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ABSTRACT OF THE DISSERTATION

Simple and Bounds-Preserving Discretizations of the Cahn-Hilliard-Navier-Stokes
Equations

by

Jason Goulding

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2024

Professor Tamar Shinar, Co-Chairperson
Professor Craig Schroeder, Co-Chairperson

When multiple fluids in a single system interact, they can mix and separate according

to their physical properties. We can describe a two-fluid system of this kind using the

phase-field model. This model uses a scalar field to represent the volume concentration or

concentration difference of one of the fluids. By varying this field we can describe phase

mixtures, and the interface between phases is represented by the field smoothly transitioning

between extreme values. The Cahn-Hilliard equation is a fourth-order partial differential

equation that can be used to describe the change in this phase-field through separation. This

model acts to minimize an energy potential function with minima where the mixture is fully

separated. We couple the Cahn-Hilliard equation to the classic Navier-Stokes equations to

include fluid flow. We develop two novel discretization methods for this system.

The first method is a simplified time integration scheme based on splitting the

fourth-order equation into a pair of second-order Helmholtz equations that can be solved as

a pair of linear systems. We propose a method of coupling this discretization to an incom-
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pressible Navier-Stokes equation that maintains consistency between mass and momentum.

We also propose a novel surface tension force discretization that limits surface forces to the

interface region. This surface tension can be controlled with a parameter that allows for

transitioning between a sharp interface formulation and a smooth continuum surface force.

A drawback of this scheme is that it relies on a mass redistribution post-processing step to

maintain the phase variable in the physical bounds.

The second method is developed to intrinsically maintain the phase variable inside

a physically consistent range instead of requiring a post-processing step. We formulate a

piecewise energy potential function with energy barriers at both extremes. We combine

this with a nonlinear second-order solve that is implicit in the energy potential. We show

how to formulate this nonlinear equation as an optimization problem to be solved with a

damped Newton’s method. We compare both methods to previous work using a variety of

experiments, and demonstrate that they are second-order accurate.
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Chapter 1

Introduction

When multiple fluids in a single system interact, they can mix and separate ac-

cording to their physical properties. Simulating these interactions is an area of study related

to computer graphics. Many real physical phenomena involve multiple fluids interacting,

such as air bubbles in water, oceanic oil spills, or fluid mixtures that separate over time.

We can call these systems involving the flow of multiple fluids multiphase flows. Each fluid

material is a single phase of the entire fluid flow system, and we will treat the bulk (com-

bined) fluid evolution and fluid phase concentration evolution separately. We can describe

a system of two fluid phases with a phase-field model. This type of model uses a scalar field

to represent the concentration difference or volume fraction of one of the two phases. By

varying this field, we can describe varying levels of phase mixtures, from purely separate

phases to complete mixtures. In this work, we will use the phase variable γ ∈ [0, 1] as the

volume fraction of phase 1. When γ = 1 we have a region that is entirely fluid phase 1, and

γ = 0 will indicate an area that is entirely phase 0. The interface between the two phases

1



can be inferred by finding a region where the phase field smoothly transitions from γ ≈ 1

to γ ≈ 0.

1.1 Cahn-Hilliard

John W. Cahn and John E. Hilliard [13] introduced a fourth-order partial dif-

ferential equation as one model to describe the separation of phases, now known as the

Cahn-Hilliard equation

∂γ

∂t
= ∇ ·

(
M∇λ(F ′(γ)−∇2γ)

)
+ Sγ . (1.1)

A mixture of fluids can separate due to chemical forces caused by the fluid properties. In

Equation (1.1), the expression λ(F ′(γ) − ∇2γ), which can be denoted ξ, is often called

the chemical potential. Choice of the potential function F (γ), mobility parameter M , and

interface parameter λ controls how the phases are driven to separate. Mobility M represents

how strongly the chemical forces act on the fluid. λ = 3
2
√

2
ση is a constant that depends

on the properties of the two phases and is calculated from the interface width η and the

coefficient of surface tension σ for the fluid phases. The potential function F (γ) defines the

rest configuration of the phases and the energy landscape of the mixture. This function will

be a double-well function where the minima are the locations where the phase-field variable

is considered unmixed. Figure 1.1 shows a typical double-well function with minima at 1

and 0, but other variants exist and are used in this work. The derivative F ′(γ) (Figure 1.2)

is used in the Cahn-Hilliard equation to act as a force driving the fluids to separate. This

force is 0 at the minima of F (γ), providing stable equilibrium points. There is also an

2
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0

0.5
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Figure 1.1: A plot of F (γ) = 1
η2 γ

2(1− γ)2 used in Chapter 2.

unstable equilibrium point at the center of F (γ) where the force function F ′(γ) = 0 but

the potential energy is nonzero and F ′′(γ) is negative. This point is where the phases are

perfectly mixed, but even a small perturbation will cause the phases to no longer be in

equilibrium and begin to separate. Finally, Sγ is a source term that can represent any

external source of phase concentration.

If the bulk fluid has nonzero velocity u, then we represent the effects of that flow

on the phase concentration by adding an advection term to the equation:

∂γ

∂t
+∇ · (uγ) = ∇ ·

(
M∇λ(F ′(γ)−∇2γ)

)
+ Sγ . (1.2)

3
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Figure 1.2: A plot of F ′(γ) = 1
η2 (4γ3 − 6γ2 + 2γ) used in Chapter 2.

1.2 Solving the equation

The Cahn-Hilliard equation has a fourth-order spatial derivative, which can be

difficult to solve, and there are different strategies that can be used to find the solution.

In past work, this equation has been solved using Fourier transforms [43], which can turn

the partial differential equation into a solvable ordinary differential equation. The method

that we use in this work involves splitting the fourth-order equation into a pair of second

order equations. This approach has been done before for Cahn-Hilliard [84, 73, 24, 47]. An

example of splitting a general fourth order equation is shown here:

f + a2∇2∇2f = g. (1.3)
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This example equation is spatially fourth-order, and we will use a method that is similar

to completing the square to split it into two second-order equations. We begin by adding

the difference of Laplacians 2a∇2(f − f̂), where f̂ is an explicit approximation of f . This

difference is nearly 0 if f̂ is a good approximation, but it will in general introduce a small

amount of error into our split:

f − 2a∇2f + a2∇2∇2f = g − 2a∇2f̂ . (1.4)

With these added Laplacians, we can now factor the left-hand side of the equation into a

pair of second-order operators on f :

(1− a∇2)(1− a∇2)f = g − 2a∇2f̂ . (1.5)

By defining terms f∗ = (1−a∇2)f and x = g−2a∇2f̂ , the split becomes more apparent as

(1− a∇2)f∗ = x or f∗ − a∇2f∗ = x (1.6)

(1− a∇2)f = f∗ or f − a∇2f = f∗. (1.7)

These split equations are now a pair of second-order Helmholtz equations that we formulate

as systems of linear equations and successively solve. In this work we will present two novel

discretizations following this general example.
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1.3 Maintaining phase-field bounds

While the Cahn-Hilliard equation does drive the system toward phase-field solu-

tions for γ that are within the physically meaningful range [0, 1], numerical methods can

often fail to perfectly maintain γ in this range. This leads to numerical difficulties and

physically invalid solutions. Even a small deviation from this range can results in negative

effective fluid densities, especially when simulating mixtures with large phase density ratios.

The first scheme in this dissertation (Chapter 2) uses a global post-processing scheme from

[46] to address this issue. The second scheme (Chapter 3) instead uses a novel splitting and

discretization of the Cahn-Hilliard equation that inherently maintains γ ∈ [0, 1] and does

not require a post-processing step.

1.4 Cahn-Hilliard-Navier-Stokes equations

To include the flow and dynamics of the bulk fluid with the individual phase

evolution, we couple the Cahn-Hilliard equation to the Navier-Stokes equations. The Navier-

Stokes equations are a set of equations for describing the flow of incompressible fluid in a

conservative manner:

∂ρ

∂t
+∇ ·m = Sm (1.8)

∇ · u = 0 (1.9)

∂(ρu)

∂t
+∇ · (m⊗ u) = −∇p+∇ · (µ(∇u + (∇u)T )) + ρg + σκ∇(h (γ)) + Su. (1.10)

6



Equation (1.8) describes the conservation of mass. The density flux term m is defined from

the evolution of the phase-field, and it is the first way that the Cahn-Hilliard equation will

be coupled to the Navier-Stokes equations. It is important that m is defined in a way that

is consistent with the evolution of the phase-field in order to ensure that momentum is

conserved in the bulk fluid flow [47]. The second term that couples the equations is the

surface tension term, an example of which can be found in Equation (1.10) as σκ∇(h (γ)).

Because the interface between fluid phases is determined by γ, the interface curvature

and resulting surface force should also be determined using the same term. The surface

tension influences the bulk flow which in turn affects the phase concentration evolution.

The effective density ρ and viscosity µ also depend on the phase concentration and act as

further coupling of the equations.

Chapter 2 introduces a simplified and conservative discretization of the coupled

Cahn-Hilliard-Navier-Stokes equations. It also introduces a novel surface tension force dis-

cretization using the phase-field variable γ. This introduced surface tension force has finite

influence around the interface and has a parameter that allows it to transition from a

smoothed continuum surface force model to a fully sharp interface model. This method is

compared to previous work with a variety of examples, and we demonstrate second-order

accuracy.

Chapter 3 introduces a novel splitting and discretization for the Cahn-Hilliard

equation which preserves the bounds γ ∈ [0, 1]. This method uses a second-order Helmholtz

equation and a second-order nonlinear equation with implicit energy barriers. The energy

barriers are introduced in a piecewise formulation for the potential function F at 0 and

7



1, and the corresponding derivative F ′ is solved implicitly in the nonlinear equation. The

Helmholtz equation is solved as usual, and the nonlinear portion is solved by formulating

it as the minimization of an objective function for use in an optimization-based solution

method. We demonstrate second-order accuracy of this method, and compare it to the

method in Chapter 2 as well as to previous work.
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Chapter 2

Simplified conservative

discretization of the

Cahn-Hilliard-Navier-Stokes

equations

In this chapter we construct a novel discretization of the Cahn-Hilliard equation

coupled with the Navier-Stokes equations. The Cahn-Hilliard equation models the separa-

tion of a binary mixture. We construct a very simple time integration scheme for simulating

the Cahn-Hilliard equation, which is based on splitting the fourth-order equation into two

second-order Helmholtz equations. We combine the Cahn-Hilliard equation with the Navier-

Stokes equations to simulate phase separation in a two-phase fluid flow in two dimensions.

The scheme conserves mass and momentum and exhibits consistency between mass and

9



momentum, allowing it to be used with large density ratios. We introduce a novel dis-

cretization of the surface tension force from the phase-field variable that has finite support

around the transition region. The model has a parameter that allows it to transition from

a smoothed continuum surface force to a fully sharp interface formulation. We show that

our method achieves second-order accuracy, and we compare our method to previous work

in a variety of experiments.

2.1 Introduction

Phase-field models have been widely used to study many problems involving mul-

tiphase incompressible flows, including two-phase flows in a microtube [42], viscoelastic

flows [84, 85], multiphase flows with soluble surfactants [64, 76, 87], phase separation and

coarsening [88, 4], jet pinch-off [83, 55], multicomponent systems with three or more phases

[56, 53, 81], tumor growth [80], microfluidics [71], and other physical phenomena. In these

methods, the phase field represents the concentration of one of the components of the mix-

ture, and fluid interfaces are represented by a smooth transition region between bulk regions

of the different phases. One popular choice for the governing equation for the evolution of

the phase field is the Cahn-Hilliard equation, which acts to minimize the free energy of the

system, leading the mixture to segregate into separate regions [13, 25].

Many methods have been developed for the numerical simulation of the Cahn-

Hilliard equation, including Fourier spectral methods [88, 43, 58], finite difference methods

[32, 60, 38, 15, 47], and finite element methods [26, 10, 8, 29, 79, 41]. For example, Zhu

et al. [88] examines properties of coarsening using a Fourier spectral solver, and He et al.

10



[43] developed a Fourier spectral solve which allows for large time steps. Schemes support-

ing adaptive time step sizes were presented in Li et al. [61] and the second-order accurate

Guillén-González and Tierra [37]. Guillén-González and Tierra [36] presented two linear

schemes derived through special treatment of the double-well potential function. Lee et al.

[58] gives an overview of the mathematical derivation of the Cahn-Hilliard equation, dis-

cusses several methods for its numerical solution, and provides a Matlab implementation

for a pseudospectral method.

A model of immiscible two-phase flows coupling the Cahn-Hilliard equation to the

incompressible Navier-Stokes equations for the case of matching densities was described in

Hohenberg and Halperin [44]; a derivation from first principles was given in Gurtin et al.

[39]. Badalassi et al. [5] devised numerical simulations of this coupled system. For vary-

ing densities, some studies have used the Boussinesq approximation where the momentum

equation is solved using a background density and the variable density appears only in addi-

tional buoyancy terms [49, 63, 4]. The more general case of the Cahn-Hilliard-Navier-Stokes

(CHNS) equations with different densities and viscosities presents additional challenges, and

Shen and Yang [74] devised a model which admits an energy law and developed an associated

projection-type [17] numerical scheme. Shen and Yang [72] developed an unconditionally

energy-stable numerical scheme which reduces the problem to the solution of a sequence

of decoupled elliptic solves. Phase-field models of two-phase incompressible flow with large

density ratios were simulated in Kim [52] and Ding et al. [21], which involved the solution of

time-dependent variable coefficient linear systems. Dong and Shen [24] devised a scheme for

large density and viscosity differences with improved efficiency through the use of constant
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coefficient matrices. Yue et al. [84] coupled the Cahn-Hilliard equation to non-Newtonian

flows. Guo et al. [38] devised a quasi-incompressible scheme with mass conservative and

energy stability for the CHNS equations. Kim [55] provides a review of phase-field models

and numerical methods for their approximation.

Consistency of mass and momentum transport was first addressed on the discrete

level for two-phase interfacial flows in volume-tracking methods [12, 68] and the level set

method [69]. For the coupled Cahn-Hilliard-Navier-Stokes equations, Huang et al. [47]

formulated a set of consistency conditions in the continuous setting and furthermore devised

a second-order accurate finite difference scheme with numerical consistency of mass and

momentum flux. Huang et al. [46] similarly addressed consistency of mass and momentum

transport in the Allen-Cahn equation and also devised a conservative redistribution scheme

to maintain the physical bounds of the concentration.

In this chapter, we construct a novel conservative, second order accurate finite

difference scheme for the simulation of the Cahn-Hilliard-Navier-Stokes equations for two

phase flows with large density and viscosity differences. Following Huang et al. [47], we

enforce discrete consistency of the mass and momentum fluxes. In contrast to Huang et al.

[47], which used collocated grids for pressure, concentration, and velocity, our method uses a

staggered MAC grid [40] to conveniently solve the pressure Poisson equation. We construct

a very simple time integration scheme for simulating the Cahn-Hilliard equation, which is

based on splitting the fourth-order equation into two second-order Helmholtz equations.

Our splitting results in the solution of two Helmholtz equations with identical coefficient

matrices. In our splitting, we use a stabilizing term introduced in Shen and Yang [72, 74].
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The Cahn-Hilliard equation is coupled to the Navier-Stokes equations in part

through the surface tension force, which depends on the gradient of the concentration

phase field and the geometric curvature of the interface. Kim [52, 55] and Acar [2] discuss

several models of surface tension for phase-field multiphase flows. The numerical simula-

tion of surface tension can be challenging due to stability and accuracy issues including

the formation of spurious currents about the interface. One common treatment of surface

tension is the Continuum Surface Force (CSF) approach introduced in Brackbill et al. [11],

where typically a discrete approximation to a smoothed delta function is used to spread

the surface tension force over a small number of grid cells about the interface. Kim [54]

used a continuum surface force combinations for more than two fluid phases. Another set

of approaches treats the interface in a sharp manner, capturing the pressure jumps across

the interface that balance the surface tension force [51]. Francois et al. [30] enforced exact

force balance at the interface for both CSF and sharp interface schemes, eliminating one

of the sources of spurious currents at the interface. In this chapter, we propose a novel

discretization of surface tension that gives exact force balance at the interface and unifies

the CSF and sharp interfaces schemes. A similar relationship between the CSF approach

and the sharp interface approach was noted by Lalanne et al. [57] for level set methods. Our

method is based on taking the gradient of a smoothed Heaviside approximation, similar to

CSF approaches. Notably, the degree of smoothing is controlled by a parameter and the

sharp interface method is directly recovered as the smoothing is decreased.
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2.2 Governing equations

2.2.1 Cahn-Hilliard Equation

The Cahn-Hilliard equation, initially proposed by Cahn and Hilliard [13] and

widely utilized to describe the phase separation process in a mixture of two fluids, is ex-

pressed as follows:

∂γ

∂t
+∇ · (uγ) = ∇ · (M∇ξ) + Sγ (2.1)

ξ = λ(F ′(γ)−∇2γ) (2.2)

F (γ) =
1

η2
γ2(1− γ)2 (2.3)

λ =
3

2
√

2
ση. (2.4)

The phase-field function γ ∈ [0, 1] is the volume fraction of fluid phase 1 (with density

ρ1 and viscosity µ1). 1 − γ is the volume fraction of fluid phase 0 (with density ρ0 and

viscosity µ0). u is the velocity, M is the mobility, ξ is the chemical potential, Sγ is the

source term for γ, λ is the mixing energy density, F is the double well potential function,

F ′ is the derivative of F with respect to γ, η characterizes the thickness of the transition

region between the two phases, and σ is the surface tension coefficient. The effective density

and viscosity at a certain location is given by

ρ = ρ0 + (ρ1 − ρ0) γ (2.5)

µ = µ0 + (µ1 − µ0) γ. (2.6)

14



2.2.2 Navier-Stokes equations

The incompressible Navier-Stokes equations are given by

∂ρ

∂t
+∇ ·m = Sm (2.7)

∇ · u = 0 (2.8)

∂(ρu)

∂t
+∇ · (m⊗ u) = −∇p+∇ · (µ(∇u + (∇u)T )) + ρg + σκ∇(g (γ)) + Su. (2.9)

σ, ρ, and u are as defined in Section 2.2.1, m is the mass flux, Sm represents an external

source of mass, σκ∇(g(γ)) is the surface tension force, κ is the estimated interface curvature,

g(γ) is a regularized Heaviside function (see Section 2.3.2), p is the pressure, g is gravity, and

Su is the source term for momentum. Similar to [47], the mass flux m can be inferred from

the γ evolution equation (2.1) and equations (2.7) and (2.5). Defining Sm = (ρ1 − ρ0)Sγ ,

it can be shown that a consistent definition of m is m = ρu − (ρ1 − ρ0)M∇ξ. This is

discussed in detail in Section 2.3.2.

2.3 Discretizations

In this section we describe the temporal and spatial discretizations of the Cahn-

Hilliard and Navier-Stokes equations.
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2.3.1 Cahn-Hilliard equation

Cahn-Hilliard equation temporal discretization

We begin by combining (2.1) and (2.2) as the base Cahn-Hilliard equation to

discretize.

