
UCLA
Department of Statistics Papers

Title
Toetjes na

Permalink
https://escholarship.org/uc/item/13r3h487

Authors
Ferguson, Thomas
Genest, Christian

Publication Date
2002

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13r3h487
https://escholarship.org
http://www.cdlib.org/


Toetjes na

Thomas S. Ferguson and Christian Genest

University of California at Los Angeles and Université Laval

1. Introduction

In Dutch, “toetjes” means “afters,” or dessert. In the work of Feder
(1990), it also refers to a game that is played around many family dinner
tables in the world, at times when a single leftover piece of toetje needs
to be allocated to one of the children. In the continuous version of the
game considered by Feder, a parent secretly picks a number X at random
in the interval [0, 1] and one by one, in a predetermined order, the n ≥ 2
children make their guesses known to all. Child 1 thus selects a number x1

and, knowing x1, . . . , xi−1, Child i ≥ 2 chooses xi distinct from all previous
guesses. Once everybody has spoken, the parent announces whose guess is
closest, and this child wins the toetje. The others get nothing.

The question addressed by Feder (1990) is that of determining the guess
that each child should make in order to maximize his/her probability of win-
ning, knowing that all children do likewise. Feder introduces “tie-breaking”
rules to require a specific action when several possible guesses give a child the
same maximal probability of win. This paper revisits the issue — “toetjes
na” means “after afters” in colloquial Dutch and can be interpreted either
as “extra dessert” or “more (on) Toetjes” — in order to characterize the set
of optimal strategies from a game theoretic viewpoint and to explore what
happens in situations where the parent’s secret number is drawn from other
continuous distributions than the uniform.

Toetjes with n = 2 players is briefly discussed in Section 2, where it is
seen to be essentially fair when the participants are rational and engage non-
cooperatively in the game. This is in contrast, e.g., with the two-person game
of “second guessing” investigated by Steele & Zidek (1980) and Pittenger
(1980), in which the players have different information on a price and the
second guesser is seen to have a significant advantage due to the privilege of
learning what the first player has guessed.

Somewhat unexpectedly, perhaps, it turns out that when there are n ≥ 3
players, Toetjes often proves least beneficial to the person who announces
his/her guess last. The case n = 3 is considered in detail in Section 3, where
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the set of equilibrium payoff vectors is characterized when X has a continuous
density f that is either uniform on a bounded interval, strictly decreasing on
a possibly unbounded interval, or unimodal and symmetric on the real line.
More generally, it is seen in Section 4 that when f is strictly decreasing, the
probability of winning is a non-increasing function of player number in the
strategy leading to the unique, perfect equilibrium of the n-player version of
the game.

In Section 5, Toetjes is also treated alternatively as a cooperative game
with transferable utility. From the point of view of the Shapley value, the
advantage of the order of the players is seen to be reversed. Indeed, the
ability of the last player to make threats makes him/her very valuable in
forming coalitions and confers to him/her a significant advantage.

Closely related to Toetjes is the three-player television game “The Price
is Right.” In the latter, the winner is the participant whose bid is closest to
but less than X, with the understanding that if all bids exceed X, the game
is repeated. A brief analysis of this game is mentioned in the last section,
along with a few disjointed remarks regarding possible extensions of Toetjes.
As it turns out, “The Price is Right” is simpler than Toetjes in that the
equilibrium payoff does not depend on the distribution of X, provided it is
continuous; in the TV show, the third player is also seen to have a significant
advantage. Other interesting aspects of “The Price is Right” are discussed
by Even (1966), Berk, Hughson & Vandezande (1996), Grosjean (1998) and
Biesterfeld (2001).

2. The two-person game

Since Toetjes is a game of perfect information, mixed strategies need not
be used. In the two-player version with X uniform on an interval [A, B], or
simply [0, 1] without loss of generality, it is clear that the optimal choice for
Player 1 is x1 = 1/2, as this is his/her only way to guarantee a payoff of at
least 1/2. Indeed if x1 < 1/2, say, Player 2 could then play x1 + ε < 1/2 for
some suitably small ε > 0, and Player 1’s probability of winning would be
x1 + ε/2 < 1/2. Of course, the smaller ε, the higher the payoff for Player 2.

