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Determination of Transport Properties From Flowing Fluid Temperature Logging 
In Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution 

 
Sumit Mukhopadhyay and Yvonne W. Tsang 

Lawrence Berkeley National Laboratory, Berkeley, CA 94720 
 

Abstract 
 

Flowing fluid temperature logging (FFTL) has been recently proposed as a method to 
locate flowing fractures. We argue that FFTL, backed up by data from high-precision 
distributed temperature sensors, can be a useful tool in locating flowing fractures and in 
estimating the transport properties of unsaturated fractured rocks. We have developed the 
theoretical background needed to analyze data from FFTL. In this paper, we present a 
simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semi-
analytical solution for spatial and temporal variations of pressure and temperature inside 
a borehole in response to an applied perturbation (pumping of air from the borehole). We 
compare the semi-analytical solution with predictions from the TOUGH2 numerical 
simulator. Based on the semi-analytical solution, we propose a method to estimate the 
permeability of the fracture continuum surrounding the borehole. Using this proposed 
method, we estimated the effective fracture continuum permeability of the unsaturated 
rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate 
compares well with previous independent estimates for fracture permeability of the DST 
host rock. The conceptual model of FFTL presented in this paper is based on the 
assumptions of single-phase flow, convection-only heat transfer, and negligible change in 
system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we 
extend the conceptual model to evaluate some of these assumptions. We also perform 
inverse modeling of FFTL data to estimate, in addition to permeability, other transport 
parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks. 
 
1. Introduction 
 
Borehole temperature logs have been used in a variety of engineering and scientific 

applications [Jessop, 1990; Prensky, 1992]. Continuously (in time) recording borehole 

temperature logs, especially when recorded in boreholes under equilibrium conditions, 

provide useful information about the subsurface thermal structure [Förster et al., 1997]. 

Consequently, borehole temperature logs have been used for determination of subsurface 

thermal conductivity and lithology [e.g., Blackwell et al., 1999], and coupled heat and 

fluid flow through porous and fractured rock [Smith and Chapman, 1983; Drury et al., 

1984; Ge, 1998; Constanz et al., 2003]. Borehole temperature logs have also been used in 

the analysis of surface features and processes such as topography, differential solar 



radiation, vegetation, and past changes in surface temperature [e.g., Chisholm and 

Chapman, 1992; Harris and Chapman, 1995]. 

 

The borehole-temperature-logging applications mentioned above all occur under 

conditions of no induced fluid flow. However, since not all the fractures intersected by a 

borehole contribute to the flow process, borehole logging performed under non flowing 

conditions is not always useful for fracture detection and property estimation. Tsang et al. 

[1990] introduced a flowing fluid electrical conductivity log (FFECL) for 

characterization of fractured reservoirs to identify fractures that contribute to flow. The 

FFECL has been successfully employed in characterization of various reservoirs [Tsang 

et al., 1990; Tsang and Doughty, 2003; Doughty and Tsang, 2005; Doughty et al., 2005].  

 

More recently, Tsang et al. [2007] introduced flowing fluid temperature logging (FFTL) 

for characterizing unsaturated fractured reservoirs. They propose thermal logging along a 

borehole during constant-rate pumping conditions to measure the transport parameters of 

unsaturated fractured rock. Since the rock is unsaturated, the fluid being pumped is air 

(which intrinsically contains water vapor). As air enters the borehole from conducting 

fractures intercepted by the borehole, it undergoes a change in pressure, and 

consequently, a temperature signal can be measured. The depths in the borehole of the 

signals indicate the locations of the hydraulically conducting fractures, within a certain 

resolution, and its magnitude and time change would indicate the permeability and other 

transport properties of the fracture (see below for further elaboration). 

 

FFTL, in our opinion, has significant potential to determine of the location of flowing 

fractures and the associated parameters. However, the success of FFTL will be largely 

controlled by the accuracy of measured temperatures. In this context, we are encouraged 

by the recent emergence of high-precision distributed temperature sensing systems 

(DTS). The DTS allows collection of temperature data continuously over the length of an 

entire borehole [Hurtig et al., 1993; Hurtig et al., 1994; Osato et al., 1995; Sakaguchi 

and Matsushima, 1995; Benoit and Thompson, 1998; Wisian et al., 1998; Sakaguchi and 

Matsushima, 2000; Ikeda et al., 2000; Ikeda, 2003; Henninges et al., 2005; Selker et al. 



2006].  With continued improvement in measurement precision, it may be possible to use 

FFTL to estimate transport properties with significant accuracy. DTS-based FFTL will 

also eliminate the logistical difficulty of conventional FFTL, where the logging tool has 

to be moved from location to location as one logs an entire borehole. In addition, DTS-

based FFTL can be useful for capturing spatial heterogeneity in transport properties at 

different scales. In short, FFTL, backed by DTS, has a great potential to be a viable 

method for estimation of transport properties. 

 

Conventionally, pressure data from boreholes have been used to estimate permeability. 

For example, soil scientists have routinely injected air and measured soil air pressure to 

evaluate soil permeability [e.g., Kirkham, 1946]. More recently, hydrologists have 

applied similar air-injection techniques to evaluate the permeability [Huang et al., 1999] 

and/or fracture porosity [Freifeld, 2001] of unsaturated fractured rock. The underlying 

theory supporting estimation of hydraulic properties from air-injection testing in 

unsaturated fractured rock is well established [see Freifeld, 2001 and references therein]. 

However, estimation of permeabilities from FFTL data in unsaturated rock is a relatively 

new approach, and no theoretical basis is currently available in the literature, though a 

very preliminary analysis of FFTL was presented in Tsang et al. [1994]. 

 

We have developed the necessary theoretical basis for analyzing and interpreting FFTL 

data from unsaturated fractured rock. We shall present the results of our study in two 

papers. In this paper, we present a semi-analytical solution for transient pressure and 

temperature signature in the borehole, assuming that only air is present, i.e., ignoring the 

water vapor in the air phase. This semi-analytical solution is verified against results from 

the numerical simulator TOUGH2 [Pruess, 1991; Pruess et al., 1999]. Next, the semi-

analytical solution was used to obtain a first-order estimate of permeability of the 

fractured rock. In a sequel to this paper (hereafter referred to as Paper II) [Mukhopadhyay 

et al., 2008], we extend the conceptual model to further investigate the more subtle 

features of measured FFTL signatures. In Paper II, we perform a systematic sensitivity 

study to determine which transport parameters most strongly influence measured FFTL 



signatures. Paper II also contains results of inverse numerical simulations for estimation 

of transport properties from FFTL data. 

