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Abstract
This paper combines recent developments in theories of knowledge (complex dynamic sys-
tems), technologies (embodied interactions), and research tools (multimodal data collection 
and analysis) to offer new insights into how conceptual mathematical understanding can 
emerge. A complex dynamic system view models mathematics learning in terms of a mul-
timodal agent who encounters a set of task constraints. The learning process in this context 
includes destabilizing a systemic configuration (for example, coordination of eye and hand 
movements) and forming new dynamic stability adapted to the task constraints. To test this 
model empirically, we applied a method developed to study complex systems, recurrence 
quantification analysis (RQA), to investigate students’ eye–hand dynamics during a touch-
screen mathematics activity for the concept of proportionality. We found that across partici-
pants (n = 32), fluently coordinated hand-movement solutions coincided with more stable and 
predictable gaze patterns. We present a case study of a prototypical participant’s hand–eye 
RQA and audio–video data to show how the student’s cognitive system transitioned out of 
prior coordination reflective of additive thinking into a new coordination that can ground mul-
tiplicative thinking. These findings constitute empirical substantiation in mathematics educa-
tion research for cognition as a complex system transitioning among dynamic equilibria.

Keywords  Complex dynamic systems · Multimodal mathematics learning · Proportion · 
Coordination dynamics · Learning analytics

1  Introduction

Human development is a nonlinear process that occurs in, for, and through multimodal 
interaction with the environment (Adolph et  al., 2018; Allen & Bickhard, 2013; Kelso, 
2016; Spencer et al., 2012). For educational researchers who follow this nonlinear stance, 
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a hard nut to crack is how multimodal interaction with the environment could give rise to 
higher-order mental activity, such as understanding mathematical concepts (Hutto et  al., 
2015). The alleged multimodal grounding of cultural knowledge has been increasingly 
considered through theories loosely referred to as embodied cognition (Anderson, 2003; 
Barsalou, 2010; Galetzka, 2017; Glenberg, 2010; Varela et  al., 1991; Wilson, 2002). In 
turn, educational researchers are evaluating the implications of embodied approaches for 
advancing the theory and practice of teaching and learning mathematics (Abrahamson & 
Bakker, 2016; Dackermann et  al., 2017; de Freitas & Sinclair, 2013; Goldenberg et  al., 
2008; Radford, 2009).

Embodiment theories have been drawn on to inform the design of pedagogical activi-
ties and digital environments, wherein embodied interaction undergirds conceptual learn-
ing (Abrahamson & Trninic, 2011; Lindgren and Johnson-Glenberg, 2013). Students learn 
mathematics in these contexts by solving motor-control problems with virtual objects 
linked to symbolic expressions of concepts. For example, students learn to coordinate one 
hand’s movement on the unit circle with the other’s movement on the Cartesian plane (sin 
graph) (Alberto et  al., 2019). The technological design builds on the embodied-interac-
tion approach to technology development (e.g., Dourish, 2001) that foregrounds sensori-
motor competence as the epistemic substance of disciplinary know-how. Per enactivism 
(Varela et al., 1991), the epistemic key to developing sensorimotor know-how in a disci-
pline is coming to perceive the domain of scrutiny in a new way. New cognitive structures 
emerge from repeated patterns of visual attention that guide the sensorimotor enactment 
of assigned movement tasks. Cognitive psychologists of movement have demonstrated the 
centrality of visual perception in performing motor-control tasks (Mechsner, 2003, 2004; 
Muraoka et al., 2016). This line of research has led to theorizing the role of movement in 
computer-mediated mathematics learning (Abrahamson & Bakker, 2016).

Eye trackers are research instruments for measuring people’s eye positions and eye 
movements. Eye trackers provide data to inform investigations into cognitive processes 
involving visual information, such as mathematics learning (Schindler & Lilienthal, 2019; 
Strohmaier, 2020). Specifically, eye-tracking methodologies support an empirical evalu-
ation of the enactivist view on the multi-modal grounding of mathematical concepts in 
cognitive structures that emerge as students learn to enact movements that solve embod-
ied-interaction problems (Shayan et al., 2015). Eye-tracking data, triangulated with video 
capture of students’ verbal and gestural utterances, can determine how students’ visual 
orientation guides their enactment of new manual coordination (Abrahamson et al., 2015; 
Duijzer et al., 2017; Shvarts & Abrahamson, 2019). Tancredi et al. (2021) analyzed stu-
dents’ bimanual actions as they solved mathematical motor-control problems. In that study, 
we demonstrated how learners’ hands self-organized in response to task constraints to form 
dynamically stable movement-pattern solutions. Tancredi et al. (2021) were arguably the 
first to document the sensorimotor emergence of mathematical enactment quantitatively 
and, as such, to lend empirical credence to models of conceptual learning as a complex 
dynamic system (CDS) in flux (see Sect. 2.1) (cf. Thelen and Smith, 2006).

This paper further demonstrates the emergence of visual patterns guiding the enactment 
of mathematical movement by integrating contemporaneous eye-gaze movement patterns 
on top of the bimanual coordination found in Tancredi et al. (2021). It uses a CDS view of 
human cognition and enactivist accounts of mathematical phenomenology as theoretical 
lenses on mathematics learning (Pirie & Kieren, 1989; Reid, 2014; Steffe & Kieren, 1994). 
Using mixed analyses, we argue and demonstrate that the emergence of bimanual move-
ment patterns depends on the contemporaneous and dynamically interleaved emerging of 
visual patterns, as predicted by enactivist theory.
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2 � Theoretical framework and implementation context

2.1 � Complex dynamic systems

Complex dynamic systems are composed of components that constitute a sustained func-
tional structure. They are dynamic because they are in flux (even when appearing static). 
They are nonlinear in that their change is a property of a system where the output is not 
directly proportional to the input. For example, small changes in the input can lead to sig-
nificant changes in the output or vice versa. A system is complex when the components are 
interconnected through nonlinear relationships, giving rise to a new ontological entity. The 
CDS approach investigates functional networks of distributed components as they enter 
and exit stable coordination in response to perturbations (Kelso, 2010; Koopmans, 2020; 
Kostrubiec et al., 2012; Scheffer et al., 2009). For example, as a horse increases its locomo-
tion efforts (endogenous perturbation), new coordination among its legs self-organizes and 
then dissolves, transitioning across four dynamically stable phases or attractors: walk, trot, 
canter, and gallop (Schöner et al., 1990; Thelen & Smith, 2006). When a CDS responds to 
changes in some constraint, we refer to that constraint as the system’s control parameter 
(analogous to an independent variable in linear systems). For example, imagine a horse 
on a treadmill—the (exogenous) control parameter would be the treadmill’s speed that 
gives rise to the re-coordination of its gait organization. We measure the change in a CDS’s 
phase transitions through an order parameter (analogous to a dependent variable). The gait 
of a horse would be gauged by order parameters such as the phase synchrony or rhythm of 
its four legs’ contact with the treadmill.

2.2 � Complex dynamic systems and human learning

Human cognition can be seen as a complex dynamic system constituted of distinguishable 
components (e.g., Anderson et al., 2012; Kelso, 2010; Stephen & Dixon, 2009). Cognitive 
development can be modeled as assemblages of components in flux that bind into and out 
of functionally effective configurations (Thelen & Smith, 2006). Modeling human cognition 
as a complex system transitioning between equilibrium phases was imported to psychol-
ogy by neuroscientists and ecological anthropologists inspired by the systemic paradigm of 
cybernetics (Bateson, 1972). Researchers have used CDS to model manual dexterity (Kelso, 
1984), infants’ development of agency (Kelso, 2016), toddlers’ performance on Piagetian 
tasks (Wilson & Golonka, 2013), and adults’ solving of logical problems (Stephen & Dixon, 
2009). In the early twentieth century, cybernetics scholarship became known in the natural 
sciences and later spread through the social sciences, cognitive-developmental psychology, 
and educational research (Clancey, 2008). Some of these interdisciplinary scions of cyber-
netics are only of late being retroactively appreciated as tributaries to what is becoming a 
new paradigm of human cognition, development, and learning (Nagataki & Hirose, 2007).

Coordination dynamics provides a unifying framework for understanding how compo-
nents of biological constitution come together across scales (e.g., neural to behavioral to 
social) (Kelso, 1995). Coordination dynamics studies identify critical task-dependent order 
among modalities, the nonlinear relations among modalities that give rise to their coordina-
tion, and the rules that govern the stability and change of patterns (Kostrubiec et al., 2012; 
Stephen & Dixon, 2009). From a coordination dynamics perspective, instruction is creat-
ing fields of promoted action (Reed & Bril, 1996)—perturbations that stimulate learners’ 
responses congruent with culturally desired skills. To do so, instructors introduce, remove, 



	 R. Abdu et al.

1 3

or modify a set of tasks and environmental constraints—either directly or through aug-
menting the information the learner receives—and the learner devises means of re-coor-
dinating their motor actions to enact movements that perform the task (Chow et al., 2021; 
Newell & Ranganathan, 2010). Such constraint-based pedagogy seeks to create opportu-
nities for competitive athletes to discover their own optimal, often idiosyncratic, motor-
action solutions to these enactmen problems (Lee et al., 2014; Liao & Masters, 2001).

An attractor is a fixed point in a system’s trajectory toward which the system tends to 
evolve. It represents a potential goal state for the actor and the learning system. By anal-
ogy, an attractor can be seen as a marble rolling in a smooth, rounded basin that will always 
come to rest at the lowest point, in the bottom center of the bowl; this final state of position 
and motionlessness is a point attractor. A basin of attraction is a set of points from which a 
dynamical system spontaneously moves to a particular attractor. In the following sections, 
we describe how the learner can develop coordination between gaze and hand movement 
using these concepts borrowed from CDS methodology.

