
UC Davis
Faculty

Title
Software for exact integration of polynomials over polyhedra

Permalink
https://escholarship.org/uc/item/13r6m7sb

Journal
Computational Geometry: Theory and Applications, 46(3)

ISSN
0925-7721

Authors
De Loera, JA
Dutra, B
Köppe, M
et al.

Publication Date
2013-04-01

DOI
10.1016/j.comgeo.2012.09.001

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13r6m7sb
https://escholarship.org/uc/item/13r6m7sb#author
https://escholarship.org
http://www.cdlib.org/

Software for Exact Integration of Polynomials over Polyhedra

J. A. De Loeraa, B. Dutraa,∗, M. Köppea, S. Moreinisa,1, G. Pintoa, J. Wua,2

aDepartment of Mathematics, UC Davis, One Shields Avenue, Davis, CA 95616, USA

Abstract

We are interested in the fast computation of the exact value of integrals of polynomial
functions over convex polyhedra. We present speed ups and extensions of the algorithms
presented in previous work by some of the authors. We present a new software implemen-
tation and provide benchmark computations. The computation of integrals of polynomials
over polyhedral regions has many applications; here we demonstrate our algorithmic tools
solving a challenge from combinatorial voting theory.

Keywords: Exact integration, volume computation, integration of polynomials,
polyhedron, valuations, polyhedral decompositions, polyhedral geometry.

Contents

1 Introduction 2

2 Mathematical preliminaries 3
2.1 Polyhedra and polynomials . 3
2.2 Valuations and formulas of integration of exponentials over cones and simplices 5
2.3 From exponentials to powers of linear forms . 7
2.4 The formula for the simplex . 8
2.5 Should one triangulate or cone decompose? . 9
2.6 Examples . 10

2.6.1 Integral values encoded by rational function identities 10
2.6.2 Using the triangulation method . 11
2.6.3 Using the cone decomposition method . 11

3 How the software works 12
3.1 Input format and data structures . 12
3.2 Integrating powers of linear forms by polytope triangulation 14
3.3 Integrating powers of linear forms by cone decomposition 16
3.4 A special case: computing volumes . 16

∗Corresponding author.
Email addresses: deloera@math.ucdavis.edu (J. A. De Loera), bedutra@ucdavis.edu (B. Dutra),

mkoeppe@math.ucdavis.edu (M. Köppe), moreinis@stanford.edu (S. Moreinis), gpinto@ucdavis.edu
(G. Pinto), jwu2@caltech.edu (J. Wu)

1Present address: Stanford University, Stanford, California 94305
2Present address: California Institute of Technology, Pasadena, California 91125

Preprint submitted to Computational Geometry: Theory and Applications April 3, 2012

ar
X

iv
:1

10
8.

01
17

v3
 [

m
at

h.
M

G
]

 2
 A

pr
 2

01
2

4 Experiments 17
4.1 Integration over simplices . 17
4.2 Integration over general polytopes . 19
4.3 Volume Experiments . 20
4.4 Comparison to other software . 28
4.5 Numerical methods . 28

5 One application: Voting theory 31

6 Acknowledgements 34

1. Introduction

Integration is a fundamental problem arising in many contexts, from engineering to
algebraic geometry. For example, center of mass, moments and products of inertia about
various axes are integrals used in any type of dynamic simulation or modeling such as
computer games [1, 2, 3]), similarly, normalized volumes indicate the degrees of toric vari-
eties and closely related to moment maps of symplectic manifolds [4, 5]). Integration over
polyhedra is particularly useful because many domains can be approximated by polyhedra
and then decomposed into convex polyhedra (e.g., a tetrahedral mesh decomposition etc.).

In this work we are interested in the exact evaluation of integrals over convex polyhedral
regions. More precisely, let P be a d-dimensional rational convex polyhedron in Rn and let
f ∈ Q[x1, . . . , xn] be a polynomial with rational coefficients. We consider the problem of
efficiently computing the exact value of the integral of the polynomial f over P , which we
denote by

∫
P
f dm. Here we use the integral Lebesgue measure dm on the affine hull 〈P 〉

of the polytope P . This general setting is quite useful because, when the polytope is full-
dimensional, the integral Lebesgue measure coincides with the standard Riemann integral
but generalizes it naturally to cases when the polytope is not full-dimensional. Another
reason to compute in this setting is that the volume of P and every integral of a polynomial
function with rational coefficients yields rational numbers. Finally this normalization of
the measure occurs naturally in Euler–Maclaurin formulas for a polytope P , which relate
sums over the lattice points of P with integrals over the various faces of P . We remark
that the computer algebra community has dedicated a great deal of effort to develop a
different kind of exact integration, understood to be the automatic computation of the
antiderivatives of functions, as predicted by the fundamental theorem of Calculus [6], but
we do not discuss this kind of exact integration here.

Regarding the theoretical computational complexity of our problem, it is very educa-
tional to look first at the case when f is the constant polynomial 1, and the answer is
simply a volume. It has been proved that already computing the volume of polytopes of
varying dimension is #P-hard [7, 8, 9, 10, 11], and that even approximating the volume
is hard [12]. More recently in [13] it was proved that computing the center of mass of a
polytope is #P-hard.

We report on a new C++ implementation, LattE integrale [14], which extends the
work done in [15] and [16]. This paper is mostly an experimental and practical study,
but it also slightly develops the theory of [15]. This article presents useful formulas for

2

integration of power of linear forms over simplicial cones that complement those presented
in [15].

Our method of computation relies on powerful mathematical ideas. It was proved in
[15] that, unlike general polynomials, integrals over simplices of arbitrary powers of linear
forms, or of polynomials with a fixed number of variables, can be computed in polynomial
time. In this case our algorithms use known properties of integrals of exponentials of
linear forms (see [17], [18]). This allows for fast calculation over general polytopes using
two methods that depend on two different decompositions of polyhedra. General polyhedra
can be decomposed as either a disjoint union of simplices, i.e., triangulations, or as signed
cone decompositions of the kind proposed by Brion, Lasserre, Lawrence, and Varchenko
[19, 20, 10, 21]. The polynomial-time complexity for integration over simplices shown in
[15] can be extended to more polyhedra as long as their decompositions are of “small” size
(note that this is always the case in fixed dimension).

This paper is organized as follows. We begin in Section 2 recalling the mathematical
ideas at the heart of our algorithms (although we omit details of proofs, they can be found in
the references). We begin with a short review of polyhedral geometry, specially valuations.
In Section 3 we discuss details about the implementation including main subroutines and
data structures. In Section 4 we first discuss speed improvements for integrating over
simplices from earlier work in [15], and then we report on several benchmarks of integration
over arbitrary polytopes. More experimental tables are available online [14]. We conclude
our paper with an application: we solve a computational challenge from combinatorial
voting theory.

2. Mathematical preliminaries

In this section we recall the necessary mathematical background used in our algorithms.
We state results without proof but excellent background sources for what is going to be
discussed here include [15, 22, 23, 24] and the references mentioned there.

2.1. Polyhedra and polynomials

A convex rational polyhedron P in Rd (we will simply say polyhedron) is defined as
the intersection of a finite number m of closed half spaces bounded by rational affine
hyperplanes. We say that P is full-dimensional (in Rd) if the affine span of P is Rd.
When P = {x : Ax ≤ b } for a m × d matrix A and m-vector b, P is said to be given
by a halfspace or h-representation. When P is the convex hull conv(V) of finitely many
points in Rd, V = {v1, . . . vn}, P is said to be given by a vertex or v-representation. We
can switch between the h- and v-representations of a d-dimensional polyhedron using well-
known algorithms (see [25, 26]). A polytope P is a compact polyhedron. A cone C is a
polyhedral cone (with vertex 0) and an affine cone is a translation s + C of a cone C.
A cone C is called simplicial if it is generated by linearly independent vectors of Rd. A
simplicial cone C is called unimodular if it is generated by linearly independent integral
vectors v1, . . . , vk such that {v1, . . . , vk} can be completed to an integral basis of Zd. An
affine cone C is called simplicial (respectively, simplicial unimodular) if the associated cone

3

is. The set of vertices of P is denoted by V (P). For each vertex s ∈ V (P), the cone of
feasible directions Cs(P) at the vertex s is the cone of all vector y such that s+ εy ∈ P for
some ε > 0. The tangent cone of a polytope P at a vertex s is the affine cone s + Cs(P)
(this is a translation of Cs(P)). For details in all these notions see, e.g., [22].

For the integration of a full-dimensional polytope we consider the standard Lebesgue
measure, which gives volume 1 to the fundamental domain of the lattice Zn. But if P lies
inside an affine subspace L + a, with L a rational linear subspace of dimension n ≤ d, we
will normalize the Lebesgue measure on L, so that the volume of the fundamental domain
of the lattice L ∩ Zd is 1. Thus for any affine subspace L + a parallel to L, we define the
integral Lebesgue measure dm by translation. For example, the diagonal of the unit square
has length 1 instead of

√
2. This has the great advantage that for rational input our output

will always be an (exact) rational number
∫
P
f dm in the usual binary encoding.

One important point of our method is that all computations are done in the representa-
tion polynomials given by powers of linear forms. It is well-known that any homogeneous
polynomial of degree M can be decomposed as a sum of M -th powers of linear forms. For
example, one can decompose the polynomial f as a sum f =

∑
` c`〈`, x〉M with at most 2M

terms. This decomposition is given by the following well-known identity for monomials: If
xM = xM1

1 xM2
2 · · ·xMn

n , then

xM =
1

|M|!
∑

0≤pi≤Mi

(−1)|M|−(p1+···+pn)

(
M1

p1

)
· · ·
(
Mn

pn

)
(p1x1 + · · · + pnxn)|M|, (1)

where |M| = M1 + · · · + Mn ≤ M . Of course, when dealing with general polynomials,
this same formula can be applied for as many monomials as is necessary. For example, the
polynomial 7x2 + y2 + 5z2 + 2xy+ 9yz can be written as 1

8
(12(2x)2− 9(2y)2 + (2z)2 + 8(x+

y)2 + 36(y + z)2).
It is worth noting that the above formula does not yield an optimal decomposition, but

it suffices to generate a polynomial-time algorithm on fixed degree |M| or fixed number of
variables [15]. The problem of finding a decomposition with the smallest possible number
of summands is known as the polynomial Waring problem. What is the smallest integer
r(M,n) such that a generic homogeneous polynomial f(x1, . . . , xn) of degree M in n vari-
ables is expressible as the sum of r(M,n) M -th powers of linear forms? This problem was
solved for general polynomials by Alexander and Hirschowitz [27] (see [28] for an extensive
survey), but there is no computational or constructive version of this result that would
yield the optimal decomposition for an specific input polynomial and the bounds may be
much too pessimistic on the average situation. Only very recently Carlini et al. [29] gave
efficient decompositions of a monomial. However, their decomposition involves roots of
unity, and here we are interested in an arithmetic version of the problem where everything
is expressed using rational forms and rational coefficients. But we can see that the explicit
rational construction we use in our code is not too far away from the optimum.