∂γ

∂t
+∇ · (uγ) = Mλ∇2(F ′(γ)−∇2γ) + Sγ (2.10)

We discretize the time derivative as αγ̂n+1−αγBD
∆t . To achieve second-order accuracy, we use

a backwards-difference scheme with α = 3
2 and γBD = 4

3γ
n− 1

3γ
n−1. For the first time step

we use a first-order single-step scheme with α = 1 and γBD = γn. Explicit quantities for u

and γ are discretized using an Adams-Bashforth scheme, where γAB = γn, uAB = un in the

first order case and γAB = 2γn − γn−1, uAB = 2un − un−1 in the second order case. Since

in practice α and ∆t always occur together, we let ∆t = α∆̂t. γ̂n+1 represents an estimate

of the final γ obtained by solving this discretized equation; it will be later updated to the

final γn+1 bounded to the range [0, 1] using the method described in Section 2.3.1.

Following Shen and Yang [74], we introduce a term 2τ
(
γ̂n+1 − γAB

)
to help with

splitting the equation. The choice of τ is discussed below. Since both γ̂n+1 and γAB are

estimates of γn+1, this term vanishes rapidly under refinement.

γ̂n+1 − γBD
∆̂t

+∇ ·
(
uABγAB

)
= Mλ∇2

(
F ′
(
γAB

)
−∇2γ̂n+1 + 2τ

(
γ̂n+1 − γAB

))
+ Sn+1

γ

(2.11)
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Next we split out the advection term as an update from γBD to γ∗:

γ∗ − γBD
∆̂t

+∇ ·
(
uABγAB

)
= 0 (2.12)

γ̂n+1 − γ∗
∆̂t

= Mλ∇2
(
F ′
(
γAB

)
−∇2γ̂n+1 + 2τ

(
γ̂n+1 − γAB

))
+ Sn+1

γ . (2.13)

We group all explicit terms under the Laplacian into a new term A:

A =
1

τ
F ′
(
γAB

)
− 2γAB (2.14)

γ̂n+1 − γ∗
∆̂t

= Mλ∇2
(
τA−∇2γ̂n+1 + 2τ γ̂n+1

)
+ Sn+1

γ (2.15)

Grouping together γ̂n+1 with ∇2γ̂n+1 on both sides of the equation:

(
γ̂n+1 − τMλ∆̂t∇2γ̂n+1 +A

)
− γ∗

∆̂t
= τMλ∇2

(
γ̂n+1 − 1

τ
∇2γ̂n+1 +A

)
+

A

∆̂t
+ Sn+1

γ .

(2.16)

For the two parenthesized expressions to match, we need τ2Mλ∆̂t = 1. We achieve this by

letting

s =

√
Mλ

∆̂t
τ =

1

Mλ
s (2.17)

and define

γ′ = γ̂n+1 − s∆̂t∇2γ̂n+1 +A. (2.18)
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With these definitions, equation (2.16) becomes

γ′ − γ∗
∆̂t

= s∇2γ′ +
1

∆̂t
A+ Sn+1

γ . (2.19)

Observe that (2.18) and (2.19) are implicit Helmholtz equations for γ̂n+1 and γ′, respectively.

Cahn-Hilliard bounds-respecting redistribution scheme

When solving the Cahn-Hilliard equation, numerical errors or sufficiently large

time steps can result in γ outside the range [0, 1]. Given a large density ratio between the

fluids, this can result in negative densities from (2.5). In order to prevent this, we use a

redistribution scheme for γ as detailed in Huang et al. [46] adapted for the range [0, 1].

First γ̂n+1 is clamped to the feasible range at each index i, j:

γb∗i,j =



1, if γ̂n+1
i,j ≥ 1

0, if γ̂n+1
i,j ≤ 0

γ̂n+1
i,j , otherwise.

(2.20)

The total difference between γb∗ and γ̂n+1 is then redistributed among all indices using a

weight function:

Wb(γ) = 4γ − 4γ2 (2.21)

γn+1
i,j = γb∗i,j +

Wb

(
γb∗i,j

)
∑
r,s
Wb

(
γb∗r,s
)∑
r,s

(
γ̂n+1
r,s − γb∗r,s

)
. (2.22)
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The indices r, s are over the entire computational domain, and a uniform grid is assumed.

Since this update is globally conservative, we can express the change in the final quantity

γn+1 as the divergence of an unknown weighted gradient term Wb

(
γn+1

)
∇Q with no-flux

boundary conditions. This results in a Poisson equation for Q:

γn+1 − γ̂n+1

∆̂t
= ∇ ·

(
Wb

(
γn+1

)
∇Q

)
, (2.23)

n · ∇Q = 0 (2.24)

which we solve and use to compute the density flux m (See Section 2.3.2).

Cahn-Hilliard boundary conditions

In this chapter, we consider two types of boundary conditions for γ: periodic and

Neumann (n · ∇γ̂n+1 = 0). Since the Cahn-Hilliard equation is fourth order, we require

another boundary condition; Noting (2.13)

γ̂n+1 − γ∗
∆̂t

= Mλ∇2

(
F ′(γAB)−∇2γ̂n+1 +

2s

Mλ

(
γ̂n+1 − γAB

))
+ Sn+1

γ (2.25)

we define ξ∗ to be a discrete version of the chemical potential from (2.2) as

ξ∗ = λ

(
F ′
(
γAB

)
−∇2γ̂n+1 +

2s

Mλ

(
γ̂n+1 − γAB

))
(2.26)

= λ
(
τA−∇2γ̂n+1 + 2τ γ̂n+1

)
(2.27)

= τλ

(
γ̂n+1 − 1

τ
∇2γ̂n+1 +A+ γ̂n+1

)
(2.28)

=
s

M

(
γ′ + γ̂n+1

)
. (2.29)
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Following [47] we use the boundary condition n · ∇ξ∗ = 0, which leads to n · ∇γ′ = 0. This

gives us the necessary boundary conditions for both of our Helmholtz systems.

2.3.2 Navier-Stokes equations

Navier-Stokes temporal discretization

As in Section 2.3.1, we discretize the time derivative as αρn+1un+1−α(ρu)BD

∆t . For the

first time step, α = 1 and (ρu)BD = ρnun. To achieve second-order accuracy, we thereafter

use a backwards-difference scheme with α = 3
2 and (ρu)BD = 4

3ρ
nun− 1

3ρ
n−1un−1. Explicit

quantities for u are discretized using Adams-Bashforth, where uAB = un in the first time

step and uAB = 2un − un−1 afterwards. As before, we use ∆t = α∆̂t to simplify the

equations.

In addition to these terms, uv is an intermediate estimate of un+1 using an ap-

proximation for pressure, which is computed in an intermediate implicit solve, and m is the

total density flux detailed in Section 2.3.2. With these, (2.9) is discretized as

ρn+1un+1 − (ρu)BD

∆̂t
+∇ ·

(
m⊗ uAB

)
= −∇pn+1 + ρn+1g + σκ∇(g (γ))

+∇ ·
(
µn+1

(
∇uv +

(
∇uAB

)T))
+ Sn+1

u .

(2.30)

The intermediate u∗ is introduced to represent the result of the momentum advection and

also the evolution of density through the Cahn-Hilliard equation. When the Cahn-Hilliard

equation causes mass to move around, the momentum carried by that mass must move

with it. Otherwise mass and momentum may become inconsistent. Following [47] this is

accomplished through the mass flux term m, which we derive in Section 2.3.2.
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ρn+1u∗ − (ρu)BD

∆̂t
+∇ ·

(
m⊗ uAB

)
= 0 (2.31)

ρn+1un+1 − ρn+1u∗

∆̂t
= −∇pn+1 + ρn+1g + σκ∇(g

(
γn+1

)
)

+∇ ·
(
µn+1

(
∇uv +

(
∇uAB

)T))
+ Sn+1

u .

(2.32)

After updating momentum according to equation (2.31), we divide the result through by

ρn+1 and formulate equation (2.32) as updates to velocity, beginning with explicit forces

and pressure. We split pressure here into predicted and correction parts as pn+1 = pn + p′.

u∗∗ − u∗

∆̂t
= − 1

ρn+1
∇pn + g +

1

ρn+1
σκ∇(g

(
γn+1

)
) +

1

ρn+1
∇ ·
(
µn+1

(
∇uAB

)T)
+

1

ρn+1
Sn+1
u

(2.33)

un+1 − u∗∗

∆̂t
= − 1

ρn+1
∇p′ + 1

ρn+1
∇ ·
(
µn+1∇uv

)
(2.34)

Finally, we compute the effects of viscosity implicitly and then project the velocity to be

divergence free:

uv − u∗∗

∆̂t
=

1

ρn+1
∇ ·
(
µn+1∇uv

)
(2.35)

∇ ·
(

1

ρn+1
∇p′

)
=
∇ · uv

∆̂t
(2.36)

un+1 − uv

∆̂t
= − 1

ρn+1
∇p′. (2.37)
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Momentum flux

Since we are solving the Cahn-Hilliard equation, we do not directly evolve density.

Instead, γn → γn+1 is evolved according to the Cahn-Hilliard equation, and then (2.5) is

used to compute ρn+1. The discrete γ evolution in Section 2.3.1 implies a density evolution

of the form

ρn+1 − ρBD
∆̂t

+∇ ·m = Sn+1
m , (2.38)

where m includes advection and Cahn-Hilliard separation, and Sm takes the effects of the

forcing term Sγ . Using (2.5), we express m in terms of γ:

∇ ·m = −ρ
n+1 − ρBD

∆̂t
+ Sn+1

m (2.39)

= − (ρ1 − ρ0)
γn+1 − γBD

∆̂t
+ Sn+1

m (2.40)

= − (ρ1 − ρ0)

(
γn+1 − γ̂n+1

∆̂t
+
γ̂n+1 − γ′

∆̂t
+
γ′ − γ∗

∆̂t
+
γ∗ − γBD

∆̂t

)
+ Sn+1

m . (2.41)

Using the update rules (2.12), (2.19), (2.18), and (2.23), defining Sn+1
m = (ρ1 − ρ0)Sn+1

γ ,

and canceling terms, this becomes

∇ ·m = (ρ1 − ρ0)
(
∇ ·
(
uABγAB

)
−∇ ·

(
s∇γ′ + s∇γ̂n+1 +Wb

(
γn+1

)
∇Q

))
(2.42)

Note that this definition of m is only well-defined up to a divergence-free shift. To determine

what shift is necessary, we consider the case of ρ0 = ρ1, in which case Cahn-Hilliard has

no affect on the density evolution and the mass flux is purely comprised of advection. This
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suggests the shift ∇ ·
(
ρ0u

AB
)

so that

∇ ·m = ∇ ·
(
ρ0u

AB
)

+ (ρ1 − ρ0)
(
∇ ·
(
uABγAB

)
−∇ ·

(
s∇γ′ + s∇γ̂n+1 +Wb

(
γn+1

)
∇Q

))
,

(2.43)

which is consistent with the shift in [47]. Observe that ρ0 is a constant and uAB is discretely

divergence free, so adding this term does not affect the value of ∇ ·m. This leads to a

definition of

m = ρ0u
AB + (ρ1 − ρ0)

(
uABγAB − s∇γ′ − s∇γ̂n+1 −Wb

(
γn+1

)
∇Q

)
. (2.44)

To ensure consistency with the discretization of the Cahn-Hilliard equation, uABγAB is

replaced by the flux computed by the WENO advection described in Section 2.3.3.

Surface tension discretization

For surface tension, we use a Continuum Surface Force [11, 30] formulation:

σκ∇(g(γ)), (2.45)

where κ is the estimated interface curvature:

κ = −∇ ·
( ∇γ
||∇γ||

)
. (2.46)
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Figure 2.1: g(γ) vs γ for different values of a

We formulate g(γ) to ensure that the surface tension force is exactly 0 a finite distance away

from the interface. We choose a piecewise cubic approximation of a Heaviside function whose

transition occurs between a and 1−a for some value a ∈ [0, 0.5]. Since g (γ) approximates a

Heaviside function, ∇g (γ) approximates a delta function times the normal. This is similar

to the method used in [57], but it differs in that they use a level set function to track

the interface rather than the phase-field approach used here and in the choice of Heaviside

approximation.

As depicted in Figure 2.1, we define g(γ) as

g(γ) =



1, if γ ≥ 1− a

0, if γ < a

(−γ+a)2(2γ+4a−3)
(2a−1)3

, otherwise.

(2.47)

In practice, we’ve found a = 0.2 works well, and at a = 0.5 we recover a sharp interface

force, as used in [51].
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We can see that this surface tension formulation is consistent with the standard

one by considering a path that crosses the band near the interface where the force is nonzero.

Given any path C (see Figure 2.2), with discretization i = 0, ..., N , that crosses the fluid

interface, the total force per unit area is:

∫
C
σκ∇(g (γ)) · dl ≈ σ

(
N∑
i=1

κi (g (γi)− g (γi−1))

)
. (2.48)

Assume that g (γN ) = 1 and g (γ0) = 0, so that the curve crosses completely from one phase

to the other. Let κI denote the curvature at the interface. If we assume the path is localized

and approximate the curvature as constant, so that κi = κI , (2.48) reduces to:

σ

(
N∑
i=1

κi (g (γi)− g (γi−1))

)
= σκI (g (γN )− g (γ0)) = σκI , (2.49)

which is the ideal pressure jump caused by surface tension. In reality, the curvature will not

be constant, but when the interface width is small and the curvature is sufficiently smooth,

γ0

γN

Figure 2.2: Example path γ0 → γN . The triangles represent the pressure jumps along this path.
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we can write κi = κI +O (∆x), so that the approximate pressure jump is

σ

(
N∑
i=1

κi (g (γi)− g (γi−1))

)
= σκI +O (∆x) . (2.50)

This suggests that smearing the pressure jump over a transition region using g (γ) can give

a consistent discretization of the surface tension force. We next show this explicitly for our

discretization of the pressure Poisson equation (2.36).

For the pressure projection equation, we solve ∇ · (β∇p′) = ∇ · uv with β = ∆̂t
ρn+1 .

The standard five-point discretization of this equation in two dimensions is given by

βi+ 1
2
,j

(
p′i+1,j − p′i,j

)
− βi− 1

2
,j

(
p′i,j − p′i−1,j

)
∆x2

+

βi,j+ 1
2

(
p′i,j+1 − p′i,j

)
− βi,j− 1

2

(
p′i,j − p′i,j−1

)
∆y2

= (∇ · uv)i,j .

(2.51)

Following [51], an interface can be treated in a sharp manner by incorporating the pressure

jump J across the interface into the equation. Incorporating a jump term (which may be

0) across every difference in the stencil, the discretization becomes

βi+ 1
2
,j

(
p′i+1,j −

(
p′i,j + Ji+ 1

2
,j

))
− βi− 1

2
,j

(
p′i,j −

(
p′i−1,j + Ji− 1

2
,j

))
∆x2

+

βi,j+ 1
2

(
p′i,j+1 −

(
p′i,j + Ji,j+ 1

2

))
− βi,j− 1

2

(
p′i,j −

(
p′i,j−1 + Ji,j− 1

2

))
∆y2

= (∇ · uv)i,j .

(2.52)
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Moving all terms with jumps to the right hand side, we get

βi+ 1
2
,j

(
p′i+1,j − p′i,j

)
− βi− 1

2
,j

(
p′i,j − p′i−1,j

)
∆x2

+
βi,j+ 1

2

(
p′i,j+1 − p′i,j

)
− βi,j− 1

2

(
p′i,j − p′i,j−1

)
∆y2

= (∇ · uv)i,j +
βi+ 1

2
,jJi+ 1

2
,j − βi− 1

2
,jJi− 1

2
,j

∆x2
+
βi,j+ 1

2
Ji,j+ 1

2
− βi,j− 1

2
Ji,j− 1

2

∆y2
.

(2.53)

With the central difference discretization of divergence

(∇ · uv)i,j =
uv
i+ 1

2
,j
− uv

i− 1
2
,j

∆x
+
vv
i,j+ 1

2

− vv
i,j− 1

2

∆y
, (2.54)

and with Ĵ =
(
Jx
∆x ,

Jy
∆y

)
, Equation (2.53) becomes

βi+ 1
2
,j

(
p′i+1,j − p′i,j

)
− βi− 1

2
,j

(
p′i,j − p′i−1,j

)
∆x2

+

βi,j+ 1
2

(
p′i,j+1 − p′i,j

)
− βi,j− 1

2

(
p′i,j − p′i,j−1

)
∆y2

=
(
∇ ·
(
uv + βĴ

))
i,j
.

(2.55)

We define the pressure jump at
(
i+ 1

2 , j
)

to be

Ji+ 1
2
,j = σκi+ 1

2
,j (g (γi+1,j)− g (γi,j)) . (2.56)

The discretization of the x component of the surface tension force (2.45) is then

σκi+ 1
2
,j

(
∂g

∂x
(γ)

)
i+ 1

2
,j

≈ σκi+ 1
2
,j

g (γi+1,j)− g (γi,j)

∆x
=

1

∆x
Ji+ 1

2
,j , (2.57)
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Figure 2.3: The MAC grid stores velocties on faces (represented by triangles), and γ and pressure
on cell centers (circles).

which is similar to [30]. Therefore

βĴ =
∆̂t

ρn+1
σκ∇g (γ) , (2.58)

which shows that solving the Poisson equation with the above defined pressure jumps is

equivalent to applying surface tension with other explicit forces:

∇ ·
(

∆̂t

ρn+1
∇p′

)
= ∇ ·

(
uv +

∆̂t

ρn+1
σκ∇g (γ)

)
. (2.59)

Therefore we apply surface tension as in (2.59), and we can recover the sharp formulation

of [51] by choosing a = 0.5 in the definition of g (γ).

2.3.3 Spatial Discretization

We use a uniform MAC grid (Figure 2.3) with γ and pressure stored at cell centers.

Velocities are split by components and stored on cell faces. Unless otherwise specified, all

divergences are central differences from faces to cells and all gradients are central differences
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(a) Flux locations around u component.
(b) u component interpolation
for flux.

(c) mx component interpola-
tion for flux.

Figure 2.4: The components of the momentum flux for updating the x component of momentum
in 2D are shown in 2.4a. The momentum at the red triangle will be updated with the fluxes at
the surrounding blue and orange dots. The u and mx values at these dots are interpolated from
neighboring values as illustrated in 2.4b and 2.4c, respectively.

from cells to faces. All Poisson equations are discretized using the standard five-point central

difference stencil, with standard treatment of axis-aligned boundary conditions.

Advective flux for γ

When computing the divergence operator for γ advection in (2.12), we use a flux-

based 5th order WENO advection scheme [50] with local Lax-Friedrichs [78]. The WENO

flux FW is stored for later use in the momentum flux m.

Divergence operator (momentum advection)

The divergence operator for momentum advection is discretized as a central dif-

ference from dual-cell faces to MAC grid faces, as shown in Figure 2.4. The components

of the divergence ∇ · (m⊗ u) are needed at MAC faces to update the components of our

29



velocities. Correspondingly we discretize ∇ · (mxu) and ∇ · (myv) at MAC x-faces and y-

faces respectively. For example, mx is interpolated to faces of a uniform dual grid centered

on the x-faces:

mx
i,j =

mi+1/2,j + mi−1/2,j

2
(2.60)

mx
i+1/2,j+1/2 =

mi+1,j+1/2 + mi,j+1/2

2
. (2.61)

We also interpolate u to the same dual grid faces

ui,j =
ui+1/2,j + ui−1/2,j

2
(2.62)

ui+1/2,j+1/2 =
ui+1/2,j+1 + ui+1/2,j

2
. (2.63)

The final component divergence is discretized as

(∇ · (mxu))i+1/2,j =
mx
i+1,jui+1,j −mx

i,jui,j

∆x

+
mx
i+1/2,j+1/2ui+1/2,j+1/2 −mx

i+1/2,j−1/2ui+1/2,j−1/2

∆y
.