 

 
2. Sample FFTL Data 
 
The FFTL data presented in this paper were collected using a temperature logging tool 

(see Figure 1 for photographs of the logging tool), the design of which can be found in 

Tsang et al. [2007].  Using inflatable packers, the logging tool can be used to pack off a 

0.9 m zone of a borehole at any one time. The logging tool has five temperature sensors 

(linear thermisters) at a gap of about 0.15 m with one another. Out of the five temperature 

sensors, Sensor #1 is always located at the deepest end of the logging tool and Sensor #5 

is located closest to the end where pumping is applied.  

Temperature and pressure data were collected by introducing the logging tool in Borehole 

182 at Alcove 5 of the Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada. 

The ESF at Yucca Mountain was constructed to facilitate characterization of Yucca 

Mountain as the site for the US high-level radioactive waste repository. Alcove 5 is 

located in the middle nonlithophysal unit (Tptpmn) of the Topopah Spring Tuff at Yucca 

Mountain. Borehole 182 is 20 m long and has a diameter of 0.076 m.  It originates at the 

Observation Drift (OD) near the Drift Scale Test (DST) (the largest in situ heater test in 

the unsaturated fractured rock of Yucca Mountain, see, for example Birkholzer and 

Tsang, 2000; Mukhopadhyay and Tsang, 2003; Mukhopadhyay et al., 2007) site and is 

oriented at about 19o with the vertical going downwards and below the Heated Drift (HD) 

of the DST. Previous characterization of the Tptpmn stratigraphic unit has shown the 

rock to be highly fractured, with the fractures forming a well-connected network 

[Sonnenthal et al., 1997]. The fracture permeability was found to be varying over four 

orders of magnitude [Huang et al., 1999; Birkholzer and Tsang, 2000]. A geometric 

mean permeability of 1.3×10-13 m2 has been previously accepted [Birkholzer and Tsang, 

2000] as a representative fracture continuum permeability of the Tptpmn rock. 

 



The logging tool was first introduced near the end (i.e., the farthest from the OD) of 

Borehole 182. Packers were inflated to isolate the 0.9 m section of the logging tool. Air 

was pumped at a constant flow rate for a certain amount of time (typically five to six 

minutes), and temperatures were recorded by the five sensors. Pressure and flow rate data 

were also recorded. The packers were then deflated and the logging tool was moved to a 

different part of Borehole 182, and the procedure (packer inflation, pumping, and data 

recording) was repeated. In total, about 50 such pumping and data collection cycles were 

completed in Borehole 182 during the day of experiment. 

 

A typical set of recorded data during the logging experiment is shown in Figure 2, 

corresponding to when the logging tool was located at about 8.4 m from the end of the 

borehole (or approximately 11.6 m from the collar). For this particular cycle of data 

collection, air was pumped at an average rate of approximately 25.2 SLPM (standard liter 

per minute) or 5.43×10-4 kg/s for 322 seconds. The pump rate (or flow rate) of air and the 

pressure inside the borehole during this logging experiment are shown in Figure 2a. 

Temperatures recorded by the five sensors are shown in Figure 2b. In Figure 2b, Sensor 

#5 is closest to that end of the logging tool where pumping is applied, and Sensor #1 is 

the farthest (i.e., zone 1 is situated deepest into the borehole). Except for Sensor #5, 

temperatures recorded by the other four sensors are similar. All of them exhibit a sharp 

decline in temperature at the start of pumping before gradually recovering to their 

original, pre-pumping values. When pumping is stopped, temperatures went above their 

original values. In other words, cooling was observed in the borehole at the 

commencement of pumping, and heating trends were observed as pumping was stopped. 

Contrary to the temperature history recorded by Sensors #1 through  #4, persistent 

cooling trends were recorded by Sensor #5 throughout the pumping period, and 

temperature began to increase only after pumping was stopped. We are yet to find an 

explanation for the  temperature recording by Sensor #5. One possible explanation could 

be that, for this particular location, the rock closest to Sensor 5 was relatively less 

fractured (that is why temperature dropped in response to pumping but did not rebound 

because no fracture or fractures were feeding into the borehole at that location – see 

Section 3 for more details). However, to test the above hypothesis, more analysis is 



needed. Consequently, in the rest of this paper, we will focus on temperatures recorded 

by Sensors #1 through #4. Note that not including data from Sensor #5 does not impact 

the rest of the analysis presented in this paper. 

 

3. Interpretation of Observed Data 

When air is pumped from a borehole with fixed volume, both pressure and temperature 

inside the borehole decrease. This is a situation similar to an adiabatic expansion 

experiment. If pumping is performed slowly (resembling a reversible process in a 

thermodynamic sense), the drop in temperature of an ideal gas will be related to the drop 

in its pressure, through the adiabatic pressure-temperature relationship: 
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In Equation 1, γ is the ratio of specific heat capacity of air (assumed an ideal gas) at 

constant pressure to that at constant volume, i.e.,
V

P

C
C

=γ . Because the borehole is located 

in a highly fractured rock, which acts as a source of fluid (air in this case), temperature 

(and pressure) signature from FFTL differs from that of a reversible adiabatic expansion 

experiment. For example, as pressure drops inside the borehole because of pumping, air 

(along with water vapor) begins to flow from the fractured rock into the borehole. 

However, since the fractured rock has a finite permeability, it takes some time (i.e., there 

is a “lag”) before air from the rock can reach the borehole, until which time pressure 

continues to decline. Eventually, pressure inside the borehole equilibrates with the 

fractured rock (i.e., rate of air flow from the rock formation is approximately equal to the 

rate of pumping), and pressure does not decline any more even if pumping continues.  

 

During the lag period (when pressure is declining in response to pumping), the decrease 

in borehole temperature can be attributed to adiabatic expansion effects (see Equation 1). 