Table 1 lists the average number of powers of linear forms necessary to decompose
monomials of given degree generated uniformly at random. To create the monomials, we

4

Table 1: Average number of powers of linear forms plus or minus one standard deviation
necessary to express one monomial in d variables, averaged over 50 monomials of the same
degree

Monomial Degree

d 5 10 20 30 40 50

3 14± 3 (6.6± 1.2)× 101 (4.0± 0.5)× 102 (1.2± 0.1)× 103 (2.7± 0.2)× 103 (5.2± 0.2)× 103

4 16± 5 (1.1± 0.2)× 102 (1.1± 0.2)× 103 (4.5± 0.6)× 103 (1.3± 0.2)× 104 (3.0± 0.2)× 104

5 19± 4 (1.5± 0.4)× 102 (2.2± 0.6)× 103 (1.2± 0.3)× 104 (4.7± 0.7)× 104 (1.4± 0.2)× 105

6 20± 5 (2.0± 0.6)× 102 (4.1± 1.2)× 103 (3.2± 0.8)× 104 (1.5± 0.3)× 105 (5.2± 0.6)× 105

7 21± 5 (2.4± 0.9)× 102 (6.7± 2.4)× 103 (7.1± 2.1)× 104 (4.0± 1.0)× 105 (1.7± 0.3)× 106

8 21± 5 (2.9± 0.9)× 102 (1.1± 0.5)× 104 (1.4± 0.5)× 105 (9.8± 2.7)× 105 (4.8± 1.1)× 106

10 24± 5 (3.5± 1.1)× 102 (2.1± 0.9)× 104 (4.1± 1.6)× 105 (4.5± 1.7)× 106 (3.1± 1.0)× 107

keep adding one to the power of a randomly chosen variable until the monomial has the
desired degree. The table show mild exponential growth as degree or dimension grow. This
was predicted in the theory.

In conclusion, to integrate a multivariate polynomial, we first algebraically decompose
each monomial to a sum of powers of linear forms which, as we will see next, can be
integrated very fast in practice over simplices or over simplicial cones using a few useful
formulas. Thus we will need a geometric decomposition of our polytopes into those pieces.

2.2. Valuations and formulas of integration of exponentials over cones and simplices

We now recall several formulas for the integrals of a power of a linear form over a
simplex or over a simplicial cone. The idea is that if we can do fast integration for those
two structures, then we can always rely on two polyhedral decompositions of the input
polyhedron to obtain the integral. See Subsection 2.5 for details.

One of the most important properties of integrals over polyhedra is that they can be seen
as valuations. A valuation F is a linear map from the rational vector space of the indicator
functions of rational polyhedra P ⊂ Rd into a rational vector space M . Whenever the
indicator functions [Pi] of a family of polyhedra Pi satisfy a linear relation

∑
i ri [Pi] = 0,

then the elements F (Pi) satisfy the same relation
∑

i riF (Pi) = 0 (for a formal definition
within the polytope algebra, see Chapter 2 of [22]).

Let C =
∑d

i=1 R+ui be the simplicial cone spanned by linearly independent integral
vectors u1, u2, . . . ud. The fundamental parallelepiped ΠC of the cone C (with respect to
the generators ui, i = 1, . . . , d) is the set of points ΠC =

∑d
i=1[0, 1[ui. Let us denote by

vol(ΠC) its volume.

Proposition 1 (Theorem 8.4 in [22]). . There exists a unique valuation I(P)(`) which as-
sociates to every polyhedron P ⊂ V a meromorphic function so that the following properties
hold

5

(i) If ` is a linear form such that e〈`,x〉 is integrable over P , then

I(P)(`) =

∫
P

e〈`,x〉 dm.

(ii) For every point s ∈ Rn, one has

I(s+ P)(`) = e〈`,s〉I(P)(`).

(iii) If P contains a straight line, then I(P) = 0.

A consequence of the valuation property is the following fundamental theorem. It fol-
lows from the Brion–Lasserre–Lawrence–Varchenko decomposition theory of a polyhedron
into the supporting cones at its vertices [19, 22, 21, 20].

Lemma 2. Let P be a polyhedron with set of vertices V (P). For each vertex s, let Cs(P)
be the cone of feasible directions at vertex s. Then

I(P)(`) =
∑

s∈V (P)

I(s+ Cs(P))(`). (2)

Note that the cone Cs(P) in Lemma 2 may not be simplicial, but for simplicial cones
their integrals have explicit rational function formulas. As we see in Proposition 4, one can
derive an explicit formula for the rational function I(s+ Cs(P)) in terms of the geometry
of the cones.

Lemma 3. Using the valuation property for the valuation I(P)(`) and the linearity over
the integrands we have that:

(i) For any triangulation T of the polytope P , we have I(P)(`) =
∑

∆∈T I(∆)(`).

(ii) For any triangulation Ds of the feasible cone Cs(P) at each of the vertices s of the
polytope P we have I(P)(`) =

∑
s∈V (P)

∑
C∈Ds

I(s+ C)(`).

Lemma 3 says that if we know how to integrate over simplices or simplicial cones, we
can integrate over a polytope. We are close to knowing how to do this. By elementary
integration, and Proposition 1, we have the following.

Proposition 4. For a simplicial cone C generated by rays u1, u2, . . . ud (with vertex 0) and
for any point s

I(s+ C)(`) = vol(ΠC)e〈`,s〉
d∏
i=1

1

〈−`, ui〉
. (3)

This identity holds as a meromorphic function of ` and pointwise for every ` such that
〈`, ui〉 6= 0 for all ui.

6

2.3. From exponentials to powers of linear forms

We now consider powers of linear forms instead of exponentials. Similar to I(P), we
now let LM(P) be the meromorphic extension of the function defined by

LM(P)(`) =

∫
P

〈`, x〉M dm

for those ` such that the integral exists. To transfer what we know about integrals of
exponentials to those of powers of linear forms, we can consider the formula of Proposition 4
as a function of the auxiliary parameter t:∫

s+C

e〈t`,x〉 dm = vol(ΠC)e〈t`,s〉
d∏
i=1

1

〈−t`, ui〉
. (4)

Using the series expansion of the left in the variable t, we wish to recover the value of
the integral of 〈`, x〉M over the cone. This is the coefficient of tM in the expansion; to
compute it, we equate it to the Laurent series expansion around t = 0 of the right-hand-
side expression, which is a meromorphic function of t. Clearly

vol(ΠC)e〈t`,s〉
d∏
i=1

1

〈−t`, ui〉
=
∞∑
n=0

tn−d
〈`, s〉n

n!
· vol(ΠC)

d∏
i=1

1

〈−`, ui〉
.

We say that ` is regular if 〈`, ui〉 6= 0 for every ray ui of the cone. With this, we can
conclude the following.

Corollary 5. For a regular linear form ` and a simplicial cone C generated by rays
u1, u2, . . . ud with vertex s

LM(s+ C)(`) =
M !

(M + d)!
vol(ΠC)

(〈`, s〉)M+d∏d
i=1〈−`, ui〉

. (5)

Otherwise when ` is not regular, there is a nearby perturbation which is regular. To obtain
it, we use `+ ε̂ where ε̂ = εa is any linear form with a ∈ Rn such that 〈−`− ε̂, ui〉 6= 0 for
all ui, to define a new linear form (depending of a) on the space of meromorphic functions
in the variable ε. Then, applying (5) on the limit as ε goes to zero we obtain:

LM(s+ C)(`) =
M !

(M + d)!
vol(ΠC) Resε=0

(〈`+ ε̂, s〉)M+d

ε
∏d

i=1〈−`− ε̂, ui〉
, (6)

Since the reader may not be familiar with residues Resε=0(f) and how to calculate them,
we recall some useful facts on complex analysis (see, e.g., [30] for details). As we observed,

there is a singularity or pole at ε = 0 for a univariate rational function f(ε) = p(ε)
q(ε)

(which

in this case is explicitly given in Formula (6) of Corollary 5). Recall that if f has Laurent
expansion f(ε) =

∑∞
k=−m akε

k, the residue is defined as a−1. Given a rational function f(ε)

7

with a pole at ε = 0 there are a variety of well-known techniques to extract the value of the
residue. For example, if ε = 0 is a simple pole (m = 1), then Resε=0(f) = p(0)

q′(0)
. Otherwise,

when ε = 0 is a pole of order m > 1, we can write f(ε) = p(ε)
εmq1(ε)

. then expand p, q1 in

powers of ε with p(ε) = a0 + a1ε+ a2ε
2 + . . . and q1(ε) = b0 + b1ε+ b2ε

2 + This way
the Taylor expansion of p(ε)/q1(ε) at ε0 is c0 + c1ε+ c2ε

2 + c3ε
3 + . . . , where c0 = a0

b0
, and

ck = 1
b0

(ak − b1ck−1 − b2ck−2 − · · · − bkc0). Thus we recover the residue Resε=0(f) = cm−1.
We must stress that the special structure of the rational functions in Corollary 5 can be
exploited to speed up computation further rather than using this general methodology. For
more on this see [31, 22, 15] and the following discussion.

Finally, we have all the tools necessary to write down our formula for integration using
cone decompositions.

