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Abstract 

This paper describes how a cognitive architecture builds a 
spatial model and navigates from it without a map. Each con-
structed model is a collage of spatial affordances that de-
scribes how the environment has been sensed and traversed. 
The system exploits the evolving model while it directs an 
agent to explore the environment. Effective models are 
learned quickly during travel. Moreover, when combined with 
simple heuristics, the learned spatial model supports effective 
navigation. In three simple environments, these learned mod-
els describe space in ways familiar to people, and often pro-
duce near-optimal travel times.  

Keywords: spatial cognition, cognitive architecture, spatial 
affordances, learning, exploration 

Introduction 
People somehow find their way through unfamiliar territory 
without a map, and with experience soon improve their abil-
ity to navigate there. This paper describes a system that 
simulates that skill development in an agent subject to noise 
and uncertainty. Our thesis is that learning to navigate is 
based on commonsense, qualitative reasoning, exploration, 
and affordances derived from perception. Our approach re-
lies on devices well documented in people: a penchant for 
exploration and the representation and exploitation of per-
ceptual experience through heuristic reasoning. Two princi-
pal results are reported here. First, a reusable, transferable, 
human-friendly depiction of an environment can be learned 
quickly. Second, such a model supports navigation in time 
close to that realized by an optimal path planner that con-
tends with similar noise and uncertainty.  

Spatial cognition learns, organizes, and applies know-
ledge about a spatial environment. People represent that 
knowledge internally as a spatial mental model, but the na-
ture of that model remains an open question. Empirical evi-
dence shows it is not an image-like metric map, even for a 
simple environment. Tversky’s subjects displayed systemat-
ic errors incompatible with a map (Tversky, 1993). She sug-
gested that their mental model was a gradually acquired col-
lage of disparate knowledge types. In another study, 
subjects navigated no differently when their virtual 
environments were metrically or topologically possible or 
impossible (Zetzsche, Galbraith, Wolter, & Schill, 2009).  

Neurophysiologists have suggested that people use a sen-
sorimotor or graph-like spatial mental model, where spatial 

abstractions remove perceived but irrelevant details from 
spatial knowledge (Frommberger & Wolter, 2008). An af-
fordance is a relation that enables one to perform an action 
(Gibson, 1977). Here, a spatial affordance is a spatial ab-
straction that supports navigation. This paper focuses on 
how a cognitive architecture combines a penchant for explo-
ration (Speekenbrink & Konstantinidis, 2014) with the heu-
ristic exploitation of learned spatial affordances. 

Navigation, as studied here, is in a world, a dynamic, par-
tially observable environment where maps are unreliable or 
unavailable, and landmarks may be absent, obscured, or 
obliterated. Examples include complex office buildings, 
warehouses, and search and rescue scenes. A traveler there 
may encounter unanticipated barriers or passageways. 

SemaFORR is an application of the FORR cognitive ar-
chitecture to robot navigation (Epstein, 1994). FORR was 
confirmed as cognitively plausible on human game players 
(Ratterman & Epstein, 1995), and has since learned success-
fully in a variety of application domains. FORR relies on 
multiple application-specific rationales, good reasons to se-
lect an action. This makes it a particularly suitable cognitive 
architecture for navigation, given that people also rely on 
multiple wayfinding strategies to select routes (Takemiya & 
Ishikawa, 2013; Tenbrink, Bergmann, & Konieczny, 2011). 
Moreover, SemaFORR’s rationales exploit research on the 
ways people perceive, envision, describe, and navigate 
through space (e.g., (Golledge, 1999)). 

SemaFORR makes navigation decisions for a simple au-
tonomous robot. The robot has no map; instead, it has only a 
local view of its immediate surroundings, a form of low-
level sensorimotor perception. This view is provided by a 
wall register, a set of limited-range sensors that calculate 

  
 (a) (b) 
Figure 1: How SemaFORR perceives space and what it 
learns. (a) From its heading (arrow), the robot has only a lo-
cal view. The inferred region is shown as a circle. (b) A 
learned spatial model for world A. Dots are regions’ exits. 
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the robot’s distance to the nearest wall in 10 directions, as in 
Figure 1(a).  

Through heuristic analysis of both the robot’s perception 
and its travel in a world, SemaFORR quickly learns a spa-
tial model as a set of spatial affordances. Figure 1(b) super-
imposes an example of a learned spatial model on the true 
map for a simple office space (world A). The circles and 
squares represent regions and conveyors, respectively. (Both 
are explained in the next section.) The model clearly cap-
tures world A’s rooms and hallway. Although this learned 
collage is only approximately correct, we show here that it 
supports effective navigation. 

SemaFORR is ultimately intended to make decisions for 
the robots of HRTeam (Human-Robot Team) (Sklar et al., 
2011). An HRTeam robot is autonomous, inexpensive, and 
has simple perceptual devices. It is challenged both by actu-
ator noise (imperfectly executed intended actions) and un-
certainty (e.g., in its perceived location or from friction).  

Because a SemaFORR robot is also intended to collabo-
rate with a human team member, properties of our approach 
become particularly important. SemaFORR’s decision struc-
ture allows a robot to explain the reasons for its actions. Be-
cause those reasons are readily understandable by people, 
human-robot collaboration can be more natural for the per-
son. In addition, a cognitively plausible mental model can 
be shared with the person at a level of abstraction that is 
both meaningful and parsimonious.  