During this period, enthalpy of the air inside the borehole becomes smaller than that in 



the fractured formation. It is easy to see that borehole temperature (and enthalpy) will be 

at its minimum when borehole pressure just about reaches equilibrium with the pressure 

in the fracture formation (i.e., rate of flow of air into the borehole is just about equal to 

pumping rate). Once pressure has equilibrated, any mass of air that leaves the borehole 

because of pumping is replaced by an equivalent mass of air from the fracture formation. 

However, recall that the enthalpy of air leaving the borehole during this time is smaller 

than the enthalpy of air flowing into it. Consequently, once pressure reaches equilibrium, 

borehole temperature begins to increase. This process (of rising temperature) continues 

until equilibrium in enthalpy between the borehole and the fracture formation is 

established, after which time temperature does not climb any further even if pumping is 

continued (i.e., both pressure and temperature reaches steady state conditions). In other 

words, a turnaround (from falling to rising) in borehole temperature is observed during 

pumping in FFTL in a fracture formation. It is our hypothesis that this temperature 

signature can be utilized to estimate the transport properties of the fracture formation.  

 

The temperature signature (the increase in temperature) after pumping stops can be 

explained similarly. At the end of pumping, air continues to flow in from the rock 

formation (because of residual pressure gradient) causing adiabatic compression (instead 

of previously observed adiabatic expansion) of air residing inside the borehole, which 

results in an instantaneous increase in borehole temperature. This process continues until 

(enthalpy) equilibrium is again established between the borehole and the fracture 

formation. In the following we demonstrate how the pressure and temperature data from 

FFTL can be used to determine the hydrologic properties of the surrounding fractured 

rock. We will also illustrate how FFTL data can be utilized to detect the location of high-

permeable discrete fractures. However, before presenting any interpretation of actual 

FFTL data, we introduce a few concepts that will be helpful in understanding the 

analyses that follow. 

 

A fractured rock formation normally consist of a rock matrix continuum (having low 

porosity and low permeability, a fracture continuum (consisting of many small and large 

interconnected fractures, with permeability which is considerably larger than that of the 



rock matrix continuum), and few discrete fractures with very large permeabilities 

(permeabilities that are larger than even that of the fracture continuum). To begin with, 

let us assume that the rock is not at all fractured (i.e. it has no fracture continuum or any 

discrete fracture), and that it is absolutely impervious (i.e., it has zero permeability). If air 

is pumped from a borehole located in such a rock, temperature (and pressure) in the 

borehole will decline continuously (because no air is supplied to the borehole from the 

rock which has zero permeability) until all the air is pumped out. Theoretically speaking 

(see Equation 1), as the last molecules are pumped out of the borehole, borehole 

temperature will approach absolute zero. 

 

Let us now introduce a single high-permeable discrete fracture, which is narrow and thin, 

into the otherwise impervious rock. Because the discrete fracture has a very high 

permeability, it will bring in some amount of air into the borehole. However, this single 

discrete fracture, because it is thin and narrow, can bring in only a very small amount of 

air. Thus, the pressure and temperature in the borehole will decline in almost the same 

manner as in the previous case (no discrete fracture and impervious rock). If we plot 

temperature versus location in the borehole at different times, we will see rapidly 

declining temperatures at all locations except at the location of the discrete fracture, 

which will be held at more or less the constant initial temperature (because of its very fast 

communication with the boundary, resulting from its high permeability). As a result, the 

temperature data from FFTL can indicate the locations of high-permeability discrete 

fractures (for actual example of this, see discussion of Figure 6b). 

 

The presence of the fracture continuum makes interpretation of FFTL data even more 

challenging. Because the fracture continuum has permeabilities larger than the matrix 

continuum, it can supply air into the borehole relatively quickly. At the same time, since 

the fractures in the fracture continuum are more numerous in number than the occasional 

large discrete fractures, they can supply substantially more mass of air into the borehole, 

compared to the few discrete fractures. As a result, FFTL performed in fractured rock 

produces the types of temperature signatures (initially declining and then increasing) that 

we discussed earlier in this section (and presented in Figure 2). Thus, transport properties 



estimated from FFTL data in fractured rock possibly provides an effective property (at 

the scale of measurement) of the fracture continuum, which may also include a few large 

discrete fractures. 

 
Thus, FFTL can be useful in two ways. It can be used for detecting the presence of 

discrete fractures. FFTL can also be useful in estimation of permeability of the fracture 

continuum (i.e., if the rock is fractured with many small fractures in addition to some 

discrete high-permeable features). This is the main objective of this paper, i.e., to develop 

the theory for estimation of fracture continuum permeability from FFTL data. However, 

we will also illustrate how FFTL can be used to detect large discrete fractures. 

 
4. Single-Phase Conceptual Model 
 
The FFTL described in Section 2 was carried out in a borehole situated in unsaturated 

fractured rock. As such, an analysis of the temperature data will involve an analysis of 

unsaturated zone multiphase flow of air and water, as well as convective and conductive 

heat transfer. We defer the discussion of multiphase flow and heat transfer to Paper II. In 

this paper, we develop a simple conceptual model assuming that, in response to borehole 

pumping, dry air from the surrounding fractured rock flows into the borehole, i.e., we 

neglect the water and vapor phase present in the surrounding rock. In other words, it is 

assumed that single-phase, air-only conditions prevail in the entire system. In addition, 

we assume that the fractured rock can be represented as an effective continuum with a 

fixed porosity, and that air behaves like an ideal gas. We also assume that a Darcy flow 

regime is maintained throughout the FFTL.  We will test the validity of this last 

assumption in Section 6. 

