o) =

 post(type(o))

 info[type(o)].instances.add(o)

 foreach(Field f in info[t].members)

 post(value(o.f))

Figure 4: The RMA algorithm’s data structures and analysis
rules for each type of work unit. The post() method
produces a new work unit of the corresponding type and
inserts it into the worklist if the unit of work has not
already been performed.

be obtained by only keeping field access information in the
type where the field was declared. This would reduce the worst-
case complexity, but would reduce precision.

5.1.4 Pull Members Down
The algorithm as presented can be used to compute the
necessary information for the pull members down optimization
that saves space in instances of super-classes where fields are
declared but accessed only in instances of its subclasses. This
transformation originally appeared in automated refactoring
tools, but admits a small opportunity for space savings in this
context by allowing the field to be deleted in the super-class
and retained in the subclasses. Tyma in [36] describes field
percolation, where members are pulled up into super-classes
when possible. This reduces the meta-data per class, but
potentially increases the size of objects if the super-class i s
instantiated.

5.2 Reference Compression
The most severe resource constraint of a microcontroller is the
RAM space available to store the objects of the heap and the
runtime stack. While reachable members analysis saves RAM
space by removing unreachable objects and removing fields of
objects that are statically unused in the program, reference
compression is an optimization that exploits the type-safe
property of Virgil to encode object references in a more
compact way, reducing the size of reference fields in objects.

On microcontroller architectures with between 256 bytes and
64 kilobytes of RAM, pointers into the memory are usually
represented with a 16-bit integer that contains a byte address.
In a weakly typed language like C, a pointer is not restrained
to point to values of any particular type and can conceivably
hold any byte address. In fact, pointer arithmetic relies on the
fact that pointers are represented as integers and allows
arithmetic such as increment, addition, subtraction, and
conversion between types. Worse, C allows pointers to be
converted to integers, manipulated, and converted back to
pointers.

However, in Virgil, as in any strongly typed language,
references into the heap are typed and may only refer to heap
entities of the corresponding type. For example, strong types
enforce that an object reference of declared type A must only
refer to objects of type A and its subtypes. References cannot
be converted to integers or vice versa; the implementation of
references is entirely opaque to the program. Recall that after
initialization time, a Virgil program has already allocated all
the objects of type A and its subtypes that will ever exist in the
heap and no further objects can be allocated at runtime. The
compiler can exploit the combination of type safety and static
allocation to encode references in a more compact way, rather
than simply using pointers to an object’s address in memory.

Consider a program that allocates some number of objects of
type A . Everywhere a reference of declared type A occurs,
because of type safety, the reference may only refer to one of
the allocated objects (or possibly null). Conceptually, if K i s
the number of objects of type A that exist in the entire program
heap, the field representation requires only log(K+1) bits to
distinguish between the possible objects that can be
referenced by the field. This idea forms the basis of the
reference compression algorithm.

5.2.1 Heap Layout
Before choosing the representation of references, the compiler
must arrange objects in memory by assigning them addresses.

Consider a Virgil program P and a heap H that has been
obtained by running the initialization phase of the program.
Assume that each object in the heap H will reside in memory at
some fixed address. The heap layout problem is therefore to
assign each object Oi in H an address Ai in memory that does
not overlap with other objects. For the simplest version of the
reference compression algorithm, we will assume that the
solution to the heap layout problem may place an object
anywhere in memory, but later we will explore more advanced
layout techniques.

5.2.2 Reference Representation
In order to reduce the total memory space consumed by the
heap, we would like use as little space to store each reference
field as possible. We will refer to the compact representation of
a reference stored in a field as the compressed reference, and
refer to the actual address of the object in memory simply as
the address. Reference fields may be written during the
execution of the program; thus a sound compression scheme
must approximate the set of objects that could be referenced
by each field over any execution of the program. We will refer
this approximation as the referencible set. The compression
scheme must therefore ensure that each compressed reference
can represent all objects in its referencible set. A simple and
intuitive approximation is to use the declared type of the field
and rely on the type-safety of the language to limit the
referencible set to those live objects whose dynamic type is a
subtype of the declared type.

5.2.3 Compression Tables
One straightforward way to implement type-based reference
compression is to use a compression table. In this approach,
each compressed reference is an object handle: an integer
index into a table that contains the actual addresses of each
object. Conceptually, we can compress each type of reference
by creating a compression table for its associated referencible
set. The number of bits needed to represent the integer index i s
therefore the logarithm of the table size. For example, if the
table has 15 live objects plus null , we could use a 4-bit
integer index, a savings of 75% over storing a 16-bit address.