Corollary 6. For any triangulation Ds of the tangent cone Cs(P) at each of the vertices s
of the polytope P we have

LM(P)(`) =
∑

s∈V (P)

∑
C∈Ds

LM(s+ C)(`). (7)

2.4. The formula for the simplex

Suppose now that ∆ ⊂ Rn is a d-dimensional simplex (as it may appear in a triangu-
lation of the polytope P), and ` is a linear form on Rn. We say that the linear form ` is
regular for the simplex ∆ if it is not orthogonal to any of the edges of the simplex. If ` is
regular for ∆, then it is regular for all tangent cones at each of the vertices. We then find
the following result as a special case of Corollary 6.

Corollary 7 (Brion, see [19]). Let ∆ be a d-simplex with vertices s1, . . . , sd+1 ∈ Rd. Let
` be a linear form which is regular w.r.t. ∆, i.e., 〈`, si〉 6= 〈`, sj〉 for any pair i 6= j. Then
we have the following relation.

LM(∆)(`) =

∫
∆

〈`, x〉Mdm = d! vol(∆, dm)
M !

(M + d)!

(d+1∑
i=1

〈`, si〉M+d∏
j 6=i〈`, si − sj〉

)
. (8)

When ` is regular, Brion’s formula is very short; it is a sum of d+ 1 terms. When ` is
not regular, we can again use a perturbation `+ ε̂ where ε̂ = εa as in Corollary 5, so that
the expression of the integral over the simplex reduces to a sum of residues as in (6).

However, in the special case of a simplex, there exists a computationally more efficient
method that avoids the calculation of a perturbation a; see [15]. From [15, Theorem 10]
we find that LM(∆)(`) is the coefficient of the term tM in the Laurent series of the rational
function

d! vol(∆, dm)
M !

(M + d)!

1∏d+1
j=1(1− t〈`, sj〉)

(9)

in the variable t ∈ C. This rational function can be expanded into partial fractions. To
this end, let K ⊆ {1, . . . , d + 1} be an index set of the different poles t = tk := 1/〈`, sk〉,

8

and for k ∈ K let mk denote the order of the pole, i.e.,

mk = #
{
i ∈ {1, . . . , d+ 1} : 〈`, si〉 = 〈`, sk〉

}
.

Then the rational function can be written as∑
k∈K

(ak,1
1− t〈`, sk〉

+
ak,2

(1− t〈`, sk〉)2
+ · · ·+ ak,mk

(1− t〈`, sk〉)mk

)
,

where the coefficients ak,r are given by certain residues about the pole t = tk. After a
change of variables, t = tk + ε, one obtains the following formula.

Corollary 8 (Corollary 13 in [15]). Let ∆ be a d-dimensional simplex. Then for an
arbitrary power 〈`, x〉M of a linear form, we have:∫

∆

〈`, x〉M dm = d! vol(∆, dm)
M !

(M + d)!

∑
k∈K

Resε=0
(ε+ 〈`, sk〉)M+d

εmk
∏
i∈K
i 6=k

(ε+ 〈`, sk − si〉)mi
. (10)

To conclude we note that one can even extend the formula above on integrating the
power of a linear form to the case of a product of powers of several linear forms (see [15]).

2.5. Should one triangulate or cone decompose?

One could triangulate the whole polytope, or integrate over each tangent cone. However,
each cone must be decomposed into simplicial cones. This is the trade-off: we can get away
with not doing one large polytope triangulation, but we might have to do many smaller
cone triangulations.

The number of simplices in a triangulation and the number of simplicial cones con-
taining in a polytope can significantly differ. Depending on the polytope, choosing the
right method can determine its practicality. Our experimental results agree with [16] in
showing that triangulating the polytope is better for polytopes that are “almost simplicial”
while cone decomposition is faster for simple polytopes. The details will be discussed in
Section 4.

Lemma 3 together with the formulas we stated for integration over simplices and cones
give a general process for computing integrals:

• We decompose our polynomial as a sum of powers of linear forms.

• We select a decomposition of the polyhedron in question, either a triangulation or a
cone decomposition.

• Apply the formulas to each piece and add up the results via the above results.

9

(1,3)

(0,0)

(0,2)

(2,0)

(3,1)

Figure 1: A pentagon

2.6. Examples

2.6.1. Integral values encoded by rational function identities

Before working out a simple integration example, let us highlight the fact that for
regular linear forms the integration formulas are given by sums of rational functions which
we read from the geometry at vertices and possibly a cone decomposition method: Consider
a pentagon P with vertices (0, 0), (2, 0), (0, 2), (3, 1), and (1, 3) as in Figure 1.

Then the rational function giving the value of
∫
P

(c1x+ c2y)M dx dy is

M !

(M + 2)!

(
(2 c1)M+2

c1 (−c1 − c2)
+ 4

(3 c1 + c2)M+2

(c1 + c2) (2 c1 − 2 c2)
+ 4

(c1 + 3 c2)M+2

(c1 + c2) (−2 c1 + 2 c2)
+

(2 c2)M+2

(−c1 − c2) c2

)
.

This rational function expression encodes every integral of the form
∫
P

(c1x+c2y)M dx dy.
For example, if we let M = 0, then the integral is equal to the area of the pentagon, and
the rational function simplifies to a number by simple high-school algebra:

1

2

(
4

c1

−c1 − c2

+ 4
(3 c1 + c2)2

(c1 + c2) (2 c1 − 2 c2)
+ 4

(c1 + 3 c2)2

(c1 + c2) (−2 c1 + 2 c2)
+ 4

c2

−c1 − c2

)
= 6.

Hence the area is 6. When M and (c1, c2) are given and (c1, c2) is not perpendicular
to any of the edge directions we can simply plug in numbers to the rational function. For
instance, when M = 100 and (c1 = 3, c2 = 5) the answer is a fraction with numerator equal
to

227276369386899663893588867403220233833167842959382265474194585

3115019517044815807828554973991981183769557979672803164125396992

and denominator equal to 1717. When (c1, c2) is perpendicular to an edge direction, we
encounter (removable) singularities in the rational functions, thus using complex residues
we can do the evaluation. Note that those linear forms that are perpendicular to some
edge direction form a measure zero set inside a hyperplane arrangement.

10

(a) Triangulation method (b) Cone decomposition method

Figure 2: Example polytopes

2.6.2. Using the triangulation method

Take the problem of integrating the polynomial x+ y over the triangle ∆ with vertices
s1 = (1, 1), s2 = (0, 1), and s3 = (1, 0) in Figure 2a.

The polynomial is already a power of a linear form, and the polytope is a simplex.
Because ` = (1, 1) is not regular (it is perpendicular to the edge spanned by s2 and s3), we
have to build the index set K. Note 〈`, s1〉 = 2, 〈`, s2〉 = 1, and 〈`, s3〉 = 1; pick K = {1, 2}
with m1 = 1,m2 = 2. We now need to compute two values:

Vertex s1: We are not dividing by zero, we can simply plug vectors into Corollary 7,
〈`,s1〉3
〈`,s1−s2〉2 = 8.

Vertex s2: Here, we need to compute a residue.

Resε=0
(ε+ 〈`, s2〉)1+2

ε2(ε+ 〈`, s2 − s1〉)
= Resε=0

(ε+ 1)1+2

ε2(ε− 1)
= −4.

Finally,
∫

∆
(x+ y) dx dy = 2!× 1

2
× 1!

3!
(8− 4) = 2/3.

2.6.3. Using the cone decomposition method

Next, integrate the polynomial x over the unit square in Figure 2b using the cone
decomposition algorithm. The polynomial is already a power of a linear form so ` = (1, 0).
The polytope has four vertices that we need to consider, and each tangent cone is already
simplicial.

Vertex s1 = (0, 0): Because 〈`, s1〉1+2 = 0, the integral on this cone is zero.
Vertex s2 = (0, 1): For the same reason as s1, the integral on this cone is zero.
Vertex s3 = (1, 0): At this vertex, the rays are u1 = (0, 1), u2 = (−1, 0). Because

〈`, u1〉 = 0, we need a perturbation vector ε̂ so that when ` := ` + ε̂, we do not divide by
zero on any cone (we have to check this cone and the next one). Pick ε̂ = (ε, ε). Then the
integral on this cone is

11

M !

(M + d)!
vol(ΠC) Resε=0

(1 + ε)1+2

ε(−ε)(1 + ε)
=

1!

(1 + 2)!
× 1×−2 = −2/6.

Vertex s4 = (1, 1): The rays are u1 = (−1, 0), u2 = (0,−1). Again, we divide by zero,
so we perturbate ` by the same ε̂. The integral on this cone is

M !

(M + d)!
vol(ΠC) Resε=0

(1 + 2ε)1+2

ε(ε)(1 + ε)
=

1!

(1 + 2)!
× 1× 5 = 5/6.

The integral
∫
P
x dx dy = 0 + 0− 2/6 + 5/6 = 1/2 as it should be.

3. How the software works

LattE was originally developed in 2001 as software to study lattice points of convex
polytopes [32]. The algorithms used combinations of geometric and symbolic computation.
Two key data structures are rational generating functions and cone decompositions, and
it was the first ever implementation of Barvinok’s algorithm. LattE was improved in 2007
with various software and theoretical modifications, which increased speed dramatically.
This version was released under the name LattE macchiato; see [33]. Now in 2011, our new
release LattE integrale has extended its capabilities to include the computation of exact
integrals of polynomial functions over convex polyhedra. The new integration functions
are C++ implementations of the algorithms provided in [15] with additional technical
improvements (including an important new set of data structures for the manipulation of
truncated series). A key distinction between LattE integrale and other software tools
is that our algorithms give the exact evaluation of the integral since our implementation
uses exact rational arithmetic. The code of this software is freely available at [14]

The new implementation of LattE integrale allows us to calculate the integral of a
sum of powers of linear forms over an arbitrary polytope. Alternatively, we can calculate
the integral of a sum of monomials by decomposing each monomial into a sum of powers
of linear forms using Formula (1), then integrating these powers of linear forms.

This section starts with a discussion of our new data structure for manipulating poly-
nomials and linear forms, then we describe the format LattE integrale expects for the
input polytopes, and we end with a detailed explanation of the two main algorithms.

3.1. Input format and data structures

The input format for the polynomials is identical to that of the Maple programs of [15]:

• A polynomial is represented as a list of its monomials in the form

[monomial1,monomial2,. . .],

where monomiali is represented by

[coefficient,[exponent-vector]].

12

For example, 3x2
0x

4
1x

6
2 + 7x3

1x
5
2 is input as [[3,[2,4,6]], [7,[0,3,5]]].