This simple example brings out a difficulty with the game, namely the
fact that there may not always exist an optimal move. To overcome this
problem, Feder (1990) defines “limiting plays” which are such that all players
can obtain payoffs arbitrarily close to optimal by picking numbers sufficiently
close to the limit. To keep things compact, the notations x− and x+ are used
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below to refer to a point infinitesimally smaller or greater than x. Expressions
such as (x−)−, (x+)+ and the like may also be defined unambiguously when
needed.

With these conventions, the only optimal moves in the two-player version
of Toetjes with X uniform are x1 = (A+B)/2 and x2 equals x−

1 or x+
1 . Sim-

ilarly if X is assumed to have a continuous distribution F , so that ties occur
with zero probability, Player 1 can guarantee a return of 1/2 by choosing x1

to be a median of F . Player 2 again chooses x2 to be x−
1 or x+

1 . The limiting
payoffs are thus p1 = p2 = 1/2 in all cases, as Hotelling (1929) had already
pointed out a long time ago in an economic context where two competitive
vendors selling the same commodity seek optimal business locations on an
idealized linear town where customers distributed according to F are equally
interested in their product and would always buy it from the closest outlet.

3. Three-person games

When Toetjes is played with n ≥ 3 children, the game’s sets of payoffs
and equilibrium strategies depend strongly on the density f of the parent’s
secret random number X. The cases where f is (i) uniform on a bounded in-
terval; (ii) strictly decreasing on a possibly unbounded interval; and (iii) both
symmetric and unimodal on the reals are considered in separate subsections.

3.1 Uniform density on a bounded interval

Suppose that X is uniform on a bounded interval [A, B]. It may again be
assumed without loss of generality that A = 0 and B = 1. Since each player’s
strategy may depend on previous guesses, the pure strategies for Players 1, 2
and 3 are most conveniently denoted by x1 = x, x2 = y(x) and x3 = z(x, y),
respectively.

Of prime interest is the set of perfect equilibrium points, (x, y(·), z(·, ·))
and associated payoffs (p1, p2, p3). For the equilibrium to be perfect, z(x, y)
must be a best response to (x, y(x)), and y(x) must be a best response to x,
knowing Player 3 will use z(x, y). The optimal payoff to Player 3 is symmetric
in x and y, so in finding his/her best guess, attention may be restricted to
x ≤ y, as is done below.

Observe that given values of x and y, Player 3 is indifferent between
all points in [x, y], since his/her payoff is |y − x|/2 no matter which point
he/she picks in that interval. This choice can affect the payoff of the previous
players, however, and hence their strategy. Accordingly, Feder (1990) speaks
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of the need for a criterion that all players would use to choose among equally
desirable moves. Under the “play closest to Player 1” tie-breaking rule, he
shows (Corollary 1) that the optimal limiting plays and associated payoffs
are

(x1, x2, x3) =
(

1

4
,
3

4
,
1

4
+
)

and (p1, p2, p3) =
(

1

4
,
1

2
,
1

4

)
,

while under the “play rightmost” rule, he finds (Corollary 2)

(x1, x2, x3) =
(

1

4
,
3

4
,
3

4
−
)

and (p1, p2, p3) =
(

1

2
,
1

4
,
1

4

)
.

More generally, it turns out that the set of equilibrium payoffs is of the
form

(p1, p2, p3) =
(

2 − α

4
,
1 + α

4
,
1

4

)
(1)

with α running in the interval [0, 1]. As can be seen, therefore, Player 3 is
always at a disadvantage.

To derive Equation (1), first observe that for given x < y, Player 3 need
consider only three possibilities: z = x−, z = y+, and z at some arbitrary
point t ∈ [x+, y−]. The (limiting) expected returns for these possibilities are,
x, 1− y, and (y − x)/2, respectively. Player 3 will thus choose that response
with the maximum payoff, viz.

z(x, y) =




x− if x > 1 − y and 3x > y,

y+ if 1 − y > x and 3(1 − y) > (1 − x),

t if 3x < y and 3(1 − y) < (1 − x).

The vector (p1, p2, p3) of payoffs in these three regions is given by




(
y − x

2
, 1 − x + y

2
, x
)

if x > 1 − y and 3x > y,

(
1 − x + y

2
,
y − x

2
, y
)

if 1 − y > x and 3(1 − y) > (1 − x),

(
x + t

2
, 1 − y + t

2
,
y − x

2

)
if 3x < y and 3(1 − y) < (1 − x).
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On the boundaries of the regions, either of the strategies, optimal on
either side of the boundary, is a best response. In particular, the point
(x, y) = (1/4, 3/4) is on the boundary of all three regions, so x−, y+ and t
are all best responses.