The compression table is read-only and can therefore be stored
in the ROM, which is considerably larger than RAM; this
represents a classic tradeoff by consuming some ROM space
for the table and saving some RAM space with compressed
references. The compression table also introduces a slight
runtime overhead for field reads due to the extra indirection.
Field updates must also write a compressed reference into a
heap field and not an object address; to avoid the need to
compute the compressed reference from an object address,
object handles can be used throughout the program and
classical compiler optimizations employed to cache the actual
object addresses whenever possible to reduce repeated
accesses of compression tables, especially within loops, etc.

Note that when applying the type-based referencible set
approximation on programs with subtyping, the subtyping
induces a subset relation on referencible sets; in particular,
each referencible set for a type is the union of the referencible
sets of each of its subtypes. We can simplify the problem by
unifying the referencible set for each type with its parent type.
Thus the lack of a universal super-class in Virgil avoids
unifying the referencible sets for all classes; therefore there i s
one referencible set for each class hierarchy.

5.2.4 Indexed Addresses
Another possible scheme for compressing references is to
choose a heap layout with particular properties that can be
exploited to represent references more compactly. For example,
if the heap layout algorithm places all objects of a particular
referencible set into the same region of memory starting at a
known location, the offset of an object’s address from the
starting location of the region can be used as the compressed
reference. With this approach, we could again use the type-
based referencible set approximation and place all objects of
the same type next to each other in memory. Direct addresses
could be used throughout the program, with field reads being
decompressed by adding the starting address of the first object
and field writes subtracting the starting address before storing
the field. While an offset may require more bits to store than an
index into a compression table, the indexed address scheme
does not require any compression tables in ROM.

5.3 ROM-ization
Reachable members analysis can also be used to statically
determine an approximation of which component fields and
object fields the program may modify. For example, if no
writes to a particular component field exist in the program,
then that field will remain constant throughout any execution
and the compiler can simply replace accesses to this field with
its value and remove the field. For object fields, if no writes
exist to a particular object field, then for all instances of the
object in the program, the corresponding field will not change
value over the execution of the program. These fields can be
factored out of the object and stored in the ROM.

There are various techniques to represent the constant. If it i s
the same value across all object instances, the compiler can
inline it as a constant where reads occur. If it is constant by
subclass [4], the compiler can move it to the meta-object, and
otherwise, the compiler could introduce a constant table stored
in ROM that is indexed by the object handle obtained with
reference compression.

5.4 Metadata Optimizations
In addition to optimizing the layout of objects within the heap
and compressing their reference fields, the compiler can also
perform a number of optimizations on metadata, including the
meta-objects and the object headers. First, the compiler can use
the results from reachable members analysis to optimize the
meta-object itself. The reachable members analysis computes
which virtual methods are used within the program and the
unused entries in the meta-object can be removed. Similarly,
the entries in the meta-object that correspond to calls that have
been devirtualized can be removed as well. Secondly, the
compiler can apply reference compression to the object header,
which normally contains a direct pointer to the meta-object,
replacing the pointer with an index into a meta-object table.
This can allow the object header to be compressed to only a
few bits. Third, since the meta-objects are read-only
throughout the life of the program, they can be stored in the
ROM to save precious RAM space.

6. Experience
I have implemented a prototype compiler that compiles the
complete Virgil language. The front-end parses, typechecks,
and runs the initialization phase to obtain the complete
program heap. The middle of the compiler implements
reachable members analysis and optimizes the program with
the results. The compiler generates a program binary by way of
a native C compiler. The C source code emitted by the

prototype compiler implements the Virgil program, including
the live objects in the heap, their metadata, and all the
reachable code as C structures and functions. This C program
includes all code necessary to run on the bare device, and does
not require the use of any C libraries, including libc, the C
language runtime. This intermediary C code generation step i s
not intrinsic in the language compilation, runtime, or linking
model; a production Virgil compiler would output native code
directly. The prototype compiler has been used to develop a
number of small real programs that have been successfully
compiled and run on the Mica2 sensor network nodes.