 

The conceptual model for FFTL is schematically shown in Figure 3. The borehole has a 

radius of RB and a permeability of kB, and a packed-off zone of length H as shown in 

Figure 3. The borehole is surrounded by fractured rock with an effective continuum 

permeability of kC. For the sake of simplicity and the semi-analytical solution that 

follows, we will assume that the borehole is intersected by one discrete fracture having a 

permeability of kF, with the implicit assumption that kB >>kF >> kC . The origin of the 



coordinate system is located at the bottom of the packed-off zone (z=0). The discrete 

fracture is located at z=h, and pumping is applied at z=H, i.e., H > h. Constant pumping 

at the rate of  is applied at the top (i.e., z=H) of the packed-off zone. Before pumping 

starts (i.e., at t=0), the fracture continuum, the discrete fracture, and the borehole are at 

constant temperature Ti and constant pressure Pi. For this simplified conceptual 

representation, we also assume constant temperature and pressure conditions in the 

fractured rock and the discrete fracture throughout the duration of FFTL. This is 

reasonable given the large volume of the fracture continuum compared to the volume of 

air in the packed-off zone. 

m&

 

Let us consider a small time interval tΔ  between t=0 (i.e., start of pumping) and t=t+ tΔ . 

When air is pumped from the packed-off zone over this small period of time , a finite 

mass of air ( ) leaves the packed-off zone in the borehole. Since a finite amount of 

air has left the packed-off zone, its pressure decreases (as does its temperature), creating a 

gradient between the borehole and the fracture continuum. Air that resides in the fracture 

continuum or in the discrete fracture flows into the packed-off zone driven by this 

gradient. However, since the permeability of the fractured rock is considerably smaller 

than that of the borehole, the rate at which air leaves the borehole initially is larger than 

the rate at which air can flow in from the rock formation. As a result, there is a net loss of 

air mass in the borehole initially. With passage of time, the difference between the rate of 

air mass leaving the borehole and flowing into it decreases, and pressure reaches an 

approximate steady state. 

tΔ

tmΔ= &

 

For this simplified system, assuming one-dimensional radial flow, the transient pressure 

behavior inside the borehole can be expressed as (see Appendix A for derivation) 
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In Equation 2, γ is the adiabatic coefficient for air (ratio of specific heat capacity of air at 

constant pressure and at constant volume), PB and PC are the pressures in the borehole 

and in the fracture continuum, and μ is the viscosity of air, which is assumed constant 

(given the typically small changes in pressure and temperature in FFTL, this is a 



reasonable assumption). Transient temperature response in the borehole can be described 

by (see Appendix A for derivation). 
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In Equation 3,
C

B
B T

Tln=σ , where TB(z,t) is the temperature inside the borehole and TC is 

the temperature in the fracture continuum (assumed constant). Equations 2 and 3 are two 

equations with two variables, which need to be solved simultaneously for PB and σB to 

determine the transient patterns of borehole pressure and temperature. 

 
5. Semi-Analytical Solution 
 
Before solving Equations 2 and 3, it is convenient to cast them into dimensionless form. 

The definition of the dimensionless variables and the actual solution steps along with the 

applicable boundary conditions, are provided in Appendix B. From Equation 2, the 

dimensionless pressure (ψB) as a function of dimensionless radial location (ζ) and 

dimensionless time (τ) inside the borehole can be written as (see Appendix B for 

derivation) 
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In Equation 4, while the other symbols have their usual meanings,  is the 

dimensionless pumping rate given by 
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and CBε is given by 
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Having obtained the analytical expression for ψB, we can now solve Equation 3 to obtain 

σB, the dimensionless borehole temperature. However, before solving Equation 3, it is 

helpful to introduce a new variable yB such that 

                                                          ( )BBy ψ−= 1ln                                                        (7) 

In terms of this new variable yB, Equation 3 can be written as (see Appendix B)  
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Before proceeding further, note a special feature of Equation 8. If 0=CBε (i.e., if there is 

no communication between the borehole and the fractured rock) and if pumping is 

performed so slowly such that equilibrium is maintained at all times (i.e., 

0;0 ≈
∂
∂

≈
∂
∂

ζ
σ

ζ
BBy ), Equation 8 reduces to 
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which can be further simplified to (subject to the initial condition given in Equation B.9a) 
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After some algebraic manipulation, one can write Equation 10 as  
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Equation 11 is the adiabatic pressure-temperature relationship (see Equation 1) for a 

reversible process involving ideal gases. In other words, as expected, Equation 8 

reproduces the adiabatic, reversible pressure-temperature relationship for ideal gases 

under truly constant volume conditions.  

 

Since Bψ (and hence ) is explicitly known from Equation 4, we can now obtain a 

solution for Equation 8. While Equation 2 could be solved explicitly for

By

Bψ , no explicit 



analytical solution can be developed for Equation 8, because of the presence of the 

nonlinear terms (particularly because of the presence of the product of the two derivative 

terms, which cannot be ignored). We thus propose a fully implicit finite difference 

solution for Equation 8. In other words, we can write 
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In Equation 12, subscripts “i” and “i-1” refer to spatial location; superscript “n” refer to 

conditions in previous time step and superscript “n+1” to conditions in the next time step. 

Equation 12 can be solved numerically, subject to the boundary condition given in 

Equation B.9b (see Appendix B). This boundary condition implies that the permeability 

of the discrete fracture is (relatively) large compared to the rest of the fractured rock, so 

that it can communicate with the borehole almost instantaneously. In other words, the 

temperature inside the borehole at the location of the discrete fracture always remains 

invariant (for this simplified conceptual representation). 

 

6. Analysis of Synthetic FFTL Response 

To facilitate verification of the semi-analytical solution and the subsequently estimated 

parameters, a synthetic FFTL experiment with known input parameters was simulated 

using the TOUGH2 simulator [Pruess, 1992; Pruess et al., 1999], which is a general-

purpose software for simulating multiphase, multicomponent flow and heat transport in 

porous and fractured media. Figure 3a shows the pressure and temperature response from 

this synthetic FFTL experiment. The pumping rate for this synthetic FFTL, and the input 

parameters, are listed in Table 1. In this synthetic experiment, air was pumped from a 

0.08 m diameter borehole for a period of 326 seconds at the rate of approximately 

0.55×10-3 kg/s (~30 SLPM). Other input parameters needed for the analytical solution are 

also given in Table 1. The analytical solutions developed using Equations 4 (for pressure) 

and 12 (for temperature) are compared with TOUGH2 simulator predictions. 