(2.64)

The my term is discretized analogously.

30



Divergence gradient transpose

In (2.33), we discretize the ∇·
(
µ (∇u)T

)
term following [47], which we show here:

(
∇ ·
(
µ (∇u)T

))
i,j

=
1

∆x

(
µi+1/2,j

ui+1,j − ui,j
∆x

− µi−1/2,j
ui,j − ui−1,j

∆x

)
+

1

∆y

(
µi,j+1/2

vi+1/2,j+1/2 − vi−1/2,j+1/2

∆x
− µi,j−1/2

vi+1/2,j−1/2 − vi−1/2,j−1/2

∆x

)
+

1

∆y

(
µi,j+1/2

vi,j+1 − vi,j
∆y

− µi,j−1/2
vi,j − vi,j−1

∆y

)
+

1

∆x

(
µi+1/2,j

ui+1/2,j+1/2 − ui+1/2,j−1/2

∆y
− µi−1/2,j

ui−1/2,j+1/2 − ui−1/2,j−1/2

∆y

)
.

(2.65)

This discretization is used to ensure discrete consistency when µ is constant, such that

∇ ·
(
µ (∇u)T

)
= µ∇ (∇ · u) = 0 (2.66)

is satisfied and momentum is conserved [47].

Interface curvature

The Balanced-Force algorithm [30] requires that the surface tension force is dis-

cretized at the same spatial location as the pressure gradient. When calculating the esti-

mated interface curvature κ,

κ = −∇ ·
( ∇γ
||∇γ||

)
, (2.67)
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we smooth the curvature estimate by computing the divergence on cells and interpolating

to faces. We calculate ∇γ as individual components ∇γx,∇γy on faces,

∇γxi+1/2,j =
γi+1,j − γi,j

∆x
, (2.68)

which we interpolate to cell centers as vectors in order to normalize:

∇̃γi,j =

(
∇γxi+1/2,j +∇γxi−1/2,j

2
,
∇γyi,j+1/2 +∇γyi,j−1/2

2

)
. (2.69)

The normalized gradients are interpolated back to faces as full vectors:

∇̂γi+1/2,j =
1

2

(
∇̃γi+1,j

||∇̃γi+1,j ||
+
∇̃γi,j
||∇̃γi,j ||

)
. (2.70)

From these gradient vectors on faces, we calculate the divergence at cell centers

∇ ·
(
∇̂γ
)
i,j

=
1

∆x

(
∇̂γxi+1/2,j − ∇̂γ

x

i−1/2,j

)
+

1

∆y

(
∇̂γyi,j+1/2 − ∇̂γ

y

i,j−1/2

)
, (2.71)

and interpolate to faces:

κi+1/2,j = −
∇ ·
(
∇̂γ
)
i+1,j

+∇ ·
(
∇̂γ
)
i,j

2
. (2.72)

2.3.4 Discretization summary

We finish our treatment of discretization with a summary of the full algorithm.

First, the Adams-Bashforth and backwards-difference quantities γBD and γAB on cell cen-
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ters and (ρu)BD and uAB on cell faces are computed from the known initial quantities

and previous time step quantities. The initial time step is computed with first order time

discretizations:

γBD = γn γAB = γn (ρu)BD = ρnun uAB = un ∆̂t = ∆t, (2.73)

and successive time steps with second order:

γBD =
4

3
γn − 1

3
γn−1 γAB = 2γn − γn−1 (ρu)BD =

4

3
ρnun − 1

3
ρn−1un−1

uAB = 2un − un−1 ∆̂t =
2

3
∆t.

(2.74)

Cahn-Hilliard discretization

Unlike [47], we observed better results using a WENO advection scheme (Sec-

tion 2.3.3) to compute γ∗ from γBD. The flux FW from this operation is stored for later

use in m. These terms are related by:

γ∗i,j = γBDi,j − ∆̂t

(
FWi+1/2,j −FWi−1/2,j

∆x
+
FWi,j+1/2 −FWi,j−1/2

∆y

)
. (2.75)

Next we compute γ̂n+1 from γ∗ by solving two Helmholtz equations:

λ =
3

2
√

2
ση s =

√
Mλ

∆̂t
A =

Mλ

s
F ′
(
γAB

)
− 2γAB (2.76)

γ′ − s∆̂t∇2γ′ = γ∗ +A+ ∆̂tSn+1
γ (2.77)

γ̂n+1 − s∆̂t∇2γ̂n+1 = γ′ −A. (2.78)
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We obtain the final γn+1 through the redistribution scheme described in Section 2.3.1. The

flux corresponding to the redistribution is found with a Poisson solve:

γb∗i,j =



1, if γ̂n+1
i,j ≥ 1

0, if γ̂n+1
i,j ≤ 0

γ̂n+1
i,j , otherwise.

(2.79)

Wb(γ) = 4γ − 4γ2 (2.80)

γn+1
i,j = γb∗i,j +

Wb

(
γb∗i,j

)
∑
r,s
Wb

(
γb∗r,s
)∑
r,s

(
γ̂n+1
r,s − γb∗r,s

)
(2.81)

∆̂t∇ ·
(
Wb

(
γn+1

)
∇Q

)
= γn+1 − γ̂n+1. (2.82)

To avoid rows of all zeros in our Poisson matrix, we follow [46] in replacing Wb

(
γn+1

)
with

max
(
Wb

(
γn+1

)
, 10−6

)
in (2.82). Using the above, we can compute the discrete mass flux,

which should satisfy (2.38) to round-off error:

m = ρ0u
AB + (ρ1 − ρ0)

(
FW − s∇γ′ − s∇γ̂n+1 −Wb

(
γn+1

)
∇Q

)
. (2.83)

The density and viscosity are computed on faces using γn+1 that has been linearly interpo-

lated to faces:

ρn+1 = ρ0 + (ρ1 − ρ0) γn+1 (2.84)

µn+1 = µ0 + (µ1 − µ0) γn+1. (2.85)
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Navier-Stokes discretization

We first update the momentum to be consistent with the movement of mass that

occurred due to the Cahn-Hilliard equation by:

ρn+1u∗ = (ρu)BD − ∆̂t∇ ·
(
m⊗ uAB

)
, (2.86)

after which ρn+1 is divided off to obtain u∗. Next we apply explicit forces:

u∗∗ = u∗ + ∆̂tg +
∆̂t

ρn+1

(
σκ∇

(
g
(
γn+1

)))
+

∆̂t

ρn+1
∇ ·
(
µn+1

(
∇uAB

)T)− ∆̂t

ρn+1
∇pn

+ ∆̂tSn+1
u

(2.87)

where

κ = −∇ ·
( ∇γ
||∇γ||

)
(2.88)

g(γ) =



1, if γ ≥ 1− a

0, if γ < a

(−γ+a)2(2γ+4a−3)
(2a−1)3

, otherwise

(2.89)

We use a = 0.2 unless otherwise stated. We solve the viscosity equation for each component

of uv by solving a Helmholtz equation:

uv − ∆̂t

ρn+1
∇ ·
(
µn+1∇uv

)
= u∗∗. (2.90)
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The pressure correction is obtained by solving the Poisson equation:

∇ ·
(

∆̂t

ρn+1
∇p′

)
= ∇ · uv (2.91)

pn+1 = pn + p′, (2.92)

and the pressure correction is applied to obtain the final velocity:

un+1 = uv − ∆̂t

ρn+1
∇p′. (2.93)

2.4 Numerical examples

All the units in the following tests are SI units.

2.4.1 Manufactured solution

In this test, we evaluate the accuracy of our discrete solvers using a manufactured

solution for γ and u. We choose the source terms to enforce the manufactured solution as

Sγ =
∂γ

∂t
+∇ · (uγ)−∇ · (M∇ξ) (2.94)

Su =
∂ρu

∂t
+∇ · (m⊗ u) +∇p− ρg − σκ∇g (γ)−∇ ·

(
µ
(
∇u + (∇u)T

))
. (2.95)

We compute the error and its order at the end of the simulation to measure the accuracy

of our method. We first assess the accuracy of the Cahn-Hilliard solver alone. We then

incorporate the Navier-Stokes solve and evaluate the accuracy of the full method. Our

parameters are chosen following [47]. In this section, we use a square domain [−π, π]2. We
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Table 2.1: Analysis of our Cahn-Hilliard solver at t = 1 demonstrates second order convergence.

γ

N L2 L∞
8 1.79e-05 2.96e-05
16 4.40e-06 2.03 7.73e-06 1.93
32 1.23e-06 1.84 2.04e-06 1.92
64 3.03e-07 2.02 5.32e-07 1.94
128 7.65e-08 1.99 1.39e-07 1.93
256 1.98e-08 1.95 3.71e-08 1.91

set the density of the fluid phases to be ρ0 = 1 and ρ1 = 3, with viscosities µ0 = 0.01 and

µ1 = 0.02. We use a time step of ∆t = 0.08/N and cell size ∆x = 2π/N . We select the

Cahn-Hilliard parameters M , σ, and η such that M = 0.001, λ = 0.001, and η = 0.1.

Cahn-Hilliard solver

We assess the convergence of our Cahn-Hilliard discretization using the manufac-

tured solution

γ(x, y, t) =
1

2
(cos(x) cos(y) + 1) sin(t). (2.96)

To focus solely on the accuracy of the Cahn-Hilliard discretization, we exclude the Navier-

Stokes update and set u = v = 0. We set the initial and boundary conditions using the

manufactured solution. We measure the error in our simulation at t = 1. We determine the

L2 and L∞ convergence by refining N from 8 to 256 with a constant ∆t
∆x . The results are

listed in Table 2.1 and show that our Cahn-Hilliard discretization is second order accurate.
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Table 2.2: Analysis of our Cahn-Hilliard-Navier-Stokes solver at t = 1 demonstrates second order
convergence.

γ u v p

N L2 L∞ L2 L∞ L2 L∞ L2 L∞
8 1.86e-02 3.24e-02 6.88e-02 1.69e-01 1.40e-02 3.60e-02 1.60e-02 4.38e-02
16 3.33e-03 2.48 1.20e-02 1.44 1.42e-02 2.28 4.12e-02 2.04 3.17e-03 2.14 9.93e-03 1.86 3.45e-03 2.21 1.31e-02 1.74
32 5.74e-04 2.54 2.43e-03 2.30 3.40e-03 2.06 1.01e-02 2.04 7.43e-04 2.09 3.05e-03 1.70 7.92e-04 2.12 3.64e-03 1.85
64 1.10e-04 2.38 2.80e-04 3.12 8.53e-04 1.99 2.54e-03 1.98 1.83e-04 2.02 7.22e-04 2.08 1.89e-04 2.07 6.32e-04 2.52
128 2.75e-05 2.00 7.30e-05 1.94 2.16e-04 1.98 6.14e-04 2.05 4.60e-05 1.99 1.83e-04 1.98 4.85e-05 1.96 1.39e-04 2.19
256 6.85e-06 2.01 1.90e-05 1.94 5.62e-05 1.94 1.40e-04 2.13 1.25e-05 1.88 4.80e-05 1.93 1.35e-05 1.84 3.76e-05 1.89

Cahn-Hilliard-Navier-Stokes solver

We evaluate the convergence of our full method employing both the Cahn-Hilliard

and Navier-Stokes solves. For this purpose, we utilize the following manufactured solutions

for γ, u, and p, which we have adapted from the corresponding solution in [47]:

γ(x, y, t) =
1

2
(cos(x) cos(y) + 1) sin(t) (2.97)

u(x, y, t) = sin(x) cos(y) cos(t) (2.98)

v(x, y, t) = − cos(x) sin(y) cos(t) (2.99)

p(x, y, t) = cos(x) cos(y) sin(t) (2.100)

Note that these continuous solutions maintain a divergence-free velocity field, ∇ · u = 0.

Additionally, gravity is g = (1,−2). We set the initial and boundary conditions using the

manufactured solution. We measure the error for γ, u, and p at t = 1. We determine the

L2 and L∞ convergence by refining N from 8 to 256 with a constant ∆t
∆x . As shown in

Table 2.2, our method exhibits second-order accuracy in γ, u, and p.
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(a) t = 0 (b) t = 0.1 (c) t = 1 (d) t = 5

Figure 2.5: Binary fluid separation over time

2.4.2 Binary separation of phases

In this test, we demonstrate the evolution of the fluid phase separation over time

with u = 0 and Sγ = 0 using a random initial distribution for γ. We use the same setup

as in [43]. In the following tests, we use a square domain [0, 2π]2 that is periodic in all

directions. γ is randomly distributed uniformly in the range [0.475, 0.575]. We use a time

step of ∆t = 0.0001 and cell size ∆x = 1/512, and we run the test to t = 5. We select the

Cahn-Hilliard parameters M , σ, and η such that ML = η2, σ = 1, and η2 = 0.001.

Figure 2.5 shows the increasing phase separation from t = 0 to t = 5. Our results

are qualitatively similar to the results depicted in [43].

2.4.3 Stationary circle

We simulate a stationary drop with zero initial velocity and pressure using the same

parameters as [47]. In an ideal system, the pressure and surface tension forces balance, and

therefore the drop should maintain its shape and remain stationary. Discretely solving

the system introduces spurious currents, leading to deformation. This test quantifies these

currents and observes the impact of altering the resolution, density ratio, viscosity, and
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surface tension. The test is carried out in a [0, 1]2 domain and time step of ∆t = 0.064/N

and cell size ∆x = 1/N . All walls are modeled with free-slip boundary conditions. The

simulation runs until t = 10.

The initial configuration features a drop with initial radius of r = 0.2, centered

at (0.5, 0.5). The drop, designated as fluid 1, has a density of ρ1 = 1000 and a viscosity

that varies according to test case. The density and viscosity of the fluid surrounding the

drop vary in each case. The specific values are detailed in Table 2.3 for density, viscosity

and surface tension. Cases 2 and 4 investigate the effect of viscosity, while case 3 examines

the impact of viscosity with a larger density ratio. Lastly, case 5 investigates the effects of

surface tension.

We set η = η0(∆x/h0)X
η

= η0(Nh0)−X
η

and M = M0(η/η0)X
M

= M0
Nh0

where

η0 = h0 = 1/32, M0 = 10−5, Xη = 2/3 and XM = 3/2. We refine N from 16 to 256 and

compute the L2 and L∞ errors by comparing the magnitude of velocity ||u||2 averaged to

each cell center with zero.

The effect of changing the resolution in each case is illustrated in Figure 2.6. We

observe that refinement increases the stability of the drop. The improvement in each case

is between first and second order. Note that we choose a larger value for M than what

was used in [47] since we observed their M to be insufficient to maintain a steady interface

using our method.

40



Table 2.3: Material settings for different cases of the stationary circle test.

Case ID ρ0 ρ1 µ0 µ1 σ

Case 1 1000 1000 0 0 1
Case 2 1000 1000 0.1 0.1 1
Case 3 1 1000 0.1 0.1 1
Case 4 1000 1000 0.0001 0.1 1
Case 5 1000 1000 0.1 0.1 10

16 32 64 128 256

10−6

10−5

10−4

10−3

N

L
2

Case 1
Case 2
Case 3
Case 4
Case 5

0.1(D/h)−1

0.1(D/h)−2

(a) L2 error

16 32 64 128 256

10−5

10−4

10−3

10−2

N

L
∞

Case 1
Case 2
Case 3
Case 4
Case 5

(D/h)−1

(D/h)−2

(b) L∞ error

Figure 2.6: L2 and L∞ errors of velocity in the stationary circle test.

2.4.4 Horizontal shear

The purpose of this test is to assess the conservation of mass, momentum, and

kinetic energy within our method. We evaluate several scenarios with different densities

and viscosities in the absence of external forces. We replicate the test outlined in [47]. The

domain is [0, 1]2, with periodic boundary conditions on all sides. The cell size is ∆x = 1/128.
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(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 2.7: Horizontal Shear (Case 3).

The initial velocity and γ are given by

u(x, y, 0) =


tanh

(
y−y1
δ1

)
, if y ≤ y0

tanh
(
y2−y
δ1

)
, if y > y0

(2.101)

v(x, y, 0) = δ2 sin(kx) (2.102)

γ(x, y, 0) =


1
2

(
1 + tanh

(
y−y1
δ1

))
, if y ≤ y0

1
2

(
1 + tanh

(
y2−y
δ1

))
, if y > y0

(2.103)

with y0 = 0.5, y1 = 0.25, y2 = 0.75, δ1 = 1/30, δ2 = 0.5 and k = 2π. As shown in Figure 2.7,

fluid 1 is initialized in a band at the center of the domain with a velocity with positive x

component, and fluid 0 is initialized elsewhere with a velocity with negative x component,

leading to a strong velocity gradient at the interface. We test four different cases, as

described in Table 2.4. In all cases, the surface tension is set to σ = 10−12. We vary density
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Figure 2.8: Results of the horizontal shear test for Cases 1-4.

and viscosity across the four cases. The time step is ∆t = 0.0005 and the simulation ends

at t = 1. We set η = δ1/
√

2 and M = 10−7.

Table 2.4: Material settings for different cases of the horizontal shear.

Case ID ρ0 ρ1 µ0 µ1

Case 1 1 1 0 0
Case 2 1 10 0 0
Case 3 1 1 0.001 0.01
Case 4 1 10 0.001 0.01
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Mass and momentum should be conserved in all four cases investigated. Since sur-

face tension is negligible, kinetic energy should be conserved in inviscid cases and gradually

decline in viscous cases. We calculate the total mass, momentum and kinetic energy as

mtotal =
∑
i,j

(ρ0 + (ρ1 − ρ0) γi,j) ∆Ω (2.104)

(mu)xtotal =
∑
i,j

(
ρi−1/2,j

) (
ui−1/2,j

)
∆Ω (2.105)

Ek =
1

2

∑
i,j

((
ρi−1/2,j

) (
ui−1/2,j

)2
+
(
ρi,j−1/2

) (
vi,j−1/2

)2)
∆Ω, (2.106)

where ∆Ω = ∆x∆y is the cell volume, and (mu)ytotal is computed analogously.

The results of the tests are presented in Figure 2.8. Cases 1 and 3 exhibits zero

mass change, while cases 2 and 4 have small decline with a magnitude of 10−12. As expected,

the inviscid cases maintain constant kinetic energy, while cases 3 and 4, with viscosity, show

a gradual decline. Because our velocities are stored on faces instead of cell centers, we

compute our kinetic energy differently from [47], but we observe similar results. We observe

almost no change in momentum for cases without viscosity, and we see a minor change in

viscous cases.

Shearing artifacts with large gradients

We observe some artifacts at the interface at the tested resolutions for inviscid cases

1 and 2, as illustrated in Figure 2.9. Increasing the resolution from 128 to 512 demonstrates

that the artifacts go away under refinement. The artifact is caused by consistent advection

in the presence of sharp γ gradients and shearing flow. The artifact is not present if
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(a) One of the regions where artifacts can be seen in
Case 1.