6.1 Decoder Example
After some experience writing code in Virgil, the initialization
time concept has proved to be quite useful. An application can
run a substantial initialization routine at compile time in order
to allocate and configure its data structures. This can be
especially useful when building complex data structures such
as trees and maps that need only be constructed once and then
repeatedly reused throughout the lifetime of the program.

One illustration of the flexibility that this mechanism
provides is in the Decoder application. The Decoder
application builds a binary tree which represents an efficient
bit pattern recognizer that can be used to differentiate patterns
of bits such as machine instructions, commands, network
packets, etc. It is tedious to write the binary tree, or the code to
implement the binary tree, by hand; efficient algorithms exist
to build a decision tree in time linear in the number of bit
patterns. The decoder application runs this algorithm during
its initialization phase by creating a DecoderBuilder object
in the constructor of the main application and inserting bit
patterns corresponding to various commands. After the
patterns are added, the build() method is called, which
determines the structure of the tree, allocates the tree nodes,
and connects them together. A reference to the completed
decoder tree is stored for use at runtime, and after initialization
terminates, the DecoderBuilder and its data structures are
garbage collected automatically by the compiler. The program
retains only the decoder data structure, which only contains
only a few nodes. The compiler performs reachable members
analysis to remove all other code and data structures that are
unreachable from the entry point to the program; in particular
it removes the complex initialization code for the
DecoderBuilder. Then reference compression is applied to
the data structures, reducing the size of the node objects.

6.2 Optimization Results
This section presents experiments that demonstrate the
efficacy of the optimizations described in this paper. The
prototype compiler fully implements reachable members
analysis and transforms the program according to the results.
The results reported for reference compression represent
accurate space usage numbers computed by the compiler, but
the actual transformation of program code is not yet
implemented and therefore performance and code size
measurements are not available for this optimization. The
ROM-ization optimizations are not currently implemented in
the prototype compiler.

The five benchmark programs used in this section are: Blink,
a small program that uses the timer device driver to toggle an
LED once per second; CntToLeds , a simple program that
displays a counter on the LEDs one per second; List, a small
program that uses doubly linked lists; Decoder, the decoder
application with a set of 17 different bit patterns to

disambiguate; and MPK, a message passing kernel that uses
objects to represent messages and handlers. Both the Decoder
and the MPK applications use objects in a non-trivial way,
including inheritance and virtual dispatch. The results in
Figure 4 correspond solely to the code size reduction due to
removable of dead code. Object-oriented optimizations such as
devirtualization and procedure-level optimizations such as
inlining are not applied in this experiment, and would further
improve the results reported here.

6.2.1 Code Size
Reachable members analysis is the primary mechanism used
by the Virgil prototype compiler to detect and remove unused
methods in a Virgil program. Figure 5 compares the code size
reduction when RMA is applied to the benchmark programs.
Each bar gives the code size results of the program when
compiled to machine code for the AVR processor by avr-gcc
3.3 . The first group of four bars for each application
represents the size of the program without applying any
Virgil-specific optimizations and using four different avr-
gcc optimization levels. The second group of four bars for
each application gives the size of the binary when the Virgil
compiler applies RMA with the same avr-gcc optimization
levels. To summarize the results, RMA reduces the code
footprint of the benchmark programs by 38%, 29%, 45%, 79%,
and 35%, respectively, for avr-gcc with no optimizations,
and by 22%, 17%, 39%, 81%, and 28% when avr-gcc is run
with -Os. The large reduction for the Decoder program is
because the complex initialization routines that build the
decoder tree are removed automatically by RMA.

6.2.2 RAM Size
Reachable members analysis is also used to reduce the size of
data structures and metadata in the program by removing
semantically unreachable objects, object fields, and
component fields. Figure 6 gives the results for each of the
benchmark programs under three different optimization

scenarios; base: the base Virgil compiler configuration, with
no optimizations; RMA : the compiler performs RMA and
removes unused objects, meta-objects, and fields; and
RMA+RC, where the Virgil compiler performs RMA and then
compresses references with the compression table technique
described in section 5. It is important to note that C compilers
do not generally perform any data representation
optimizations and thus the RAM consumption for all five
benchmark programs is constant across gcc optimization
levels.