Consider first the response by Player 3 that is “fair” in the sense that it
treats the other two players equally. For x < y, this strategy satisfies

z∗(x, y) =




x− if x > 1 − y and 3x > y,

y+ if 1 − y > x and 3(1 − y) > (1 − x),

t(x, y) if 3x ≤ y and 3(1 − y) ≤ (1 − x),

δ if x = 1 − y and 1/4 < x ≤ 1/2,

where t(x, y) = (x + y)/2, and δ is the randomized strategy that chooses x−

and y+ with probability 1/2 each.
If Player 2 knows that Player 3 will use this strategy, his/her best response

to x < 1/2 from Player 1 is

y∗(x) =




x + 2

3
if x ≤ 1

4
, giving value

(
1 + 5x

6
,
1 − x

2
,
1 − x

3

)
,

(1 − x)+ if
1

4
< x <

1

2
, giving value

(
1

2
− x ,

1

2
, x
)

.

As a function of x, the first component of this value is maximized at
x = 1/4. Therefore, (1/4, y∗(·), z∗(·, ·)) is a perfect equilibrium with value
(3/8, 3/8, 1/4).

More generally, the perfect equilibrium payoff (1) obtains by changing
t(x, y) to

t(x, y) = αx + (1 − α)y

for some 0 ≤ α ≤ 1 in the definition of z∗. Feder’s tie-breaking rules corre-
spond to the choices α = 0 (“closest to Player 1”) and α = 1 (“rightmost”),
respectively.

3.2 Strictly decreasing density on a possibly unbounded interval

Suppose that X has an absolutely continuous distribution F with strictly
decreasing density on [A, B), where B can be finite or infinite. Continue to
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denote by x and y the guesses of Players 1 and 2, and assume for the sake of
argument that 0 < x < y. Should Player 3 decide to put x3 = z between x
and y, then it would be best for him/her to choose it as close to x as possible.
The three choices for Player 3 are thus z = x−, z = x+ and z = y+. This
argument shows that, of the first two players, he/she who picks the smaller
number is at a disadvantage because if Player 3 plays between them, he/she
is obliged by perfectness to play close to the lower number.

In view of the above, Player 1 will choose x large, say around the third
quartile. Then Player 2 will choose y small, typically around the first quartile,
to make Player 3 indifferent between choosing z = y− and z = y+, i.e., such
that

F (y) = F
(

x + y

2

)
− F (y) (2)

It is easy to see that a unique number yx ∈ (0, x) meets these conditions for
given x > 0. Knowing this, the smallest choice of x that Player 1 can get
away with is such that

F (yx) = 1 − F (x). (3)

Because yx is a monotone increasing function of x, the solution to this
equation can also be seen to be unique. There is, therefore, a single perfect
equilibrium. Consider, for example, the case where X follows a Pareto dis-
tribution F (x) = 1 − 1/xα for x > 1. A simple calculation shows that when
α = 1, say, the only solution to (2) is

yx =
−x +

√
x2 + 8x

2
,

which is indeed monotone increasing in x. Solving (3) then yields x = 2+
√

2
and yx =

√
2, so that in this case, Players 1 and 2 would play approximately

at the 70.71th and at the 29.29th percentile, respectively. Numerical solutions
for other integer values of α are given in Table 1; when expressed in terms
of quantiles, these moves clearly remain optimal for the more general Pareto
distribution F (x) = 1 − (β/x)α with scale parameter β > 0.

Figure 1 illustrates the solution in the case where X is exponentially
distributed with mean 1. In this case, numerical work leads to x = 1.286
and y = .3235, which correspond to the 72.36th and the 44.62th percentile,
respectively. This leads to the perfect equilibrium payoff vector

(p1, p2, p3) = (.4462, .2764, .2764).
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Parameter Player 1’s Corresponding
value optimal guess x percentile

1 3.4142 70.71
2 1.8712 71.44
3 1.5235 71.72
4 1.3731 71.87
5 1.2896 71.97
6 1.2366 72.03
7 1.1999 72.07
8 1.1731 72.11
9 1.1526 72.14
10 1.1364 72.16
100 1.0129 72.34

Table 1: Player 1’s optimal move x and corresponding percentile of the
distribution of X when the latter follows a Pareto distribution F (x) = 1 −
1/xα for x ≥ 1 with α = 1, . . . , 10 and α = 100; Player 2’s optimal move is
yx = (1 − 1/xα)−1/α.