 



Before proceeding further, we would like to test the validity of the Darcy (or laminar) 

flow regime for this synthetic FFTL. To do this, we need an estimate of the Reynolds 

number for flow inside the borehole. The velocity of air (V) inside the borehole resulting 

from pumping of air at the rate of can be approximated from (the actual velocity may 

be slightly larger because of the reduction of flow area owing to the space occupied by 

the logging tool) 

m&

                                                                
ρπ 2

BR
mV
&

=                                                        (13) 

The Reynolds number then can be estimated from 

                                                           
μ
ρVRB2

Re =                                                         (14) 

Using Equation 13 in Equation 14 to eliminate V, we obtain 

                                                             
μπ BR

m&2Re =                                                         (15) 

For the synthetic FFTL,  kg s-1,31055.0 −×=m& 038.0=BR  m, and kg m-1 

s-1 (see Table 1), we thus obtain a Reynolds number of approximately 250. The actual 

Reynolds number may be slightly larger than this because of the reduction of flow space 

owing to the logging tool volume. However, laminar flow is expected to occur in a pipe 

as long as the Reynolds number is less than 2100-2300. It is unlikely that the Reynolds 

number will be close to 2100-2300, even if corrections are made for the reduction in flow 

space. Further, the actual pumping rate used for the FFTL data presented in Figure 2 was 

smaller than 0.55×10-3 kg s-1, which will lead to a Reynolds number smaller than 250. 

Since, even for the largest rate of pumping, the estimated Reynolds number is only about 

250, it can be safely assumed that laminar flow conditions (and a Darcy flow regime) is 

maintained during the FFTL presented in this paper.  

51086.1 −×=μ

 

Since our first objective is to analyze the physical processes that occur immediately after 

commencement of pumping, Figure 4a shows the pressure and temperature response for 

relatively small times (less than 5 seconds). Comparing the analytical solutions to 

TOUGH2 results during this early time period after pumping began, it can be said that the 

analytical solution is reasonably accurate. For example, the maximum difference between 



the semi-analytical solution and TOUGH2 predictions happens at a time when 

temperature is at its minimum. At that time, the semi-analytical solution (see Figure 4a) 

predicts a temperature drop of ~0.57oC (starting from an initial temperature of 24oC), 

whereas the TOUGH2 simulations predict a temperature drop of 0.6oC (from the same 

initial temperature). The absolute value of maximum relative error is thus about 5% 

[100×(0.6-0.57)/0.6]. At any other time, the absolute relative error is smaller (~1-2%).  

 

Pressure declines rapidly over a period of about 0.5 second before asymptotically 

reaching a steady-state situation. The initial decline in pressure is because more air is 

pumped out than is coming in from the formation. Once a steady state is reached (with 

the rate of pumping approximately equal to the overall rate of flow coming into the 

borehole from outside), pressure changes only marginally. This explains the initial 

physics of flow between the borehole and the fracture continuum.  

 

Pressure and temperature response from the same synthetic FFTL over a longer time 

period is shown in Figure 4b. The figure compares analytical and TOUGH2 simulation 

results over the first 30 seconds after pumping started. Several inferences can be drawn 

from Figure 4b. First, analytical solutions compare well with TOUGH2 predictions over 

the entire time period in which thermal equilibrium is attained between the borehole and 

the fracture continuum outside (the difference between semi-analytical solution and 

TOUGH2 prediction is smaller at larger times). This increases confidence in the 

analytical solution. Second, from both the analytical solutions and TOUGH2 simulations, 

it is obvious that temperature declines until the pressure declines with pumping. 

However, once the pressure reaches a steady state (after sufficient fluid communication 

has been established between the borehole and the fracture continuum), temperature starts 

to increase. The time needed for temperature to equilibrate is controlled by the rate of 

pumping, and the difference in enthalpy of air inside the borehole and in the fracture 

formation. How fast enthalpy equilibration between the two will be accomplished is 

controlled by the parameter εCB (see Equation 6), which represents the ratio of fracture 

continuum and borehole permeabilities multiplied by the square of the characteristic 

length scale of the transport problem (i.e., ratio of the length of the packed-off zone and 



the radius of the borehole). In other words, εCB represents the ease of communication 

between the borehole and the fracture continuum. 

 

To illustrate the influence of εCB on FFTL response, we repeated the synthetic FFTL for 

three different values of the dimensionless parameter εCB (εCB = 0.005, 0.0005, and 

0.000125). Pressure and temperature response from these three synthetic FFTLs are 

shown in Figure 5. Note that the results in Figure 5 are obtained using Equations 4 and 

12, and not through simulations using TOUGH2. With decreasing values of the parameter 

εCB, the decline in pressure and temperature is steeper. Also, for smaller values of the 

parameter εCB, it takes temperature longer to return to its pre-pumping values. These 

observations make sense because a smaller value of the parameter implies a smaller 

permeability for the fracture continuum (see Equation 6) for a given FFTL setup. A 

smaller (or larger) permeability in turn implies that air can move in relatively slowly (or 

quickly) in response to pumping, resulting in sharper (or smaller) initial temperature 

drops. Since the temperature response can be directly correlated to transport properties 

(particularly permeability) of the outside continuum, temperature logging data can be 

utilized to get an estimate of the transport properties of the host rock. 

 

In addition, we can also use the temperature response from a logging experiment to locate 

a high-permeability discrete feature. Consider Figure 6a as an example. In Figure 6a, 

temperature profiles along the borehole are shown from a synthetic FFTL at different 

times. In this synthetic FFTL, the parameter εCB is set as 0.005. A discrete feature is 

present in this experiment at a location of z = 1.0 m (the bottom of the borehole is at z = 

0.0 m and the top is at z = 2.0 m). From Figure 6a, observe that a spike in temperature 

exists (without any cooling) at small times (<1.0 second) at the location of the discrete 

fracture, whereas temperature is mostly uniform elsewhere in the borehole (with general 

cooling inside the borehole at these early times because of pumping). With continued 

pumping, temperature at the location of the discrete fracture begins to equilibrate with the 

rest of the borehole, resulting in a slow disappearance of the spike. How long such a 

spike in temperature (owing to the presence of a discrete feature) exists depends on the 



properties of the formation, as illustrated in Figure 6b, which shows the temperature 

profiles in the borehole at 10.2 seconds after pumping started for three different values of 

the parameter εCB. Notice that the smaller the value of the parameter εCB, the longer the 

spike, owing to a discrete feature existing in the temperature response from a logging 

experiment.  