Figure 6 illustrates the effectiveness of RMA and reference
compression for all five benchmark programs. RMA reduces
both RAM and ROM space required for the application, and
reference compression trades some ROM space for RAM using
compression tables. In the three largest applications, the two
optimizations combined reduce RAM consumption by 75%,
40%, and 41%, respectively. All applications exhibit very
small footprints for the meta-objects stored in ROM; RMA
reduces the size of these meta-objects by 42%, 72%, and 40%
for the three largest applications respectively. For reference
compression, the tradeoff ratio, or the number of RAM bytes
saved for each ROM byte spent in a compression table, is 1.05,
1.29, and 1.53.

6.2.3 Detailed RAM Size Comparison
The charts on the next page examine the RAM reduction in
more detail for each application. The RAM usage of each Virgil
program as reported in these charts are: primitives, which are
primitive fields like integers, booleans, etc; references, which
are object references and delegates; metadata , which
corresponds to object headers and array length fields; and
alignment, which are the extra wasted bits of objects needed to
align them on byte boundaries after compressing references to
sub-byte quantities. Meta-objects are stored in ROM and
appear only in the RAM/ROM reduction chart.

Figure 5: Comparative code size reduction for 8
combinations of Virgil and gcc optimizations.

Figure 6: Comparative RAM and ROM size for RMA and
RMA plus reference compression optimizations.

0

1000

2000

3000

4000

5000

6000

7000

Blink CntToLeds LinkedList Decoder MPK

b
y
te
s

none
none+O1
none+O2
none+Os
RMA
RMA+O1
RMA+O2
RMA+Os

0

50

100

150

200

250

300

350

Blink CntToLeds LinkedList Decoder MPK

b
y
te

s
RAM base
RAM RMA
RAM RMA+RC
ROM base
ROM RMA
ROM RMA+RC

RMA may remove all categories of data, including primitives,
reference fields, and metadata, because it can remove unused
objects and fields. Reference compression is only applied to
object headers and reference fields; it does not compress
primitive values, except for booleans, which can be
represented as a single bit.

The LinkedList results are somewhat surprising. Although
the example program manipulates and traverses lists, it does
not actually touch the data items. RMA aggressively reduces
the doubly linked list, removing not only the backward
pointers, but also removing the data items (primitives) from
the links in the list because it detects they are unused. With
reference compression, the link objects can be represented with
just a few bits (as orphan classes they require no header and
the forward link field can be compressed to a small number of
bits). The alignment anomaly is due to the fact that each of
these sub-byte sized objects occupies a whole byte in memory.
Interestingly, this raises the question of how to deal with
extremely small objects in future implementations.

Delegates are used extensively in the Decoder and MPK
applications, but are not currently compressed by the
prototype compiler; this represents an opportunity for further
optimization in future work.

7. Related Work
This section organizes related work into three categories;
object systems (which are broadly considered to include
embedded virtual machines and object-oriented operating
systems), object compression technologies, and embedded
languages.

7.1 Embedded Object Systems
There has been extensive research on embedded virtual
machines, particularly for the Java programming language.
Most target embedded systems with at least 64KB of RAM. For
example the KVM [2] virtual machine from Sun Microsystems
targets devices with at least 192KB of memory. This is two
orders of magnitude more memory than a microcontroller.

VM* [24] is a virtual machine construction kit that allows the
automatic generation of an application-specific virtual
machine, including only the parts of the interpreter and
runtime system that are needed. VM* targets very small sensor
network nodes, and supports a subset of the Java language. It
exposes a native API for operating system and hardware
services, which allows simple sensor applications to be written
in Java. VM* addresses only the application level
development of sensor networks; the underlying operating
system services and the VM functionality are all implemented
in C.

Ultimately, virtual machines are an attempt to address the
challenges of embedded systems primarily for the application
level because the virtual machine itself is generally either
implemented in C or C++, and more recently, Java. Using Java
to implement virtual machines and operating system kernels,
e.g. JX [17] generally requires a native compiler that translates
Java bytecode to machine code in order to bootstrap. This
often requires magic holes in the type system to be agreed on
by the system and the compiler in order to implement certain
language features. In the end, this provides a convenient Java
environment for applications, but significant challenges still
remain for building the VM or OS itself.