Figure 1. Representation of the unique perfect equilibrium payoff for Toet-
jes with n = 3 players when the density of X is strictly decreasing on a
possibly unbounded interval. The limiting optimal moves for Players 1 and
2, respectively denoted by x and y = yx, are such that the area to the right
of x is equal to the area to the left of yx and to the area between yx and
(x + yx)/2.
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When expressed in terms of quantiles, the same solution and return vector
obviously apply to any other exponential distribution for X. In all these
cases, therefore, Player 1 has a great advantage and Players 2 and 3 are
equal.

3.3 Symmetric and unimodal density on the real line

Suppose that the density of X may be written as f(x) = f0(x − m) in
terms of a function f0 that is symmetric about 0 and strictly decreasing on
[0,∞). One may as well assume, without loss of generality, that m = 0 is
the mode, so that f(x) = f(−x) > 0 for all possible values of x. In this
case, it is easy to convince oneself that the best option for the first two
players is to choose points that are symmetric about 0, say x1 = x < 0 and
x2 = y = −x > 0. Then the best response for Player 3 is either at one of the
end points, namely z = x− or z = y+, or, when it is between x and y, it will
be at 0.

Thus, to make Player 3 indifferent between these three choices, Player 1’s
guess must be such that the events X < x and x/2 < X < −x/2 have the
same probability. This leads to the equation,

F (x) = F (−x/2) − F (x/2),

whose solution is unique. See Figure 2 for an illustration.
In the special case where F is the Laplace (or double exponential) distri-

bution, for example, one finds

x = 2 log
(√

3 − 1
)

= −0.6238,

which means that Player 1 should guess the 26.79th percentile, approxi-
mately. The perfect equilibrium payoff is then

(p1, p2, p3) = (.36605, .36605, .2679).

Additional illustrations are provided in Table 2 for the normal and the
Student distribution with various degrees of freedom. These examples show
that when f is unimodal and symmetric, Players 1 and 2 have identical ex-
pected returns and that as in the uniform case, Player 3 is at a disadvantage.
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Degrees of Player 1’s Corresponding
freedom optimal guess x percentile

1 −0.8944 26.77
2 −0.7668 26.17
3 −0.7274 25.98
4 −0.7084 25.89
5 −0.6971 25.84
10 −0.6753 25.74
∞ −0.6543 25.64

Table 2: Player 1’s optimal move x and corresponding percentile of the
distribution of X when the latter follows a Student distribution with d =
1, 2, 3, 4, 5, and 10 degrees of freedom; d = ∞ corresponds to the standard
normal distribution. Player 1 can also play optimally at −x.

Figure 2. Representation of the unique perfect equilibrium payoff for Toet-
jes with n = 3 players when the density of X is symmetric and unimodal
on the real line and Player 1 chooses to play at x < 0 while Player 2 picks
yx = −x. These moves are optimal whenever the area to the left of x < 0 is
equal to the area between −x/2 and x/2.
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4. The n-person game with a strictly decreasing density

The search for optimal strategies in a game of Toetjes with n > 3 players
is quite complicated in general. Subject to the same specific “tie-breaking”
rules mentioned in Section 3.1, Feder (1990) gave a solution in the case where
the secret number X is selected uniformly in a bounded interval [A, B].

The discussion for three players given in Sections 3.2 and 3.3 provides
indications as to what the general form of the solution are for n > 3 players
when the density of X is strictly decreasing on a possibly unbounded inter-
val or unimodal and symmetric on the real line. Only the former case is
considered here.

Assuming that f is strictly decreasing on [A, B) with B possibly infinite,
the first n − 1 players are expected to choose a pattern of points to make
Player n indifferent as to which region he/she plays in. If he/she plays in
any region other than the left-most one, he/she will play at the extreme left
of the region to obtain the highest coverage probability.

Suppose for example that n = 4 and that f is the standard exponential
distribution. The particular configuration sought by the first three players is
a set a, b, c with a < b < c, such that

1 − e−a = e−x − e−(a+b)/2 = e−b − e−(b+c)/2 = e−c.

These four quantities are the four coverage probabilities if Player 4 chooses
a−, a+, b+ and c+, respectively. The solution of these equations is easily found
to be (a, b, c) = (.2052, .7722, 1.6846), and the common coverage probability
is e−c = .1855. This breaks the positive axis into six regions, viz.