(b) A closer look at that region (a).

(c) The same region (a) if Case 1 is repeated with
Cahn-Hilliard parameters M = 10−5 and σ = 1 (no
surface tension forces are applied in this example).

(d) The same region (a) if Case 1 is repeated using
WENO advection for momentum advection.

(e) The same region (a) if Case 1 is repeated with
N = 256.

(f) The same region (a) if Case 1 is repeated with
N = 512.

Figure 2.9: Artifacts in horizontal shear Case 1, and the effects of different parameters and methods
on those artifacts.

WENO advection is used for momentum advection, however that scheme fails to preserve

numerical consistency of mass and momentum. Strengthening the effects of Cahn-Hilliard

also eliminates the artifact. It is unknown if these artifacts were also present in [47], as

they only give bulk averaged measurements (which are consistent with ours), which do not

reveal the artifacts we observed.
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Table 2.5: Material settings for different cases of the translating circle test (surface tension, density).

Case ID ρ0 ρ1 σ

Case 1 1 1 10−12

Case 2 1 103 10−12

Case 3 1 106 10−12

Case 4 1 109 10−12

Case 5 1 1 1
Case 6 1 103 1
Case 7 1 106 1
Case 8 1 109 1

2.4.5 Translating circle

This test examines the accuracy of advection in our method at different density

ratios, based on the method used in [47]. We use a [0, 1]2 domain, with a cell size of

∆x = 1/128 and the time step of ∆t = ∆x/10, with periodic boundary conditions in all

axes. The initial configuration of the test comprises a circular drop of fluid 1 with a radius

of r = 0.1 centered at (0.5, 0.5). The initial velocity is 〈1, 1〉 everywhere. The simulation

ends at t = 1, when the drop is expected to return to the initial position. Fluid 1 is tested

with varying densities of ρ1 = 1, 103, 106, 109. The surrounding fluid 0 has density ρ0 = 1.

The viscosity of both fluids is zero. All density ratios are tested with surface tension values

set to σ = 1 and σ = 10−12. The test is carried out in the absence of external forces. We

set η = 3∆x and M = 10−7 . The material settings are summarized in Table 2.5.

In the ideal solution of the test, the drop returns to its initial location, preserving

its original circular shape. The velocity remains constant throughout the simulation for all

cases. Pressure maintains its initial value of zero in the absence of surface tension. However,

in the presence of surface tension, a pressure jump should be observed around the surface of

the bubble. A snapshot of velocity streamlines at the conclusion of the simulation is depicted
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Table 2.6: Error results for the advection test without surface tension.

Variable Norm ρ1/ρ0 = 1 ρ1/ρ0 = 103 ρ1/ρ0 = 106 ρ1/ρ0 = 109

u
L2 8.81e-13 2.60e-13 3.49e-11 6.07e-08
L∞ 7.36e-12 1.87e-12 2.55e-10 1.69e-06

v
L2 8.81e-13 2.60e-13 3.49e-11 6.06e-08
L∞ 7.36e-12 1.88e-12 2.55e-10 1.57e-06

Table 2.7: Error results for the advection test with surface tension.

Variable Norm ρ1/ρ0 = 1 ρ1/ρ0 = 103 ρ1/ρ0 = 106 ρ1/ρ0 = 109

u
L2 7.93e-04 2.25e-05 7.44e-07 8.47e-08
L∞ 6.42e-03 1.50e-04 5.40e-06 1.16e-06

v
L2 7.93e-04 2.25e-05 7.44e-07 8.47e-08
L∞ 6.42e-03 1.50e-04 5.40e-06 1.27e-06

for cases without surface tension in Figure 2.10, and with surface tension in Figure 2.11

. The drop consistently preserves its shape until the end of the simulation, and velocities

remain almost constant, aligning with their initial streamlines in both cases.

The L2 and L∞ errors for velocities are detailed in Tables 2.6 and 2.7 for cases

without and with surface tension, respectively. The error is computed by comparing the

final velocities with the initial value. We observe that our error is inversely correlated with

the density ratio in cases without surface tension and they are consistent with the findings

reported by Huang et al. [47], and the errors in the cases with surface tension are somewhat

better than those reported in [47].

2.4.6 Rising air bubble

The primary objective of this experiment is to assess the convergence of our method

toward the sharp interface solution within a real-world scenario characterized by a substan-
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Figure 2.10: Initial and final (t = 1) state of the drop with σ = 10−12. The solid black line is the
initial state and the dotted red line is the final state.

tial difference in density and viscosity. This evaluation holds particular significance because

it examines the convergence toward the sharp interface solution by adjusting the parameter

η while simultaneously modifying the resolution N . As suggested by the findings of Huang

et al. [47], increasing the resolution while keeping η constant leads to the experiment’s re-
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Figure 2.11: Initial and final (t = 1) state of the drop with σ = 1. The solid black line is the initial
state and the dotted red line is the final state.

sults converging toward a solution with a transitional region of length O(η). However, by

decreasing η while simultaneously augmenting the resolution, we ensure the convergence

toward the desired sharp interface solution.
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We examine a [0, 1]× [0, 2] domain with cell size ∆x = 1/N . The top and bottom

walls exhibit a no-slip boundary condition, while the left and right walls follow a slip

boundary condition. The initial setup involves a bubble with an initial diameter of 0.5

positioned at the center (0.5, 0.5) and assigned a zero initial velocity. Fluid 0 within the

bubble has properties ρ0 = 1 and µ0 = 0.1, whereas the surrounding fluid 1 has ρ1 = 1000

and µ1 = 10. This results in a density ratio of 1000 and a viscosity ratio of 100. Surface

tension σ is 1.96, and gravity is (0,−0.98). The time step size is ∆t = 0.128/N and

the simulation stops at t = 1. We reduce the length of the transition region by setting

η = η0(Nh0)−Xη where η0 = h0 = 1/32. Xη ≤ 1 so that we have the same number of

cells in the transition region (or more) as we refine [47]. We set the mobility variable

M = M0(η/η0)XM where M0 = 10−7. Based on [49], XM must be 1 ≤ XM < 2.

We conduct six sets of tests and run each set with N = 16, 32, 64, 128, 256. In the

first 5 sets of tests, we set XM = 1 and Xη = 0, 1
3 ,

1
2 ,

2
3 , 1 to test the effects of Xη. In the

last test, we set XM = 3
2 , Xη = 2

3 which makes M ∼ ∆x. To test the convergence of all test

cases we compute the following three parameters:

ψc =
Pa
Pb

=
2
√∫

γ< 1
2
πdΩ

Pb
(2.107)

yc =

∫
Ω y(1− γ)dΩ∫
Ω(1− γ)dΩ

(2.108)

vc =

∫
Ω v(1− γ)dΩ∫
Ω(1− γ)dΩ

. (2.109)

In (2.107), Pa is the perimeter of the circle with the same area as the bubble, Pb is the

perimeter of the bubble and ψc is the circularity of the bubble. Pb is computed by discretiz-
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ψc

Grid
Xη = 0, XM = 1 Xη = 1

3 , XM = 1 Xη = 1
2 , XM = 1 Xη = 2

3 , XM = 1 Xη = 2
3 , XM = 3

2 Xη = 1, XM = 1
L2 L2 L2 L2 L2 L2

16 3.54e-03 7.60e-03 9.70e-03 1.22e-02 1.21e-02 1.88e-02
32 2.50e-03 0.51 1.85e-03 2.04 2.26e-03 2.10 2.46e-03 2.30 2.45e-03 2.31 2.61e-03 2.85
64 1.06e-03 1.24 8.01e-04 1.21 8.01e-04 2.10 9.07e-04 1.44 9.36e-04 1.39 1.20e-03 1.12
128 3.92e-04 1.44 3.00e-04 1.42 2.58e-04 1.63 4.47e-04 1.02 4.86e-04 0.95 6.94e-04 0.80

yc

L2 L2 L2 L2 L2 L2

16 9.24e-03 1.50e-02 1.69e-02 1.88e-02 1.87e-02 2.36e-02
32 2.27e-03 2.03 6.23e-03 1.27 6.86e-03 1.30 7.12e-03 1.40 7.10e-03 1.40 7.17e-03 1.72
64 4.61e-04 2.30 2.65e-03 1.23 2.68e-03 1.30 2.47e-03 1.53 2.45e-03 1.53 1.92e-03 1.90
128 6.49e-05 2.83 9.49e-04 1.48 8.64e-04 1.63 7.05e-04 1.81 6.96e-04 1.82 4.26e-04 2.17

vc

L2 L2 L2 L2 L2 L2

16 1.75e-02 2.42e-02 2.65e-02 2.89e-02 2.89e-02 3.53e-02
32 5.71e-03 1.62 1.00e-02 1.27 1.07e-02 1.31 1.10e-02 1.40 1.10e-02 1.40 1.10e-02 1.68
64 1.68e-03 1.76 4.06e-03 1.30 4.05e-03 1.31 3.75e-03 1.55 3.76e-03 1.55 2.99e-03 1.88
128 3.00e-04 2.49 1.36e-03 1.58 1.25e-03 1.70 1.06e-03 1.82 1.07e-03 1.81 6.83e-04 2.13

Table 2.8: L2 error and order compared to N = 256 on all the cases for rising air bubble test.

ing the interface surface using a marching squares algorithm and computing the total length

between successive nodes. ψc = 1 when the shape of the bubble is a circle and ψc < 1 when

the bubble deforms [47]. yc is center of mass and vc is the velocity of center mass in the y

direction (rising velocity).

In the case where XM = 1, Xη = 0, we expect the simulation to converge to the

exact solution of the phase-field model where η = η0 since setting Xη = 0 results in using

the same value for η in all of the simulations [47]. We show our results for this particular

case in Figure 2.12. We observe that our results match the results shown in [47]. In the

case where Xη 6= 0 we expect the simulation to converge to a sharp interface solution. We

compare our results for each case where N = 256 in Figure 2.13. The error and convergence

order of each case can be found in Table 2.8 where we compare all cases with N = 16 to

N = 128 to the results from the simulation where N = 256. We observe second order

convergence where Xη = 0 and maintain an order of about 1.5-2.0 on all other cases.
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Figure 2.12: Rising bubble test results with Xη = 0, XM = 1.

2.4.7 Comparisons of surface tension

The aim of this test is to compare different surface tension methods to determine

how well they show expected properties. We measure the direction and location of surface

tension in Section 2.4.7 and its effects on pressure in Section 2.4.7. We explore the impact

of introducing g(γ) as detailed in Section 2.3.2 and varying the parameter a in (2.47).

The specific functions utilized in our comparative tests are outlined in Table 2.9. In cases

1 and 2 we use the surface tension used by Shen and Yang [72] and Huang et al. [47]
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Figure 2.13: Rising bubble test results of test described in table 2.8 with N = 256.

respectively. Cases 3 to 7 we apply the function introduced in (2.47), varying the values of

a as a = 0, 0.1, 0.2, 0.3, 0.5. In cases 8 and 9 we use the same scheme as cases 3 to 7 using

a different functions as g(γ). In all the tests described we set σ = 1.

We conduct the test in a [0, 1]2 domain with a cell size of ∆x = 1/256, where all the

walls feature slip boundary conditions. We use ∆t = 0.00025 and run the simulation until

t = 10. The initial configuration features a bubble with an initial radius of r = 0.2, centered

at (0.5, 0.5), with zero initial velocity. The fluid inside the bubble and the surrounding fluid

both have a density of ρ0 = ρ1 = 1000 and viscosity of µ0 = µ1 = 0.
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Table 2.9: Material settings for different cases for the surface tension and pressure comparison test.

Case ID Surface Tension a

Case 1 λ∇ · (∇γ ⊗∇γ)
Case 2 4ξ∇γ
Case 3 σκ∇(g(γ)) 0
Case 4 σκ∇(g(γ)) 0.1
Case 5 σκ∇(g(γ)) 0.2
Case 6 σκ∇(g(γ)) 0.3
Case 7 σκ∇(g(γ)) 0.5
Case 8 σκ∇

(
1
2 (1 + tanh(4γ − 2))

)
Case 9 σκ∇γ

We define η and M similar to Section 2.4.6, with M0 = 10−5, η0 = h0 = 1/8,

Xη = 2/3 and XM = 3/2. This gives η = 0.03125 and M = 1.25× 10−6, which we use for

all cases.

Magnitude and angle

Visual representations of the test results are shown in Figures 2.14 and 2.15. The

angle between the surface normal and the surface tension force is measured in radians. The

contour γ = 0.5 representing the center of the interface is displayed as a dashed circle.

Notably, cases 1 and 2 show strong disagreement between the surface tension

direction and normal just beyond the interface center, and case 1 shows negligible magnitude

at the interface center. Cases 2, 3, 8, and 9 all show strong disagreement in the angle far

from the interface, but the magnitude of the surface tension in those areas is negligible as

expected.

Cases 3 through 7 show the effects of the a parameter in our surface tension

method. We observe that, as expected, the areas where the surface tension magnitude is
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Figure 2.14: Comparisons of the angle between surface tension force and surface normal (radians)
for different surface tension formulations.

nonzero begins to closely fit the interface center contour as a approaches 0.5. In the case

where a = 0.5, the surface tension force closely matches the interface contour, as we would

expect from a sharp interface solution. These cases also show the advantage of a finite

support around the interface (in cases 4-7), which gives a surface tension force vector 0

away from the interface. In cases 3 (where a = 0), 8, and 9, we see that the surface tension
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Figure 2.15: Comparisons of the magnitude of surface tension force for different surface tension
formulations.

is still being calculated away from the interface. While the magnitudes are negligible in

these areas, they are not 0.
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Figure 2.16: Change in pressure in the x axis at y = 0.5 of Section 2.4.7.

Effects on pressure

Ideally, we anticipate the pressure to be a constant value inside and outside of the

bubble with a pressure jump on the surface. We compare our results to the ideal physical

pressure along the x-axis at y = 0.5 in Figure 2.16.

We show in Figure 2.16a that as a goes from 0 to 0.5, the results move toward the

ideal pressure jump caused by a sharp interface. All parameters of a produce acceptable

results for pressure, which makes σκ∇(g (γ)) the best of the methods by this criteria.

Figure 2.16b shows that cases 8 and 9, which are similar to our preferred method, are also

reasonably close to the ideal pressure. Note that in Case 1, the formulation of the surface

force introduces a gradient term which will be compensated for in the pressure correction;

the plot for Case 1 shows the pseudo-pressure which includes the compensating term [75].

Case 2 deviates significantly from the ideal in our tests.

57



2.4.8 Rayleigh-Taylor instability

We simulate the classic Rayleigh-Taylor instability, where a denser fluid is ini-

tially positioned above a lighter one in the presence of gravitational force. This instabil-

ity test serves as a benchmark for evaluating the behavior of two-phase flows. The tests

was first investigated by Rayleigh [70] and is normally characterized by “Atwood ratio”

At = (ρ1− ρ0)/(ρ1 + ρ0), a measure of the density difference between the two phases. Daly

[19] conducted a numerical analysis of the test. Long-time instability analysis of the test for

inviscid incompressible fluids without surface tension with At = 0.5 is done by Tryggvason

[77]. We examine a [0, 1] × [0, 4] domain with cell sizes ∆x = 1/128. Free-slip boundary

conditions are enforced at the top and bottom walls, while the left and right walls are

subject to periodic boundary conditions. The initial setup involves a heavier fluid with

density ρ1 = 3, 30, 1000, 3000 and viscosity µ1 = 0.001 positioned on top of a lighter fluid

with density ρ0 = 1 and viscosity µ0 = 0.001. The velocity is initialized to zero, and the

initial interface between the two fluids is situated at y = 2 + 0.1 cos(2πx). The specified

parameters for the simulation include a surface tension σ = 10−12, gravitational force vector

〈0,−1〉, and a time step size of ∆t = 5×10−4/
√
At. The simulation concludes at t

√
At = 8.

We set M so that λM = 10−15 and η = 0.01.

Snapshots of the test with ρ1 = 3 are presented in Figure 2.17, offering a compar-

ative analysis with the outcomes from our implementation of Huang et al. [47]’s method.

Notably, our simulation closely aligns with the results obtained by Huang et al. [47]. Fig-

ure 2.18 provides a visual depiction of the Rayleigh-Taylor test’s progression at a density

ratio of 3, while Figure 2.19 showcases the evolution of simulations across various density
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(a) Rayleigh-Taylor test results using Huang et al. [47]’s method.
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(b) Rayleigh-Taylor test results using our method.

Figure 2.17: Rayleigh-Taylor test at times t = 0, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5 and density ratio of 3.

ratios. In both Figure 2.18 and Figure 2.19, the simulations maintain symmetry through-

out, even as the interface develops intricate shapes in later stages. As the density ratio

increases, the simulation exhibits accelerated movement and a simpler evolution. Due to

the minor impact of viscosity in these simulations, a stable state is not reached before the

simulations conclude at t
√
At = 8.

In Figure 2.20 we plot a quantitative measurement of the test by measuring the

highest and lowest point of the interface between the two fluids with density ratio of 3 from
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Figure 2.18: Rayleigh-Taylor test results with ρ0 = 3, from t = 2.25 to t = 8 in 0.25 increments.

t = 0 to t = 2.5. Our results are comparable to the results reported by Huang et al. [47],

[21] and Guermond and Quartapelle [35] which use similar values for density and viscosity.

2.4.9 Dam break

The dam break test is employed to assess the method’s performance in scenarios

characterized by high density ratios. In this test, we simulate the classic test as in Martin
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(a) ρ1 = 30
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(b) ρ1 = 1000
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(c) ρ1 = 3000

Figure 2.19: Rayleigh-Taylor simulation with density ratio of 30, 1000 and 3000 at times t =
0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75.

and Moyce [65] where a specific volume of water is confined within a rectangular box of

dimensions [a× a], enclosed by walls on both the left and right sides. In the initial frame,

the right wall of the box containing the water, is removed, leading to the observation of

the gravitational evolution of water movement within a larger [0, 4a] × [0, 2a] domain. We
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Figure 2.20: Location of the maximum and minimum x of the interface in the Rayleigh-Taylor test
with density ratio of 3.

examine this domain with cell sizes ∆x = a/64 where a = 0.05715. The all the walls are

subject to a no-slip boundary condition. The initial setup involves a heavier fluid (water)

with density ρ0 = 998.207 and viscosity µ0 = 1.002 × 10−3 confined in a [a × a] box

surrounded by a lighter fluid (air) with density ρ1 = 1.204 and viscosity µ1 = 1.78 × 10−5

with initial velocity of zero. The specified parameters for the simulation include a surface

tension σ = 7.28 × 10−2, gravitational force vector 〈0,−9.8〉, and a time step size of ∆t =

7.1437 × 10−5. The simulation concludes at t = 10. We set M so that λM = 10−7 and

η = 0.01a.

As previously noted, the simulation begins with zero velocity, and at time t = 0,

removing the box containing the denser fluid instigates fluid motion due to gravity. As

the simulation progresses, the denser fluid reaches the right wall of the domain, where it is

pushed to rise along the wall before crashing back down. The simulation attains a stable

condition by the conclusion of the simulation. Visual snapshots of distinct stages within

the simulation are shown in Figures 2.22 and 2.23. We non-dimensionalize t by dividing it
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Figure 2.21: Fluid height and front over time in the dam break test.

by
√

a
|gy | so that T = t/

√
a
|gy | . We do the same for length as well by diving it by a. We

measure our results quantitatively by computing the front of the interface and the highest

point of the interface from T = 0 to T = 2.5 in Figure 2.21. Our results are comparable to

those reported by Huang et al. [47] and Martin and Moyce [65].