2.3 � An empirical context: the Mathematics Imagery Trainer for proportion

The Mathematics Imagery Trainer (henceforward, the Trainer) is a learning-environment 
architecture that exemplifies the action-based embodied design framework (Abrahamson 
et al., 2014; Alberto et al., 2021; Shvarts & van Helden, 2021). The Trainers are embod-
ied-interaction design architectures for enactive learning of mathematical concepts through 
solving motor-control problems (Reinholz et al., 2010) in dedicated environments dubbed 
instrumented fields of promoted action (Abrahamson & Trninic, 2015). Trainer tasks 
require learners to discover and enact a movement form that generates a particular goal 
state of the interactive system. To date, Trainers have been used to foster and study the 
Cartesian field (Abrahamson & Bakker, 2016), trigonometry (Alberto et  al., 2019), and 
parabolas (Shvarts & Abrahamson, 2019).

The particular Trainer task in this study focuses on proportion (Abrahamson et al., 2014). 
The design of the Trainer for proportion responds to the well-documented difficulty students 
incur with rational numbers, such as a/b fractions or a:b ratios (e.g., Lamon, 2007). In studies 
of conceptual transitions from additive to multiplicative reasoning, students’ solutions to Trainer 
problems typically begin by attempting to maintain a constant additive relation between the mag-
nitudes in question by moving both hands at the same speed (Fig. 1b, c). A paradigmatic interac-
tion sequence of Grades 4–6 study participants toward discovering how to enact a “green” move-
ment form (Fig. 1) transpires as follows: (a) while exploring, the student first positions the hands 

Fig. 1   Mathematics Imagery Trainer for proportion. Set at a 1:2 ratio, the bars turn green only when the 
right-hand bar is twice as tall as the left-hand bar
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incorrectly in a variety of “red” locations; (b) stumbles upon a “green” position; (c) raises their 
hands, maintaining a fixed interval between them, resulting in red feedback; (d) corrects back to a 
“green” position; and (e) eventually figures out how to move while keeping the bars green.

This initial phase is Exploration: manipulating the bars in different ways to find what 
makes them green. When a learner successfully elicits green feedback, this marks the Dis-
covery phase—the learner can begin to form and investigate ideas about how green is gen-
erated, identifying discrete green positions. Through a trial-and-error exploration process, 
students realize that the critical relation between the magnitudes is not additive. This leads 
to the third phase, Fluency, wherein learners successfully organize themselves to move the 
bars continuously while keeping them green. They develop a new bimanual coordination 
dynamic that attends to a new invariant property that could be described as multiplicative 
(Abrahamson & Abdu, 2020). Indeed, the students articulate their movement strategy as 
maintaining an invariant multiplicative relation, such as keeping the left bar half as high as 
the right bar. Analogous to learning other movements, such as dancing a pirouette, fluency 
is marked by smoothness. Our analyses will focus on these initial three phases. An instruc-
tor then introduces supplemental mathematical instruments into the activity space, such 
as grids and numerals. When participants incorporate these symbolic artifacts into their 
enactment, they transition into new ways of moving, thinking, talking, and representing the 
mathematical concept of proportion (Abdu et al., 2021; Abrahamson et al., 2011; Bongers, 
2020). Mastering the application of additive vs. multiplicative reasoning has been repeat-
edly demonstrated as key to learning rational numbers (e.g., Van Dooren et  al., 2010). 
Significantly for our thesis, solving a Trainer movement problem means that the complex 
dynamic multimodal system arrives at a new equilibrium.

2.4 � Perceptual solutions to movement problems

Enactivist theory predicts that learning to move in a new way is contingent on learning to per-
ceive the environment in a new way (“perceptually guided action,” Varela et al., 1991, p. 173). 
In line with the enactivist hypothesis, students who solved the Trainer task in Abrahamson et al. 
(2014) referred to new “things” they saw as their practical means of solving the task. They 
attended to the spatial interval between the top and middle of the right bar—a negative space 
in one’s visual field that came forth as a phenomenal object handled to maintain the bars green 
while moving the hands. The emergence of these visual structures coincided with improved 
performance (Abrahamson & Trninic, 2011; Reinholz et  al., 2010). Later studies applied 
eye tracking to empirically demonstrate the emergence of these dynamically stable, goal-ori-
ented visual structures (Duijzer et al., 2017; Shvarts & Abrahamson, 2019). Abrahamson and 
Sánchez-García (2016) used the term attentional anchors to signify perceptual solutions to the 
problem of coordinating complex situated movements. The attentional anchor emerges through 
goal-oriented iterated exploration, discovery, adaptation, and refinement, until it coalesces as 
mediating the enactment of the movement form.

Per the CDS perspective, attentional anchors are self-imposed constraints that reduce 
the degrees of freedom of the problem space (Abrahamson & Abdu, 2020; Savelsbergh 
et al., 2004). The mathematical function underlying the task demand, such as a 1:2 ratio, 
is a control parameter because it is activated to perturb the student’s business-as-usual 
additive movement schemes (fixed distance between hands, Fig.  1b, c) and nudges him 
to precipitate toward proportional movement schemes (changing distance between hands, 
Fig. 1d, e). The activity’s order parameter is implicated via the green feedback that acts as 
a proxy, indicating that the student has reconfigured their enactment scheme.
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2.5 � The current study

This paper uses quantitative means to demonstrate the microprocesses of multimodal math-
ematics learning as a complex eye–hand system’s reorganization toward equilibrium. New 
methodologies for gathering, analyzing, and modeling learners’ gazes enable a direct look 
at the microprocesses of mathematics learning (Blikstein & Worsley, 2016; Noroozi et al., 
2019). The methodology used in this study, recurrence quantification analysis (RQA), is 
uniquely geared to quantify and model microprocesses in terms of repetition, stability, and 
predictability (Stephen & Dixon, 2009). RQA can model individuals’ sensorimotor mani-
fold’s complex and dynamic evolution as they engage in embodied-interaction problem-
solving tasks within concept-oriented educational environments. In Tancredi et al., (2021, 
2022), we used RQA to compare the nonlinear dynamics of participants’ bimanual coor-
dination across different stages of interaction with a Trainer activity, offering a detailed 
account of task solution as bimanual movement destabilizing and then reconfiguring into 
task-effective coordination.

We are specifically interested in eye-gaze orientation developments when students inter-
act with Trainer tasks. We attempt to answer two research questions. First, how does stu-
dents’ eye–hand coordination change as they solve embodied mathematics Trainer tasks, 
and how are these changes consistent with the nonlinear phase transition of complex 
dynamic systems? Second, how do complex dynamic eye–hand systems shift into a new 
dynamic equilibrium when students solve embodied mathematics Trainer tasks? We set up 
a congruent research design that would enable us to identify how the students’ visual con-
structions and their motor performance reach task-effective coordination.

3 � Methodology

3.1 � Participants

Forty-five 5th and 6th students from the Netherlands participated in a study reported in pre-
vious publications (Abrahamson et  al., 2015; Duijzer et  al., 2017; Tancredi et  al., 2021, 
2022). Data were removed due to technical issues (8 participants) and not meeting the 
experiments’ stage threshold (5 participants, see paragraph 3.4). Ultimately, touchscreen 
hand position coordinates, eye-gaze coordinates, and audio–video data of manual actions 
and verbal-gestural utterances by the remaining 32 participants were included in the 
analysis.

3.2 � Task

The task was implemented using an Apple iPad Air touchscreen (resolution 1536 × 2048 
p.; diagonal 24.6  cm; refresh rate 120  Hz) in the Trainer application (Duijzer et  al., 
2017). Individual students participated in approximately 1hour sessions in a private 
room at school. Participants sat in front of the tablet. Each session started with a task 
explanation read by a student: “You have to move the bars up and down and find the 
green bars. Try to keep the bars green while moving them.” Students first explored the 
problem space with minimal intervention. Once participants found a green position, 
the researcher prompted them to find more while thinking aloud using pre-formulated 



Demonstrating mathematics learning as the emergence of eye–…

1 3

questions such as “Can you find more greens?” and “Could you tell me what you are 
doing right now?” Sessions ended when the students successfully moved the bars simul-
taneously from the bottom to the top while keeping the bars green (mean duration of 
7:11 min).

3.3 � Data collection and preprocessing

The research team collected eye-gaze and both hands’ x- and y-locations. Eye-gaze loca-
tion was collected with a screen-based Tobii X2-30 eye-tracker (30  Hz, S.D. = 2  Hz), 
which allows head movement. The accuracy of the Tobii X2-30 eye tracker under simi-
lar conditions is approximately 2.46°, and its precision is approximately 1.91° (Clemotte 
et  al., 2014). Participants were asked to keep looking at the tablet screen. Calibration 
included looking at the four corners of the tablet screen and its middle. No threshold 
was defined for the calibration accuracy. Preprocessing raw gaze data was done first 
with Tobii’s fixation filter. After correcting for missing data points (below 100  ms), 
the filter identifies fixation points in at least five gaze points grouped within a 35-pixel 
radius. In addition to eye-tracking data, the Trainer app recorded touchscreen positions 
for each finger throughout the process (a varied sampling frequency of ~ 50–120 Hz).

To align the sample rates for fingers and gaze data, we downsampled both to a rate of 
10 Hz (see Tancredi et al., 2021). We programmed a Python script to make these align-
ments automatically and produced synthetic videos of hands and eye-gaze locations 
over time. Our research team then watched these movies to verify spatial alignment 
using videos containing eye-gaze data overlaid atop the video (Fig.  1) and transcripts 
of the interaction translated from Dutch to English (produced for Duijzer et al., 2017). 
Unaligned data files (N = 22 files) were then adjusted manually by Authors 1 and 2.