• To deal directly with powers of linear forms, the input format is

[linear-term 1, linear-term 2, . . .],

where linear-term i is represented by

[coefficient,[power,[coefficient-vector]]].

For example, 3(2x0 + 4x1 + 6x2)10 + 7(3x1 + 5x2)12 is input as [[3,[10,[2,4,6]]],
[7,[12,[0,3,5]]]].

In [15], the integration over simplices was first implemented in Maple, and so there
was no control over the data structures used to store the data. We have implemented
the simplex integration algorithm in C++ with a sophisticated data structure and have
developed a new algorithm that integrates over the tangent cones of a polytope. Currently,
we are using burst tries, a data structure designed to have cache-efficient storage and search,
due to the fact that they are prefix trees with sorted arrays of stored elements as leaves [34].
Such a data structure is performance-critical when computing residues, as a comparison
with a linked-list implementation showed. In our implementation, each node corresponds
to a particular dimension or variable and contains the maximal and minimal values of the
exponent on this dimension. The node either points to another node a level deeper in the
tree or a list of sorted elements.

The input rational polytope P could be given to LattE integrale by an h-representation
or v-representation. The input format is the same as in previous versions and it is ex-
plained in [14]. Although the theory we presented earlier works for both full-dimensional
and non-full dimensional rational polytopes, the current release of LattE integrale is
only guaranteed to do integration and volume computation in full-dimensional polyhedra.
It is worth stressing the old capabilities for counting lattice points still work for polytopes
of all dimensions and we impose no arbitrary limit on the size or dimension of the input.
LattE integrale relies on Cddlib [35] or 4ti2 [36] for all basic polyhedral calculations
such as computation of dimension.

Our data structures are specialized for polytopes with vertices of integer coordinates.
In order to integrate over rational polytopes, we first dilate them and perform a change of
variables. If P is a d-dimensional rational polytope and αP is a dilation by α > 0 that
makes P integer, then our software operates on the vertices of αP and rescales the final
integral by the following well-known change of variables:∫

P

xmi
i . . . xmd

d dm =
1

αd

∫
αP

1

αm1+...+md
xm1

1 . . . xmd
d dm.

After this transformation, we apply Formula (1) to transform the polynomial into powers
of linear forms.

When integrating polytopes other than simplices, there are two options based on the
formulas presented in Section 2: (i) Triangulate the polytope and apply the algorithm for

13

each simplices individually, or (ii) Triangulate each tangent cone and integrate each one
using the cone decomposition algorithm. Therefore, a key step in all our computations is
to find either a triangulation of the polytope or a triangulation of each of its tangent cones.
Once more, this step relies on Cddlib or 4ti2, because when we triangulate we compute
a regular triangulation via a convex hull [32, 33]. We now explore the two integration
algorithms in greater detail.

3.2. Integrating powers of linear forms by polytope triangulation

After we decompose the polynomial to a sum of powers of linear forms and after finding
a triangulation of the polytope, Algorithm 1 loops over these two sets and integrates each
linear form/simplex pair individually using Corollaries 7 and 8.

Algorithm 1 Integrate using polytope triangulation

Input: F =
∑
cj〈`j, x〉Mj , sum of powers of linear forms.

Input: P , a full-dimensional polytope.
Output: integral of the linear forms F over the polytope P.

integral ← 0 { integral is a rational data type}
let T be a list of simplices that form a triangulation of P
for all simplices ∆ in T do
for all linear forms c〈`, x〉M in F do
if ` is regular on ∆ then

integral ← integral + c× integrateSimplexRegular(`,M,∆)
else

integral ← integral + c× integrateSimplexResidue(`,M,∆)
end if

end for
end for
return integral

In Algorithm 1, the linear forms are represented as a burst trie, the triangulations are
stored in a linked list, and each simplex is a simple two-dimensional array containing the
vertices s1, . . . , sd+1.

When ` is regular on ∆, the integrateSimplexRegular function plugs in numbers and
vectors into Corollary 7. Also, the terms in the numerator and denominator are evaluated
in a rational data type, and so no floating-point divisions are performed.

When ` is not regular, the integrateSimplexResidue function (Algorithm 2) applies
Corollary 8 and must find an index set K ⊂ {1, . . . , d+ 1} of different poles t = 1/〈`, sk〉,
and compute |K| residues. Let k ∈ K and let mk denote the order of the pole, i.e.,

mk = #{ i ∈ {1, . . . , d+ 1} : 〈`, si〉 = 〈`, sk〉 }.

The problem has now been reduced to evaluating Formula (11).

14

Resε=0
(ε+ 〈`, sk〉)M+d

εmk
∏
i∈K
i 6=k

(ε+ 〈`, sk − si〉)mi
= [εmk−1]

(ε+ 〈`, sk〉)M+d∏
i∈K
i 6=k

(ε+ 〈`, sk − si〉)mi
, (11)

where [εa]p means the coefficient of εa in the Laurent series of expression p.
To compute Formula (11), we expand the polynomial in terms of ε in the numerator

truncated to degree mk − 1. We then find the first mk terms in the polynomial expansion
of each 1/(ε+ 〈`, sk − si〉)mi , i 6= k term using the general binomial theorem. To make the
notation easy, let b = 〈`, sk − si〉 ∈ Z, then the degree mk − 1 polynomial of (ε+ b)−mk is

p̂(ε) = α0ε
0b−mi + α1ε

1b−mi−1 + · · ·+ αmk−1ε
mk−1b−mi−mk+1, αj =

(
mi + j − 1

mi − 1

)
(−1)j.

This is a polynomial in ε with rational coefficients. For efficiency reasons, we factor
p̂(ε) = 1

bmi+mk−1p(ε), p ∈ Z[ε]. The integrateSimplexResidue and truncatedMultiply func-
tions both implement these ideas.

Algorithm 2 integrateSimplexResidue

Input: `, coefficients of a linear form and M , integer power.
Input: ∆, simplex with vertices s1, . . . , sd+1.
Output: The integral of 〈`, x〉M over ∆.

Let p1 ← 1, p2 ← 1 be polynomials in ε.
Let rf ← 1 be a rational data type.
Let sumResidue ← 0 be a rational data type.
Make the index set K of unique poles.
for all k in K do

rf ← 1
p1 ← the expansion of (ε+ 〈`, sk〉)M+d up to degree mk − 1 {p1 ∈ Z[ε]}
for all i in K and i 6= k do

rf ← rf × 〈`, sk〉−(mi+mk−1)

p2 ← the expansion of (ε+〈`, sk−si〉)−mi up to degree mk−1 with 〈`, sk〉−(mi+mk−1)

factored out. {p2 ∈ Z[ε]}
p1 ← truncatedMultiply(p1, p2,mk − 1)

end for
Let c be the coefficient of the degree mk − 1 term in p1(ε).
sumResidue ← sumResidue + rf × c

end for
return abs(det(s1 − sd+1, . . . , sd − sd+1))× M !

(M+d)!
× sumResidue

Finally, Algorithm truncatedMultiply(p,q,k) takes two polynomials p, q ∈ Z[ε] and re-
turns their product up to and including terms of degree k. Our implementation is very
simple (e.g., not using any special multiplication algorithms) but the cache-efficient use of

15

the burst tries leads to speed-ups wheatn compared to a naive implementation with arrays.
We note that asymptotically faster multiplication algorithms exists (see, e.g., [37]), which
might lead to further improvements.

3.3. Integrating powers of linear forms by cone decomposition

After triangulating each tangent cone into simplicial cones, the computation is very
similar to the polytope-triangulation case: if ` is regular on the rays of the cone, we plug in
values into Corollary 5, else we perturb ` and perform a residue calculation. Algorithm 3
implements this idea.

Algorithm 3 Integrate using the cone decomposition method

Input: F =
∑
cj〈`j, x〉Mj , powers of linear forms.

Input: P , a full-dimensional polytope.
Output: integral of the linear forms over P .

integral ← 0 { integral is a rational data type}
Let C be a list of tangent cones P .
Make T be a list of triangulated cones in C. {A cone in T is in the form (s;u1, . . . , ud),
where s is a vertex and ui are rays}
for all linear forms c〈`, x〉M in F do

Let R ⊆ T be cones that ` is regular on.
for all (s;u1, . . . , ud) in R do

integral ← integral + c× integrateConeRegular(`,M, s, u1, . . . , ud)
end for
Pick ε̂ = ε(a1, . . . , ad) where ai ∈ Z so that we do not divide by zero.
for all (s;u1, . . . , ud) in T \R do

integral ← integral + c× integrateConeResidue(`,M, ε̂, s, u1, . . . , ud)
end for

end for
return integral

In integrateConeResidue, ` is perturbed by setting ` := `+ε̂, where ε̂ is a vector in terms
of ε with coefficients picked on the moment curve with alternating signs. We repeatedly
pick a random t ∈ Z+ and set ε̂i = ti−1(−1)i−1ε for i = 1, 2, . . . , d until 〈−(` + ε̂), ui〉
is non-zero for every simple cone at every vertex in Corollary 5. Then the residues are
computed using the general binomial theorem and truncated series multiplication like in
integrateSimplexResidue.

3.4. A special case: computing volumes

Computing the volume of a polytope is equivalent to integrating the monomial 1 over
the polytope. We again have the two same options when computing volumes as we did
when computing integrals. Instead of using the algorithms above, we can simplify the
computation. In the triangulation based approach, we find a triangulation of the polytope

16

and sum the volume of each simplex. The volume of a specific simplex is obtained by
taking a determinant. In the cone decomposition approach, we triangulate each tangent
cone and apply Corollary 5 with M = 0 and any random vector `. If we do divide by zero,
instead of finding residues, we simply pick a new random ` and start the computation over.

4. Experiments

We did thorough testing of the implementation and performed new computational
benchmarks. We report on four different test classes:

1. We expand the computational limits for integrating over simplices described in [15].

2. Next, we integrate random monomials over three families of polytopes: (1) simple,
(2) simplicial, and (3) neither simple nor simplicial.

3. Because our volume methods are optimized versions of the integration methods, we
also compute the volumes of the same polytopes in the last case above.

4. Finally, we compare LattE integrale to other software tools and computational
studies [16, 38, 39, 3].

Our integration and volume experiments input data, along with running times and the
results of integration and volumes are available on the LattE website [14].