Blink CntToLeds LinkedList

Decoder MPK

0

10

20

30

40

50

60

base RMA RMA+RC

alignment
metadata
references
primitives

0

10

20

30

40

50

60

base RMA RMA+RC

alignment
metadata
references
primitives

0

20

40

60

80

100

120

140

160

180

base RMA RMA+RC

alignment
metadata
references
primitives

0

50

100

150

200

250

300

350

base RMA RMA+RC

alignment
metadata
references
primitives

0

50

100

150

200

250

300

350

base RMA RMA+RC

alignment
metadata
references
primitives

Virgil, however, is intended to address the challenges inherent
in developing systems software at the lowest layer, without
requiring system designers to bootstrap a state-of-the-art
virtual machine. Virgil is intended to allow both applications
and operating systems to be developed in one language,
without any supporting software. This is appropriate for the
microcontroller domain, where applications are generally
written to run in a standalone manner.

The Singularity Project [21] at Microsoft Research is an
ambitious attempt to build a complete desktop operating
system primarily in C#, eliminating as much unsafe code as
possible. In developing a full-fledged operating system kernel
with a safe language, there are several challenging problems
that Virgil does not address. For example, Virgil programs,
though low-level, don't generally have to manipulate MMU
mappings (there is no MMU), program stacks (one stack exists
for the main computation and interrupts), thread contexts
(there is only a main thread and interrupts), and don't have to
scan raw memory for memory-mapped IO devices or perform
DMA (the IO space is segregated and devices registers have
statically known locations). Larger systems also require
dynamic memory allocation and some mix of manual memory
management or garbage collection—runtime services that
must be implemented in the language using some unsafe code
with special magic tunnels under, around, or through the type
system. However, the restrictions on the domain allow Virgil
programs to be implemented completely in safe code and
compiled directly to the bare hardware with no runtime system.
Interesting future work remains to scale Virgil to this larger
class of software systems.

Eventrons [29] are a programming construct introduced in the
context of the IBM J9 virtual machine which represent Java
tasks with additional language restrictions. Specifically, an
Eventron is forbidden from reading or writing mutable
reference fields, allocating memory, or attempting locking
operations. These tight restrictions enable the Eventron to
safely preempt the garbage collector and achieve a response
time that is shorter than the minimum GC pause time. A
runtime verification phase (performed after the Eventron
object is constructed but before execution) enforces the
language restrictions. Given the fully constructed Eventron
object within a Java heap, the verifier discovers the methods
and objects reachable from the run() method, checks that each
method obeys the language restrictions, and then pins the
reachable objects in memory.

At the core, Eventrons and their verification are similar to the
Virgil concepts of initialization time and reachable members
analysis. While Eventrons are a programming construct within
the larger Java language, initialization time and runtime are
Virgil language concepts and are an integral part of the
programming and compilation model. Whereas Eventrons use
the results from analysis for verification and to pin reachable
objects, the Virgil compiler uses the analysis results to remove
dead code and objects completely. Virgil also provides a richer
programming environment because Virgil programs can
modify reference fields in an unrestricted manner.

7.2 Object Compression
Chen et al [10] study dynamic heap compression techniques in
an embedded Java VM setting, based on the KVM reference
implementation of the Connected Limited Device
Configuration (CLDC) [2], which is intended for use on
devices that have at least 192KB of RAM. The authors describe

a number of enhanced garbage collectors that dynamically
compress and decompress objects in response to memory
demands. Their system employs a simple and fast compression
algorithm that operates on the raw memory values of objects,
without considering the types. Virgil, however, is designed to
run without a garbage collector or any runtime system, and in
this context cannot use dynamic compression and
decompression. The Virgil compiler uses the types of
references in its reference compression scheme to reduce the
size of objects, rather than considering raw memory values,
which might require dynamic decompression.

Ananian and Rinard [4] present a suite of both static and
dynamic techniques to reduce data size for Java programs.
They propose field reduction, a whole-program static analysis
that bounds the ranges of values that primitive fields may
contain over any execution in order to reduce their size,
unread and constant field elimination, that removes unused
and constant fields, static specialization, which eliminates
fields that are constant by subclass, externalization, which
removes frequently constant fields and puts them in a hash
table, and class pointer compression, which is essentially a
single compression table for object headers. Of these, field
reduction applies only to primitive fields and could be
considered complementary to techniques described here;
unread and constant field elimination is less general than
RMA, which extends the technique to the complete live heap;
static specialization can be detected with the results from
RMA, externalization does not apply because it requires a
dynamic hash table, and class pointer compression is less
general than reference compression, which can compress object
references of all types.