3.4 � Coding for the three stages

We split each participant’s time series data according to typical stages in solving the 
Trainer task: Exploration (before discovering any green), Discovery (looking for new green 
locations after finding a first one), and Fluency (moving the hands together in green). Using 
an R script, we detected these stages automatically. We used a proxy variable for “green 
location,” coded 1 if the left-hand y coordinate divided by the right-hand y coordinate was 
between 0.4 and 0.6 for a given interval of 100 ms, and coded 0 if not. We calculated a two-
sided rolling average of the green location variable with a window size of 20 s. The Explo-
ration stage began with the first dataset entry and ended when a participant reached the 
first milestone: finding and maintaining a green location for at least 10 of 20 consecutive 
seconds. We set the window size to 20 s to ensure the participant engaged with the green 
location for a substantial period rather than passing through it briefly without returning. 
Reaching this milestone marked the beginning of the Discovery phase. We used another 
proxy variable, moving-in-green, to set the next transition. Moving-in-green was set to 1 
when, in the last 100 ms, the left and right fingers changed positions, and the green loca-
tion variable was equal to 1. We ran a two-sided rolling average of this variable with a 10-s 
window size. The Fluency stage began when the rolling average over a 10-s span reached a 
value higher than 80% of that individual’s maximum rolling average value. This threshold 
was set to mark moving in green close to participants’ personal best. Fluency’s window 
size was shorter than Discovery because it identified a local dynamic of high-level perfor-
mance rather than the general dynamic of engaging with greens frequently.
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Authors 1 and 2 hand-coded the transition points independently to validate the auto-
matic coding by visually evaluating graphs of a series of right- and left-hand heights 
using working definitions of the transitions between stages. We identified discrepancies 
in transition point locations larger than 30  s among the automatic and human coders. 
Based on these values, we reached an agreement, revising nine automated coding values 
(5 for Discovery and 4 for Fluency). Lastly, participants with stages shorter than 7 s were 
omitted from the dataset (3 for Exploration, 1 for Discovery, and 1 for Fluency), yielding 
a total dataset of 32 participants.

3.5 � Coding for areas of interest

We were interested in changes in eye-gaze patterns over time vis-à-vis the hands’ posi-
tions and ratios. For example, looking at a location in the upper right portion of the 
screen takes on a different meaning if the right hand is in that location than if the hands 
are at the screen’s bottom. We adapted Duijzer et  al.’s (2017) areas of interest (AoI), 
subdividing the space and coding eye-gaze according to these AoI for each 100 ms sam-
ple. To focus the analysis on the enactment space, we identified the borders of the tab-
let screen. We defined a proxy range variable that equals the accumulation of the two 
hands’ x-location medians divided by 8. The left and right borders of the screen (see 
Fig. 2) were calculated for each participant as the median of their left hand’s x location 
minus the range variable and the median of their right hand’s x location plus the range 

Fig. 2   Coding scheme for areas of interest
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variable. The screen was then partitioned into three columns of equal width (~ 512 p 
each): left for the left bar, right for the right bar, and middle for eye-gaze between the 
bars.

The vertical partitioning of the screen was done separately for each column. We 
partitioned the left and right columns to four AoIs with an R code. For every 100 ms 
timestamp, we split the left and right bars into three equal AoIs, following Duijzer 
et al. (2017). To account for the possibility that participants’ eye-gaze would be slightly 
above the fingers, the top bar AoI was extended upwards by a factor of 1.1 spatial vari-
ance in eye-gaze (AoI L1 and R1 in Fig. 2). We defined the region between the top of 
the screen and the tops of AoI L1 and R1 and a third AoI between these columns. The 
middle column was calculated as follows: when the right bar was taller than the left bar, 
the vertical allocation was similar to the vertical allocation of the right bar; when the 
left bar was taller than the right bar (does not appear in Fig. 2), the middle column was 
split into three AoIs defined by the height of the right bar, the height of the left bar, and 
the top of the screen (M1, M2, and M3 in Fig. 2).

3.6 � Recurrence quantification analysis (RQA)

RQA is a nonlinear method that captures the structure of variability in a dynamic sys-
tem over time. Marwan et al. (2007) applied RQA to study dynamic systems across dis-
ciplines, such as using participants’ movements to predict moments of insight in prob-
lem solving (Stephen & Dixon, 2009) and model their scientific beliefs (Fleuchaus et al., 
2020). In Tancredi et al. (2021), we studied the development of dynamic bimanual stabil-
ity as learners developed new proto-concepts of multiplicative reasoning. Here, we recruit 
this method to study the structure of learners’ eye-gaze patterns as they learn to coordinate 
their hands in a new way. We use categorical auto-RQA—a type of RQA that examines 
recurring events within a single categorical time series by comparing each system’s state 
over time to every other by creating a recurrence plot (see Fig. 3). In Fig. 3, we present an 
auto-RQA plot where a focal time series is placed on both the x- and y-axes. Every point 
is compared to every other. For example, the first AoI in the time series (L1, see Fig. 2 
for instance), appearing in the bottom left corner, is compared to each of the seven values 
along the plot’s horizontal and vertical axes. When it appears again (the fourth entry), a 
point appears on the plot (here, in green).

Different metrics of the resulting plot are quantified to reflect various aspects of the 
time series. For example, the total number of points on the plot demonstrates the overall 
recurrence in the time series; the average vertical line length (such as the height of the 
yellow box resulting from looking at area R0 for 300 ms) reflects the duration of persis-
tent positions.

We used the crqa package in R (Coco & Dale, 2014) to conduct a categorical auto-
RQA for eye-gaze AoI for each of the three bimanual problem-solving stages. We used 
conventional categorical RQA parameters (radius = 0.001, delay = 1) and an embed-
ding dimension of 5, ignoring recurrent sections shorter than 500 ms. We chose five 
RQA metrics (Marwan et al., 2007)—recurrence rate, percent determinism, mean line 
length, normalized entropy, and trapping time-to characterize gaze dynamics across 
the three stages. The recurrence rate (scale = 0–100) measures repetition levels, cal-
culated as the percentage of recurring points in the RQA plot. Percent determinism 
(0–100 scale) reflects the system’s predictability—calculated as the percentage of plot 
points on diagonal lines longer than 1 point. Mean line length (scale = 0–½ time-series 
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length) reflects the system’s stability—calculated as the average length of diago-
nal lines longer than 1 point on the recurrence plot. Shannon’s normalized entropy 
(scale = 0–1) reflects the level of disorder in the system, calculated as the distribution 
of lengths of the lines in the plot normalized by the total number of lines in the recur-
rence plot. A decrease in entropy reflects an increase in the system’s order. Trapping 
time (scale = 0–½ time-series length) demonstrates the system’s consistency in terms 
of the average duration of a connected state—calculated as the average of the verti-
cal lines’ lengths in the recurrence plot. To test for the main effects in the RQA met-
rics between stages (see Table  2), we conducted a Wilks-Lambda repeated-measures 
ANOVA (n = 32). In the post hoc analysis, we used Fisher’s least significant difference 
test to compare the three stages.

3.7 � Choosing a case study

We analyzed one participant’s video data and RQA metrics (Jan, pseudonym). We chose 
this participant because his learning process can be comprehensively described and based 
on its overall similarity to the cross-participant main effect (see Tables 1 and 2): Jan is 
representative in all but trapping time in the Exploration stage, which went up rather than 
of down. We chose five critical moments to analyze qualitatively based on a triangulation 
of: (a) video data, including eye-gaze; (b) an RQA plot of Jan’s performance through-
out the activity (Fig. 5, up); and (c) hand locations over time (Fig. 5, bottom). Based on 
internal discussions among the authors, we refined our analysis of the critical moments 
to develop a representation of phase transitions of a complex dynamic eye–hand system 
(Figs. 6, 7, 8, 9 and 10).

Fig. 3   An example of a categori-
cal auto-recurrence plot. Note: 
the coloring here is used for 
illustration. Typically, RQA plots 
for large datasets and recurrence 
variations are monochromatic 
(Fig. 5). Note also that this 
plot was created for illustrative 
purposes and is not grounded in 
actual data
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4 � Findings

4.1 � Quantitative changes in RQA metrics

All RQA metrics, except entropy, increased in the Fluency stage (Fig. 4). For all, a signifi-
cant main effect (p < 0.05) was recorded (Table 1). Recurrence rate and percent determin-
ism were significantly different, higher only in the Fluency stage, implicating increased 
eye-gaze AoI repetition and predictability. The mean line length and trapping time dropped 
from Exploration and Discovery. They increased from Discovery to Fluency, implicat-
ing a resemblance between the Exploration and Fluency stages regarding the stability and 
consistency of the systems. Entropy was highest in the Exploration stage and significantly 
lower in the Discovery and Fluency stages, indicating a decrease and a non-significant 

Fig. 4   Boxplot for the five RQA metrics over the three study stages (n = 32). Center line, mean; Box, 1 SD; 
whiskers, 3SDs

Table 1   Estimated means and standard deviations of RQA metrics across participants (n = 32) in the three 
study stages

The main effect was observed for all variables. We present the significance of the difference between Explo-
ration and Discovery (Column 3) and between Discovery and Fluency (Column 5). Exploration and Flu-
ency are significantly different for recurrence rate, determinism, and normalized entropy

Stage Exploration Discovery Fluency

Recurrence rate* 4.04 (5.34) 3.33 (3.23)  <  7.82 (8.85)
Determinism (%) * 89.21 (6.71) 89.55 (4.98)  <  93.22 (4.55)
Mean line length* 5.85 (3.34)  >  4.54 (.83)  <  6.49 (3.87)
Normalized entropy* 0.68 (.10)  >  0.60 (.11) 0.63 (0.09)
Trapping time* 8.80 (5.31)  >  6.99 (1.64)  <  10.22 (6.14)
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increase in the system’s disorder (steady states were more disordered). Recurrence rate, 
mean line length, and trapping time also showed lower variance in the Discovery phase 
than in the other two phases.