 

The observations from these synthetic FFTLs can be summarized as follows. The initial 

drop (and subsequent rise) in temperature can be correlated to the transport properties of 

the host rock. The smaller the permeability of the host rock, the larger the initial drop in 

temperature and the longer it will take to eventually return to its initial conditions. If the 

permeability of the host rock is sufficiently low (εCB ~0), temperatures will return to pre-

pumping conditions after a very long time. In addition, the presence of a discrete feature 

can be detected by looking at the vertical temperature profile inside the borehole soon 

after pumping has begun.  

 

7. Estimation of Permeability 

To determine the transport properties of the host rock from the temperature logging data, 

we propose an approximate method, which provides a first-order estimate of the 

parameter εCB. Since the permeability of the fracture continuum can be estimated once 

εCB is known (see Equation 6), this proposed method provides a first-order estimate of the 

continuum permeability from the temperature logging data. This first-order estimate then 

can be further refined through actual inversion of the temperature and pressure data, 

using numerical optimization software such as iTOUGH2 [Finsterle, 2004]. The 

inversion of actual FFTL data is described in Paper II [Mukhopadhyay et al., 2008]. 

 

For the simple conceptual model presented in Section 4, the rate ( ) at which air flows 

into the borehole from the fracture continuum at any dimensionless time τ can be written 

as (see Appendix C for derivation) 

inm&

 

                                         ( )[ ]τεCBin mm −−= exp1&&                                                          (15) 



 

where, as noted previously, (in kg/s) is the rate of pumping at the borehole (assumed 

constant). Thus, at any given time τ, only a fraction of the mass of air that is pumped out 

gets refilled by flow of air from the fractured rock. Only as 

m&

∞→τ is a true steady state 

reached, after which pressure does not decline any further with time and temperature 

begins to climb back towards its pre-pumping condition. However, for all practical 

purposes, it can be assumed that a steady state has been obtained when . 

With such an approximation, one can write (using Equation 15) 

99.0/ ≈mmin &&

                                                     
c

CB τ
ε )01.0ln(

−=                                                          (16) 

In Equation 16, cτ  is defined as the critical dimensionless time at which steady state is 

approximately reached, such that temperature begins its upward climb (or pressure 

reaches its steady-state condition). 

 

Using the definitions of the dimensionless variables, Equation 16 can be written in terms 

of real variables as follows 

                                                  
cB

B
C tP

Rk
γ
μ 2

303.2≈                                                         (17) 

Since the viscosity of air (μ), the borehole diameter (RB), the ratio of specific heat 

capacities of air (γ), and the average borehole pressure ( BP ) are known, kC can be 

determined if tc is known. From the temperature signature of FFTL, tc can be obtained as 

the time at which there is a turnaround (i.e., the time at which tTB ∂∂ /  changes from 

negative to positive) in a temperature-versus-time plot. 

 

The proposed estimation method is applied to the synthetic FFTL data presented in 

Figure 4a. Figure 7 shows the temperature signature from the same synthetic FFTL, as in 

Figure 4a. Figure 7 also shows the ratio of inflow rate of air into the borehole and the 

pumping rate (i.e., ) as a function of time for this experiment (estimated using 

Equation C.7). From Figure 7, we note that tc is 0.49 seconds for this experiment. Using 

mmin && /



the values μ = 1.86×10-5 kg m-1 s-1, RB = 0.04 m, γ = 1.4, and BP  = 99650 Pa 

(approximately), we obtain (using Equation 17) kC = 1.0×10-12 m2, which is the input 

permeability of the fracture continuum for this synthetic FFTL (see Table 1). In other 

words, Equation 17 can be used to compute the permeability of the fracture continuum. 

This finding illustrates that temperature data from a logging experiment can be used for 

determining fracture continuum permeability of the host medium. 

 

The fracture continuum permeability for the synthetic FFTL was known. In an actual 

FFTL, the fracture continuum permeability is unknown and is one of the transport 

parameters we want to estimate. To illustrate how this can be accomplished, we return to 

the actual FFTL data presented in Figure 2b. For this FFTL, observe that temperature 

decreases for about six seconds after pumping began, i.e., 0.6=ct seconds. From Figure 

2a, it can also be estimated that the average pressure 75800=BP Pa. For this particular 

FFTL, RB =  0.038 m (the diameter of the borehole is 0.076 m). With typical values of μ 

= 1.86×10-5 kg m-1 s-1 and γ = 1.4, the effective fracture continuum permeability is 

estimated to be 3.9×10-13 m2 (using Equation 17). From previous air-injection tests, the 

fracture continuum permeability of the DST host rock has been found to vary almost 

three orders of magnitude between 1.6×10-15 and 9.7×10-13 m2, with a geometric mean of 

1.3×10-13 m2 [Birkholzer and Tsang, 2000; Freifeld, 2001]. Thus, the estimate of fracture 

continuum permeability from Equation 17 compares well with the mean of the previous 

estimates of fracture continuum permeability for the DST host rock. Equation 17 thus 

provides a useful tool with which to obtain a reasonable estimate of the fracture 

continuum permeability from FFTL response in unsaturated fractured rock. The estimate 

could possibly be further refined, when a more comprehensive model of multiphase 

transport is utilized. We will elaborate on this in Paper II [Mukhopadhyay et al., 2008]. In 

Paper II [Mukhopadhyay et al., 2008], we will also show that FFTL data can be used to 

estimate transport parameters other than permeability as well.  

 
8. Summary 
 



Flowing fluid temperature logging, or FFTL is a relatively new concept that, when 

backed up by the emerging technology of distributed temperature sensing, or DTS, has 

strong potential as a viable tool for locating flowing fractures and estimating the transport 

parameters associated with fracture flow. We have developed the necessary theoretical 

background for interpretation of FFTL data from unsaturated fractured rock.  In this 

paper, we present a simple conceptual model of FFTL based on the dual assumptions of 

single-phase flow of air (i.e., ignoring the flow of water vapor) and constant pressure and 

temperature inside the rock formation (i.e., assuming that the perturbation in the rock 

formation caused by short-duration FFTL is negligible). It is also assumed that heat 

transfer via convection only, i.e., conductive heat transfer between the borehole and the 

rock formation is ignored. Based on this simplified conceptualization of FFTL, we 

develop a semi-analytical solution for spatial and temporal variation in pressure and 

temperature inside the borehole, in response to an applied perturbation in the form of 

pumping of air. 