7.3 Embedded Languages
C++ is often cited for its suitability to writing low-level code,
but the language and its implementation have a number of
drawbacks that make targeting a microcontroller difficult;
primarily the complexity of the object model, the
inefficiencies of certain language constructs, the runtime and
metadata requirements, and a lack of strong safety
mechanisms. C++ lacks the strong type safety guarantee given
by Virgil, and thus reference optimization for C++ could not
be made sound. Despite promises of its adherents, C++ has not
succeeded for microcontroller class systems.

NesC [16] is an extension to C that adds module capabilities
and a simple task model. NesC hides some of the messiness
that can normally appear in C code such as copious macros and
mostly eliminates the need for header files, but inherits C’s
weak type system. NesC provides modules and interfaces that
can be configured by “wiring” them together in a
configuration language. These module capabilities are mostly
orthogonal to the deeper language issue of safety and
expressiveness, especially in regard to objects, which nesC
does not provide. The core language does not provide for
allocating memory, although it’s possible to link in libc and
use malloc() . Applications and modules are expected to
statically allocate the memory that they require, but complex
initialization routines like Virgil’s are not possible. NesC i s
also coupled closely with TinyOS; in fact, the nesC compiler
assumes the availability of certain TinyOS-specific header
files.

8. Conclusion
This paper tackles the problems of developing microcontroller
software at the language and compiler level. By careful
attention to detail and adherence to design constraints that are
reasonable for this domain, the Virgil language brings most of
the expressiveness of object-oriented languages to this most
severely resource-constrained of domains, without sacrificing
type safety. In fact, the opposite is true: Virgil’s type safety
enables a new class of optimizations and is key to achieving
efficient implementation. Each of Virgil’s features has been
crafted carefully to provide better expressiveness while still
requiring no language runtime and imposing only minor
metadata overheads on the program. The type-safe nature of
Virgil objects eliminates a large class of pernicious software
bugs through strong static type safety and some dynamic
checks, like Java.

This paper is the first to recognize that explicitly separating
initialization time from run-time at the language level leads to
a convenient programming model for embedded systems by
allowing objects to be freely allocated at compile time and
then stored for use at run time.

This paper also introduces three data-sensitive optimizations
that serve to further reduce the size of programs by removing
unused members, optimizing dispatches, representing
reference fields in a compact manner, and moving read-only
portions of objects to the ROM without changing the
programming model. In particular, reference optimization
exploits the type-safe nature of object references to achieve
heap compactions of up to 75%; object references can therefore
be stored far more efficiently than the standard
implementation practices of pointer-based languages like C,
which cannot compress pointers by type. This surprising
result leaves us to ponder the suggestion that objects may in
fact be better than pointers for embedded systems, since the
strong types of references and restrict their referencible sets,
thereby allowing compression techniques like those in this
paper.

9. Future Work
Virgil is a remarkably simple but expressive language, despite
the lack of dynamic memory allocation, but as both software
and hardware systems grow in complexity and capabilities,
dynamic allocation becomes more necessary. It can be
approximated in Virgil with statically allocated and manually
managed pools of objects, allowing recycling within a type,
but as larger systems are developed, static allocation becomes
less workable. I would like to explore augmenting the core
runtime model with various forms of dynamic allocation,
including explicit or implicit regions, stack allocation, and
various garbage collection techniques.

Virgil’s lack of a universal super-class combined with the lack
of interfaces represents a tradeoff between efficiency and
expressiveness. It allows the object model to be implemented
simply and efficiently, requiring no metadata for orphan
objects. However, it limits code reuse by making it more
difficult to reuse collection classes. I believe the best solution
for this problem is a parametric type system such as Java
generics [8]. A solid parametric type system for Virgil should
encompass primitive types without resorting to boxing as in
Java 5, which requires dynamic memory allocation, or code
duplication as in C++, which may result in code explosion.
Virgil will ultimately benefit from ongoing research into the
tradeoffs between implementation efficiency and

expressiveness in parametric type systems for Java, C#, and
other languages.

The Virgil compilation model currently precludes the use of
dynamically loaded or updatable code. While this is
reasonable for devices where the program binary is replaced
wholesale, if it all, dynamic extensibility is needed in other
domains. Virgil may be able to benefit from a module system
where initialization and optimization is applied to modules at
a time and programs are allowed to dynamically load new
modules.