4.2 � Case study: phase transition

To contextualize the main mathematics learning effects, we illustrate and analyze the learn-
ing sequence of one participant (Jan, pseudonym). For Jan, increases in the Recurrence 
rate, determinism, mean line, and trapping time metrics indicate increases in repetition, 
predictability, stability, and duration of continuous focus of the eye–hand system in the 
Fluency stage (Table 2). Entropy increased during the Fluency stage, indicating an increase 
in the system’s variability of recurring coordinations.

The RQA plot of Jan’s solution process (Fig. 5) demonstrates a phase transition between 
two distinct equilibria. The time series of gaze AoIs forms both the x- and y-axis of the recur-
rence plot, and local dynamics at each moment in the time series run along the diagonal from 
the bottom left of the RQA plot to the upper right (Fig. 5, top). The plot begins in the lower-left 
corner with a dense blue square, demonstrating the high consistency of the CDS at this stage. 
This initial gaze stability corresponds to the first segment of bimanual dynamics shown in the 
lower graph (Fig. 5). Around minute 1:40, Jan finds green (the lower graph in Fig. 5, ~ 1:40 
to ~ 3:40). Moving up and right along the recurrence plot diagonal, we observe how eye-gaze 
dynamics change after this green feedback, showing a new and somewhat less stable structure. 
Progressively, as Jan finds more greens (~ 3:40 to ~ 10:10), his recurrence plot shows increas-
ingly sparse and less organized structures on the plot as the system fluctuates out of dynamic 
equilibrium. Finally, as the hands move in green, the system reaches equilibrium around the 
(10:20) mark, demonstrated as a dense square representing high recurrence levels. In Fig. 5, we 
mark five key moments (a–e) in which this CDS fluctuates out of dynamic equilibrium (a–c) 
and then back into (d, e) dynamic equilibrium in the interaction with the Trainer and the teacher.

In Fig. 5, the beginnings of the Discovery and Fluency stages are signified with dotted and 
solid lines (6:01 and 9:29, respectively). Key moment markers (a–e) indicate changes in move-
ment patterns (observable in the bottom figure). The density of blue dots in the squares marked 
on the RQA plot’s main diagonal represent eye–hand coordination: two solid squares that rep-
resent high coordination, then a fluctuation (a) accompanied by lowering density squares (b to 
c to d) and the emergence of new coordination shown as a higher density square (e).

We now detail the five key moments in Fig. 5. We chose five corresponding video snap-
shats (Figs. 6–10) to exemplify eye-gaze patterns around those critical moments. Jan tried 
to solve the Trainer’s problem while an experimenter prompted him to speak aloud (see 
Subsection 3.2). Jan’s and the researcher’s words are highlighted in italics, and […] repre-
sents omission, for narrative brevity.

Table 2   Jan’s auto-RQA metrics 
of the Exploration (00:00–6:01), 
Discovery (6:01–9:29), and 
Fluency (9:29–12:11) stages

Stage Exploration Discovery Fluency

Recurrence rate 1.03 0.91 2.59
Determinism 77.51 80.96 91.16
Mean line 3.15 3.59 5.33
Entropy 0.50 0.49 0.59
Trapping time 4.41 5.38 8.59
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The session began with the following encounter: the researcher asked Jan to “find out 
when the bars turn green,” stressing that he “can move [his] fingers” (00:00–00:12). After a 
minute and a half, during which Jan reaches a green position for a brief period, the researcher 
elicits Jan’s thoughts, and Jan explains: “[…] I thought they [the bars] were the same for a 
while, then they turned green, but that is not the case.” That is, Jan expresses the hypothesis 
that green locations requires the two bars to be at the same height. The RQA plot is solid blue 
to that point, signifying a high recurrence of eye–hand coordination within this timeframe.

a) Exploration: an unsuccessful additive coordination  Jan searches for a green where 
the distance between the bars remains relatively small until 06:01 (Fig.  6). Throughout 
this process, he discovers green in two abrupt instances. His main concern in this stage is 
understanding which bar should be higher.

Jan raises and lowers both fingers at the same rate throughout this stage, demonstrating 
an additive strategy. While doing so, his eyes mainly go back and forth between the top of 

Fig. 5   Auto RQA plots Jan’s eye-gaze areas of interest (top) and his hands’ locations throughout the solu-
tion process and green feedback (bottom)
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the bars (between L1 and R1, Fig. 6). This strategy is steady coordination that does not 
consider green feedback. The hands seem to lead the eye–hand interaction because there is 
no anticipatory eye-gaze movement.

b) Perturbation: the researcher offers a constraint  Around the 6-min mark, Jan discovers 
a new green (Fig. 7). This time, he keeps his hands steady. The researcher asks Jan if he 
notices anything about the bars’ position, and Jan responds that he knows now that the left 
bar should be lower than the right bar.

At the beginning of this interaction, Jan’s eye-gaze keeps transitioning between the 
bars’ tops. By asking Jan to “say how big the difference is,” the researcher refers to 
the vertical distance between the two bars’ heights. Jan responds to the researcher’s 
cue by asking whether it is the size (“how big?”) of the difference that the researcher 
is probing. Meanwhile, the RQA plot shows a decrease in blue-dot density, signifying 
gaze fluctuations, as Jan glances through AoIs that do not include his fingertips (e.g., 
M1 in Fig. 7).

The researcher clarifies that this ontology of “difference” is potentially a variable 
object, quality, or token whose magnitude in this context requires further specifica-
tion—a “rule” Jan should figure out. He offers Jan an empirical pathway for deducing 
this rule from what he sees (in Dutch, Die zou je kunnen afleiden aan wat je nu ziet), 
directing him to find another green location at the top of the screen. Thus, he implies 
that investigating the difference at another location would promote Jan’s establishing 
of the desired rule. From a CDS perspective, the researcher perturbs Jan’s interaction 
with the technology to extract him from a basin of attraction (Ott, 2006), beckoning him 
toward other green pastures.

Fig. 6   Gaze transitions: L1 → R1 → L1

Fig. 7   Gaze transitions: L1 → R1 → M1
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c) Discovery: destabilization of eye‑gaze patterns  Jan continues to move his fingers 
close together, up and down (Fig. 8). His eye-gaze keeps moving between the bar tops, yet 
this time with more “stops” and visual searches at locations other than the two fingers.

Jan begins to self-impose a new constraint (“difference”) on his sensorimotor attempts 
to perform the task. The perturbation in the eye–hand system introduced by the tutor’s 
question about the difference leads to destabilizing the initial eye-gaze pattern that follows 
the fingers’ movement. As Jan discovers diverse green locations more consistently, more 
gaze pattern variants emerge. At the same time, Jan transitions from the changing magni-
tudes of either of the bars (“very long,” “smaller,” “very large,” and “bigger”) to the change 
in their differences (“the difference is getting smaller, I mean bigger”).

d) Discovery: stabilization of eye‑gaze patterns (Fig. 9)  Now, Jan reflects on prior green 
solutions and explains the change in the “difference” between the fingers’ positions when 
the hands are relatively low and relatively high. When the researcher asks him to describe 
that change, around 9:51, Jan’s gaze forms the pattern shown in Fig. 9, running from the 
bottom of the right bar to the top of the left to the middle of the right and up to the right 
finger. From this point on, eye movements will coalesce into steady patterns (Fig. 9), mark-
ing the beginning of the Fluency stage (Fig. 5 (d), (e)). At 09:59, Jan expresses the target 
proportion between the bars—half.

e) Fluency: coordination (Fig. 10)  From this point on in the problem-solving, Jan dem-
onstrates new eye–hand coordination that is based on a new visual structure—while both 
hands move upwards, the eye-gaze pattern moves between the top of the left bar, the mid-
dle of the right bar, and the top of the right bar (Fig. 10). An attentional anchor emerges.

Fig. 8   Gaze transitions: L1 → R0 → R1 → R3

Fig. 9   Gaze transitions: R1 → R2 → L1 → M2 → M3
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5 � Discussion

This study used constructs and methodologies from complex dynamic systems literature 
to analyze eye–hand dynamics as students solve embodied mathematics Trainer tasks. We 
demonstrated how students’ changes in eye–hand coordination dynamics are consistent 
with the nonlinear phase transition characteristics of complex dynamic systems. We fur-
ther showed how one students’ eye–hand system shifted into a new dynamic equilibrium 
when solving the Trainer task.

To answer the first research question, we compared the RQA metrics of three typical 
stages in solving the Trainer task: Exploration (before discovering any green), Discov-
ery (green locations search after prior discovery), and Fluency (hands move together 
in green). Across the 32 participants, the three stages were significantly different. The 
Fluency stage, where task-effective hand movements were relatively coordinated, coin-
cided with more repetitive, predictable, and stable eye-gaze patterns respecting the 
manually changed AoI. That is, eye patterns guided hand-movement patterns, creating 
a complex dynamic system in equilibrium and performing a task-effective movement. 
Recurrence rate and percent determinism increased significantly in the Fluency stage 
compared to the earlier Exploration and Discovery stages, meaning that the partici-
pants’ eyes–hands systems mostly reached high repetition and predictability at the Flu-
ency stage. Mean line length and percent determinism were also highest during the 
Fluency stage, indicating higher stability and consistency. Across participants, then, 
gaze patterns became more dynamically stable and consistent as participants drew 
their hands into increasing coordination.