 

The semi-analytical solution is compared with predictions from the TOUGH2 numerical 

simulator. It was observed that the semi-analytical solution compares reasonably well 

with the numerical results. We used the semi-analytical solution to investigate the 

parameter (i.e., permeability) that has the strongest influence on pressure and temperature 

response from FFTL. We also illustrate how the FFTL temperature response can be 

utilized to detect the location of discrete features embedded in what is otherwise a 

fracture continuum. 

 

Based on the semi-analytical solution, we propose a method for estimating the effective 

fracture continuum permeability. Our proposed method accurately reproduced the 

fracture continuum permeability from temperature data of a synthetic FFTL experiment 

with known permeability. We subsequently applied the proposed method to estimation of 

fracture continuum permeability from temperature data of an actual FFTL conducted in 

the host rock of the Drift-Scale Test at Yucca Mountain, Nevada. The effective fracture 

continuum permeability estimated from the proposed method is comparable to previous 

independent estimates of fracture permeability. 



 

The borehole pressure and temperature response from FFTL in unsaturated fractured rock 

communicate the underlying multiphase flow and heat transfer processes in response to 

the applied perturbation (i.e., pumping of air from the borehole). While we present a 

simplified conceptualization of FFTL in this paper, a more elaborate numerical model of 

FFTL is presented in Paper II, where we perform a systematic sensitivity study to 

determine the parameters (such as permeability, porosity, and thermal conductivity) 

having the strongest influence on FFTL response, and estimate these parameters using 

multiphase inverse modeling based on the iTOUGH2 optimization code.  

 
Notation 
CP  specific heat capacity of air at constant pressure, J kg-1 K-1. 
CV  specific heat capacity of air at constant volume, J kg-1 K-1. 
H  height (or length) of a borehole (or packed-off zone), m. 
h  location of discrete fracture from bottom of the borehole, m. 
hB  enthalpy of air in borehole, J kg-1. 
hCB  enthalpy of air entering borehole from fracture continuum, J kg-1. 
kB  borehole permeability, m2. 
kC  permeability of fracture continuum, m2. 
kF  permeability of discrete fracture, m2 
Ma  molecular weight of air. 
m&   pumping rate, kg s-1. 

Dm&   dimensionless pumping rate. 

inm&   rate of flow entering the borehole, kg s-1. 
PB  pressure inside borehole, Pa. 

BP   average borehole pressure, Pa. 
PC  pressure in fracture continuum, Pa. 
qB  velocity of air in borehole, m s-1. 
qCB  velocity of air entering borehole from fracture continuum, m s-1. 
R  universal gas constant, J mol-1 K-1. 
RB  borehole radius, m. 
Re  Reynolds number. 
r  radial coordinate, m. 
s  Laplace parameter. 
TB  temperature inside borehole, oC. 
TC  temperature in fracture continuum, oC. 
t  time, s. 
tc  critical time as defined in Equation 17, s. 

tΔ   temporal increment, s. 
uB  internal energy of air in borehole, J kg-1. 
V  velocity of air inside the borehole, m s-1. 



yB  logarithm of dimensionless pressure in the borehole. 
z  z-coordinate, m. 

zΔ   spatial increment in the z-direction, m. 
 
Greek Symbols 
αB  momentum diffusivity for air in borehole, m2 s-1. 
εCB dimensionless interaction parameter between borehole and fracture 

continuum, see Equation 6. 
γ  ratio of CP and CV for an ideal gas 
μ  viscosity of air, kg m-1 s-1. 
ρB  density of air in borehole, kg m-3. 
ρCB  density of air entering borehole from fracture continuum, kg m-3. 
σB  logarithm of dimensionless pressure. 
τ  dimensionless time. 

cτ   dimensionless critical time as defined by Equation 16. 
ψB  dimensionless borehole pressure. 

Bψ   dimensionless borehole pressure in Laplace transform space. 
ψC  dimensionless fracture continuum pressure. 
ζ  dimensionless distance in the z-direction. 
ζF  location of discrete fracture in dimensionless space. 
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Appendix A 

Considering an elementary volume of of the borehole between  and , the 

equation of continuity can be written as   (neglecting the small mass of air flowing in 

through the single, narrow discrete fracture)              

zRi Δ
2π z zz Δ+
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With both and , Equation A1 can be written in differential notation as 0→Δz 0→Δt
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Assuming Darcy flow, we can write the flow rates qB (the rate of flow within the 

borehole) and qCB (the rate of flow into the borehole from the surrounding porous 

continuum) as  
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In Equation A.3a, it is assumed that pressure changes linearly from PC to PB over a radius 

of influence, which is equal to the radius of the borehole (i.e., it is assumed that the 

constant pressure and temperature boundary is located at a distance of RB from the 

borehole wall). Assuming air behaves like an ideal gas, we have 
B
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=ρ , where Ma is the molecular weight of air, and R is the universal 

gas constant (8.314 J/mol-K). Introducing these definitions in Equation A.2, we obtain 
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In writing Equation A.4, we have assumed that air viscosity does not change with 

pressure and temperature. Since the changes in temperature and pressure during a 

dynamic fluid logging experiment are expected to be small, this is a reasonable 

assumption. 

 

Expanding the partial differentials in Equation A.4, after some rearrangement, we can 

rewrite Equation A.4 as 
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Assuming further that the properties can be evaluated at some average pressure BP  (say, 

the average of the initial pressure and the steady state pressure in the borehole), Equation 



A.5 can be cast into the following form 
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Let us now focus on the energy balance equation in the same elementary volume inside 

the borehole. The energy balance equation can be expressed as 
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                                                                                                                                       (A.7) 

where uB is the specific internal energy and hB is the specific enthalpy inside the 

borehole. Further, hCB is the specific enthalpy of the air entering into the borehole from 

the surrounding continuum. Equation A.7 can be cast into partial differential form as 
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Since ideal gas behavior has been assumed, we introduce BVB TCu = , , and BPB TCh =

⎟
⎠
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TT
Ch , where CV and CP are the specific heat capacities of an ideal gas 

under constant volume and constant pressure, respectively. From the properties of an 

ideal gas, we get . Using these definitions, and using Equations A.3a and 

A.3b, we obtain (from Equation A.8) 
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Assuming again that properties can be evaluated at some average pressure BP , we write 

Equation A.9 as 
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Note that Equation A.10 is a partial differential equation in one unknown variable and 

can be solved for PB. 