2.5 Conclusion

In this chapter we constructed a novel, simple, and highly stable discretization of

the Cahn-Hilliard equation. We coupled this to the Navier-Stokes equations to simulate

phase separation in a two-phase fluid flow in two dimensions. We demonstrate that the

resulting scheme is second order accurate in γ and velocity and compare it with published

results on a number of tests. The scheme is mass-momentum consistent and works with

large density ratios.
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(a) T = 0 to T = 2

0 5 · 10−2 0.1 0.15 0.2
0

0.05

0.1

x

y

0 5 · 10−2 0.1 0.15 0.2
0

0.05

0.1

x

y

0 5 · 10−2 0.1 0.15 0.2
0

0.05

0.1

x

y

0 5 · 10−2 0.1 0.15 0.2
0

0.05

0.1

x

y

0 5 · 10−2 0.1 0.15 0.2
0

0.05

0.1

x

y

(b) t = 2.5 to t = 5

Figure 2.22: The evolution of the dam break test with water and air from T = 0 to T = 5 in 0.5
increments.
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(a) T = 5 to T = 7
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(b) T = 7.5 to T = 9.5

Figure 2.23: The evolution of the dam break test with water and air from T = 5 to T = 9.5 in 0.5
increments.
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We also replace existing discretizations of the surface tension force on phase-field

variables with one that has finite support around the transition region. The model has a

parameter that allows it to transition from a smoothed continuum surface force to a fully

sharp interface formulation, in which case the surface tension applied is equivalent to a

sharp interface treatment using jump conditions. We compared our formulation of surface

tension against other surface treatments used for the Cahn-Hilliard Navier-Stokes equations

and found that our treatment compares favorably.

We have also noticed some limitations in the proposed scheme. As noted in Sec-

tion 2.4.4, shearing flows with sharp γ transitions can lead to artifacts, though these are

observed to diminish with refinement. The consistent advection used for the momentum

equations are generally observed to be less numerically robust than a more classical WENO-

based advection scheme. We have also observed that the evolution of γ can produce values

outside the range [0, 1], which can lead to negative densities if the density ratio is large.

We correct this using the gamma redistribution scheme from [46], though we note that this

redistribution is effectively global and thus less than ideal. In our implementation, it also

comes at the cost of an additional Poisson solve; a more physically plausible solution to this

problem is desirable.
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Chapter 3

Conservative, bounded, and

nonlinear discretization of the

Cahn-Hilliard-Navier-Stokes

equations

The Cahn-Hilliard equation describes phase separation in a binary mixture, typi-

cally modeled with a phase variable that represents the concentration of one phase or the

concentration difference between the two phases. Though the system is energetically driven

toward solutions within the physically meaningful range of the phase variable, numerical

methods often struggle to maintain these bounds, leading to physically invalid quantities

and numerical difficulties. In this work, we introduce a novel splitting and discretization

for the Cahn-Hilliard equation, coupled with the Navier-Stokes equations, which inherently
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preserves the bounds of the phase variable. This approach transforms the fourth-order

Cahn-Hilliard equation into a second-order Helmholtz equation and a second-order nonlinear

equation with implicit energy barriers, which is reformulated and solved with a safeguarded

optimization-based solution method. Our scheme ensures the phase variable remains in the

valid range, robustly handles large density ratios, conserves mass and momentum, maintains

consistency between these quantities, and achieves second-order accuracy. We demonstrate

the method’s effectiveness through a variety of studies of two-dimensional, two-phase fluid

mixtures.

3.1 Introduction

The Cahn-Hilliard equation describes the separation of a binary fluid mixture into

domains that are pure in each phase [13, 25]. The mixture is typically modeled with a phase

variable γ that represents the concentration of one phase (γ ∈ [0, 1]) or the concentration

difference between the two phases (γ ∈ [−1, 1]). A variety of schemes have been developed

for the numerical solution of the Cahn-Hilliard equation, including Fourier spectral methods

[88, 43, 58], finite difference methods [32, 60, 38, 15, 47], and finite element methods [26,

10, 8, 29, 79, 41]. Though the system is energetically driven toward solutions within the

physically meaningful range of γ, numerical methods for the solution of the Cahn-Hilliard

equation may generate values outside this range, leading to physically invalid quantities and

numerical difficulties [33, 46, 48]. Specifically, the phase variable is used to compute effective

densities and viscosities. Under large density ratios, even a small excursion outside the valid
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range of values for γ can result in negative effective densities, and hence ill-posedness of the

viscous momentum equation and loss of positive-definiteness in numerical solvers.

To model two-phase incompressible flows, the Cahn-Hilliard equation is coupled to

the incompressible Navier-Stokes equations. Several works have investigated variants of this

system, including the case of matched densities [44, 5], the Boussinesq approximation [49,

63, 4], and the more general Cahn-Hilliard-Navier-Stokes (CHNS) equations with varying

densities and viscosities [74, 72, 52, 21, 24, 38, 47, 33].

Cahn-Hilliard models vary based on the choice of potential and mobility functions,

and this impacts the theoretical boundedness properties of the phase variable. A common

approach is to use the Ginzburg-Landau double-well polynomial potential with constant

mobility [31, 47, 33], suitable for situations where the diffusion is not strongly dependent

on the concentration field. This model permits the phase variable to go outside physically

meaningful bounds. The Cahn-Hilliard model with concentration-dependent degenerate

mobility, which is zero in pure phases, has also been widely used [8]. In this form, given

initial data that satisfies the physical bounds, the solution has been shown to maintain the

bounds [27]. Another commonly employed model uses a logarithmic potential based on the

Flory-Huggins theory of polymer solutions [1, 14, 6]. The potential is singular with infinite

energy barriers at the pure concentrations γ = 0 or γ = 1, preventing the solution from

attaining or exceeding these values. This formulation admits a maximum principle so that

the analytic solution remains within bounds [20, 66, 1].

Preserving the physical bounds of the phase variable in numerical solutions can be

challenging even in models that admit a maximum principle. This requirement may also
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impose additional time step restrictions [18, 7, 67]. There have been many works aimed at

developing bounds-preserving numerical methods. Several methods have addressed the issue

of keeping γ in its physical bounds by using combinations of flux and slope limiters [31, 62].

Another approach to maintain the bounds of the phase variable is to explicitly clamp the

variable in regions that exceed the bounds [23]. However, in order to conserve mass, the

clipped mass must then be redistributed in a bounds-respecting manner. Chiu and Lin [16]

applied such a strategy, uniformly distributing the clipped mass in the interfacial transition

region. Huang et al. [46] proposed a boundedness mapping, a volume redistribution scheme

that maintains the phase variable in the physical range. This method determines a set of

conservative fluxes that maintain the global mass of the system while distributing mass

from regions that undershoot or overshoot. This method was used to maintain bounds

in the simulation of the Cahn-Hilliard-Navier-Stokes equations in both [47] and [33]. One

drawback of the approach is that the choice of mass redistribution is controlled by a weight

function and the determination of the fluxes requires a computationally expensive Poisson

equation solve. The boundedness mapping approach was further developed in [48] for the

more challenging case of multiphase flows with three or more phases.

When modeled with a singular logarithmic potential, numerical methods for the

Cahn-Hilliard equation must be carefully designed to maintain the solution strictly within

the physical bounds. Copetti and Elliott [18] developed a piecewise linear finite element

scheme with backward Euler time discretization for the Cahn-Hilliard equation with a log-

arithmic free energy and gave conditions on the time step and initial data to ensure bound-

edness of the solution. Barrett and Blowey [7] further proved error bounds for this scheme.
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Yang and Zhao [82] developed an unconditionally energy-stable scheme for the CH equation

with logarithmic potential that is linear and symmetric positive definite.

Based on the work of Eyre [28], several approaches utilize convex splitting, where

the potential is expressed as a difference of convex functions and a convex nonlinear sub-

problem is formulated and solved implicitly to maintain the solution bounds. Li et al. [59]

proposed an unconditionally stable nonlinear scheme based on convex splitting of the poten-

tial and solved by Newton iteration. The convergence of the scheme was analyzed in [22] by

converting the problem into a convex minimization. Also based on a convex splitting of the

potential and implicit treatment of the logarithmic terms, Chen et al. [14] developed first

and second order finite difference schemes where the positivity of the logarithmic argument

is maintained without incurring an additional time step restriction.

Bailo et al. [6] used a convex splitting approach combined with an upwind method-

ology for discretization of the mobility to construct a semi-implicit scheme that uncondition-

ally maintains the boundedness of the phase variable. Acosta-Soba et al. [3] also pursued an

upwind methodology for both the flow velocity and the mobility in a discontinuous Galerkin

scheme for the convective Cahn-Hilliard equation with polynomial potential and degenerate

mobility, maintaining the bounds on the solution. A bounds-preserving upwind scheme was

also developed in [45].

In this chapter, we introduce a novel splitting for the numerical solution of the

Cahn-Hilliard-Navier-Stokes equations that maintains the phase variable γ ∈ [0, 1] by con-

struction. We use a piecewise potential approximation with logarithmic terms singular at

the pure phases. Similar to convex splitting approaches, our method results in a nonlinear
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equation implicit in the phase variable that maintains boundedness of the solution. We

reformulate the nonlinear equation as a convex optimization facilitating solution through

a safeguarded optimization-based scheme. The resulting method is second order accurate

and can robustly simulate large density ratios. We demonstrate the method’s effectiveness

through a variety of studies of two-dimensional, two-phase fluid mixtures.

3.2 Governing equations

3.2.1 Cahn-Hilliard equation

The Cahn-Hilliard equations can be expressed as

∂γ

∂t
+∇ · (uγ) = ∇ · (M∇ξ) + Sγ (3.1)

ξ = λ(F ′(γ)−∇2γ) (3.2)

λ =
3

2
√

2
ση. (3.3)

We label the two fluid phases as 0 and 1. The volume fraction of fluid 1 is represented as

the phase-field function γ ∈ [0, 1]. The chemical potential is ξ. λ, called the mixing energy

density in Huang et al. [46], is a parameter that incorporates the surface tension constant

σ and η, a parameter which influences the width of the phase transition region. u is the

fluid velocity, M is the mobility, Sγ is an external source term, and F is a double well

potential function. The details of F and its corresponding derivative F ′ are described in

Section 3.3.1.
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The properties of fluid phases 0 and 1 are density (ρ0, ρ1) and viscosity (µ0, µ1)

respectively. For a given location x, we compute the effective density and viscosity of the

phase mixture with

ρ(x) = ρ0 + (ρ1 − ρ0) γ(x) (3.4)

µ(x) = µ0 + (µ1 − µ0) γ(x). (3.5)

3.2.2 Navier-Stokes equations

The Navier-Stokes equations for incompressible flow are given by

∂ρ

∂t
+∇ ·m = Sm (3.6)

∇ · u = 0 (3.7)

∂(ρu)

∂t
+∇ · (m⊗ u) = −∇p+∇ · (µ(∇u + (∇u)T )) + ρg + σκ∇(h (γ)) + Su, (3.8)

where ρ is the effective density, m is the mass flux consistent with the γ evolution (3.1)

[47], Sm is an external mass source, u is the velocity, p is the pressure, µ is the effective

viscosity, g is the acceleration of gravity, σ is the coefficient of surface tension, κ is the

interface curvature, h(γ) is a regularized Heaviside function as defined in [33], and Su is the

external momentum source.
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Figure 3.1: The MAC grid stores γ and pressure on cell centers (circles). Velocties are stored by
component on faces (represented by triangles), (Reproduced from [33].)

3.3 Discretizations

In this section we describe the temporal and spatial discretizations of the Cahn-

Hilliard and Navier-Stokes equations. As in [33], we use a uniform MAC grid (Figure 3.1)

with γ and pressure stored at cell centers. Velocities are split by components and stored on

cell faces. Unless otherwise specified, we use the same discretizations as in [33].

3.3.1 Cahn-Hilliard equation

Goulding et al. [33] introduced a discretization that was simple and effective, but

it did not ensure γ ∈ [0, 1]. Instead, they used the bounds-enforcing scheme introduced in

Huang et al. [46] to correct gamma in a postprocess. That postprocess is non-local, which

is undesirable since mass conservation is a local conservation property. It also requires a

Poisson solve to determine associated conservative fluxes which incurs significant compu-

tational cost [33]. In this chapter, we construct a scheme that automatically guarantees

γ ∈ (0, 1) without the need for any postprocessing steps. We do this by formulating F with
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a barrier at 0 and 1 (much as some existing formulations of F do [13]) and treating the

term F ′(γn+1) implicitly.

Scheme derivation

We begin our formulation of our scheme with the scheme from [33] where the

fourth order Cahn-Hilliard equation is split into two second-order Helmholtz equations as

A− s∆̂t∇2A = γ∗ +B + ∆̂tSn+1
γ (3.9)

γn+1 − s∆̂t∇2γn+1 = A−B, (3.10)

where γ∗ is the result of advecting γn. In the absence of source terms, the scheme should

be discretely mass conserving, requiring

∫
Ω
γn+1 dV =

∫
Ω
γn dV (3.11)

Note that by the divergence theorem, any field B with zero flux or periodic boundary

conditions satisfies

∫
Ω
∇2B dV = 0, (3.12)
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so that Laplacian terms do not contribute to mass conservation. Therefore, assuming

Sn+1
γ = 0 and integrating equations (3.9) and (3.10), we get

∫
Ω
AdV =

∫
Ω
γ∗ dV +

∫
Ω
B dV (3.13)∫

Ω
γn+1 dV =

∫
Ω
AdV −

∫
Ω
B dV (3.14)

=

∫
Ω
γ∗ dV =

∫
Ω
γn dV, (3.15)

where the last equality comes from assuming conservative advection. Observe that the

contents of B do not matter, since it is added before solving a Helmholtz equation and

subtracted off afterwards. As a useful rule, terms that are not Laplacians must be added

and subtracted in this way to achieve conservation.

Next we turn to the general form we want for our scheme. Schemes such as [47] also

include ∇2F ′(γ) terms, which we allow in our scheme as well. We also use γAB, described

below, as an explicit estimate of γn+1. This leads to a potential general scheme of the form

A+ a1∇2A = γ∗ + a2γ
AB + a3∇2F ′(γAB) + a4F

′(γAB) (3.16)

γn+1 + c1∇2γn+1 = A+ c2γ
AB + c3∇2F ′(γAB) + c4F

′(γAB) + c5F
′(γn+1), (3.17)

which adds in the necessary implicit treatment of F ′ but fails to be conservative since the

F ′(γn+1) term is not canceled (unless c5 = 0, which would then not be implicit). To restore

76



conservation, we need to cancel out the implicit term, which suggests a scheme of the form

A+ a1∇2A = γ∗ + a2γ
AB + a3∇2F ′(γAB) + a4F

′(γAB) (3.18)

C + c1∇2C = A+ c2γ
AB + c3∇2F ′(γAB) + c4F

′(γAB) + c5F
′(γn+1) (3.19)

γn+1 = C + g2γ
AB + g3∇2F ′(γAB) + g4F

′(γAB) + g5F
′(γn+1), (3.20)

which will be conservative provided a2 + c2 + g2 = 0, a4 + c4 + g4 = 0, and c5 + g5 = 0.

Schemes of this form exist, but the F ′(γAB) terms are problematic, since F (γ) has barriers

at 0 and 1 but γAB need not lie within this range. Instead, we replace them with F ′(γ)AB =

2F ′(γn) − F ′(γn−1), which is safe to compute since 0 < γn < 1 will always be bounded.

This suggests we should look for a scheme of the form

A+ a1∇2A = γ∗ + a2γ
AB + a3∇2F ′(γ)AB + a4F

′(γ)AB (3.21)

C + c1∇2C = A+ c2γ
AB + c3∇2F ′(γ)AB + c4F

′(γ)AB + c5F
′(γn+1) (3.22)

γn+1 = C + g2γ
AB + g3∇2F ′(γ)AB + g4F

′(γ)AB + g5F
′(γn+1) (3.23)

subject to the constraints on the coefficients needed for conservation.

What remains is to select coefficients such that the scheme is consistent and for-

mally 1.5 order accurate. We also prefer to discard terms from (3.23) where possible.
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Performing the truncation analysis leads to the scheme

A− s∆̂t∇2A = γ∗ − 2γAB + ∆̂tMλ∇2F ′(γ)AB (3.24)

C − s∆̂t∇2C = A+ 2γAB − bs∆̂t2∇2F ′(γ)AB + b∆̂tF ′(γn+1) (3.25)

γn+1 = C − b∆̂tF ′(γn+1), (3.26)

where s =
√

Mλ

∆̂t
and ∆̂t = 2

3∆t. This scheme is consistent for any constant b. We examine

restrictions on this constant in Section 3.3.1.

Avoiding nested solves

We will solve (3.25) using Newton’s method. Observe that for each Newton itera-

tion, we must solve (3.26), which is a pointwise nonlinear equation. To stabilize Newton’s

method, we would like to formulate it as an optimization problem so that line searches can

be employed. This requires us to integrate (3.25) with respect to C to form the objec-

tive, so that the optimality conditions recover (3.25). If we let γn+1 = f(C) denote the

process of solving (3.26), then forming the objective requires us to integrate the function

f . If f is obtained as that output of a numerical procedure, then computing this integral

would be problematic. To have a practical chance of computing this integral, we will need

a closed-form solution for f . Let g be the integral so that γn+1 = g′(C).

For most choices of the double-well potential F , the function g′(C) will not be

solvable in closed form. We must therefore restrict the form of F in such a way that it has

the correct qualitative form while allowing g′ to be computed and integrated in closed form.
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We note that this is possible for two special forms. If F (x) is a cubic polynomial, then

F (x) = a3x
3 + a2x

2 + a1x+ a0 (3.27)

γ = C − b∆̂tF ′(γ) = C − b∆̂t(3a3γ
2 + 2a2γ + a1), (3.28)

which leads to a quadratic equation in γ that can be solved in closed form. Further, the

quadratic equation for γ takes the general form γ = g′(C) = k0 +
√
k1 + k2C, which can be

integrated in closed form. Another form for F with this property is

F (x) = a2x
2 + a1x+ a0 + a3 ln(x) (3.29)

γ = C − b∆̂tF ′(γ) = C − b∆̂t(2a2γ + a1 + a3γ
−1). (3.30)

Clearing the fractions leads to another quadratic equation in γ, this time of the form

γ = g′(C) = (k0C + k1) +
√

(k0C + k1)2 + k2, which can also be integrated in closed form.

(3.29) is notable in that it has a barrier at 0.

A suitable formulation of F must be a double-well energy function with barriers

at 0 and 1. Neither form above has these properties, but a suitable function F can be

constructed by combining energy terms of these forms piecewise. We note that piecewise

formulations for F have been employed before [9, 34, 86]. It is clear that two logarithmic

pieces will be required to get the necessary barriers. In addition, two cubic pieces are used
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to complete the double-well profile. We are thus looking for a potential of the form

F (γ) =



F0(γ) 0 ≤ γ ≤ r

F1(γ) r < γ < 1
2

F1(1− γ) 1
2 < γ ≤ 1− r

F0(1− γ) 1− r < γ ≤ 1

(3.31)

F0(γ) = b2x
2 + b1x+ b0 + b3 ln(x) (3.32)

F1(γ) = a3x
3 + a2x

2 + a1x+ a0 (3.33)

where we have assumed the symmetry F (γ) = F (1− γ).