We chose a case study of a prototypical participant’s mathematics learning with the 
Trainer to answer the second research question. We view Jan’s case as demonstrating a 
cognitive system undergoing phase transition. It repelled out of a fixed-interval ineffective 
solution (pre-proportion), through an unpredictable and unstable low-coordination stage, 
into an effective proportional solution. The solution was constituted as eye-hand coordina-
tion dynamics. RQA metrics for Jan’s learning process showed progress from stable yet 
functionally unsuccessful eye–hand dynamics, through a stage of instability, to ultimate 
task-effective eye–hand dynamic coordination. This coordination manifested as increases 
in recurrence rate, determinism, mean line, and trapping time during the Fluency stage. 
Thus, concerning earlier stages, Jan showed in the Fluency stage more repetitive, pre-
dictable, stable, and continuous intermodal (eyes–hands) and intramodal (hands–hands) 
dynamic coordination (see also Tancredi et al., 2022). Entropy, an indicator of the system’s 
recurring coordination variability, also increased during the Fluency stage. Later in the dis-
cussion, we will discuss this finding (as relevant to all participants).

Fig. 10   Gaze transitions: R2 → L1 → R2
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Further eye-tracking and video data analysis show that the transition to Fluency hap-
pened when Jan adopted new task-effective visual structures, consistently including the 
middle of the right bar (Figs. 8–10). Notably, before and within the Fluency stage, move-
ments were centered on dynamically invariant visual orientations (attentional anchors, 
Abrahamson & Sánchez-García, 2016). While the final attentional anchor worked well to 
solve the task, Jan also manifested at the beginning a pre-intervention spontaneous atten-
tional anchor focused either on the bars’ or the fingers’ heights. This ineffective attentional 
anchor may have stemmed from coupling the task description (move the bars) and a natural 
inclination of humans to look at their index fingers when they reach for objects and grasp 
them (Thulasiram et  al., 2020). Congruent with enactivist theories that view cognitive 
development as the perceptual reorganization of action (Hutto et  al., 2015; Varela et  al., 
1991), the eye-gaze joins the hands to provide a unified, embodied solution to the math-
ematics learning problem.

In solving the mathematics Trainer task, participants repelled from one attractor and 
precipitated towards another. RQA metrics showed low recurrence, predictability, stabil-
ity, and consistency. Also, recurrence, predictability, and consistency had a lower variance 
in the Discovery phase than in the other two phases, implying that this decrease in RQA 
metrics was relatively consistent among all study participants, regardless of their perfor-
mance in the Fluency stage. In this Discovery stage, the sociomaterial context, including 
the instrumented field of promoted action and the attentive cultural facilitator, played criti-
cal supporting roles in the emergence of new visual solutions (as in Flood et  al., 2020; 
Shvarts & Abrahamson, 2019). The researcher orients Jan’s visual attention to the differ-
ence between the bars and proposes he might deduce the rule from what he sees. Instruc-
tors can foster students’ construction of goal-oriented visual structures mediating effective 
interactions. For example, Liao and Masters (2001) demonstrated that table tennis coaches 
could cause athletes to envisage imaginary constellations of dynamical environmental fea-
tures to improve striking (and see Hutto & Sánchez-García, 2015, for the case of skate-
board experts).

In Jan’s case study, this is an iterative process in which the researcher nudges Jan to 
leave one basin of attraction and reach a new one (Ott, 2006). It is common to have more 
than one attractor in complex dynamic systems. For each such attractor (or desired state in 
each case), its basin of attraction is the set of initial conditions leading to the generation 
of long-term behavior that approaches that attractor. Thus, the qualitative behavior of the 
long-term motion of a given system can be fundamentally different depending on which 
basin of attraction the initial condition lies in. In this case study, we see Jan leaving one set 
of initial conditions for another.

Coordinating eye-gaze with hand movements became the problem of reducing the 
number of independent variables to control (Turvey, 1990). Right before the Fluency 
stage begins, we observe a drop in the recurrence rate (between Fig. 5 (c), (d)), and video 
data provide evidence for eye-gaze patterns to correct the bimanual solution (Figs. 8 and 
9). Like the table tennis players in Liao and Masters (2001), Jan projected a new self-
constraint onto the field of promoted action in order to enact a better-adapted coordinated 
movement (Fig. 7), manifested in our analyses as an increase in all RQA metrics (Fig. 5 
and Table 2).

This study has several limitations as the first venture into RQA gaze analysis of embod-
ied-mathematics learning. One technical limitation is the low sampling rate for eye-track-
ing data to match video data; this is relatively low for eye-tracking studies and does not 
allow monitoring of more detailed gaze. Furthermore, we were not able to access the exact 
eye-tracking accuracy for this study. However, eye-tracking accuracy for the particular 
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eye-tracking model that we have used in our study (Tobii X2-30) has been reported to 
be sufficient for the purposes of our study. Further research with greater frequency and 
eye-tracking accuracy may capture the full, nuanced dynamics of gaze development. 
A population-sampling limitation is that this study only includes participants who spent 
significant time in all three stages of learning predefined by our judgment of a solution 
process, omitting those who did not exhibit one of them. Further research on the dynam-
ics of those participants would support a more nuanced understanding of learners’ diverse 
intrinsic dynamics. An eye-tracking sampling limitation (10 Hz in the case of the current 
study) does not affect the methodologies applied in this paper but still bounds the empirical 
insights provided in this study since eye-tracking studies in mathematics education often 
consider 30 Hz as a threshold sampling rate (Strohmaier, 2020). However, our interest in 
this study is related to visual attention relative to the hands’ movement rather than raw gaze 
patterns, where gaze data is categorically coded. The significant statistical effects imply 
that the phenomena presented in this study can be modeled and explained in slightly larger 
grain sizes than typical eye-tracking studies in mathematics education.

Nonetheless, further studies can handle this lacuna, controlling for inconsistent sam-
pling rates between different data collection sources. A software limitation is that the 
Trainer task does not feature an additive stable phase. Thus, although we observed in many 
participants evidence of additive movement, the stability of additive movement as a prior 
attractor was not solicited by us and was not consistently observable in these data. Finally, 
from a theoretical standpoint, this analysis examines the relationship between hand and 
gaze dynamics at the level of meta-stages in bimanual coordination. Coordination among a 
system’s components also refers to different degrees of functional order among interacting 
parts through space and time.

Future research can characterize the evolution of this coordination through analyses 
using a smaller grain size to chart how hand and gaze enter into coordination (Tancredi 
et al., 2022). A smaller grain size would also help elucidate entropy dynamics in these 
data. We found entropy to decrease during Discovery relative to Exploration and Flu-
ency—an increase and subsequent decrease in the level of order in the gaze system. 
This finding contradicts the spike and consequent drop in entropy predictive of phase 
transitions in the dynamic systems literature (as in Stephen & Dixon, 2009). In stage-
based analyses here and in Tancredi et al. (2021), we could not detect such a pattern. 
One explanation for these findings could be that the Fluency stage was signified by an 
increased recurrence rate and mean line length. Since entropy represents the level of 
disorder in line lengths in the RQA plot, more recurrent cases may be more prone to 
more significant variance/disorder.

6 � Conclusions

This study presents a nascent contribution to mathematics education research, demon-
strating mathematics learning as a complex dynamic system in flux. Our findings advance 
enactivist research on mathematics education. Pirie and Kieren (1989) applied enactivist 
principles to implicate mathematical cognition as grounded in dynamic images. Nemi-
rovsky et  al. (2013) viewed mathematical learning as sensorimotor coordination. Abra-
hamson et al. (2016) offered a qualitative demonstration of enactivist mathematics learn-
ing, corroborating Piaget’s systemic notion of reflecting abstraction. Abrahamson and 
Trninic (2015) put forth the thesis that the theory and methods of coordination dynamics 
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can furnish explanatory models of mathematical cognition in flux, and Abrahamson and 
Bakker (2016) argued for the importance of exploration and discovery in grounding flu-
ency with new mathematical movements (see also Abrahamson, 2018; Abrahamson & 
Abdu, 2020). Whereas these principles and methodologies of complex dynamic sys-
tems have been previously employed to model cognitive development (Thelen & Smith, 
1994) and problem-solving (Stephen & Dixon, 2009), we have shown the emergence of 
hand–hand (Tancredi et al., 2021) and hand–gaze coordination in our enactivist tasks. To 
the best of our knowledge, this is the first study to offer quantitative empirical data as 
evidence supporting the thesis that mathematical learning is a nonlinear process of senso-
rimotor coordination (see also Tancredi et al., 2022). In particular, our findings highlight 
the pivotal constitutive role of developing new visual orientations in organizing the enact-
ment of challenging movements (Mechsner, 2003; Mechsner et  al., 2001). As such, we 
spotlight visual perception-for-action as a central phenomenon of interest in mathematical 
cognition and learning research.

We argue that eye–hand coordination is the cognitive vehicle of enactive mathematical 
learning. Grounding a new mathematical concept is developing the capacity to enact visu-
ally guided actions. These actions instantiate the concept. Thus, the Mathematics Imagery 
Trainer implements pedagogical principles of radical constructivism (Steffe & Kieren, 
1994) in the form of an instrumented field of promoted action (Abrahamson & Trninic, 
2015), fostering concept-grounding schemes. The larger research program harnesses enac-
tivist philosophy (Petitmengin, 2007) in theorizing the phenomenology of mathematical 
learning as literally coming to grasp new structures (Abrahamson, 2021). RQA can serve 
this research program by modeling dialogic interactions (tutor–student or student–student) 
regarding independent complex systems reaching coordination.