4.1. Integration over simplices

In [15], the theory of integration over simplices was developed and a fair amount of
Maple experiments were carried out to show the potential of the methods. In this section,
the experiments we performed clearly indicate that this C++ implementation is at least
two orders of magnitude faster than the preceding Maple code; compare Tables 5 and 6 in
[15] with Tables 2 and 3 in this paper. In Table 2, we used Maple to generate powers of
random linear forms and randomly generated simplices. The coefficients of each linear form
were picked uniformly over [0, 100] ∩ Z. We did the integration using LattE integrale.

Next, in Table 3, we used Maple to generate monomials and simplices. We again
integrate using LattE integrale. We measure time from the start of program execution
to termination, which includes file I/O, system calls, child process time, the time to find
tangent-cones, and triangulation time. All triangulations were computed with the software
package cddlib version 0.94f [35]. All computations were performed on a 64-bit Ubuntu
machine with 64 GB of RAM and eight Dual Core AMD Opteron 880 processors. We
applied a 600-second maximum running time to this program; tasks taking longer are not
benchmarked.

17

Table 2: Average integration time plus or minus one standard deviation when integrating
one power of a linear form over a random d-simplex (in seconds over 50 random forms)

Exponent M

d 2 10 20 50 100 300 1000

10 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.00
20 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.00
50 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.01 0.01± 0.00 0.03± 0.01
100 0.02± 0.00 0.02± 0.00 0.02± 0.00 0.02± 0.00 0.02± 0.00 0.03± 0.00 0.09± 0.00
300 0.35± 0.01 0.36± 0.01 0.36± 0.01 0.36± 0.01 0.38± 0.01 0.42± 0.01 0.66± 0.02
400 0.78± 0.02 0.79± 0.03 0.79± 0.02 0.80± 0.03 0.82± 0.03 0.90± 0.03 1.25± 0.04

Table 3: Average and standard deviation of integration time in seconds of a random
monomial of prescribed degree by decomposition into linear forms over a d-simplex (average
over 50 random forms)

Degree

d 1 2 5 10 20 30 40 50 100 200 300

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.0 3.8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.7

3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 2.3 38.7 162.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.4 24.2 130.7

4 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 22.1 – –
0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 16.7 – –

5 0.0 0.0 0.0 0.0 0.1 0.3 1.6 4.4 – – –
0.0 0.0 0.0 0.0 0.0 0.2 1.3 3.5 – – –

6 0.0 0.0 0.0 0.0 0.1 1.1 4.7 15.6 – – –
0.0 0.0 0.0 0.0 0.1 1.0 4.3 14.2 – – –

7 0.0 0.0 0.0 0.0 0.2 2.2 12.3 63.2 – – –
0.0 0.0 0.0 0.0 0.2 1.7 12.6 66.9 – – –

8 0.0 0.0 0.0 0.0 0.4 4.2 30.6 141.4 – – –
0.0 0.0 0.0 0.0 0.3 3.0 31.8 127.6 – – –

10 0.0 0.0 0.0 0.0 1.3 19.6 – – – – –
0.0 0.0 0.0 0.0 1.4 19.4 – – – – –

15 0.0 0.0 0.0 0.1 5.7 – – – – – –
0.0 0.0 0.0 0.0 3.6 – – – – – –

20 0.0 0.0 0.0 0.2 23.3 – – – – – –
0.0 0.0 0.0 1.3 164.8 – – – – – –

30 0.0 0.0 0.0 0.6 110.2 – – – – – –
0.0 0.0 0.1 4.0 779.1 – – – – – –

40 0.0 0.0 0.0 1.0 – – – – – – –
0.0 0.0 0.3 7.0 – – – – – – –

50 0.0 0.0 0.1 1.8 – – – – – – –
0.0 0.1 0.5 12.9 – – – – – – –

18

4.2. Integration over general polytopes
We tested the triangulation and cone decomposition integration methods on polytopes

and their duals across dimension, vertex counts, and over monomials with different degrees.
For each polytope dimension and vertex count we constructed 50 random polytopes by
taking the convex hull of random points using Polymake [40]. For primal polytopes of
dimension d, the number of vertices considered goes from d + 2 to d + 25. When zero
is not in the interior of the polytope, we translated the centroid to the origin before
constructing the dual polytope. Then we integrated each polytope and its corresponding
dual polytope over a new random monomial of a set degree. Because of the construction
method, most primal polytopes are simplicial and the duals are mostly simple polytopes.
We also integrated over G. M. Ziegler’s database of polytopes [41], which contains polytopes
that are not simplicial nor simple.

Simple and simplicial polytopes We present the results for dimensions 5, 6, and 7. We
tested both algorithms on the primal polytopes starting with their v-representation.
For their duals we tested the triangulation and cone decomposition methods starting
from their h-representations. We also did experiments in dimension 3 and 4 but the
numbers are too close to each other to show a clear trend of which is the fastest
method (see [42]). We only report those test classes for which every polytope in
the test class finished under 600 seconds for both the triangulation and the cone-
decomposition method.

In Figures 3, 4, and 5, we display histograms that on the x-axis plot the time difference
between the two integration methods, the y-axis shows the degree of monomials and
the z-axis presents the number of random polytopes (in the respective dimensions
5, 6, 7). A particular solid bar in position (a∗, b∗) tallies the number of random
polytopes for which the time difference between the two algorithms was a∗ seconds
when integrating a a monomial of degree b∗. We define the time difference as the time
taken by the triangulation method minus the time taken by the cone-decomposition
method. There is one histogram for the primal polytopes and one for the dual
polytopes. For example, in Figure 3 on the top (primal), there are eight colors on the
bars, one for each degree (corresponds to a row). The bars in the degree 50 row, show
the average time differences are always less than or equal to zero. This shows that
the cone method was slower in the majority of simplicial problems. For comparison,
on the bottom (dual), most of the mass has positive time difference, which indicates
the cone method wins over the integration of higher degree monomials. More tables
will be available online [42].

In conclusion, our results for dimension higher than four show integrating monomials
coincide qualitatively with the observation of [16] for volume computation (polyno-
mial of degree zero): the triangulation method is faster for simplicial polytopes (mass
on histograms is concentrated on negative time differences) while the cone decompo-
sition is faster for simple polytopes (mass on histograms is concentrated on positive
time differences). The trends are very clear while in dimension less than four, the
timings are too close to each other to give a clear-cut trend.

19

Zero-one polytopes In Figure 6, we present another histogram comparing the cone de-
composition and triangulation methods on Ziegler’s database of polytopes [41], which
contains many zero-one polytopes and a few other polytopes. We translate each poly-
tope so that its centroid is the origin, thus its dual is well-defined. Then for each
polytope and its dual, we integrate 50 random polynomials of a set degree. We
skipped non-full-dimensional polytopes and a few others that did not finish within
30 minutes. The figure displays the histogram of the differences in running times
between the two integration methods for monomials of eight different degrees (1, 2,
5, 10, 20, 30, 40, and 50). As before, the z-axis is frequency, x-axis is the range of
the time differences, and y-axis gives the degree used. For example, there are over
200 cases where integrating a degree 40 monomial over the dual polytopes took the
triangulation method 90 seconds more than the cone-decomposition method.

The behavior we observed before for simple vs. simplicial polytopes still mostly holds
for these tests, except we see that the two methods finish within 20 seconds of each
other most of the time (mass of histogram is centered at 0). The variation is then
not as strong as before.

4.3. Volume Experiments

Volume computation is an important special case of integration that has received atten-
tion by several researchers, thus we also tested the triangulation and cone decomposition
methods on the same database of random polytopes and their duals, and on Ziegler’s
database to see the performance of volume evaluation.

Simple and simplicial polytopes Each test class contains 50 polytopes for each dimen-
sion and we only considered tests where both methods finished within 600 seconds
for the same polytope. While the triangulation method is still faster for simplicial
polytopes and the cone-decomposition method is faster for simple polytopes, the his-
tograms in Figure 7 suggest that both methods finish quite close to each other in
small dimension. When dimension starts growing there is a more pronounced dif-
ference between the methods (i.e., the mass of the histogram is more spread toward
positive or negative values of the time difference).

Zero-one polytopes In Table 4 and 5, we apply the triangulation and cone decomposi-
tion volume methods to Ziegler’s database [41] and their duals. If a polytope did not
contain the origin, we centered it so that its dual is defined. Again, we skipped non-
full-dimensional polytopes and a few others that did not finish within 30 minutes.
Faster timings are shown in bold. When computing volumes of primal polytopes in
Ziegler’s database, triangulation is faster more often. But for finding the volume of
the dual polytopes there is no clear faster method.

20

Figure 3: Histogram of the time difference between the triangulation and cone-
decomposition methods for integrating over random polytopes in dimension 5

21

Figure 4: Histogram of the time difference between the triangulation and cone-
decomposition methods for integrating over random polytopes in dimension 6

22

Figure 5: Histogram of the time difference between the triangulation and cone-
decomposition methods for integrating over random polytopes in dimension 7

23

Figure 6: Histogram of the time difference between the triangulation and cone-
decomposition methods for integrating over the polytopes in Ziegler’s Database

24

Figure 7: Histogram of the time difference between the triangulation and cone-
decomposition methods for finding the volume of random polytopes

25

Table 4: The triangulation vs. cone-decomposition method for finding volumes in Ziegler’s
Database: Part I

Primal Dual

Time (sec) Time (sec)

Polytope Dim. Vertices Cone. Triang. Vertices Cone. Triang.