When solving the equation γ = C− b∆̂tF ′(γ), there is an additional complication.

The piecewise boundaries of F ′(γ) are in terms of γ, not C. The corresponding boundaries

for C could of course be computed by substituting boundary values for γ and solving for

C, but we instead pursue a simpler strategy. We note that the double-well potential F

will have two minima and a maximum. If we place the minima of F at r and 1 − r and

the maximum at 1
2 , then F ′(r) = F ′(1

2) = F ′(1 − r) = 0. If γ is one of these values, then

γ = C − b∆̂tF ′(γ) = C, so that the piecewise boundaries for γ and C are the same.

The piecewise formulation for F has eight degrees of freedom. Enforcing C2 conti-

nuity eliminates four degrees of freedom. Placing a minimum at r and shifting the minimum

to zero (i.e., F ′(r) = F (r) = 0) eliminates two more. We only need to construct F (γ) up

to a global scale (we will scale it appropriately later), which eliminates one more. We are

80



0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 3.2: Plots of F (C) (left) and F ′(C) (right) corresponding to q = 0.5 and r = 0.1.
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Figure 3.3: Plot of F (C) for different values of r: 0.1 ( ), 0.05 ( ), 0.02 ( ), 0.01 ( ), and
0.001 ( ). The potential function converges pointwise in the limit r → 0 over the range 0 < C < 1.

left with one more degree of freedom, so we choose to enforce C3 continuity at r. We are

now left with

F0(γ) = 3(γ − r)(8r2 − 4rγ − r + γ)− 12r3 ln
γ

r
F1(γ) = (r − γ)2(3− 2r − 4γ).

Figure 3.2 shows a plot of F (γ) and F ′(γ). Besides a global scale, this potential is also a

function of the parameter r, which specifies the location of the minima. The dependence of

this potential on r can be seen in Figure 3.3. The potential converges in the limit r → 0,

81



which allows our scheme to be run with r very nearly zero. This is important, since in

regions far from the interface, γ will be comparable to r or 1− r.

The function γ = g′(C) is defined as the solution of γ = C − kF ′(γ), where in

the scheme we have the constant k = b∆̂t. The global scaling on F is absorbed into the

constant b. g′ can be expressed in closed form as

g′(C) =



g′0(C) 0 ≤ C ≤ r

g′1(C) r < C < 1
2

1− g′1(1− C) 1
2 < C ≤ 1− r

1− g′0(1− C) 1− r < C ≤ 1

(3.34)

q = 6k(1− 2r) p = 1 + 6k(1− 4r) s = 6r(1− 6r)k

(3.35)

g′0(C) =
1

2p
h′0(C + s) h′0(x) = x+

√
x2 + L = − L

x−
√
x2 + L

L = 48kr3p

(3.36)

g′1(C) =
1

2
+ h′1

(
C − 1

2

12k

)
h′1(x) = K −

√
K2 − x =

x

K +
√
K2 − x

K =
1− q
24k

(3.37)

We note that the first form of h′0 and h′1 is convenient for differentiation and integration,

but the second form is more numerically robust since x > 0 and K > 0. In addition to

g′(C), which is used to compute γn+1, we also need g (for the optimization objective) and
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g′′ (for the Hessian of the objective). The derivative g′′ is straightforward

g′′(C) =



g′′0(C) 0 ≤ C ≤ r

g′′1(C) r < C < 1
2

g′′1(1− C) 1
2 < C ≤ 1− r

g′′0(1− C) 1− r < C ≤ 1

(3.38)

g′′0(C) =
1

2p
h′′0(C + s) h′′0(x) = 1 +

x√
x2 + L

(3.39)

g′′1(C) =
1

12k
h′′1

(
C − 1

2

12k

)
h′′1(x) =

1

2
√
K2 − x

(3.40)

When computing the integral, we must be careful to ensure continuity.

g(C) =



g0(C)− g0(r) + g1(r) 0 ≤ C ≤ r

g1(C) r < C < 1
2

C − 1
2 + g1(1− C) 1

2 < C ≤ 1− r

C − 1
2 + g0(1− C)− g0(r) + g1(r) 1− r < C ≤ 1

(3.41)

g0(C) =
1

2p
h0(C + s) h0(x) =

x

2
h′0(x) +

L

2
ln(h′0(x)) (3.42)

g1(C) =
C

2
+ 12kh1

(
C − 1

2

12k

)
h1(x) = Kx+

2

3
(K2 − x)3/2 (3.43)
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Figure 3.4: Plot of g′(C) for different values of q: 0.99 ( ), 0.9 ( ), 0.5 ( ), 0.001 ( ). The
function g′ converges to piecewise-linear in the limit q → 0 and develops an infinite slope at C = 1

2
in the limit q → 1. When q > 1, (3.26), when viewed as a function C(γ), is not monotonic. In this
case, g′ would become multivalued. Useful values of q are thus restricted to 0 < q < 1 to ensure
that (3.26) has a unique and continuous solution.

In addition to r, the function g′ also depends on k. The influence of this parameter

is easier to understand in terms of the related quantity q, as seen in Figure 3.4. In the limit

q → 0, γ → C when 0 < C < 1, with γ clamped to 0 or 1 outside this interval. In the

limit q → 1, we have g′(1
2) → ∞. For q > 1 the relationship C = γ + kF ′(γ) ceases to be

monotonic, so that its inverse g′ does not exist as a continuous function. For the proposed

scheme to exist, we must have 0 < q < 1. While q is always positive, the requirement

q < 1 effectively imposes a time step restriction. Figure 3.5 shows plots of g(C) and g′′(C).

Note that g′′(C) is continuous and positive (from (3.38) and (3.40)), which improves the

conditioning of the optimization problem.
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Figure 3.5: Plots of g(C) (left) and g′′(C) (right) corresponding to q = 0.5 and r = 0.1.

Temporal discretization

We begin by combining (3.1) and (3.2) to get the form of the Cahn-Hilliard equa-

tion that we wish to discretize:

∂γ

∂t
+∇ · (uγ) = Mλ∇2(F ′(γ)−∇2γ) + Sγ . (3.44)

As in Goulding et al. [33], we discretize the time derivative using the second-order scheme

αγn+1−αγBD
∆t with α = 3

2 and γBD = 4
3γ

n − 1
3γ

n−1. For the first time step we use a first-

order single-step scheme with α = 1 and γBD = γn. Explicit quantities for u and γ are

discretized using an Adams-Bashforth scheme, where γAB = γn, uAB = un in the first step

and γAB = 2γn − γn−1, uAB = 2un − un−1 in subsequent steps. We let ∆̂t = ∆t/α, as α

and ∆t always occur together in practice.

Next, we derive the scheme presented in Section 3.3.1 directly from Equation (3.44).

It will be demonstrated in Section 3.4.1 that the scheme has O(∆t1.5) convergence. We begin
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with temporal discretization choices for γ and u,

γn+1 − γBD
∆̂t

+∇ ·
(
uABγAB

)
= Mλ∇2

(
F ′
(
γn+1

)
−∇2γn+1

)
+ Sn+1

γ . (3.45)

Next we split out the advection term as an update from γBD to an intermediate quantity

γ∗:

γ∗ − γBD
∆̂t

+∇ ·
(
uABγAB

)
= 0 (3.46)

γn+1 − γ∗
∆̂t

= Mλ∇2
(
F ′
(
γn+1

)
−∇2γn+1

)
+ Sn+1

γ . (3.47)

Expanding on Shen and Yang [74] and Goulding et al. [33], we define s so that s2∆̂t = Mλ

and introduce extra terms (denoted T1, T2, and T3) to facilitate the further splitting of

the equation. Each term introduces a small error but decreases rapidly under refinement

(noting s = O(∆t−0.5) and a = O(∆t), with M and λ fixed):

T1 = 2s(γn+1 − γAB) = O(∆t1.5) (3.48)

T2 = −Mλa∇2
(
F ′(γn+1)− F ′(γ)AB

)
= O(∆t3) (3.49)

T3 = (as−Mλ)
(
F ′(γn+1)− F ′(γ)AB

)
= O(∆t2) (3.50)

We incorporate the terms into Eq. (3.47) as

γn+1 − γ∗
∆̂t

= ∇2
(
MλF ′(γn+1)−Mλ∇2γn+1 + T1 + T2 + T3

)
+ Sn+1

γ . (3.51)
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Observe that the inclusion of T1 formally limits us to convergence order 1.5. We define C

according to (3.26) as

C = γn+1 + aF ′(γn+1), (3.52)

Plugging in the definitions of T1, T2, T3, and C into Eq. (3.51), cancelling like terms, and

rearranging, we get

γn+1 − γ∗
∆̂t

= ∇2
(
sC − s2∆̂t∇2C + (Mλ− as)F ′(γ)AB + sγn+1 − 2sγAB

+ as2∆̂t∇2F ′(γ)AB
)

+ Sn+1
γ

(3.53)

Using Eq. (3.52) to eliminate γn+1 in Eq. (3.53) and defining

A = C − s∆̂t∇2C − aF ′(γn+1)− 2γAB + as∆̂t∇2F ′(γ)AB, (3.54)

Eq. (3.53) becomes

A− s∆̂t∇2A = γ∗ − 2γAB + ∆̂tMλ∇2F ′(γ)AB + ∆̂tSn+1
γ . (3.55)

Recall γn+1 = g′(C) as described in Section 3.3.1. Substituting this into Eq. (3.52) and

rearranging, we get aF ′(γn+1) = C−g′(C). Substituting this into Eq. (3.54) and combining

the right hand side into B, we get a nonlinear equation satisfied by C:

B = A+ 2γAB − as∆̂t∇2F ′(γ)AB g′(C)− s∆̂t∇2C = B. (3.56)
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From these expressions, we have our four-stage scheme:

1. Compute γ∗ by advection using Eq. (3.46).

2. Solve the Helmholtz equation for A given in Eq. (3.55).

3. Solve the nonlinear equation for C given in Eq. (3.56).

4. Update γn+1 as γn+1 = g′(C).

Optimization-based formulation of the nonlinear solve

We solve the nonlinear equation (3.56) for C by reformulating it as a minimization

of the objective function

E =
∑
i

g (Ci)−
1

2
s∆̂t

∑
i,j

CiLijCj −
∑
i

CiBi, (3.57)

where L is the discrete Laplacian matrix. The corresponding gradient is

∂E

∂Ci
= g′ (Ci)− s∆̂t

∑
j

LijCj −Bi (3.58)

so that the optimality conditions ∂E
∂Ci

= 0 reduce to (3.56). Since we will be using a Newton-

based solver, we will also need the Hessian

∂2E

∂Ci∂Cj
= δijg

′′ (Ci)− s∆̂tLij . (3.59)

Since g′′ (Ci) > 0, the Hessian is symmetric and positive definite. The optimization problem

is thus convex, guaranteeing a unique local minimum, which is also the global minimum. We
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solve this optimization problem using Newton’s method with Wolfe conditions line searches.

We use zero as the initial guess during the first time step and Cn−1 as the initial guess for

the second time step. Thereafter, we warm-start our solver using CAB = 2Cn−1 −Cn−2 as

the initial guess.

Boundary conditions

We consider two types of boundary conditions for γ: periodic and Neumann (n ·

∇γn+1 = 0). In order to solve both implicit equations, we need boundary conditions for C

and A. From γn+1 = g′(C) we have

n · ∇γn+1 = g′′(C) (n · ∇C) . (3.60)

As g′′(C) 6= 0, n · ∇γn+1 = 0 implies n · ∇C = 0. For n · ∇A, we start by substituting

Eq. (3.52) into Eq. (3.54):

A = C − s∆̂t∇2γn+1 − as∆̂t∇2F ′(γn+1)− 2γAB + as∆̂t∇2F ′(γ)AB − aF ′(γn+1) (3.61)

= γn+1 − 2γAB + s∆̂t
(
F ′(γn+1)−∇2γn+1

)
− s∆̂tF ′(γn+1)

− as∆̂t∇2
(
F ′(γn+1)− F ′(γ)AB

)
.

(3.62)

As in [47], we define ξn+1 to be a discrete version of the chemical potential following the

derivation in Section 3.3.1 as

ξn+1 = λ
(
F ′(γn+1)−∇2γn+1 +

2s

Mλ

(
γn+1 − γAB

)
− a∇2

(
F ′(γn+1)− F ′(γ)AB

)
− (Mλ− as)

Mλ

(
F ′(γn+1)− F ′(γ)AB

) )
.

(3.63)
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Substituting in our equation for A leads to

A =
(
a− s∆̂t

)
F ′(γ)AB −

(
γn+1 + aF ′(γn+1)

)
+
s∆̂t

λ
ξn+1. (3.64)

Recognizing that n · ∇F ′(γ) = F ′′(γ) (n · ∇γ), the boundary condition for A is

n · ∇A =
(
a− s∆̂t

) (
2F ′′(γn) (n · ∇γn)− F ′′(γn−1)

(
n · ∇γn−1

))
− n · ∇γn+1

− aF ′′(γn+1)
(
n · ∇γn+1

)
+
s∆̂t

λ
n · ∇ξn+1

(3.65)

=
s∆̂t

λ
n · ∇ξn+1, (3.66)

where we have used n · ∇γn−1 = n · ∇γn = n · ∇γn+1 = 0. Following [47] we use the

boundary condition n · ∇ξn+1 = 0, which leads to n · ∇A = 0. This gives us the necessary

boundary conditions for both of our systems.

3.3.2 Navier-Stokes equations

Temporal discretization

We discretize the Navier-Stokes equations as in Goulding et al. [33]. As in Sec-

tion 3.3.1, we discretize the time derivative as αρn+1un+1−α(ρu)BD

∆t . For the first time

step, α = 1 and (ρu)BD = ρnun. To achieve second-order accuracy, we thereafter use

a backwards-difference scheme with α = 3
2 and (ρu)BD = 4

3ρ
nun − 1

3ρ
n−1un−1. Explicit

quantities for u are discretized using Adams-Bashforth, where uAB = un in the first time

step and uAB = 2un − un−1 afterwards. As before, ∆t = α∆̂t is used to simplify the equa-

tions. uv is an intermediate estimate of un+1 using an approximation for pressure, which
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is computed in an intermediate implicit solve, and m is the total density flux detailed in

Section 3.3.2. With these, the discretized equations are

ρn+1u∗ − (ρu)BD

∆̂t
+∇ ·

(
m⊗ uAB

)
= 0 (3.67)

u∗∗ − u∗

∆̂t
= − 1

ρn+1
∇pn + g +

1

ρn+1
σκ∇(h (γ)) +

1

ρn+1
∇ ·
(
µn+1

(
∇uAB

)T)
+

1

ρn+1
Sn+1
u

(3.68)

uv − u∗∗

∆̂t
=

1

ρn+1
∇ ·
(
µn+1∇uv

)
(3.69)

∇ ·
(

1

ρn+1
∇p′

)
=
∇ · uv

∆̂t
(3.70)

un+1 − uv

∆̂t
= − 1

ρn+1
∇p′. (3.71)

Momentum flux

Everything in the Navier-Stokes equations is independent of Cahn-Hilliard except

for the density flux term m. We follow Huang et al. [47] and Goulding et al. [33] and give

a modification of m here that is consistent with our new Cahn-Hilliard discretization in

Section 3.3.1. Beginning with

ρn+1 − ρBD
∆̂t

+∇ ·m = Sn+1
m , (3.72)
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where m includes advection and Cahn-Hilliard separation, and Sm takes the effects of the

forcing term Sγ , we express m in terms of γ:

∇ ·m = −ρ
n+1 − ρBD

∆̂t
+ Sn+1

m (3.73)

= − (ρ1 − ρ0)
γn+1 − γBD

∆̂t
+ Sn+1

m (3.74)

= − (ρ1 − ρ0)

(
γn+1 − γ∗

∆̂t
+
γ∗ − γBD

∆̂t

)
+ Sn+1

m . (3.75)

Using Equations (3.46), (3.52), (3.54), and (3.55), defining Sn+1
m = (ρ1 − ρ0)Sn+1

γ , and

canceling terms, this becomes

∇ ·m = (ρ1 − ρ0)
(
∇ ·
(
uABγAB

)
−∇ ·

(
s∇C + s∇A+ (Mλ− as)∇F ′(γ)AB

))
. (3.76)

As shown in [33], this definition of m is only well-defined up to a divergence-free shift. We

determine the shift in the same way as in that work, by considering the case ρ0 = ρ1. This

leads to the same shift of ∇ ·
(
ρ0u

AB
)

as in [33], which is consistent with the shift in [47].

We add this divergence-free shift to (3.76):

∇ ·m = ∇ ·
(
ρ0u

AB
)

+ (ρ1 − ρ0) (∇ ·
(
uABγAB

)
−∇ · (s∇C + s∇A

+ (Mλ− as)∇F ′(γ)AB)).

(3.77)

This leads to a definition of

m = ρ0u
AB + (ρ1 − ρ0)

(
uABγAB − s∇C − s∇A− (Mλ− as)∇F ′(γ)AB

)
. (3.78)
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Like in [33], the term uABγAB is replaced by the flux computed by the WENO conservative

advection described in that work.

3.3.3 Discretization summary

For convenience, we provide a summary of a single step of the full discretized

algorithm.

1. At the beginning of the step, the Adams-Bashforth and backwards-difference quanti-

ties must be computed from previous data. We compute γBD and γAB on cell centers

and (ρu)BD and uAB on cell faces. First-order time discretizations are used on the

first time step:

γBD = γn γAB = γn (ρu)BD = ρnun uAB = un ∆̂t = ∆t. (3.79)

Second-order time discretizations are used on every subsequence time step:

γBD =
4

3
γn − 1

3
γn−1 γAB = 2γn − γn−1 (ρu)BD =

4

3
ρnun − 1

3
ρn−1un−1

uAB = 2un − un−1 ∆̂t =
2

3
∆t.

(3.80)

2. We use a conservative scheme as in [33] to compute γ∗ from γBD as

γ∗i,j = γBDi,j − ∆̂t

(
FWi+1/2,j −FWi−1/2,j

∆x
+
FWi,j+1/2 −FWi,j−1/2

∆y

)
, (3.81)
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where the fluxes FW are computed with WENO interpolation [50]. These fluxes are

also stored for later use in computing the mass flux m.

3. Next, we compute the intermediate term A from γ∗ by solving the Helmholtz equation

A− s∆̂t∇2A = γ∗ − 2γAB + ∆̂tMλ∇2F ′(γ)AB + ∆̂tSn+1
γ . (3.82)

4. We solve the nonlinear equation (3.56) for C by reformulating it as a minimization of

the objective function

E =
∑
i

g (Ci)−
1

2
s∆̂t

∑
i,j

CiLijCj −
∑
i

CiBi. (3.83)

5. The final phase fraction γn+1 is computed from C using g′ (defined in (3.34)).

γn+1 = g′(C), (3.84)

6. With the Cahn Hilliard step complete, we begin the Navier-Stokes step. We compute

effective densities and viscosities on faces by interpolating γn+1 linearly to faces and

then using equations (3.4) and (3.5).