By investigating the enactive roots of attentional anchors for mathematical con-
cepts, we could all stand to better engineer action-based embodied designs that serve 
broad population sectors, optimizing for students’ diverse sensory and motor capabili-
ties (for inclusive designs, see Abrahamson et al., 2019; Lambert et al., 2022). Embod-
ied design technologies for mathematics learning generate useful empirical contexts 
for studying the microgenesis of multimodal conceptual development. We envision 
this design-based research program as harnessing state-of-the-art methodological 
techniques for real-time multimodal learning analytics to build artificially intelligent, 
responsive tutors (Abdullah et  al., 2017; Pardos et  al., 2018). In so doing, Trainers 
could continue serving the field as an auspicious empirical platform for conducting 
design-based research into enactivist models of mathematics education (Hutto, 2019; 
Hutto et  al., 2015). Though still in the early days of research, development, and dis-
semination, Trainers offer mathematics education a new activity genre. Trainers are 
grounded in long-standing learning theory and suited to timely technological develop-
ment and social circumstances, such as remote learning in the age of global pandemics 
(Shvarts & van Helden, 2021).
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reasonable request and with the permission of the Freudenthal Institute at Utrecht University.

Declarations 

Conflict of interest  The authors declare no competing interests.



	 R. Abdu et al.

1 3

References

Abdu, R., van Helden, G., Alberto, R., & Bakker, A. (2021). Multimodal dialogue in small-group math-
ematics learning. Learning, Culture and Social Interaction, 29, 100491. https://​doi.​org/​10.​1016/j.​lcsi.​
2021.​100491

Abdullah, A., Adil, M., Rosenbaum, L., Clemmons, M., Shah, M., Abrahamson, D., & Neff, M. (2017). 
Pedagogical agents to support embodied, discovery-based learning. In J. Beskow, C. Peters, G. Cas-
tellano, C. O’Sullivan, I. Leite, & S. Kopp (Eds.), Proceedings of 17th International Conference on 
Intelligent Virtual Agents (IVA, 2017) (pp. 1–14). Springer International Publishing. https://​doi.​org/​
10.​1007/​978-3-​319-​67401-8_1

Abrahamson, D. (2021). Grasp actually: An evolutionist argument for enactivist mathematics education. 
Human Development, 65(2), 77–93. https://​doi.​org/​10.​1159/​00051​5680

Abrahamson, D., & Abdu, R. (2020). Towards an ecological-dynamics design framework for embodied-
interaction conceptual learning: The case of dynamic mathematics environments. Educational Tech-
nology Research and Development, 69(4), 1889–1923. https://​doi.​org/​10.​1007/​s11423-​020-​09805-1

Abrahamson, D., & Bakker, A. (2016). Making sense of movement in embodied design for mathematics learning. 
Cognitive Research: Principles and Implications, 1(1), 33. https://​doi.​org/​10.​1186/​s41235-​016-​0034-3

Abrahamson, D., & Sánchez-García, R. (2016). Learning is moving in new ways: The ecological dynamics 
of mathematics education. Journal of the Learning Sciences, 25(2), 203–239. https://​doi.​org/​10.​1080/​
10508​406.​2016.​11433​70

Abrahamson, D., & Trninic, D. (2015). Bringing forth mathematical concepts: Signifying sensorimotor 
enactment in fields of promoted action. ZDM-Mathematics Education, 47(2), 295–306. https://​doi.​org/​
10.​1007/​s11858-​014-​0620-0

Abrahamson, D., Trninic, D., Gutiérrez, J. F., Huth, J., & Lee, R. G. (2011). Hooks and shifts: A dialectical 
study of mediated discovery. Technology, Knowledge, and Learning, 16(1), 55–85. https://​doi.​org/​10.​
1007/​s10758-​011-​9177-y

Abrahamson, D., Lee, R. G., Negrete, A. G., & Gutiérrez, J. F. (2014). Coordinating visualizations of poly-
semous action: Values added for grounding proportion. ZDM-Mathematics Education, 46(1), 79–93. 
https://​doi.​org/​10.​1007/​s11858-​013-​0521-7

Abrahamson, D., Shayan, S., Bakker, A., & Van Der Schaaf, M. (2015). Eye-tracking Piaget: Capturing the 
emergence of attentional anchors in the coordination of proportional motor action. Human Develop-
ment, 58(4–5), 218–244. https://​doi.​org/​10.​1159/​00044​3153

Abrahamson, D., Flood, V. J., Miele, J. A., & Siu, Y.-T. (2019). Enactivism and ethnomethodological conversation 
analysis as tools for expanding Universal Design for Learning: The case of visually impaired mathematics 
students. ZDM-Mathematics Education, 51(2), 291–303. https://​doi.​org/​10.​1007/​s11858-​018-​0998-1

Abrahamson, D., & Trninic, D. (2011). Toward an embodied-interaction design framework for mathemati-
cal concepts. In P. Blikstein & P. Marshall (Eds.), Proceedings of the 10th Annual Interaction Design 
and Children Conference (IDC 2011) (Vol. “Full papers,” pp. 1–10). IDC.

Abrahamson, D., Sánchez-García, R., & Smyth, C. (2016). Metaphors are projected constraints on action: 
An ecological dynamics view on learning across the disciplines. In C.-K. Looi, J. L. Polman, U. Cress, 
& P. Reimann (Eds.), “Transforming learning, empowering learners,” Proceedings of the Interna-
tional Conference of the Learning Sciences (ICLS 2016) (Vol. 1, pp. 314–321). International Society 
of the Learning Sciences.

Abrahamson, D. (2018). Moving forward: In search of synergy across diverse views on the role of physical 
movement in design for STEM education [symposium]. In J. Kay & R. Luckin (Eds.), “Rethinking 
learning in the digital age: Making the Learning Sciences count,” Proceedings of the 13th Inter-
national Conference of the Learning Sciences (ICLS 2018) (Vol. 2, pp. 1243–1250). International 
Society of the Learning Sciences.

Adolph, K. E., Hoch, J. E., & Cole, W. G. (2018). Development (of walking): 15 suggestions. Trends in 
Cognitive Sciences, 22(8), 699–711. https://​doi.​org/​10.​1016/j.​tics.​2018.​05.​010

Alberto, R. A., Bakker, A., Walker–van Aalst, O., Boon, P. B. J., & Drijvers, P. H. M. (2019). Network-
ing theories in design research: An embodied instrumentation case study in trigonometry. In U. T. 
Jankvist, v. d. Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceeding of the 11th Congress of the Euro-
pean Society for Research in Mathematics Education (CERME11) (pp. 3088–3095). Freudenthal 
Group & Freudenthal Institute, Utrecht University and ERME.

Alberto, R., Shvarts, A., Drijvers, P., & Bakker, A. (2021). Action-based embodied design for mathematics 
learning: A decade of variations on a theme. International Journal of Child-Computer Interaction, 
100419. https://​doi.​org/​10.​1016/j.​ijcci.​2021.​100419

https://doi.org/10.1016/j.lcsi.2021.100491
https://doi.org/10.1016/j.lcsi.2021.100491
https://doi.org/10.1007/978-3-319-67401-8_1
https://doi.org/10.1007/978-3-319-67401-8_1
https://doi.org/10.1159/000515680
https://doi.org/10.1007/s11423-020-09805-1
https://doi.org/10.1186/s41235-016-0034-3
https://doi.org/10.1080/10508406.2016.1143370
https://doi.org/10.1080/10508406.2016.1143370
https://doi.org/10.1007/s11858-014-0620-0
https://doi.org/10.1007/s11858-014-0620-0
https://doi.org/10.1007/s10758-011-9177-y
https://doi.org/10.1007/s10758-011-9177-y
https://doi.org/10.1007/s11858-013-0521-7
https://doi.org/10.1159/000443153
https://doi.org/10.1007/s11858-018-0998-1
https://doi.org/10.1016/j.tics.2018.05.010
https://doi.org/10.1016/j.ijcci.2021.100419


Demonstrating mathematics learning as the emergence of eye–…

1 3

Allen, J. W. P., & Bickhard, M. H. (2013). Stepping off the pendulum: Why only an action-based approach 
can transcend the nativist–empiricist debate. Cognitive Development, 28(2), 9–133. https://​doi.​org/​10.​
1016/j.​cogdev.​2013.​01.​002

Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial Intelligence, 149(1), 91–130. https://​
doi.​org/​10.​1016/​S0004-​3702(03)​00054-7

Anderson, M. L., Richardson, M. J., & Chemero, A. (2012). Eroding the boundaries of cognition: Impli-
cations of embodiment 1. Topics in Cognitive Science, 4(4), 717–730. https://​doi.​org/​10.​1111/j.​1756-​
8765.​2012.​01211.x

Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4), 716–724.
Bateson, G. (1972). Steps to an ecology of mind: A revolutionary approach to man’s understanding of him-

self. Ballantine Books.
Blikstein, P., & Worsley, M. (2016). Multimodal learning analytics and education data mining: Using com-

putational technologies to measure complex learning tasks. Journal of Learning Analytics, 3(2), 220–
238. https://​doi.​org/​10.​18608/​jla.​2016.​32.​11

Bongers, T. J. D. (2020). Transfer of embodied experiences in a tablet environment towards a pen and paper 
task. Unpublished Masters thesis (Applied cognitive psychology). Utrecht University.

Chow, J. Y., Komar, J., Davids, K., & Tan, C. W. K. (2021). Nonlinear pedagogy and its implications for 
practice in the Singapore PE context. Physical Education and Sport Pedagogy, 26(3), 230–241. https://​
doi.​org/​10.​1080/​17408​989.​2021.​18862​70

Clancey, W. J. (2008). Scientific antecedents of situated cognition. In P. Robbins & M. Aydede (Eds.), Cambridge 
Handbook of situated cognition (pp. 11–34). Cambridge University Press.

Clemotte, A., Velasco, M. A., Torricelli, D., Raya, R., & Ceres Ruiz, R. (2014). Accuracy and precision of the 
Tobii X2–30 eye-tracking under non ideal conditions. In A. R. Londral (Ed.), Proceedings of the 2nd Interna-
tional Congress on Neurotechnology, Electronics and Informatics (pp. 111–116). Rome, Italy.