3simp3simp.vrep.latte 6 44 5.61 6.10 32 1.11 1.15
cyclic 4 8.vrep.latte 4 8 0.09 0.06 20 0.02 0.10
neighborly 4 8.vrep.latte 4 8 0.12 0.03 20 0.03 0.06
SharirCube.vrep.latte 3 8 0.03 0.03 6 0.11 0.02
HC 6-32.vrep.latte 6 32 2.29 2.06 44 3.25 3.22
HC 7-64.vrep.latte 7 64 13.42 75.85 78 61.68 762.12
HC 8-128.vrep.latte 8 128 85.85 – 144 15007.50 –
MJ 16-17.vrep.latte 16 17 2.60 2.48 17 0.07 0.04
OA 5-10.vrep.latte 5 10 0.22 0.08 22 0.18 0.11
OA 5-18.vrep.latte 5 18 0.46 0.32 19 0.34 0.10
OA 5-24.vrep.latte 5 24 0.81 0.58 18 0.22 0.13
OA 6-13.vrep.latte 6 13 0.53 0.20 56 0.52 5.37
OA 7-18.vrep.latte 7 18 3.36 0.82 146 13.96 1827.83
OA 8-25.vrep.latte 8 25 38.55 10.44 524 4116.93 –
OA 9-33.vrep.latte 9 33 – 648.77 1870 – –
AS 6-18.vrep.latte 6 18 1.26 0.52 121 1.40 65.63
BIR3 4-6.vrep.latte 4 6 0.12 0.02 9 0.01 0.01
BIR4 9-24.vrep.latte 9 24 6.26 2.22 16 1.42 0.17
BIR5 16-120.vrep.latte 16 120 – – 25 – 488.78

26

Table 5: The triangulation vs. cone-decomposition method for finding volumes in Ziegler’s
Database: Part II

Primal Dual

Time (sec) Time (sec)

Polytope Dim. Vertices Cone. Triang. Vertices Cone. Triang.

CF 10-11.vrep.latte 10 11 0.37 0.33 11 0.03 0.00
CF 4-5.vrep.latte 4 5 0.01 0.02 5 0.02 0.02
CF 5-6.vrep.latte 5 6 0.04 0.03 6 0.00 0.00
CF 6-7.vrep.latte 6 7 0.04 0.05 7 0.01 0.00
CF 7-8.vrep.latte 7 8 0.08 0.09 8 0.02 0.02
CF 8-9.vrep.latte 8 9 0.14 0.13 9 0.02 0.01
CF 9-10.vrep.latte 9 10 0.22 0.20 10 0.01 0.02
CRO 3-6.vrep.latte 3 6 0.04 0.01 8 0.00 0.02
CRO 4-8.vrep.latte 4 8 0.12 0.05 16 0.00 0.03
CRO 5-10.vrep.latte 5 10 0.17 0.10 32 0.01 0.33
CUT3 3-4.vrep.latte 3 4 0.00 0.01 4 0.01 0.01
CUT4 6-8.vrep.latte 6 8 0.16 0.06 16 0.00 0.05
CUT5 10-16.vrep.latte 10 16 2.72 0.94 56 38.38 2046.74
CYC 5-8.vrep.latte 5 8 0.11 0.05 20 0.00 0.10
EG 5-12.vrep.latte 5 12 0.32 0.13 40 0.15 0.79
EQU 5-7a.vrep.latte 5 7 0.06 0.05 10 0.01 0.04
EQU 5-7b.vrep.latte 5 7 0.09 0.05 10 0.01 0.00
HAM 8-16.vrep.latte 8 16 1.57 0.60 256 0.15 –
HC 3-4.vrep.latte 3 4 0.03 0.00 4 0 0
HC 4-8.vrep.latte 4 8 0.15 0.05 16 0.02 0.04
HC 5-16.vrep.latte 5 16 0.48 0.24 26 0.32 0.25
CNG 5-6a.vrep.latte 5 6 0.04 0.03 6 0.02 0.01
MJ 32-33.vrep.latte 32 33 82.90 83.86 33 1.44 0.14
CNG 5-6b.vrep.latte 5 6 0.02 0.03 6 0.01 0.02

27

4.4. Comparison to other software

There are two general classes of algorithms for finding volumes and integrals over poly-
topes: numerical and exact. Numerical algorithms approximate the valuation on the poly-
tope and involve error bounds, whereas exact algorithms do not contain a theoretical error
term. However, exact algorithms may contain errors when they use finite digit integers
or use floating-point arithmetic. In order to sidestep this problem, LattE integrale uses
NTL’s arbitrary length integer and rational arithmetic [43] compiled with the GNU Multi-
ple Precision Arithmetic Library [44]. The obvious downside to exact arithmetic is speed,
but this cost is necessary to obtain exact answers. In this section, we compare our ex-
act algorithms with other software tools and algorithms that use numerical algorithms or
non-exact arithmetic.

Vinci contains different algorithms for finding polytope volumes and in fact imple-
mented the same decompositions we used in our software (see [16]). We tested against
Vinci 1.0.5, and Table 6 compares LattE’s cone decomposition method with Vinci’s fastest
method HOT (Hybrid Orthonormalisation Technique). We ran LattE’s cone decomposi-
tion method starting from the h-representation. Because the HOT method requires both
an h- and v-representation of the polytope, we also report the time used by CDD [26] to
convert an h-representation to a v-representation. We also break down time spent in LattE

for finding the vertices, finding the rays at each vertex, triangulation, and the time spent
in the main cone decomposition integration method.

It is clear that the HOT method is faster and usually accurate when applied on the
Vinci database (these polytopes are available from [16]), but because of non-exact arith-
metic, it can give incorrect results. In fact we found that Vinci’s cone decomposition
method contained a bug: Vinci’s cone decomposition method found the correct volumes
for the cubes and random-hyperplane polytopes, but reported incorrect or negative vol-
umes for most polytopes in the Vinci database. We also explored how well Vinci can
compute volumes of polytopes where each vertex contains small and large positive num-
bers. In Table 7, we tested the accuracy of Vinci’s HOT method on cyclic polytopes. We
constructed these d-dimensional polytopes by taking the the convex hull of k + d points
(t, t2, t3, . . . , td) ∈ Zd for t = 5, 6, . . . , 5 + k + d − 1. For very small dimensions, the HOT
method does well, but gives incorrect or zero volumes already in dimension six.

Another comparison we made was to the paper [3], where it is claimed that exact vol-
umes are computed by integration. The authors report seven volumes for different poly-
topes. LattE integrale’s triangulation and cone decomposition method agrees with their
calculations except in the last case. For P7 the correct volume is 1/622080 ≈ 1.607510×10−6

but they calculate 1.56439× 10−6. Presumably, because of non-exact arithmetic, their an-
swer has only one digit of accuracy.

4.5. Numerical methods

M. Korenblit and E. Shmerling present a numerical integration algorithm in [39] which
is based on a special decomposition of the integral into regions that have well-defined upper
and lower limits of integration that, on an ordering of the variables, x1, x2, . . . , xd, xi is
expressed only in terms of x1, . . . , xi−1. It is known that achieving such a decomposition

28

Table 6: Time breakdown between LattE integrale’s cone-decomposition and Vinci’s
HOT method with CDD

Vinci LattE

Polytope HOT Cddlib Vertices Rays Triang. Cone.

cube-9 0.03 0.08 0.021 0.06 0.02 0.02
cube-10 0.11 0.18 0.041 0.15 0.02 0.06
cube-14 141.65 7.99 1.241 4.67 0.69 1.26
rh-8-20 0.13 0.89 0.111 0.49 0.04 7.00
rh-8-25 0.43 2.63 0.321 1.14 0.14 80.25
rh-10-20 0.96 2.21 0.251 1.80 0.14 98.26
rh-10-25 5.71 12.49 1.071 8.80 0.44 3989.25
CC8(9) 0.04 0.22 0.071 0.12 0.39 0.40
CC8(10) 0.08 0.52 0.161 0.22 0.97 0.88
CC8(11) 0.18 1.18 0.031 0.42 1.84 1.76
ccp 5 0.00 0.07 0.092 0.00 0.10 0.09
cross 8 0.00 0.39 0.502 0.00 0.06 0.04
cross 9 0.00 1.57 2.152 0.00 0.12 0.11
rv-8-10 0.00 0.08 0.001 0.03 0.02 0.00
rv-8-11 0.00 1.99 0.081 0.23 0.03 0.01
rv-10-12 0.00 0.12 0.021 0.09 0.04 0.01
rv-10-14 0.00 1061.49 29.501 64.96 0.10 0.07

1 Computed with 4ti2.
2 Computed with Cddlib.

29

Table 7: Comparison between LattE integrale and Vinci on finding the volume of cyclic
polytopes

k

Dim. Tool 1 2 3 4 5

2
LattE 1 4 10 20 35
Vinci 1 4 10 20 35

3
LattE 2 16 70 224 588
Vinci 1.999999999988 15.99999999999 69.99999999991 224.0000000006 587.9999999986

4
LattE 12 192 1512 8064 33264
Vinci 11.99999993201 191.9999999913 1511.99999999 8063.999999892 33263.99999989

5
LattE 288 9216 133056 1216512 8154432
Vinci 287.9996545868 9216.000252236 133055.9883262 1216511.998301 8154431.872519

6
LattE 34560 2211840 59304960 948879360 10600761600
Vinci 34561.951223 1935359.822684 58060819.63341 885910920.3761 10336274212.34

7
LattE 24883200 3185049600 160123392000 4554620928000 86502214656000
Vinci 25744201.0524 0 0 0 0

is equivalent to the so-called Fourier–Motzkin elimination procedure [45] and as such it is
of exponential complexity. The paper [39] gives an application to finding the probability a
random-coefficient polynomial has one or two real roots in the interval [−1, 1]. To do this,
they use their software to find the volume of a polytope. They calculate 2.79167; however,
we verified that the correct volume is 31/12 = 2.583̄ which gives their method one digit of
accuracy.

A more interesting comparison is to CUBPACK, a Fortran 90 library which estimates the
integral of a function (or vector of functions) over a collection of d-dimensional hyper-
rectangles and simplices [38]. This comparison is very interesting because CUBPACK uses an
adaptive grid to seek better performance and accuracy. All integration tests with CUBPACK

in dimension d were done with a product of linear forms with a constant term over a random
d-dimensional simplex where the absolute value of any coordinate in any vertex does not
exceed 10. For example, we integrated a product of inhomogeneous linear forms such as
(1

5
+2x− 37

100
y)(2−5x) over the simplex with vertices (10, 0), (9, 9), (1, 1). In Table 8, LattE

was run 100 times to get the average running time, while CUBPACK was run 1000 times due
to variance. Both the dimension and number of linear forms multiplied to construct the
integrand were varied.