ρn+1
i+ 1

2
,j

= ρ0 + (ρ1 − ρ0) γn+1
i+ 1

2
,j

(3.85)

µn+1
i+ 1

2
,j

= µ0 + (µ1 − µ0) γn+1
i+ 1

2
,j
. (3.86)
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7. Compute the discrete mass flux using the Cahn-Hilliard intermediates A and C,

m = ρ0u
AB + (ρ1 − ρ0)

(
FW − s∇C − s∇A− (Mλ− as)∇F ′(γ)AB

)
. (3.87)

8. Update momentum consistently with the movement of mass from Cahn-Hilliard as in

[33]:

ρn+1u∗ = (ρu)BD − ∆̂t∇ ·
(
m⊗ uAB

)
. (3.88)

9. Compute u∗ by dividing off ρn+1.

10. Apply explicit forces:

u∗∗ = u∗ + ∆̂tg +
∆̂t

ρn+1
σκ∇(h

(
γn+1

)
) +

∆̂t

ρn+1
∇ ·
(
µn+1

(
∇uAB

)T)− ∆̂t

ρn+1
∇pn

+ ∆̂tSn+1
u

(3.89)
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Surface tension is descritized as in [33].

κ = −∇ ·
( ∇γ
‖∇γ‖

)
(3.90)

h(γ) =



1, if γ ≥ 1− a

0, if γ < a

(−γ+a)2(2γ+4a−3)
(2a−1)3

, otherwise

(3.91)

a = 0.2 (3.92)

The viscosity term is discretized consistently as in [47].

11. Solve the Helmholtz equation to apply the implicit portion of viscosity

uv − ∆̂t

ρn+1
∇ ·
(
µn+1∇uv

)
= u∗∗. (3.93)

12. Solve the Poisson equation for the pressure correction, and update the pressure:

∇ ·
(

∆̂t

ρn+1
∇p′

)
= ∇ · uv (3.94)

pn+1 = pn + p′, (3.95)

13. Project un+1 to be divergence free by applying the pressure correction:

un+1 = uv − ∆̂t

ρn+1
∇p′. (3.96)
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3.4 Numerical examples

We demonstrate the numerical properties of our scheme through a series of nu-

merical tests. All the units in the following tests are SI units.

3.4.1 Manufactured solution

We test our discrete solvers using a manufactured solution for γ, u, and p. Accu-

racy is measured by comparing the final simulated state against the manufactured solution.

The source terms that enforce the manufactured solution are

Sγ =
∂γ

∂t
+∇ · (uγ)−∇ · (M∇ξ) (3.97)

Su =
∂ρu

∂t
+∇ · (m⊗ u) +∇p− ρg − σκ∇(h (γ))−∇ ·

(
µ
(
∇u + (∇u)T

))
. (3.98)

The accuracy of the Cahn-Hilliard solver is tested alone, then the Navier-Stokes

solver is added for a second test of the full system. We also perform two additional tests

to show that changes in r and b do not affect the accuracy of our solver. The parameters

used follow the similar tests in [47] and [33]. All tests use a [−π, π]2 domain and end at

t = 1, with time step of ∆t = 0.08/N and cell size ∆x = 2π/N . Fluid phase density is set

to be ρ0 = 1 and ρ1 = 3 with viscosity constants µ0 = 0.01 and µ1 = 0.02. Unless otherwise

noted, the Cahn-Hilliard parameters used in these tests are M = 0.001, λ = 0.001, η = 0.1,

r = 0.1, and b = 0.01.
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Table 3.1: At larger N , our Cahn-Hilliard scheme shows second order convergence at t = 1.

r = 0.1 r = 0.05 r = 0.01

N L2 L∞ L2 L∞ L2 L∞
8 1.28e-05 2.12e-05 1.28e-05 2.09e-05 1.27e-05 2.07e-05
16 6.25e-06 1.04 1.27e-05 0.74 6.31e-06 1.02 1.27e-05 0.72 6.30e-06 1.01 1.27e-05 0.70
32 3.84e-06 0.70 1.22e-05 0.05 3.85e-06 0.71 1.22e-05 0.05 3.85e-06 0.71 1.23e-05 0.05
64 2.49e-06 0.63 1.14e-05 0.10 2.49e-06 0.62 1.15e-05 0.10 2.50e-06 0.62 1.15e-05 0.09
128 8.64e-07 1.52 4.85e-06 1.23 8.71e-07 1.52 4.90e-06 1.23 8.76e-07 1.51 4.94e-06 1.22
256 1.85e-07 2.22 1.05e-06 2.21 1.86e-07 2.22 1.05e-06 2.22 1.87e-07 2.22 1.06e-06 2.22
512 4.45e-08 2.05 2.55e-07 2.04 4.48e-08 2.06 2.57e-07 2.04 4.51e-08 2.06 2.59e-07 2.04

Cahn-Hilliard solver

To assess the convergence of the Cahn-Hilliard solver alone, we use the solution

γ(x, y, t) =
1

2
+

10

21
cos(x) cos(y) (1− sin(t)) . (3.99)

This solution is chosen such that n · ∇γ = 0 and γ ∈ (0, 1) within the time tested. We

omit the Navier-Stokes update for this test and set u = v = 0. The initial conditions are

set using the manufactured solution for t = 0. We refine N from 8 to 512 and use the L2

and L∞ errors at each level of refinement to measure the convergence rate. Table 3.1 shows

that our Cahn-Hilliard solver exhibits second order convergence.

Cahn-Hilliard-Navier-Stokes solver

In this test, we repeat the test in Section 3.4.1 with the same solution for γ but

this time with the coupled Cahn-Hilliard-Navier-Stokes solver and nonzero solutions for u,

98



Table 3.2: The coupled Cahn-Hilliard-Navier-Stokes scheme shows second order convergence at
t = 1.

γ u v p

N L2 L∞ L2 L∞ L2 L∞ L2 L∞
8 1.77e-02 3.39e-02 5.52e-02 1.35e-01 1.74e-02 4.50e-02 2.03e-02 4.64e-02
16 2.98e-03 2.57 9.28e-03 1.87 1.23e-02 2.17 3.18e-02 2.08 3.43e-03 2.34 8.74e-03 2.36 4.01e-03 2.34 1.32e-02 1.82
32 5.68e-04 2.39 1.42e-03 2.71 3.04e-03 2.02 8.43e-03 1.92 7.64e-04 2.17 2.55e-03 1.78 8.43e-04 2.25 2.48e-03 2.41
64 1.39e-04 2.03 3.41e-04 2.06 7.59e-04 2.00 2.14e-03 1.97 1.88e-04 2.02 6.24e-04 2.03 2.10e-04 2.01 6.40e-04 1.95
128 3.49e-05 2.00 8.89e-05 1.94 1.91e-04 1.99 5.34e-04 2.01 4.81e-05 1.97 1.61e-04 1.96 5.49e-05 1.93 1.60e-04 2.00
256 8.77e-06 1.99 2.31e-05 1.94 4.82e-05 1.98 1.31e-04 2.02 1.36e-05 1.83 4.40e-05 1.87 1.57e-05 1.80 4.68e-05 1.77

v, and p:

u(x, y, t) = sin(x) cos(y) cos(t) (3.100)

v(x, y, t) = − cos(x) sin(y) cos(t) (3.101)

p(x, y, t) = cos(x) cos(y) sin(t), (3.102)

which are the same solutions used in [47] and [33]. These solutions provide a divergence-

free velocity field throughout the test. We set gravity to g = 〈1,−2〉. The manufactured

solutions are used to set the initial and boundary conditions. As in Section 3.4.1, N is

refined from 8 to 256. The L2 and L∞ error is measured for γ, u, and p at each level of

refinement and used to measure the convergence rate. Second order convergence is observed

in all quantities as shown in Table 3.2.

Varying b

Our time integration scheme includes one free parameter b. The convergence rate

of the scheme is independent of this parameter, though the parameter is bounded by the

restriction 0 < q < 1 as noted in Section 3.3.1. To evaluate the effects of the constant b

on the accuracy of the coupled Cahn-Hilliard and Navier-Stokes solvers, we fix N = 128
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Table 3.3: L2 and L∞ errors in γ for varying values of q.

q b L2 L∞
9.90e-01 1.32e+01 3.62e-05 9.11e-05
9.00e-01 1.20e+01 3.60e-05 9.05e-05
8.00e-01 1.07e+01 3.57e-05 8.99e-05
7.00e-01 9.33e+00 3.54e-05 8.93e-05
6.00e-01 8.00e+00 3.52e-05 8.89e-05
5.00e-01 6.67e+00 3.51e-05 8.85e-05
4.00e-01 5.33e+00 3.49e-05 8.84e-05
3.00e-01 4.00e+00 3.49e-05 8.83e-05
2.00e-01 2.67e+00 3.48e-05 8.84e-05
1.00e-01 1.33e+00 3.48e-05 8.86e-05
1.00e-02 1.33e-01 3.49e-05 8.89e-05
1.00e-03 1.33e-02 3.49e-05 8.89e-05
1.00e-04 1.33e-03 3.49e-05 8.89e-05
1.00e-05 1.33e-04 3.49e-05 8.89e-05
1.00e-06 1.33e-05 3.49e-05 8.89e-05

and instead vary b (or equivalently, q). We use the same manufactured solutions as in the

previous tests. Table 3.3 shows that the solver accuracy (represented by the L2 and L∞

error of γ) is insensitive to the choice of b. Although accuracy is not appreciably affected by

b, we observe that the scheme is more stable when b is large. This is somewhat expected,

since the strength of the barrier is proportional to b, as one observes in (3.25) and (3.26).

Indeed, if b = 0, the barrier is lost, and (3.25) reduces to a linear Helmholtz equation.

Unless otherwise indicated, we run with b = 0.01 in all of our numerical examples, except

when this would result in q > 0.5; in this case, we compute b so that q = 0.5.

Varying r

Our formulation of the potential F includes an extra free parameter r, which is

the minimum of the double-well potential. In this test, we evaluate the effects of r on the

accuracy of our solver. We test the coupled Cahn-Hilliard Navier-Stokes solver with two
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different manufactured solutions for γ over a range of values for r. The first solution is the

same as in the previous manufactured solution tests,

γ1(x, y, t) =
1

2
+

10

21
cos(x) cos(y)(1− sin(t)). (3.103)

This solution has γ ∈ [ 1
42 , 1 − 1

42 ], which means that as r becomes very small the barrier

portion of F outside the minima will never be used. To account for this, we repeat this test

using the second manufactured solution

γ2(x, y, t) =
1

2
(1− r)

(
1 + cos(

x

2
+
π

2
) cos(

y

2
+
π

2
)
)

+
r

2
. (3.104)

so that γ ∈ [ r2 , 1 − r
2 ] extends into the tails of F . The following solutions for u and p are

used in both cases:

u(x, y, t) = sin(x) cos(y) cos(t) (3.105)

v(x, y, t) = − cos(x) sin(y) cos(t) (3.106)

p(x, y, t) = cos(x) cos(y) sin(t). (3.107)

We fix N = 128 and vary r, as shown in Table 3.4. We observe that varying r does

not strongly affect the accuracy, especially when r is small. This is consistent with the

observation that F converges pointwise in the limit r → 0, as can be seen in Figure 3.3.

The barrier portion of the F becomes extremely sharp in this limit. Unlike traditional

barrier methods, the sharpness of the barrier only weakly affects the performance of the
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Table 3.4: Analysis of manufactured solution error dependence on values of r.

(a) L2 and L∞ error for γ1 at varying r values.

r L2 L∞
4.00e-01 3.48e-05 8.88e-05
3.00e-01 3.49e-05 8.89e-05
2.00e-01 3.49e-05 8.89e-05
1.00e-01 3.49e-05 8.89e-05
1.00e-02 3.49e-05 8.89e-05
1.00e-03 3.49e-05 8.89e-05
1.00e-04 3.49e-05 8.89e-05
1.00e-05 3.49e-05 8.89e-05
1.00e-06 3.49e-05 8.89e-05

(b) L2 and L∞ error for γ2 at varying r values.

r L2 L∞
4.00e-01 1.33e-05 3.54e-05
3.00e-01 1.57e-05 4.32e-05
2.00e-01 1.81e-05 5.18e-05
1.00e-01 2.05e-05 6.13e-05
1.00e-02 2.28e-05 7.08e-05
1.00e-03 2.30e-05 7.18e-05
1.00e-04 2.31e-05 7.19e-05
1.00e-05 2.31e-05 7.19e-05
1.00e-06 2.31e-05 7.19e-05

method; although F (γ) has a sharp barrier in the limits γ → 0 and γ → 1, F (g′(C)) only

grows gradually as C approaches infinity. We do sometimes observe numerical difficulties

when r is extremely small (below 10−4). Unless otherwise specified, we run all of our tests

with r = 0.01.

3.4.2 Binary separation of phases

We demonstrate fluid phase separation over time using a random initial γ distribu-

tion. No forces are calculated during this simulation and there is no γ source term. This test

uses the same parameters as [33] and [43]. The domain is [0, 2π]2 with periodic boundaries.

The initial distribution is uniformly random in the range [0.475, 0.575]. The time step size

is ∆t = 0.0001 and the cell size is ∆x = 1/512. The test runs until t = 5. The Cahn-Hilliard

parameters are chosen to satisfy ML = η2 = 0.001 with σ = 1. Figure 3.6 depicts the test

results in several snapshots from t = 0 to t = 5. These snapshots are qualitatively similar

to the results shown in [43], with increasing phase separation over time.
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(a) t = 0 (b) t = 0.1 (c) t = 1 (d) t = 5

Figure 3.6: Snapshots of phase separation over time.

3.4.3 Stationary circle

We test the balance between pressure and surface tension forces by simulating a

stationary circle of fluid. We take the test parameters from [47] and [33]. We measure

the final velocity of the simulation to determine the magnitude of the spurious currents

caused by force imbalance. We test 5 cases with differing density ratios, surface tension,

and viscosity, and show how each case changes under refinement.

We use a [0, 1]2 domain with free-slip boundary conditions and cell size ∆x = 1/N .

The test runs until t = 10 in time steps of ∆t = 0.064/N . For each case we refine from

N = 16 to N = 256. The circle of fluid is initialized at (0.5, 0.5) with radius r = 0.2

and density ρ1 = 1000. The viscosity of the circle differs depending on test case. The

surrounding fluid varies in density and viscosity for each test case, and both fluids begin

with no initial velocity. Table 3.5 lists the density, viscosity, and surface tension parameters

for each case.
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Following [47] and [33], we narrow the interface width η with refinement to show

convergence to a sharp interface solution:

η = η0

(
∆x

h0

)Xη

= η0(Nh0)−X
η

(3.108)

M = M0

(
η

η0

)XM

=
M0

Nh0
(3.109)

η0 = h0 =
1

32
M0 = 10−5 Xη =

2

3
XM =

3

2
. (3.110)

As in [47] and [33], we average the final velocity to cell centers and compare the magnitude

‖u‖2 with the ideal value of 0. We compute the L2 and L∞ error and plot the change under

refinement compared to the ideal first and second order case in Figure 3.7. Figure 3.7b shows

that L2 decreases with first order whenever viscosity is nonzero, though no improvement is

observed in L∞. That is, the maximum magnitude of velocity error does not change much,

but the region over which this error occurs shrinks.

We note that the test above is not a proper convergence test, since the coefficients

of the PDE are changing under refinement. As such, it is difficult to determine whether the

problems observed are a consequence of the sharpening interface or a fundamental problem

with the underlying scheme. To determine whether the proposed method is converging

properly on this test, we hold the PDE fixed and perform a proper refinement study. We

fix η = 0.02 and M = 10−6. The results are shown in Figure 3.8, where we observe second

order convergence in L2 and convergence ranging from first to second order in L∞.

From these tests, we conclude that the method converges but is somewhat sensi-

tive to the sharpness of the interface. We suspect that this is related to the smoothness of
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Table 3.5: Material parameters for the five tested stationary circle cases.

Case ID ρ0 ρ1 µ0 µ1 σ

Case 1 1000 1000 0 0 1
Case 2 1000 1000 0.1 0.1 1
Case 3 1 1000 0.1 0.1 1
Case 4 1000 1000 0.0001 0.1 1
Case 5 1000 1000 0.1 0.1 10
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Figure 3.7: The magnitude of the spurious velocity for the five stationary circle cases at different
resolutions.

the Cahn-Hilliard potential. The potential function F is C3 continuous everywhere except

at γ = 1
2 , where it is only C2 continuous. This suffices to produce a continuous Hessian.

However, the time integration scheme includes terms of the general form ∇2F ′(γ), which

when expanded out depend on the third derivative of F . This may introduce small discon-

tinuities in the numerical scheme near the interface, which surface tension is particularly

sensitive to.
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Figure 3.8: The magnitude of the spurious velocity for the five stationary circle cases with fixed
interface width.

3.4.4 Horizontal shear

We examine conservation of mass, conservation of momentum, and change in ki-

netic energy in a shearing advection test. Four cases with different density ratios and

viscosities show the effects of these parameters on the test quantities. Surface tension and

gravity are not used in this test.

The test setup is taken from [47] and [33]. The domain has periodic boundary

conditions on all sides and has a range of [0, 1]2. The time step size is ∆t = 0.0005 and

the tests run until t = 1. The cell size is ∆x = 1/128. The surface tension constant is set

to σ = 10−12, leading to negligible surface tension forces, and M = 10−7. The initial γ
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distribution is

γ(x, y, 0) =


1
2

(
1 + tanh

(
y−y1
δ1

))
, if y ≤ y0

1
2

(
1 + tanh

(
y2−y
δ1

))
, if y > y0

(3.111)

y0 = 0.5 y1 = 0.25 y2 = 0.75 δ1 = 1/30, (3.112)

with η = δ1/
√

2. The shearing velocity is

u(x, y, 0) =


tanh

(
y−y1
δ1

)
, if y ≤ y0

tanh
(
y2−y
δ1

)
, if y > y0

(3.113)

v(x, y, 0) = δ2 sin(kx) (3.114)

δ2 = 0.5 k = 2π. (3.115)

These functions initialize fluid 1 with velocity in the postive x direction, located

as a center band in the domain. Fluid 0 has a velocity in the negative x direction, and is

located everywhere else. This distribution has a strong velocity gradient in the transition

Table 3.6: Material parameters for the four tested horizontal shear cases.

Case ID ρ0 ρ1 µ0 µ1

Case 1 1 1 0 0
Case 2 1 10 0 0
Case 3 1 1 0.001 0.01
Case 4 1 10 0.001 0.01
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(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 3.9: Example of Horizontal Shear (Case 3).

region between the fluids. Table 3.6 lists the variable parameters for the four different cases

tested.

Following [33], we measured the change in total mass, total momentum, and kinetic

energy using

mtotal =
∑
i,j

(ρ0 + (ρ1 − ρ0) γi,j) ∆x2 (3.116)

(mu)xtotal =
∑
i,j

(
ρi−1/2,j

) (
ui−1/2,j

)
∆x2 (3.117)

Ek =
1

2

∑
i,j

((
ρi−1/2,j

) (
ui−1/2,j

)2
+
(
ρi,j−1/2

) (
vi,j−1/2

)2)
∆x2, (3.118)

with the y-axis momentum computed analogously to the x-axis. In the absence of surface

tension and external forces, kinetic energy should only decrease in the viscous cases 3 and

4, and otherwise remain unchanged. In all four cases, momentum and mass should be

conserved.
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Figure 3.10: Conservation results for the four horizontal shear cases.