Coco, M. I., & Dale, R. (2014). Cross-recurrence quantification analysis of categorical and continuous time 
series: An R package. Frontiers in Psychology, 5, 510. https://​doi.​org/​10.​3389/​fpsyg.​2014.​00510

Dackermann, T., Fischer, U., Nuerk, H.-C., Cress, U., & Moeller, K. (2017). Applying embodied cognition: From 
useful interventions and their theoretical underpinnings to practical applications. ZDM-Mathematics Educa-
tion, 49(4), 545–557. https://​doi.​org/​10.​1007/​s11858-​017-​0850-z

de Freitas, E., & Sinclair, N. (2013). New materialist ontologies in mathematics education: The body in/of math-
ematics. Educational Studies in Mathematics, 83(3), 453–470. https://​doi.​org/​10.​1007/​s10649-​012-​9465-z

Dourish, P. (2001). Where the action is: The foundations of embodied interaction. MIT Press.
Duijzer, C. A., Shayan, S., Bakker, A., Van der Schaaf, M. F., & Abrahamson, D. (2017). Touchscreen tab-

lets: Coordinating action and perception for mathematical cognition. Frontiers in Psychology, 8, 144. 
https://​doi.​org/​10.​3389/​fpsyg.​2017.​00144

Fleuchaus, E., Kloos, H., Kiefer, A. W., & Silva, P. L. (2020). Complexity in science learning: Measur-
ing the underlying dynamics of persistent mistakes. The Journal of Experimental Education, 88(3), 
448–469. https://​doi.​org/​10.​1080/​00220​973.​2019.​16606​03

Flood, V. J., Shvarts, A., & Abrahamson, D. (2020). Teaching with embodied learning technologies for 
mathematics: Responsive teaching for embodied learning. ZDM-Mathematics Education, 52(7), 1307–
1331. https://​doi.​org/​10.​1007/​s11858-​020-​01165-7

Galetzka, C. (2017). The story so far: How embodied cognition advances our understanding of meaning-
making. Frontiers in Psychology, 8, 1315. https://​doi.​org/​10.​3389/​fpsyg.​2017.​01315

Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary 
Reviews: Cognitive Science, 1(4), 586–596. https://​doi.​org/​10.​1002/​wcs.​55

Goldenberg, E. P., Scher, D., & Feurzeig, N. (2008). What lies behind dynamic interactive geometry soft-
ware. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of 
mathematics: Cases and perspectives (Vol. 2, pp. 53–87). Charlotte, NC: Information Age

Hutto, D. D. (2019). Re-doing the math: Making enactivism add up. Philosophical Studies, 176(3), 827–
837. https://​doi.​org/​10.​1007/​s11098-​018-​01233-5

Hutto, D. D., & Sánchez-García, R. (2015). Choking RECtified: Embodied expertise beyond Dreyfus. Phe-
nomenology and the Cognitive Sciences, 14(2), 309–331. https://​doi.​org/​10.​1007/​s11097-​014-​9380-0

Hutto, D. D., Kirchhoff, M. D., & Abrahamson, D. (2015). The enactive roots of STEM: Rethinking edu-
cational design in mathematics. In P. Chandler & A. Tricot (Eds.), Human movement, physical and 
mental health, and learning [Special issue]. Educational Psychology Review, 27(3), 371–389. https://​
doi.​org/​10.​1007/​s10648-​015-​9326-2

Kelso, J. A. S. (1984). Phase transitions and critical behavior in human bimanual coordination. Ameri-
can Journal of Physiology: Regulatory, Integrative and Comparative, 246(6), R1000–R1004.

https://doi.org/10.1016/j.cogdev.2013.01.002
https://doi.org/10.1016/j.cogdev.2013.01.002
https://doi.org/10.1016/S0004-3702(03)00054-7
https://doi.org/10.1016/S0004-3702(03)00054-7
https://doi.org/10.1111/j.1756-8765.2012.01211.x
https://doi.org/10.1111/j.1756-8765.2012.01211.x
https://doi.org/10.18608/jla.2016.32.11
https://doi.org/10.1080/17408989.2021.1886270
https://doi.org/10.1080/17408989.2021.1886270
https://doi.org/10.3389/fpsyg.2014.00510
https://doi.org/10.1007/s11858-017-0850-z
https://doi.org/10.1007/s10649-012-9465-z
https://doi.org/10.3389/fpsyg.2017.00144
https://doi.org/10.1080/00220973.2019.1660603
https://doi.org/10.1007/s11858-020-01165-7
https://doi.org/10.3389/fpsyg.2017.01315
https://doi.org/10.1002/wcs.55
https://doi.org/10.1007/s11098-018-01233-5
https://doi.org/10.1007/s11097-014-9380-0
https://doi.org/10.1007/s10648-015-9326-2
https://doi.org/10.1007/s10648-015-9326-2


	 R. Abdu et al.

1 3

Kelso, J. S. (1995). Dynamic patterns: The self-organization of brain and behavior. MIT press.
Kelso, J. A. S. (2010). Instabilities and phase transitions in human brain and behavior. Frontiers in 

Human Neuroscience, 4, 23. https://​doi.​org/​10.​3389/​fnhum.​2010.​00023
Kelso, J. A. S. (2016). On the self-organizing origins of agency. Trends in Cognitive Sciences, 20(7), 

490–499. https://​doi.​org/​10.​1016/j.​tics.​2016.​04.​004
Koopmans, M. (2020). Education is a complex dynamical system: Challenges for research. The Journal of 

Experimental Education, 88(3), 358–374. https://​doi.​org/​10.​1080/​00220​973.​2019.​15661​99
Kostrubiec, V., Zanone, pier-G., Fuchs, A., & Kelso, J. A. S. (2012). Beyond the blank slate: Routes to 

learning new coordination patterns depend on the intrinsic dynamics of the learner—experimen-
tal evidence and theoretical model. Frontiers in Human Neuroscience, 6. https://​doi.​org/​10.​3389/​
fnhum.​2012.​00222

Lambert, S. G., Fiedler, B. L., Hershenow, C. S., Abrahamson, D., & Gorlewicz, J. L. (2022). A tangible 
manipulative for inclusive quadrilateral learning. Journal on Technology & Persons with Disabili-
ties, 10, 66–81. http://​hdl.​handle.​net/​10211.3/​223466. Accessed 21 Nov 2023

Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for 
research. Lester, F.K. (Ed.), Second Handbook of Research on Mathematics Teaching and Learn-
ing, 6(Vol. 1, pp. 629–667). Information Age.

Lee, M. C. Y., Chow, J. Y., Komar, J., Tan, C. W. K., & Button, C. (2014). Nonlinear pedagogy: An 
effective approach to cater for individual differences in learning a sports skill. PLoS ONE, 9(8), 
e104744. https://​doi.​org/​10.​1371/​journ​al.​pone.​01047​44

Liao, C., & Masters, R. S. (2001). Analogy learning: A means to implicit motor learning. Journal of Sports 
Sciences, 19, 307–319. https://​doi.​org/​10.​1080/​02640​41015​20060​81

Lindgren, R., & Johnson-Glenberg, M. (2013). Emboldened by embodiment: Six precepts for research 
on embodied learning and mixed reality. Educational Researcher, 42(8), 445–452. https://​doi.​org/​
10.​3102/​00131​89X13​51166

Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of com-
plex systems. Physics Reports, 438, 237–239. https://​doi.​org/​10.​1016/j.​physr​ep.​2006.​11.​001

Mechsner, F. (2003). Gestalt factors in human movement coordination. Gestalt Theory, 25(4), 225–245.
Mechsner, F. (2004). A psychological approach to human voluntary movements. Journal of Motor 

Behavior, 36(4), 355–370. https://​doi.​org/​10.​1080/​00222​895.​2004.​11007​993
Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Perceptual basis of bimanual coordination. 

Nature, 41(6859), 69–73. https://​doi.​org/​10.​1038/​35102​060
Muraoka, T., Nakagawa, K., Kato, K., Qi, W., & Kanosue, K. (2016). Interlimb coordination from a 

psychological perspective. The Journal of Physical Fitness and Sports Medicine, 5(5), 349–359. 
https://​doi.​org/​10.​7600/​jpfsm.5.​349

Nagataki, S., & Hirose, S. (2007). Phenomenology and the third generation of cognitive science: 
Towards a cognitive phenomenology of the body. Human Studies, 30(3), 219–232. https://​doi.​org/​
10.​1007/​s10746-​007-​9060-y

Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2013). Playing mathematical instruments: Emerging 
perceptuomotor integration with an interactive mathematics exhibit. Journal for Research in Math-
ematics Education, 44(2), 372–415. https://​doi.​org/​10.​5951/​jrese​mathe​duc.​44.2.​0372

Newell, K. M., & Ranganathan, R. (2010). Instructions as constraints in motor skill acquisition. In I. 
Renshaw, K. Davids, & G. J. P. Savelsbergh (Eds.), Motor learning in practice: A constraints-led 
approach (pp. 17–32). Routledge.

Noroozi, O., Alikhani, I., Järvelä, S., Kirschner, P. A., Juuso, I., & Seppänen, T. (2019). 2019/11/01/). 
Multimodal data to design visual learning analytics for understanding regulation of learning. Com-
puters in Human Behavior, 100, 298–304. https://​doi.​org/​10.​1016/j.​chb.​2018.​12.​019

Ott, E. (2006). Basin of Attraction. Scholarpedia, 1(8), 1701. https://​doi.​org/​10.​4249/​schol​arped​ia.​1701
Pardos, Z. A., Hu, C., Meng, P., Neff, M., & Abrahamson, D. (2018). Characterizing learner behavior 

from high frequency touchscreen data using recurrent neural networks. In D. Chin & L. Chen (Eds.), 
Adjunct proceedings of the 26th Conference on User Modeling, Adaptation and Personalization 
(UMAP ’18). ACM. 6 pages.