I believe the optimizations presented in this paper can be
explained to embedded programmers without advanced
knowledge of compiler techniques, inspiring more confidence
in the efficiency of objects for small devices. However, there i s
certainly room to improve on these techniques with more
sophisticated analyses. For example, a points-to analysis [30]
with live objects would likely give more precise results than
reachable members analysis and might allow objects of the
same type to be laid out differently depending on which parts
of the program manipulate them. There are a number of other
reference compression and object layout techniques
[4][10][14] that could be applied with various tradeoffs
between size and performance; further study is required to
determine what works the best in practice for this domain.
Such tradeoffs are likely to be fruitful research topics in the
future if the initialization time model becomes more widely
employed.

10. Acknowledgments
Thanks to Jens Palsberg, Todd Millstein, and David Bacon for
comments on a preliminary version of this paper. Thanks to
Simon Han for contributing the MPK application, which is a
proof-of-concept port of the SOS [19] message passing
mechanism to the Virgil language. Thanks to Doug Lea for a
deep and fruitful discussion about Virgil’s inheritance model.
Ben Titzer was partially supported by NSF ITR award
#0427202 and a research fellowship with the Center for
Embedded Network Sensing at UCLA, an NSF Science and
Technology Center.

11. References
[1] ECMA Standard 334. C# Language Specification.

Available at: http://www.ecma-international.org/

[2] Connected Limited Device Configuration (CLDC).
http://java.sun.com/j2me

[3] B. Alpern, A. Cocchi, S. Fink, D. Grove, and D. Lieber.
Efficient Implementation of Java Interfaces:
Invokeinterface Considered Harmless. In Proceedings of
the 16th Annual Conference on Object-Oriented Systems,
Languages, and Applications (OOPSLA ‘01). Tampa, FL.
Oct. 2001.

[4] C. Ananian and M. Rinard. Data Size Optimizations for
Java Programs. In 2003 Workshop on Languages,
Compilers, and Tools for Embedded Systems (LCTES ’03).
San Diego, CA. June 2003.

[5] D. Bacon. Kava: a Java Dialect with a Uniform Object
Model for Lightweight Classes. Concurrency and
Computation: Practice and Experience 15(3-5): 185-206.
2003.

[6] D. Bacon, S. Fink, and D. Grove. Space- and Time-efficient
Implementation of the Java Object Model. In the 16th

European Conference on Object-Oriented Programming
(ECOOP ’02), University of Malaga, Spain, June 2002.

[7] D. Bacon and P. Sweeney. Fast Static Analysis of C++
Virtual Calls. In Proceedings of the 11th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA ’96). San Jose, CA.
Oct. 1996.

[8] G. Bracha, N. Cohen, C. Kemper, M. Odersky, D.
Stoutamire, K. Thorup, and P. Wadler. Adding Generics to
the Java Programming Language. Java Community
Process JSR-000014, September 2004.

[9] M. Budiu, S. Goldstein, M. Sakr, and K. Walker. BitValue
Inference: Detecting and Exploiting Narrow Bitwidth
Computations. In Proceedings of the EuroPar 2000
European Conference on Parallel Computing. Munich,
Germany. August 2000.

[10] G. Chen, M. Kandemir, N. Vijaykrishnan, M. Irwin, B.
Mathiske, and M. Wolczko. Heap Compression for
Memory-constrained Java Environments. In Proceedings
of the 18th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA ’03). Anaheim, CA. Oct 2003.

[11] N. Cohen. Type Extension Type Tests can be Performed in
Constant Time. ACM Transactions on Programming
Languages and Systems, 13(4), 626-629. 1991.

[12] J. Dean, D. Grove, and C. Chambers. Optimization of
Object-Oriented Programs using Static Class Hierarchy
Analysis. In the 9th European Conference on Object-
Oriented Programming (ECOOP ’95). Aarhus, Denmark.
Aug. 1995.

[13] A. Diwan, K. McKinley, and J. E. Moss. Using Types to
Analyze and Optimize Object-Oriented Programs. In ACM
Transactions on Programming Languages and Systems,
23(1), 30-72. 2001.

[14] N. Eckel and J. Gil. Empirical Study of Object-layout
Strategies and Optimization Techniques. In the 14th

European Conference on Object-Oriented Programming
(ECOOP ’00). Sophia Antipolis and Cannes, France. June
2000.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[16] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC Language: A Holistic Approach to
Networked Embedded Systems. In Proceedings of the
ACM Conference on Programming Language Design and
Implementation (PLDI ‘03). San Diego, CA. June 2003.