 

We now combine Equations A.6 and A.10, and after some algebraic manipulations, we 

obtain 
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Instead of working with TB, it is more convenient to make the transformation 
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With this transformation of variable, we can write 
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Using these transformations, we finally obtain 
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Since the magnitude of actual temperature drop is relatively small (i.e., 0.1≈
C

B

T
T

), 

0≈Bσ . Under these circumstances, Equation A.14 can be further simplified as 
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Equations A.10 and A.15 can now be solved for the two variables PB and σB. 

 

Appendix B 

Before solving the differential equations, we introduce the dimensionless variables 
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The initial and boundary conditions for Equation B.2 are 
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Subject to these initial and boundary conditions, Equation B.2 can be solved in Laplace 

transform space as 
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where s is the Laplace transform parameter in the transformation 
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Equation B.4 can be readily inverted back into real time space to yield [Abramowitz and 

Stegun, 1964]  
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Having obtained an expression for the dimensionless pressure drop in the borehole, we 

now turn our attention to solving Equation A.15, to obtain a solution for reduced 

temperature σB. Casting Equation A.15 into dimensionless form, we obtain, after some 

manipulations 
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To further simplify, we introduce a new variable 
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With this transformation, Equation B.6 reduces to  
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Equation B.8 is a first-order partial differential equation in σB (yB is already known) and 

needs to be solved for σB. The initial and boundary conditions are 
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where ζF = (h+b)/H  is the dimensionless location of the fracture. Because of the 

nonlinear nature of Equation B.8, an analytical solution cannot be found directly. 

However, an implicit finite difference solution can be easily obtained (subject to the 

constraints in B.9a and B.9b).   

 

 

 

Appendix C 

The mass rate of (air) flow into the borehole can be expressed as 
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While the first term on the right hand side of Equation (C.1) can be considered the 

contribution to overall air flow rate from the fracture continuum below the discrete 

fracture (the discrete fracture is located h m above the bottom of the borehole, the end 

opposite to the end where pumping is applied), the second term is the contribution from 

that above the discrete fracture (the overall length of the packed-off section is H m). The 

third term, on the other hand, is the contribution to the overall flow rate from the flow in 

the discrete fracture. 

 

Since (2b), the thickness of the discrete fracture (of the order of 10 to 100 microns), is 

significantly smaller than the other dimensions (h or H), the third term is negligible (even 

if kF is two orders of magnitude larger than kC) compared to the first and second terms in 

Equation C.1. Thus for small values of (2b), Equation C.1 can be approximately written 

as 
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The density of air coming into the borehole can be approximated (assuming ideal gas 

law) as 
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Under these conditions, Equation C.2 becomes, assuming that the viscosity of air remain 

constant, 
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Introducing the dimensionless variables discussed in Appendix B, Equation C.4 can be 

reduced to 
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Notice that for the changes in temperature observed in a typical fluid logging experiment 

0≈Bσ (i.e., ). Using this observation, and utilizing the definitions of (from 

Equation 5) and

1/ ≈CB TT Dm&

CBε (from Equation 6), we can write Equation C.5 as 
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Inserting the expression for Bψ (from Equation 4) into Equation 5 and after performing 

the required integration, we finally obtain 

                                             ( )[ ]τεCBin mm −−= exp1&&                                                    (C.7) 

 

 

Figure Captions 

Figure 1a. Photograph of the whole FFTL tool (from Tsang et al., 2007) 
 
Figure 1b.      Close-up view of the FFTL tool (from Tsang et al., 2007) 
 
Figure 2a. Sample FFTL pressure and pumping data from Borehole 182 of the ESF at 

Yucca Mountain, Nevada 
 
Figure 2b. FFTL temperature data from the logging experiment in Figure 2a 
 
Figure 3.  Schematic representation of the conceptual model for a FFTL experiment 
 
Figure 4a. Comparison of analytical results and TOUGH2 simulations of a single-

phase synthetic FFTL experiment at small times (less than 5 seconds) 
 
Figure 4b. Comparison of analytical results and TOUGH2 simulations of a single-

phase synthetic FFTL experiment at large times (larger than 5 seconds) 
 
Figure 5. Pressure  and temperature  response from a FFTL experiment for various 

values of the parameter CBε  
 
Figure 6a. Detection of a discrete fracture from temperature response of a FFTL:  

comparison of temperature profile at different times when εCB=0.005 
 



Figure 6b. Detection of a discrete fracture from temperature response of a FFTL: 
comparison of temperature profile for different values of the parameter 

CBε  when time is 10.2 seconds 
 
Figure 7. Temperature (both analytical and TOUGH2 predictions), and ratio of 

inflow and pumping rates from a synthetic FFTL experiment. The figure 
also shows tc (critical time) at which temperature begins its upward climb. 
tc can be used to estimate the effective permeability of the fracture 
continuum 

 
Table Caption 
 
Table 1. List of parameters and their values used in generating the synthetic FFTL 

pressure and temperature data  
 

 
 
 
 
 
 
 
 
 
 
Table 1. 
Parameter Name Symbol Value 
Borehole radius RB 0.04 m 
Length of packed-off zone H 2.0 m 
Borehole permeability kB 10-8 m2 
Discrete fracture permeability kF 10-10 m2 
Fracture continuum permeability kC 10-12 m2 
Air viscosity μ 1.86×10-5 kg m-1 s-1 
Fracture continuum pressure PC 1×105 Pa 
Fracture continuum temperature TC 24oC 
Initial pressure Pi 1×105 Pa 
Initial temperature Ti 24oC 
Pumping rate m&  5.5×10-4 kg s-1 
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