Petitmengin, C. (2007). Towards the source of thoughts: The gestural and transmodal dimension of lived 
experience. Journal of Consciousness Studies, 14(3), 54–82. https://​doi.​org/​10.​20314/​als.​8584e​0642b

Pirie, S. E. B., & Kieren, T. E. (1989). A recursive theory of mathematical understanding. For the Learning 
of Mathematics, 9(3), 7–11.

Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathemati-
cal meanings. Educational Studies in Mathematics, 70, 111–126. https://​doi.​org/​10.​1007/​
s10649-​008-​9127-3

https://doi.org/10.3389/fnhum.2010.00023
https://doi.org/10.1016/j.tics.2016.04.004
https://doi.org/10.1080/00220973.2019.1566199
https://doi.org/10.3389/fnhum.2012.00222
https://doi.org/10.3389/fnhum.2012.00222
http://hdl.handle.net/10211.3/223466
https://doi.org/10.1371/journal.pone.0104744
https://doi.org/10.1080/02640410152006081
https://doi.org/10.3102/0013189X1351166
https://doi.org/10.3102/0013189X1351166
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1080/00222895.2004.11007993
https://doi.org/10.1038/35102060
https://doi.org/10.7600/jpfsm.5.349
https://doi.org/10.1007/s10746-007-9060-y
https://doi.org/10.1007/s10746-007-9060-y
https://doi.org/10.5951/jresematheduc.44.2.0372
https://doi.org/10.1016/j.chb.2018.12.019
https://doi.org/10.4249/scholarpedia.1701
https://doi.org/10.20314/als.8584e0642b
https://doi.org/10.1007/s10649-008-9127-3
https://doi.org/10.1007/s10649-008-9127-3


Demonstrating mathematics learning as the emergence of eye–…

1 3

Reed, E. S., & Bril, B. (1996). The primacy of action in development. In M. L. Latash & M. T. Turvey 
(Eds.), Dexterity and its Development (pp. 431–451). Lawrence Erlbaum Associates.

Reid, D. A. (2014). The coherence of enactivism and mathematics education research: A case study. Avant, 
V(2), 137–172. https://​doi.​org/​10.​12849/​50202​014.​0109.​0007

Reinholz, D., Trninic, D., Howison, M., & Abrahamson, D. (2010). It’s not easy being green: Embodied 
artifacts and the guided emergence of mathematical meaning. In P. Brosnan, D. Erchick, & L. Fle-
vares (Eds.), Proceedings of the Thirty-Second Annual Meeting of the North-American Chapter of 
the International Group for the Psychology of Mathematics Education (PME-NA 32) (Vol. VI, Ch. 
18: Technology, pp. 1488–1496). PME-NA.

Savelsbergh, G. J. P., der Van, J., Oudejans, R. D., & Scott, M. A. (2004). Perceptual learning is mas-
tering perceptual degrees of freedom. In A. M. Williams & N. Hodges (Eds.), Skill acquisition in 
sport (pp. 374–389). Routledge.

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, 
E. H., Rietkerk, M., & Sugihara, G. (2009). Early-warning signals for critical transitions. Nature, 
461(7260), 53–59. https://​doi.​org/​10.​1038/​natur​e08227

Schindler, M., & Lilienthal, A. J. (2019). Domain-specific interpretation of eye tracking data: Towards a 
refined use of the eye-mind hypothesis for the field of geometry. Educational Studies in Mathematics, 
101(1), 123–139. https://​doi.​org/​10.​1007/​s10649-​019-​9878-z

Schöner, G., Jiang, W. Y., & Kelso, J. A. S. (1990). A synergetic theory of quadrupedal gaits and gait 
transitions. Journal of Theoretical Biology, 142(3), 359–391. https://​doi.​org/​10.​1016/​S0022-​
5193(05)​80558-2

Shayan, S., Abrahamson, D., Bakker, A., Duijzer, A. C. G., & Van der Schaaf, M. F. (2015). The emer-
gence of proportional reasoning from embodied interaction with a tablet application: An eye-track-
ing study. In L. Gómez Chova, A. López Martínez, & I. Candel Torres (Eds.), Proceedings of the 
9th International Technology, Education, and Development Conference (INTED 2015) (pp. 5732–
5741). International Academy of Technology, Education, and Development.

Shvarts, A., & Abrahamson, D. (2019). Dual-eye-tracking Vygotsky: A microgenetic account of a teach-
ing/learning collaboration in an embodied-interaction technological tutorial for mathematics. 
Learning, Culture and Social Interaction, 22, 100316. https://​doi.​org/​10.​1016/j.​lcsi.​2019.​05.​003

Shvarts, A., & van Helden, G. (2021). Embodied learning at a distance: From sensory-motor experience 
to constructing and understanding a sine graph. Mathematical Thinking and Learning, 25(4), 1–28. 
https://​doi.​org/​10.​1080/​10986​065.​2021.​19836​91

Spencer, J. P., Austin, A., & Schutte, A. R. (2012). Contributions of dynamic systems theory to cogni-
tive development. Cognitive Development, 27(4), 401–418. https://​doi.​org/​10.​1016/j.​cogdev.​2012.​
07.​006

Steffe, L. P., & Kieren, T. (1994). Radical constructivism and mathematics education. Journal for 
Research in Mathematics Education, 25(6), 711–733. https://​doi.​org/​10.​2307/​749582

Stephen, D. G., & Dixon, J. A. (2009). The self-organization of insight: Entropy and power laws in problem 
solving. The Journal of Problem Solving, 2(1), 72–101.

Strohmaier, A. R. (2020). Eye-tracking methodology in mathematics education research: A systematic 
literature review. Educational Studies in Mathematics, 104, 147–200. https://​doi.​org/​10.​1007/​
s10649-​020-​09948-1

Tancredi, S., Abdu, R., Balasubramaniam, R., & Abrahamson, D. (2022). Intermodality in multimodal 
learning analytics for cognitive theory development: A case from embodied design for mathematics 
learning. In M. Giannakos, D. Spikol, D. D. Mitri, K. Sharma, X. Ochoa, & R. Hamma (Eds.), The 
multimodal learning analytics handbook (pp. 133–158). Springer.

Tancredi, S., Abdu, R., Abrahamson, D., & Balasubramaniam, R. (2021). Modeling nonlinear dynamics 
of fluency development in an embodied-design mathematics learning environment with recurrence 
quantification analysis. International Journal of Child-Computer Interaction, 100297. https://​doi.​
org/​10.​1016/j.​ijcci.​2021.​100297

Thelen, E., & Smith, L. B. (2006). Dynamic systems theories. In R. M. Lerner (Ed.), Handbook of child psychology Vol. 
1: Theoretical models of human development (pp. 258–312). Wiley.

Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and 
action. MIT Press.

Thulasiram, M. R., Langridge, R. W., Abbas, H. H., & Marotta, J. J. (2020). Eye–hand coordination in 
reaching and grasping vertically moving targets. Experimental Brain Research, 238(6), 1433–1440. 
https://​doi.​org/​10.​1007/​s00221-​020-​05826-7

Turvey, M. T. (1990). Coordination. American Psychologist, 45(8), 938–953. https://​doi.​org/​10.​1037/​0003-​
066X.​45.8.​938

https://doi.org/10.12849/50202014.0109.0007
https://doi.org/10.1038/nature08227
https://doi.org/10.1007/s10649-019-9878-z
https://doi.org/10.1016/S0022-5193(05)80558-2
https://doi.org/10.1016/S0022-5193(05)80558-2
https://doi.org/10.1016/j.lcsi.2019.05.003
https://doi.org/10.1080/10986065.2021.1983691
https://doi.org/10.1016/j.cogdev.2012.07.006
https://doi.org/10.1016/j.cogdev.2012.07.006
https://doi.org/10.2307/749582
https://doi.org/10.1007/s10649-020-09948-1
https://doi.org/10.1007/s10649-020-09948-1
https://doi.org/10.1016/j.ijcci.2021.100297
https://doi.org/10.1016/j.ijcci.2021.100297
https://doi.org/10.1007/s00221-020-05826-7
https://doi.org/10.1037/0003-066X.45.8.938
https://doi.org/10.1037/0003-066X.45.8.938


	 R. Abdu et al.

1 3

Van Dooren, W., De Bock, D., & Verschaffel, L. (2010). From addition to multiplication … and back. The 
development of students’ additive and multiplicative reasoning skills. Cognition and Instruction, 28(3), 
360–381. https://​doi.​org/​10.​1080/​07370​008.​2010.​488306

Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experi-
ence. M.I.T. Press.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.
Wilson, A. D., & Golonka, S. (2013). Embodied cognition is not what you think it is [Hypothesis & The-

ory]. Frontiers in Psychology, 4(58), 1–13. https://​doi.​org/​10.​3389/​fpsyg.​2013.​00058

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

https://doi.org/10.1080/07370008.2010.488306
https://doi.org/10.3389/fpsyg.2013.00058

	Demonstrating mathematics learning as the emergence of eye–hand dynamic equilibrium
	Abstract
	1 Introduction
	2 Theoretical framework and implementation context
	2.1 Complex dynamic systems
	2.2 Complex dynamic systems and human learning
	2.3 An empirical context: the Mathematics Imagery Trainer for proportion
	2.4 Perceptual solutions to movement problems
	2.5 The current study

	3 Methodology
	3.1 Participants
	3.2 Task
	3.3 Data collection and preprocessing
	3.4 Coding for the three stages
	3.5 Coding for areas of interest
	3.6 Recurrence quantification analysis (RQA)
	3.7 Choosing a case study

	4 Findings
	4.1 Quantitative changes in RQA metrics
	4.2 Case study: phase transition

	5 Discussion
	6 Conclusions
	References