We plot the change in quantities ove time in Figure 3.10. In cases 1 and 3, where

the fluids have matched densities, the density is constant throughout the domain and so

mass is exactly conserved. In the other cases, there is a small change over time due to

solver inaccuracies. Kinetic energy is conserved as expected in the inciscid cases 1 and 2,

and declines due to viscosity in the remaining two cases. Momentum remains essentially

unchanged in the y-axis, but we see a small negative trend over time in the x-axis. This

change is on the order of our solver tolerances.
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Table 3.7: Material parameters for the eight translating circle cases.

Case ID ρ0 ρ1 σ

Case 1 1 1 10−12

Case 2 1 103 10−12

Case 3 1 106 10−12

Case 4 1 109 10−12

Case 5 1 1 1
Case 6 1 103 1
Case 7 1 106 1
Case 8 1 109 1

3.4.5 Translating circle

Based on the same test in [47] and [33], we test the accuracy of our coupled Cahn-

Hilliard method with momentum advection. A drop of fluid 1 with radius 0.1 centered in

the [0, 1]2 domain is advected periodically with initial velocity 〈1, 1〉 in the whole domain.

We use cell size ∆x = 1/128 and take time steps of ∆t = ∆x/10 until the simulation ends

at time t = 1. The drop is expected to complete one full revolution and return to its initial

position. The Cahn-Hilliard parameters are set as M = 10−7 and η = 3∆x. We test with

different densities for the fluid 1, ranging from ρ1 = 1 to ρ1 = 109. Fluid 0 has density

ρ0 = 1 in all cases. The resulting large density ratios demonstrate the robustness of our

momentum conservation through advection. We do not test with viscosity or gravity. The

tests are run twice, once with the surface tension constant σ = 10−12, giving negligible

surface tension force, and the the second time with σ = 1. The full set of cases are listed in

Table 3.7.

To evaluate the results of the test, we illustrate change in the velocity field as

well as the shape of the drop. Ideally, the velocity field does not change from its initial

〈1, 1〉 values and the drop retains its circular shape. We measure the L2 and L∞ error in
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Table 3.8: Velocity error for the four translating circle cases without surface tension (1–4).

Variable Norm ρ1/ρ0 = 1 ρ1/ρ0 = 103 ρ1/ρ0 = 106 ρ1/ρ0 = 109

u
L2 8.73e-13 2.70e-13 2.92e-13 2.89e-13
L∞ 7.33e-12 7.83e-13 8.76e-13 8.93e-13

v
L2 8.73e-13 2.70e-13 2.92e-13 2.89e-13
L∞ 7.33e-12 7.83e-13 8.76e-13 8.93e-13

Table 3.9: Velocity error for the four translating circle cases with surface tension (5–8).

Variable Norm ρ1/ρ0 = 1 ρ1/ρ0 = 103 ρ1/ρ0 = 106 ρ1/ρ0 = 109

u
L2 7.87e-04 7.03e-06 7.35e-09 1.43e-10
L∞ 6.36e-03 4.53e-05 4.77e-08 1.49e-09

v
L2 7.87e-04 7.03e-06 7.35e-09 1.43e-10
L∞ 6.36e-03 4.53e-05 4.77e-08 1.49e-09

the velocity against its ideal values at the end of the simulation (t = 1). Figures 3.11 and

Figure 3.12 depict the final state of the velocity field as staggered streamlines as well as

the initial and final shape of the bubble. We see that in all cases the velocity streamlines

remain straight and the shape of the drop is preserved.

Table 3.8 lists the measured error in the velocity field for the cases without surface

tension. The velocity experiences negligible change at all density ratios. Table 3.9 lists

the same measurements for the cases with surface tension. In this subset of cases, we see

that there is more error in the velocity field, but this error decreases as the density ratio

increases. In all cases, the measured error is at least as small as the results reported in [47]

and [33].
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Figure 3.11: The initial state of the translating circle (Cases 1–4) is represented by the solid black
line. The final (t = 1) state is represented by the dashed red line. The blue dashed arrows represent
the velocity streamlines at t = 1.

3.4.6 Rising air bubble

We perform the rising air bubble test from [47] and [33] to examine how our

scheme converges toward a sharp interface solution. We test 6 different ways of coupling
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Figure 3.12: The initial state of the translating circle (Cases 5–8) is represented by the solid black
line. The final (t = 1) state is represented by the dashed red line. The blue dashed arrows represent
the velocity streamlines at t = 1.

the interface width parameter η to the resolution N and evaluate the results by measuring

the circularity, center of mass, and rising velocity of a bubble surrounded by denser fluid.

We use a [0, 1] × [0, 2] domain with no-slip boundary conditions on the top and

bottom edges and slip boundary conditions on the left and right edges. The cells are
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square with edge length ∆x = 1/N . A circle of fluid 0 with diameter 0.5, density ρ0 = 1,

and viscosity µ0 = 0.1 begins centered at position (0.5, 0.5). The surrounding fluid 1 has

properties ρ1 = 1000 and µ1 = 10. Gravity is set as 〈0,−0.98〉, and σ = 1.96. The fluid

begins at rest, and the simulation runs until t = 1 with time step ∆t = 0.128/N .

To couple η with N we use the following definitions from [47]:

η = η0(Nh0)−Xη (3.119)

M = M0(η/η0)XM , (3.120)

where η0 = h0 = 1/32 and M0 = 10−7. Xη and XM are varied over the 6 different test

cases, and we limit them with Xη ≤ 1 based on [47] and 1 ≤ XM < 2 from [49]. Each of

the 6 test cases is refined from N = 16 to N = 256. For 5 of the tests we test the effects

of varying Xη by fixing XM = 1 and varying Xη in the range [0, 1]. In the final test, we

increase XM to 3/2 and use Xη = 2/3, which keeps M proportional to ∆x.

To measure the circularity (ψc), center of mass (yc), and rising velocity (vc), we

use the methods from [47]:

ψc =
Pa
Pb

=
2
√∫

γ< 1
2
πdΩ

Pb
(3.121)

yc =

∫
Ω y(1− γ)dΩ∫
Ω(1− γ)dΩ

(3.122)

vc =

∫
Ω v(1− γ)dΩ∫
Ω(1− γ)dΩ

, (3.123)

with Pa is the perimeter of a reference circle the same area as the bubble and Pb is the

perimeter of the bubble itself. Based on this ratio, when ψc = 1 the bubble is perfectly
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ψc

Grid
Xη = 0, XM = 1 Xη = 1

3 , XM = 1 Xη = 1
2 , XM = 1 Xη = 2

3 , XM = 1 Xη = 2
3 , XM = 3

2 Xη = 1, XM = 1
L2 L2 L2 L2 L2 L2

16 4.91e-03 9.38e-03 1.14e-02 1.39e-02 1.38e-02 2.00e-02
32 1.61e-03 1.61 2.30e-03 2.03 2.78e-03 2.04 3.08e-03 2.17 3.06e-03 2.17 3.22e-03 2.64
64 7.83e-04 1.04 8.71e-04 1.40 7.92e-04 2.04 7.22e-04 2.09 7.27e-04 2.08 8.61e-04 1.90
128 3.02e-04 1.38 3.32e-04 1.39 2.83e-04 1.48 3.51e-04 1.04 3.66e-04 0.99 5.57e-04 0.63

yc

L2 L2 L2 L2 L2 L2

16 7.80e-03 1.38e-02 1.58e-02 1.79e-02 1.79e-02 2.33e-02
32 2.01e-03 1.96 5.95e-03 1.21 6.60e-03 1.26 6.88e-03 1.38 6.87e-03 1.38 6.96e-03 1.74
64 4.53e-04 2.15 2.60e-03 1.19 2.63e-03 1.26 2.43e-03 1.50 2.42e-03 1.50 1.88e-03 1.89
128 9.74e-05 2.22 9.51e-04 1.45 8.64e-04 1.61 7.09e-04 1.78 7.01e-04 1.79 4.25e-04 2.14

vc

L2 L2 L2 L2 L2 L2

16 1.34e-02 1.98e-02 2.20e-02 2.43e-02 2.43e-02 3.05e-02
32 4.48e-03 1.58 8.53e-03 1.21 9.19e-03 1.26 9.40e-03 1.37 9.38e-03 1.37 9.42e-03 1.69
64 1.42e-03 1.66 3.64e-03 1.23 3.64e-03 1.26 3.34e-03 1.50 3.31e-03 1.50 2.65e-03 1.83
128 3.00e-04 2.24 1.28e-03 1.50 1.20e-03 1.60 9.91e-04 1.75 9.70e-04 1.77 6.42e-04 2.04

Table 3.10: Rising air bubble test convergence results, using a comparison of simulations with N = 16
through N = 128 to corresponding simulations with N = 256.

circular, and ψc < 1 will decrease as the bubble deforms. We compute Pb using the same

method as [33].

We compare the measured values against the N = 256, using the L2 error to

measure the rate at which the test is converging to a solution. Table 3.10 details the error

and convergence rate for each case. Our results are comparable to those reported in [47]

and [33]. In case 1, the interface width should not change with refinement, so the simulated

problem remains fixed at all N . We plot the change in our measured parameters over time

for all refinements in Figure 3.13. We see in this figure that the parameters quickly converge

to N = 256 values. Figure 3.14 demonstrates the differences between the 6 cases at the

highest level of refinement with N = 256. Our results for this test match the results shown

in [47] and [33].
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Figure 3.13: Results for rising air bubble case 1.

3.4.7 Rayleigh-Taylor instability

The Rayleigh-Taylor instability experiment from [70] is a classic multi-phase fluid

simulation. As in [47] and [33], we reproduce this experiment with our scheme and measure

key features over time.

The initial state positions a denser fluid with ρ1 = 3 over a lighter fluid with ρ0 = 1

in a [0, 1] × [0, 4] domain discretized with cell size ∆x = 1/128. The domain is periodic in

the x-axis and has free-slip boundary conditions at the top and bottom walls. The interface
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Figure 3.14: Comparing results for all rising bubble test cases with N = 256.

between the fluids is set to an unstable pertubation at y = 2 + 0.1 cos(2πx), which will

allow immediate mixing. The only external force applied is a gravity of 〈0,−1〉, and the

fluids begin at rest. The characteristic parameter At = (ρ1 − ρ0)/(ρ1 + ρ0), the “Atwood

ratio”, is used to scale the time step of ∆t = 5× 10−4/
√
At and we run the simulation until

t
√
At = 8. Both fluids have matched viscosity µ0 = µ1 = 0.001, and we set the surface

tension constant σ = 10−12 and the Cahn-Hilliard parameters as η = 0.01 and λM = 10−15

We show snapshots of this test in Figure 3.15 from t
√
At = 0 to t

√
At = 2.5 for

our scheme and provide a comparison with our implementation of [33]. Figure 3.16 shows
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the continuation of the test using our scheme from t
√
At = 2.25 to t

√
At = 8. Our results

are visually comparable to the snapshots shown in [47] and [33], and maintain symmetry in

the interface through the entire simulation. We also measure the location of the interface

between the fluids from t
√
At = 0 to t

√
At = 2.5, plotting the highest and lowest point of

the interface in Figure 3.18. Our results are similar to those of the experiments with similar

parameters reported in [33], [47], [21] and [35]. As in these other works, the simulation does

not reach a stable state in the time given.

As in [47] and [33], in Figure 3.17 we show a comparison of our scheme with

different density values for fluid 1. We test densities ρ1 = 3, 30, 1000, 3000, and our results

for t
√
At = 0 to t

√
At = 1.75 are similar to those shown in previous works. However, we

note that our interface does not maintain symmetry past t
√
At = 4 for the larger density

ratios at the given parameters. [47] and [33] do not report past t
√
At = 2, so we cannot say

whether this is a limitation of this approach or just our scheme.

3.4.8 Dam break

We simulate a dam break scenario as described in Martin and Moyce [65], where a

rectangular volume of water at rest is released to flow in a larger container. This simulation

shows how our scheme handles setups based on physical phenonmenon. The initial square of

water with side length a = 0.05715 is positioned in the lower-left corner of the [0, 4a]×[0, 2a]

domain. All walls in this domain are treated with the no-slip boundary condition, and

each cell has size ∆x = a/64. The initial velocity is zero everywhere in the domain. In
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(a) Snapshots of a Rayleigh-Taylor simulation using Goulding et al. [33]’s method.
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(b) Snapshots of a Rayleigh-Taylor simulation using our method.

Figure 3.15: Visual comparison of Rayleigh-Taylor simulations using different methods at t =
0, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5.

our simulation, fluid 1 represents water with viscosity µ1 = 1.002 × 10−3 and density

ρ1 = 998.207. Fluid 2 represents air and has viscosity constant µ0 = 1.78 × 10−5 and

density ρ0 = 1.204. The surface tension constant is σ = 7.28×10−2 and gravity of 〈0,−9.8〉

is used as an external force. We set the Cahn-Hilliard parameters based on [47] and [33],

which are Mλ = 10−7 and η = 0.01a. We take time steps of ∆t = 7.1437 × 10−5 and run

the simulation until t = 10.

As illustrated in Figures 3.20 and 3.21, when the simulation begins gravity causes

the water to flow from the left edge to the right edge of the domain. The water’s momentum

causes it to rise up the right wall of the domain, where gravity overcomes the momentum
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Figure 3.16: Continued snapshots of a Rayleigh-Taylor simulation using our method with ρ0 = 3,
from t = 2.25 to t = 8 in 0.25 increments.

and the water collapses back down on itself. Following [47] and [33], when reporting our

results we non-dimensionalize t as T = t

√
|gy |
a and length by dividing by a. Figure 3.19

shows the location of the front of the water Z and the highest point H from T = 0 to
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(a) ρ1 = 30
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(b) ρ1 = 1000
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(c) ρ1 = 3000

Figure 3.17: Snapshots of Rayleigh-Taylor simulations with different density ratios at t =
0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75.

T = 2.25. These results compare well to the canonical experiment results in Martin and

Moyce [65] and the results reported in [47] and [33].
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Figure 3.18: Tracking the maximum and minimum y of the phase interface in the Rayleigh-Taylor
simulation with ρ1/ρ0 = 3.

0 0.5 1 1.5 2 2.5
0

1

2

3

4

T

Z

(a) The largest x location of fluid phase 1 over time.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

T

H

(b) The largest y location of fluid phase 1 over time.

Figure 3.19: Tracking the height and front of fluid phase 1 in the dam break scenario.

3.5 Conclusion

In this chapter we constructed a novel discretization of the Cahn-Hilliard equations

that is able to guarantee that phase fractions remain bounded between 0 and 1. Maintain-

ing phase fractions in the feasible range is essential for stability, since values outside this

range may produce negative densities, especially with large density ratios. The method

eliminates the need to perform a global post-processing step to correct the phase fraction.
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(a) T = 0 to T = 2
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(b) T = 2.5 to T = 4.5

Figure 3.20: Snapshots of the dam break scenario from T = 0 to T = 4.5.
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(a) T = 5 to T = 7
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(b) T = 7.5 to T = 9.5

Figure 3.21: Snapshots of the dam break scenario from T = 5 to T = 9.5.
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We constructed a formally 1.5 order accurate time integration scheme that uses a barrier

potential to maintain bounds on the phase fraction. We present a potential function that

allows the barrier formulation to be cast as a convex nonlinear optimization problem, which

can be solved efficiently and robustly. We coupled our Cahn-Hilliard solver to the Navier-

Stokes equations to simulate phase separation in a two-phase fluid flow in two dimensions.

The resulting solver is mass-momentum consistent and works with large density ratios. We

demonstrate second order accurate in γ and velocity and compare it with published results

on a number of tests.

Since our method uses the same Navier-Stokes discretization and coupling as [33],

we observe some of the same limitations, such as artifacts in the shearing test in Sec-

tion 3.4.4. The method is sensitive to the sharpness of the interface, likely related to the

lack of C3 continuity in the potential F ; unfortunately, the current formulation does not

quite provide enough freedom to allow F to be C3 everywhere. We have also observed that

under some circumstances, the scheme suffers numerical difficulties or is not stable; this can

occur when the parameters r or b are very small.
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Chapter 4

Conclusions

In this work, we constructed two novel methods for the discretization of the coupled

Cahn-Hilliard-Navier-Stokes equations in two dimensions.

The first method (Chapter 2) is a simple, conservative, and stable discretization

of the Cahn-Hilliard equation. It is coupled to the Navier-Stokes equations to simulate

two-phase fluid separation and flow. The scheme is consistent in mass and momentum

and works well with large density ratios. This scheme is demonstrated to be second order

accurate in the phase-field term γ, velocity, and pressure. We have compared it to published

results from previous works in a variety of experiements.

In Chapter 2 we also introduce a novel discretization of a phase-field-based surface

tension force that has finite effect around the phase interface and has a parameter that

can be used to smoothly transition the force from a smoothed continuum surface force to

a sharp interface force. In the latter case, it is shown that the applied surface tension is

equivalent to using pressure jump conditions for a sharp interface method. This method
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compares well against surface tension methods used in other Cahn-Hilliard-Navier-Stokes

works.

This method has some limitations. Evolution of the phase-field term γ does not

always maintain values in the range [0, 1], which can lead to negative effective density values

with large density ratios. While this bounds-violation is corrected using a post-processing

redistribution scheme, the redistribution is global and not ideal. Our implementation also

requires an additional Poisson solve to find the effective phase-field flux that does not always

converge well. This limitiation is addressed in the second method in Chapter 3.

The second method (Chapter 3) is a second novel discretization of the Cahn-

Hilliard equations that seeks to address one of the limitations of the first method. This

discretization is able to guarantee that the phase-field concentration fraction term γ remains

in the physically appropriate range [0, 1]. This guarantee eliminates the need for a separate

post-processing step for γ. This discretization uses a potential function F with a barrier

at 0 and 1 to maintain bounds on γ. We formulate this scheme as a convex nonlinear

optimization problem. Like the first scheme, this method is also mass-momentum consistent

and is formally 1.5 order accurate and observably second-order accurate in γ, velocity, and

pressure.

However, there are some limitations to this second method. The piecewise poten-

tial function F from Chapter 3’s method is not C3 continuous at γ = 0.5, which may be the

reason that the method shows some sensitivity to the interface width. This may be an area

suited to further research. In some experiments we observed that there may be instability

or numerical difficulties when the parameters r and b are particularly small. The inability
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to support sufficiently small values for r may make this method not ideal for exceptionally

large density ratios (such as those in excess of 106).

Both methods use the same Navier-Stokes discretization and are coupled to the

Cahn-Hilliard equation in the same way. Therefore, they share some limitations of the

momentum advection scheme. In both methods, we note that shearing flows with sharp

phase-field transitions can lead to artifacts in the phase-field. These artifacts are observed

to decrease under refinement. The method used for momentum advection, while consistent

with the phase-field evolution, appears less robust than a classical WENO advection scheme.
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[36] Francisco Guillén-González and Giordano Tierra. On linear schemes for a cahn–hilliard
diffuse interface model. Journal of Computational Physics, 234:140–171, 2013.
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