[17] M. Golm, M. Felser, C. Wawersich, and J. Kleinöder. The
JX Operating System. In Proceedings of the 2002 USENIX
Annual Technical Conference. Monterey, CA. June, 2002.

[18] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[19] C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A
Dynamic Operating System for Sensor Nodes. In
Proceedings of the International Conference on Mobile
Systems, Applications, and Services (MOBISYS ‘05).
Seattle, WA. June 2005.

[20] T. Harbaum. NanoVM: Java for the AVR. Available at:
http://www.harbaum.org/till/nanovm/

[21] G. Hunt, et al. An Overview of the Singularity Project.
Microsoft Technical Report MSR-TR-2005-135. October
2005.

[22] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, T.
Nakatani. A Study of Devirtualization Techniques for a
Java Just-in-time Compiler. In Proceedings of the 15th

Annual Conference on Object-Oriented Systems,
Languages, and Applications (OOPSLA ’00).
Minneapolis, MN. Oct. 2000.

[23] P. Jain, and D. Schmidt. Service Configurator: A Pattern
for Dynamic Configuration of Services. In Proceedings of
the 3rd USENIX Conference on Object-Oriented
Technologies and Systems. June 1997.

[24] J. Koshy and R. Pandey. VM*: A Scalable Runtime
Environment for Sensor Networks. In The 3rd annual
conference on Embedded Network Sensor Systems
(SENSYS ’05). San Diego, CA. Nov. 2005.

[25] R. Newton, Arvind, and M. Welsh. Building up to
Macroprogramming: An Intermediate Language for Sensor
Networks. In Proceedings of the Fourth International
Conference on Information Processing in Sensor
Networks (IPSN'05), April 2005.

[26] J. Palsberg. Type-based Analysis and Applications. In
Proceedings of the ACM SIGPLAN/SIGSOFT Workshop on
Program Analysis for Software Tools (PASTE ’01).
Snowbird, UT. June 2001.

[27] M. Sakkinen. The darker side of C++ revisited. Structured
Programming, 13:155-177, 1992.

[28] M. A. Schubert, L.K. Papalaskaris, and J. Taugher.
Determining Type, Part, Colour, and Time Relationships.
Computer, 16:53–60, October 1983.

[29] D. Spoonhower, J. Auerbach, D. Bacon, P. Cheng, and D.
Grove. Eventrons: A Safe Programming Construct for
High-Frequency Hard Real-Time Applications. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI ’06) Ottawa,
CN. June 2006.

[30] B. Steensgard. Points-to Analysis in Almost Linear Time.
Microsoft Technical Report, MSR-TR-95-08. 1995.

[31] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallee-Rai,
P. Lam, E. Gagnon, and C. Godin. Practical virtual method
call resolution for Java. In the 15th Annual Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’00). Minneapolis, MN. Oct. 2000.

[32] P. Sweeney and F. Tip. A Study of Dead Data Members in
C++ Applications. In Proceedings of the ACM Conference
on Programming Language Design and Implementation
(PLDI ’98). Montreal, Canada. 1998.

[33] W. Taha, S. Ellner, and H. Xi. Generating Imperative, Heap-
Bounded Programs in a Functional Setting. In
Proceedings of the 3rd Annual International Conference
on Embedded Software (EMSOFT ’03). Philadelphia, PA.
October 2003.

[34] F. Tip and J. Palsberg. Scalable Propagation-based Call
Graph Construction Algorithms. In the 15th Annual
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’00).
Minneapolis, MN. Oct. 2000.

[35] F. Tip, P. Sweeney, C. Laffra, A. Eisma, and D. Streeter.
Practical Extraction Techniques for Java. ACM
Transactions on Programming Languages and Systems,
24(6): 625-666, 2002.

[36] P. Tyma. Optimizing Transforms for Java and .NET Closed
Systems. Phd Thesis, Syracuse University. 2004.

[37] J. Vitek, B. Bokowski. Confined Types. In the 14th Annual
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’99). Denver, CO.
Oct. 1999.

[38] J. Vitek, R. N. Horspool, and A. Krall. Efficient Type
Inclusion Tests. In Proceedings of the 12th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA ’97). Atlanta, GA.
Oct. 1997.

[39] T. Zhao, J. Palsberg, and J. Vitek. Lightweight
Confinement for Featherweight Java. In the 18th Annual
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’03). Anaheim,
CA. Oct 2003.