[0, a),

(
a,

a + b

2

)
,

(
a + b

2
, b

)
,

(
b,

b + c

2

)
,

(
b + c

2
, c

)
, (c,∞)

whose corresponding probabilities are .1855, .1855, .1433, .1855, .1147 and
.1855.

Player 1 would like to choose x = b to obtain a coverage probability
.1855 + .1433 = .3288. Then Player 2 would like to choose y = c to obtain
a coverage probability .1855 + .1147 = .3002. Then, hopefully, Player 3
would choose z = a, and Player 4 would choose w = a− or w = a+. To
make sure these last two choices are as hoped, Player 1 would have to choose
x = b + ε for some very small ε > 0, and Player 2 would choose y = c,
say. Then Player 3 can achieve a coverage probability slightly higher than

10



.1855 by choosing z = a + δ for some very small δ > 0, and Player 4 would
choose w = z− or w = z+. This would guarantee something very close to the
equilibrium payoff (.3288, .3002, .1855, .1855).

For the special Pareto distribution F (x) = 1 − 1/x for x > 1, the three
corresponding cutoff points are a = 1.249, b = 2.077, and c = 5.015. The
equilibrium payoff is (.3192,.2829,.1994,.1994).

By the method used by Feder (1990), one can show that the same analysis
holds for any number n ≥ 3 of players for all distributions that have a
(strictly) decreasing density on [A, B). To be specific, suppose that the
distribution function F is concave on [0,∞) with F (0) = 0. Let the sequence
0 < a1 < · · · < an−1 < ∞ be defined in such a way that

F (a1) = F
(

a1 + a2

2

)
− F (a1) = · · ·

= F
(

an−2 + an−1

2

)
− F (an−2) = 1 − F (an−1).

One can check easily that such a set of n − 1 numbers exists. Let

qk = F (ak+1) − F
(

ak + ak+1

2

)
, k = 1, . . . , n − 2

so that q1 + · · ·+ qn−2 + nF (a1) = 1. Then Player 1 would choose a number
slightly larger than that ak+1 for which qk is largest, then Player 2 would
choose a point close to the next largest, and so on down to Player n− 2, and
then Player n−1 would choose a number slightly bigger than a1. This leaves
Player n, who would choose something very close to the choice of Player
n− 1, either slightly above or below. In this fashion, which is optimal in the
limit, Player 1 receives the largest expected payoff, Player 2 the next largest,
and so on down to Players n − 1 and n who receive the same least amount,
something slightly more than F (a1).

5. Comparing the players by the Shapley value

This section explores briefly the features of Toetjes when it is played as
a cooperative game, i.e., when there are no restrictions on the agreements
that may be reached between the children to coordinate their actions. For
simplicity, the discussion is limited to the case n = 3.

Clearly, Player 3’s strength in making threats and forming coalitions be-
comes important in a cooperative version of Toetjes. One way to illustrate
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this is to compute the characteristic function v of the game, which assigns a
worth to every possible coalition, i.e., every subset S of the grand coalition
N = {1, 2, 3}. By definition, one has v(∅) = 0 and v(S) = 1 − v(N \ S) for
any S, because the game has constant sum equal to 1.

As an example, suppose that X is uniformly distributed on [0, 1]. Player 1,
acting alone, can achieve nothing because Players 2 and 3 can play infinitesi-
mally below and above him/her. Consequently, v({1}) = 0 and v({23}) = 1.

In this context, Player 2, acting alone can achieve at most 1/6, because
Player 1 can choose x1 = 1/2, forcing Player 2 to play at 1/6 or 5/6 in order
to obtain at least 1/6. But if Player 1 does not play at 1/2, Player 2 can
obtain at least 1/6 by picking an appropriate point on the opposite side of
1/2. Thus, v({2}) = 1/6 and v({13}) = 5/6.

Finally, as shown in Section 3.1, Player 3 acting alone can achieve 1/4,
but no more than 1/4. So v({3}) = 1/4 and v({12}) = 3/4.

It has been suggested by Shapley (1953) that given a characteristic func-
tion v, a measure of the value or power of the ith player in a game can be
obtained by computing

φi(v) =
∑

S⊂N, i∈S

(|S| − 1)! (n − |S|)!
n!

[v(S) − v (S \ {i})] ,

where |S| denotes the cardinality of S and n = |N | = 3 in the present case.
When X is uniform, one finds

φ = (φ1, φ2, φ3) =
(

7

36
,
13

36
,
16

36

)
= (.1944, .3611, .4444).