As shown in Table 8, LattE integrale tends to take less time, especially when the
number of forms and dimension increases. The table does not show the high variance that
CUBPACK has in its run times. For example, the 5-dimensional test case with 6 linear forms
had a maximum running time of 2874.48 seconds, while the minimum running time was 0.05
seconds on a different random simplex. This contrasted starkly with LattE integrale,

30

Table 8: Average Time for LattE integrale and CUBPACK for integrating products of
inhomogeneous linear forms over simplices.

Number of linear factors

d Tool 1 2 3 4 5 6 7 8 9 10

2
LattE 0.0001 0.0002 0.0005 0.0008 0.0009 0.0019 0.0038 0.0048 0.0058 0.0089
CUBPACK 0.0027 0.0014 0.0016 0.0022 0.0064 0.0052 0.0014 0.0002 0.0026 0.0213

3
LattE 0.0002 0.0005 0.0009 0.0016 0.0043 0.0073 0.0144 0.0266 0.0453 0.0748
CUBPACK 0.0134 0.0145 0.0018 0.0054 0.0234 0.0219 0.0445 0.0699 0.1170 0.2420

4
LattE 0.0003 0.0012 0.0018 0.0044 0.0121 0.0274 0.0569 0.1094 0.2247 0.4171
CUBPACK 0.0042 0.0134 0.0028 0.0019 0.0076 0.5788 4.7837 4.3778 22.3530 54.3878

5
LattE 0.0005 0.0008 0.0048 0.0108 0.0305 0.0780 0.0800 – – –
CUBPACK 0.0013 0.0145 0.0048 0.0217 0.0027 37.0252 128.2242 – – –

Table 9: CUBPACK scaling with increased relative accuracy. “Relative Error” is a user-
specified parameter of CUBPACK; “Expected Error” is an estimate of the absolute error,
produced by CUBPACK’s error estimators. Finally, the “Actual Error” is the difference of
CUBPACK’s result to the exact integral computed with LattE integrale.

Relative Error Result Expected Error Actual Error # Evaluations Time (s)

10−2 1260422511.762 9185366.414 94536.015 4467 0.00
10−3 1260507955.807 1173478.333 9091.974 9820 0.01
10−4 1260516650.281 123541.490 397.496 34411 0.04
10−5 1260517042.311 12588.455 5.466 104330 0.10
10−6 1260517047.653 1257.553 0.124 357917 0.31
10−7 1260517047.691 126.042 0.086 1344826 1.16
10−8 1260517047.775 12.601 0.002 4707078 4.15
10−9 1260517047.777 1.260 < 10−3 16224509 14.09
10−10 1260517047.777 0.126 < 10−3 55598639 48.73

which had every test be within 0.01 (the minimum time discrepancy recognized by its
timer) of every other test case.

CUBPACK differs from LattE integrale in that since it is based on numerical approxi-
mations, one can ask for different levels of precision. Table 9 illustrates how CUBPACK scales
with requested precision on a single, 4-dimensional, 10 linear form test case. It seems that
CUBPACK scales linearly with the inverse of the requested precision—10 times the precision
requires about 3 times the work. All reported tests were done by expanding the multipli-
cation of linear forms, and coding a Fortran 90 function to read in the resulting polynomial
and evaluate it for specific points.

5. One application: Voting theory

Computation of integrals of polynomials over polyhedral regions is fundamental for
many applications, including combinatorics, probability and statistics. In this last section

31

we wish to demonstrate the power of LattE integrale by attacking problems arising in the
social sciences. In the mathematical theory of voting it was observed that the probability of
events that can lead to singular election outcomes can be modeled as the number of lattice
points inside a polytope divided by the number of lattice points of a simplex (see [46] and
the references therein). Note that both the polytope and the simplex dilate proportional
to the number n of voters. It is very well-known from the theory of Ehrhart functions that
the counting functions are quasipolynomials (polynomials with periodic coefficients) that
depend on n [22]. Thus when the quotient is evaluated the answer is asymptotically equal
to the quotient of the leading coefficients of the two Ehrhart quasipolynomials involved.

To illustrate this, consider the following example from [46]: There are three candidates
a, b and c, and let the preference orders of the n =

∑6
i=1 ni voters be

abc (n1), acb (n2), bac (n3), bca (n4), cab (n5), cba (n6).

Here, there are n1 voters who rank candidate a as first, b second, and c third, n2 voters
who rank b first, a second, c third, etc. Under simple plurality voting, the candidate with
the most votes wins. But in a plurality runoff system, if no candidate wins more than 50%
of the vote, the two candidates with the highest vote count advance to a second voting
round. In [46], the authors compute the probability that the simple plurality and plurality
runoff systems give different winners. This requires setting up a system of equations that
describes the situation that a wins by plurality but, using plurality runoff b obtains higher
score than c and a majority of voters then prefer b to a.

0 < n1 + n2 − n3 − n4

0 < n3 + n4 − n5 − n6,

−1

2
< −n1 − n2 − n5,

1 = n1 + n2 + n3 + n4 + n5 + n6,

0 ≤ ni, i = 1, . . . , 6.

This is done by computing the Ehrhart quasi-polynomial of the above polyhedron and
dividing by the Ehrhart quasipolynomial of the simplex { (n1, n2, . . . , n6) : n1 + n2 + · · ·+
n6 = 1, ni ≥ 0 } (which is the space of all possible voting possibilities assuming that all 6
rankings of three candidates are equally likely). All must be multiplied by 6 because the
plurality winner may be a, b or c and the second position could be c not just b. As the
authors observed, asymptotically, the leading coefficients of these two quasipolynomials is
all that matter. In the concluding remarks the authors then posed the challenge of pushing
the limit of such calculations for four-candidate elections which they observed is too big
for their calculations.

However, we have observed their calculation can be further simplified and accelerated
because it is very well-known (see [22]) that the leading coefficient of the quasipolynomial

32

is always equal to the volume of the polytope with n = 1, thus one can directly perform
the calculation of the volume (the volume of the simplex is well-known) and do a quotient
of two numbers. The key step in finding the probabilities requires only finding the volume
directly. Our algorithm corroborates that for the previous example the volume is 71

414720
,

and when multiplied by 6×120 gives the probability these two voting systems give different
winners for a large population: 12.33%.

Using our code for exact integration we tackled the same problem for four candidates.
In this case we have 24 variables associated to the orderings

abcd(n1), abdc(n2), acbd(n3), acdb(n4), adbc(n5), adcb(n6)

bacd(n7), badc(n8), bcad(n9), bcda(n10), bdac(n11), bdca(n12)

cabd(n13), cadb(n14), cbad(n15), cbda(n16), cdab(n17), cdba(n18)

dabc(n19), dacb(n20), dbac(n21), dbca(n22), dcab(n23), dcba(n24)

The equations and inequalities associated to the problem codify the following facts:
The sum of all variables ni must be equal to the total number of voters. We have four
inequalities expressing that when a is the plurality winner, b obtained a score higher than c,
and c obtained a score higher than d, thus

n1 + n2 + n3 + n4 + n5 + n6 > n7 + n8 + n9 + n10 + n11 + n12,

n7 + n8 + n9 + n10 + n11 + n12 > n13 + n14 + n15 + n16 + n17 + n18,

n13 + n14 + n15 + n16 + n17 + n18 > n19 + n20 + n21 + n22 + n23 + n24.

These inequalities assume that the order was a > b > c > d but the answer we get
should be multiplied by 4! = 24 to take into account other possible orders. Finally, we
have to express the fact that but a majority of voters prefer b over a and that a did not
achieve more than 50 percent of the vote (n1 +n2 +n3 +n4 +n5 +n6 < n/2). The volume
of this polytope when n = 1 is

2988379676768359

7552997065814637134660504411827077120000
.

The probability is then the volume times 4! divided by the volume of the simplex

{ (n1, n2, . . . , n24) :
∑

i ni = 1, ni ≥ 0 },
which equals 1

23!
. After a minute of computation using the cone decomposition method,

we obtain the probability is 12.27%.
We can continue the example by considering the same problem for five candidates.

The five-candidate polytope has 5! = 120 variables. However, after LRS [25] enumerated
over 12.5 million vertices, we terminated the program and decided the polytope is beyond
our limits. We close by mentioning that after the first version of this paper was made
available other authors proposed new ideas to compute these values using symmetries of
the problem. See [47].

33

6. Acknowledgements

We are truly grateful to our collaborators V. Baldoni, N. Berline, and M. Vergne for
important discussions that led to this software. We thank the anonymous referees for the
excellent suggestions that we received from them and greatly improved the presentation
of the paper. The senior authors, J.A. De Loera and M. Köppe, were partially supported
by NSF grants DMS-0914107 and DMS-0914873. Most of the students were supported
by those grants and by summer fellowships provided through the UC Davis VIGRE grant
DMS-0636297.

References

[1] B. Li, The moment calculation of polyhedra, Pattern Recognition 26 (8) (1993) 1229–
1233.

[2] B. Mirtich, Fast and accurate computation of polyhedral mass properties, Journal of
Graphics Tools. 1 (2) (1996) 31–50.

[3] H. Ong, H. Huang, W. Huin, Finding the exact volume of a polyhedron, Advances
in Engineering Software 34 (6) (2003) 351 – 356. doi:DOI:10.1016/S0965-9978(03)
00030-9.

[4] B. Sturmfels, Gröbner bases and convex polytopes, Vol. 8 of University Lecture Series,
American Mathematical Society, 1996.

[5] N. Berline, M. Vergne, Local Euler–Maclaurin formula for polytopes, Moscow Math.
J. 7 (2007) 355–386.

[6] M. Bronstein, Symbolic Integration I – Transcendental Functions, Vol. 1, Springer,
Heidelberg, 2005.

[7] M. E. Dyer, A. M. Frieze, On the complexity of computing the volume of a polyhedron,
SIAM J. Comput. 17 (5) (1988) 967–974.

[8] G. Brightwell, P. Winkler, Counting linear extensions, Order 8 (3) (1991) 225–242.

[9] L. Khachiyan, Complexity of polytope volume computation, in: New trends in discrete
and computational geometry, Vol. 10 of Algorithms Combin., Springer, Berlin, 1993,
pp. 91–101.

[10] J. Lawrence, Polytope volume computation, Math. Comp. 57 (195) (1991) 259–271.

[11] P. Gritzmann, V. Klee, On the complexity of some basic problems in computational
convexity: II. Volume and mixed volumes, Universität Trier, Mathematik/Informatik,
Forschungsbericht 94-07.