As one can see, therefore, Player 3 is more than twice as strong as Player 1
at the bargaining table. This remains true when the distribution of X is
either exponential or normal. In the first case, one has

v({1}) = 0, v({2}) = .1464, v({3}) = .2764

and φ = (.1924, .3388, .4688). In the second case,

v({1}) = 0, v({2}) = .1779, v({3}) = .2564

and φ = (.1886, .3664, .4450).
Generally speaking, it is interesting how the strengths of the players are

reversed in going from a non-cooperative to a cooperative version of Toet-
jes. In this game, the core is empty, as it is known to be in all n-person
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constant-sum essential (i.e., non-trivial) games. The above values also give
the nucleolus, since the latter is the same as the Shapley value for all three-
person constant-sum games.

6. Closing remarks

The analysis of Toetjes with a parent’s secret number X other than uni-
form has shown that the last child to announce his/her guess is often at a
disadvantage in the game. A natural question is whether by letting the last
player choose the distribution F from which X will be drawn, equity can be
reinstated. The answer is yes. In the case n = 3, for example, Player 3 can
achieve his/her maximal payoff of 1/3 by choosing F to be trimodal, with
mass 1/3 within distance 1/3 of each of −1, 0 and 1, and distance at least
1 between the nodes. This way, Player 3 is then guaranteed at least 1/3, by
playing at 0, unless at least one player plays within 2/3 of 0, in which case
he/she can capture all of one of the end modes. The equilibrium payoff for
the game is thus (1/3, 1/3, 1/3).

At the opposite, the best distribution for Player 1 seems to be one close
to a uniform distribution but whose density has a small positive (say) slope.
It would be good to formalize this observation which, in the case n = 3,
implies that the optimal equilibrium payoff from Player 1’s point of view is
(1/2, 1/4, 1/4).

Another question of interest suggested by Feder (1990) is that of iden-
tifying optimal strategies for a multivariate version of Toetjes in which X
is drawn from a p-variate distribution F . Taking n = 2 for simplicity and
denoting by x and y the moves of Players 1 and 2, their respective chances of
winning correspond to the probabilities under F of the two half-planes H and
H̄ = IRp \ H determined by the (p − 1)-dimensional plane passing through
the point (x + y)/2 and perpendicular to the segment joining x and y. In
order to optimize his/her payoff, Player 2 will obviously choose y ≈ x in such
a way that the half-space H that this determines as his/her winning set has
the largest probability possible under F . Consequently, an optimal strategy
for Player 1 consists of choosing a value x for which, under F , the infimum
of min{P(H), P(H̄)} over all possible pairs of half-spaces going through x is
as close to 1/2 as possible.

The above argument shows that x should be a point of maximal depth in
the sense of Tukey (1975). Alternatively, x should be a half-space median of
F . As in the univariate version of Toetjes, the solution to this problem is not
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necessarily unique, but Small (1987) identifies various technical conditions
under which it is. It would be worth exploring further connections of this
sort between multivariate notions of location and solutions to multi-player
versions of Toetjes in several dimensions.

Finally, consider the three-player game “The Price is Right,” where the
winner is the player whose bid is closest to but less than X, and the game is
repeated if all bids exceed X. Because the probability of win does not depend
on the distance metric used, it may be assumed without loss of generality
that the distribution of X is uniform on the interval [0, 1].

If the players play in order, x1, x2, x3, then with probability min xi the
game is played again. If the same strategy is repeated indefinitely, the payoff
to the players will be the conditional probability of winning given that X >
min xi. For example, if the first two players play at a and b in some order,
with a < b, then it is clear that the third player will play only at 0, or
just above a or just above b. Under the assumption that X is uniform on
[0, 1], the payoff to Player 3 for these three cases is a, (b − a)/(1 − a), and
(1 − b)/(1 − a), respectively, the last two being the conditional probability
given that the game ends. It is clear from this that the game is strongly in
Player 3’s favor, since one of the last two numbers is at least 1/2.

By a method similar to that of Section 3, one finds that the equilibrium
payoff is (z,

√
z−z, 1−√

z) ≈ (.1850, .2451, .5698), where z is the real root of
z3 +2z2 +5z−1 = 0. This payoff is obtained as closely as desired if Player 1
takes x1 to be slightly above 1−z ≈ .8150, Player 2 chooses x2 slightly above
1 −√

1 − x1, and Player 3 picks x3 at 0. The details are left to the reader.
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