34

http://dx.doi.org/DOI: 10.1016/S0965-9978(03)00030-9
http://dx.doi.org/DOI: 10.1016/S0965-9978(03)00030-9

[12] G. Elekes, A geometric inequality and the complexity of computing volume, Discrete
Comput. Geom. 1 (4) (1986) 289–292.

[13] L. Rademacher, Approximating the centroid is hard, in: Proceedings of 23th annual
ACM Symposium of Computational Geometry, Gyeongju, South Korea, June 6-8,
2007, 2007, pp. 302–305.

[14] J. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, J. Wu, A users guide for latte
integrale v1.5, Available from URL http://www.math.ucdavis.edu/~latte/ (2011).

[15] V. Baldoni, N. Berline, J. A. De Loera, M. Köppe, M. Vergne, How to integrate a
polynomial over a simplex, Math. Comp. 80 (273) (2011) 297–325. doi:10.1090/

S0025-5718-2010-02378-6.

[16] B. Büeler, A. Enge, K. Fukuda, Exact volume computation for polytopes: A practical
study, in: G. Kalai, G. M. Ziegler (Eds.), Polytopes – Combinatorics and Computa-
tion, Vol. 29 of DMV-Seminars, Birkhäuser Verlag, Basel, 2000.

[17] A. I. Barvinok, Computation of exponential integrals, Zap. Nauchn. Sem. Leningrad.
Otdel. Mat. Inst. Steklov. (LOMI) Teor. Slozhn. Vychisl. 5 (1991) 149–162, 175–176,
translation in J. Math. Sci. 70 (1994), no. 4, 1934–1943.

[18] A. I. Barvinok, Partition functions in optimization and computational problems, Al-
gebra i Analiz 4 (1992) 3–53, translation in St. Petersburg Math. J. 4 (1993), no. 1,
pp. 1–49.

[19] M. Brion, Points entiers dans les polyèdres convexes, Ann. Sci. École Norm. Sup.
21 (4) (1988) 653–663.

[20] J. B. Lasserre, An analytical expression and an algorithm for the volume of a convex
polyhedron in Rn, Journal of Optimization Theory and Applications 39 (1983) 363–
377, 10.1007/BF00934543. doi:10.1007/BF00934543.

[21] M. Beck, C. Haase, F. Sottile, Formulas of Brion, Lawrence, and Varchenko on ra-
tional generating functions for cones, The Mathematical Intelligencer 31 (2009) 9–17,
10.1007/s00283-008-9013-y. doi:10.1007/s00283-008-9013-y.

[22] A. I. Barvinok, Integer Points in Polyhedra, Zürich Lectures in Advanced Mathemat-
ics, European Mathematical Society (EMS), Zürich, Switzerland, 2008.

[23] A. I. Barvinok, J. E. Pommersheim, An algorithmic theory of lattice points in poly-
hedra, in: L. J. Billera, A. Björner, C. Greene, R. E. Simion, R. P. Stanley (Eds.),
New Perspectives in Algebraic Combinatorics, Vol. 38 of Math. Sci. Res. Inst. Publ.,
Cambridge Univ. Press, Cambridge, 1999, pp. 91–147.

[24] M. Beck, S. Robins, Computing the continuous discretely: integer-point enumeration
in polyhedra, Undergraduate Texts in Mathematics, Springer, 2007.

35

http://www.math.ucdavis.edu/~latte/
http://dx.doi.org/10.1090/S0025-5718-2010-02378-6
http://dx.doi.org/10.1090/S0025-5718-2010-02378-6
http://dx.doi.org/10.1007/BF00934543
http://dx.doi.org/10.1007/s00283-008-9013-y

[25] D. Avis, lrs: A revised implementation of the reverse search vertex enumeration algo-
rithm, http://cgm.cs.mcgill.ca/~avis/C/lrs.html (1999).

[26] K. Fukuda, A. Prodon, Double description method revisited, in: M. Deza, R. Euler,
I. Manoussakis (Eds.), Combinatorics and Computer Science, Vol. 1120 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 1996, pp. 91–111. doi:

10.1007/3-540-61576-8_77.

[27] J. Alexander, A. Hirschowitz, Polynomial interpolation in several variables, J. Alge-
braic Geom. 4 (1995) 201–222.

[28] M. C. Brambilla, G. Ottaviani, On the Alexander–Hirschowitz theorem, Jour-
nal of Pure and Applied Algebra 212 (5) (2008) 1229–1251, available at
arXiv:math.AG/0701409v2.

[29] E. Carlini, M. Catalisano, A. Geramita, The solution to Waring’s problem for mono-
mials, eprint arXiv:math.AC/1110.0745v1 (2011).

[30] P. Henrici, Applied and computational complex analysis. Vol. 1, Wiley Classics Li-
brary, John Wiley & Sons Inc., New York, 1988, power series—integration—conformal
mapping—location of zeros, Reprint of the 1974 original, A Wiley-Interscience Publi-
cation.

[31] A. I. Barvinok, K. Woods, Short rational generating functions for lattice point prob-
lems, Journal of the AMS 16 (4) (2003) 957–979.

[32] J. A. De Loera, R. Hemmecke, J. Tauzer, R. Yoshida, Effective lattice point counting
in rational convex polytopes, Journal of Symbolic Computation 38 (4) (2004) 1273–
1302.

[33] M. Köppe, A primal Barvinok algorithm based on irrational decompositions, SIAM
Journal on Discrete Mathematics 21 (1) (2007) 220–236. doi:10.1137/060664768.

[34] M. Gastineau, J. Laskar, Development of TRIP: Fast sparse multivariate polyno-
mial multiplication using burst tries, in: V. Alexandrov, G. van Albada, P. Sloot,
J. Dongarra (Eds.), Computational Science – ICCS 2006, Vol. 3992 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 2006, pp. 446–453. doi:

10.1007/11758525_60.

[35] K. Fukuda, cddlib, version 094f, Available from URL http://www.ifor.math.ethz.

ch/~fukuda/cdd_home/ (2008).

[36] 4ti2 team, 4ti2—a software package for algebraic, geometric and combinatorial prob-
lems on linear spaces, Available at www.4ti2.de.

36

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://dx.doi.org/10.1007/3-540-61576-8_77
http://dx.doi.org/10.1007/3-540-61576-8_77
http://dx.doi.org/10.1137/060664768
http://dx.doi.org/10.1007/11758525_60
http://dx.doi.org/10.1007/11758525_60
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/
www.4ti2.de

[37] G. Hanrot, P. Zimmermann, A long note on Mulders’ short product, Rapport
de recherche RR-4654, INRIA, available at http://hal.inria.fr/inria-00071931

(2002).

[38] R. Cools, A. Haegemans, Algorithm 824: CUBPACK: a package for automatic cuba-
ture; framework description., ACM Trans. Math. Software 29 (3) (2003) 287–296.

[39] M. Korenblit, E. Shmerling, Algorithm and software for integration over a convex
polyhedron, in: A. Iglesias, N. Takayama (Eds.), Mathematical Software – ICMS
2006, Vol. 4151 of Lecture Notes in Computer Science, Springer Berlin, Heidelberg,
2006, pp. 273–283. doi:10.1007/11832225_28.

[40] E. Gawrilow, M. Joswig, polymake: a framework for analyzing convex polytopes,
in: G. Kalai, G. M. Ziegler (Eds.), Polytopes — Combinatorics and Computation,
Birkhäuser, 2000, pp. 43–74.

[41] G. Ziegler, Database of 0–1 polytopes, http://www.math.tu-berlin.de/polymake/
examples/, accessed: 07/19/2011.

[42] J. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, J. Wu, Soft-
ware for exact integration of polynomials over polyhedra: online sup-
plement, Available from URL http://www.math.ucdavis.edu/~latte/theory/

SoftwareExactIntegrationPolynomialsPolyhedraOnlineSupplement.pdf (2012).

[43] V. Shoup, NTL, a library for doing number theory, Available from URL http://www.

shoup.net/ntl/ (2005).

[44] The GNU multiple precision arithmetic library, http://gmplib.org/.

[45] M. Schechter, Integration over a polyhedron: An application of the Fourier–Motzkin
elimination method, American Mathematical Monthly 105 (3) (1998) 246–251.

[46] D. Lepelley, A. Louichi, H. Smaoui, On Ehrhart polynomials and probability cal-
culations in voting theory, Social Choice and Welfare 30 (2008) 363–383. doi:

10.1007/s00355-007-0236-1.

[47] A. Schürmann, Exploiting polyhedral symmetries in social choice, Available from URL
http://front.math.ucdavis.edu/1109.1545 (2012).

37

http://hal.inria.fr/inria-00071931
http://dx.doi.org/10.1007/11832225_28
http://www.math.tu-berlin.de/polymake/examples/
http://www.math.tu-berlin.de/polymake/examples/
http://www.math.ucdavis.edu/~latte/theory/SoftwareExactIntegrationPolynomialsPolyhedraOnlineSupplement.pdf
http://www.math.ucdavis.edu/~latte/theory/SoftwareExactIntegrationPolynomialsPolyhedraOnlineSupplement.pdf
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://gmplib.org/
http://dx.doi.org/10.1007/s00355-007-0236-1
http://dx.doi.org/10.1007/s00355-007-0236-1
http://front.math.ucdavis.edu/1109.1545

	1 Introduction
	2 Mathematical preliminaries
	2.1 Polyhedra and polynomials
	2.2 Valuations and formulas of integration of exponentials over cones and simplices
	2.3 From exponentials to powers of linear forms
	2.4 The formula for the simplex
	2.5 Should one triangulate or cone decompose?
	2.6 Examples
	2.6.1 Integral values encoded by rational function identities
	2.6.2 Using the triangulation method
	2.6.3 Using the cone decomposition method

	3 How the software works
	3.1 Input format and data structures
	3.2 Integrating powers of linear forms by polytope triangulation
	3.3 Integrating powers of linear forms by cone decomposition
	3.4 A special case: computing volumes

	4 Experiments
	4.1 Integration over simplices
	4.2 Integration over general polytopes
	4.3 Volume Experiments
	4.4 Comparison to other software
	4.5 Numerical methods

	5 One application: Voting theory
	6 Acknowledgements