The next section of this paper describes the navigation 
task, FORR, and SemaFORR. Subsequent sections include 
the experimental design and results for several navigators 
constructed within SemaFORR. The paper concludes with 
related research and a discussion that includes current work. 

Navigation, FORR, and SemaFORR 
For SemaFORR, a task requires the robot to visit (come 
within ε of) a target. A location in a two-dimensional world 
is a real-valued pair (x,y) that denotes a point in a coordinate 
plane. At any instant, the robot’s position is its location and 
its heading (allocentric forward direction). Given the tar-
get’s location and its own location (from overhead cameras), 
the robot can compute the Euclidean distance between them. 

Classical robot navigation either assumes a map or has the 
robot navigate to construct one. In such a map, the A* algo-
rithm can find an optimal (i.e., shortest) path between any 
two locations (Hart, Nilsson, & Raphael, 1968). For A*, a 
continuous map is discretized, that is, a coordinate grid is 
superimposed on the environment and each cell is treated as 
a node in a graph. A* then finds a plan, the shortest path 
from the robot’s start cell to the target’s cell. A* is ill-suited 
to unknown territory, however, because it requires a com-
plete and correct map. Many variations on A* address dy-
namic or uncertain environments, but when a robot’s plan 
fails, the robot still must repair it or replan. This paper ex-
plores what a robot can achieve without planning. 

SemaFORR’s robot senses only at a decision point, its lo-
cation when it selects its next action. In a FORR-based sys-
tem, action selection is the product of a decision cycle. The 

input to a decision cycle is the current state, a set of possible 
actions, and world knowledge. In SemaFORR, the current 
state includes the wall register, the robot’s list of targets to 
visit, its current position, and a history of its decision points 
on the way to its current target. For cognitive efficiency, ra-
ther than generate possible actions in a continuous space, 
SemaFORR has a discrete repertoire of qualitative actions: 5 
forward linear moves of various lengths (henceforward, 
simply moves), 10 clockwise or counterclockwise rotations 
of various degrees (turns), and a pause (do nothing).  

SemaFORR is implemented with a simulator that repli-
cates the errors observed in our laboratory on a Surveyor 
SRV-1 Blackfin, a small robot platform with a webcam and 
802.11g wireless. Its larger moves and turns incur larger ac-
tuator discrepancies. SemaFORR’s world knowledge is its 
spatial model, represented as descriptives, described next. 

Descriptives capture affordances 
In FORR, a descriptive is a data item whose value is com-
puted on demand, with functions that determine how and 
when to update it. The current values of all descriptives are 
computed as input at the beginning of each decision cycle. 
Spatial affordances are represented as descriptives that 
evolve as the robot travels to new targets. 

When the robot reaches a target, SemaFORR reviews its 
true path, the sequence of decision points that brought it 
there and the wall register at each of them. SemaFORR then 
revises the true path to reduce expended cognitive and phys-
ical effort. (This is similar to people’s use of return paths in 
(Hamburger, Dienelt, Strickrodt, & Röser, 2013), but with 
decision points rather than landmarks or viewpoints.) 
SemaFORR uses the wall register at each decision point to 
identify a better (i.e., more direct) choice. In the resultant 
corrected path, edges represent better moves that were pos-
sible actions, as in Figure 2(a).  

SemaFORR’s learned spatial model summarizes its per-
ceptual and travel experience with three kinds of descrip-
tives: conveyors, regions, and exits. A conveyor grid covers 
the world with cells about 1.5 times the size of the robot’s 
footprint. It tallies how often all corrected paths intersect 
each cell. A conveyor is a cell with a high count; it repre-
sents an area through which many successful paths have 
traveled, as in Figure 2(b). A region approximates a con-
fined, connected, open space (e.g., a room). As in Figure 

  
 (a) (b)  
Figure 2: In world A, (a) a true path (dashed) to a target in 
the upper center, and its corrected (solid line) version based 
on local perception. (b) Conveyors after travel to 40 targets. 
Corrected paths passed through darker cells more often. 
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1(a), a region is a circle centered on the robot’s location, 
with radius equal to the shortest wall-register distance. (Re-
gions are reminiscent of areas in online mapping (Thrun et 
al., 1998), but do not require that the robot map all walls 
first.) Larger regions subsume smaller ones, and regions do 
not overlap. An exit from a region, shown here as a dot on 
its edge, is formed wherever a true path intersects its perim-
eter. To make a decision, SemaFORR applies commonsense 
and its descriptives through its Advisors. 

Advisors capture high-level reasoning 
In FORR, an Advisor is a boundedly rational (i.e., resource-
limited) procedure that represents a rationale. Given the cur-
rent state, world knowledge, and a possible action, an Advi-
sor produces its opinion on the action as a comment. The 
strength of a comment reflects the degree to which the Ad-
visor’s rationale supports or opposes the action. SemaFORR 
has 22 Advisors in all; Table 1 lists their rationales.   

Most rationales produce one Advisor for moves and an-
other for turns. A turn Advisor looks ahead to how it could 
use the same rationale after a turn. For example, GREEDY‘s 
comments on moves have strengths proportional to how 
close the moves are expected to bring the robot to the target. 
GREEDY’s comments on turns have strengths based on how 
close the robot could come to the target if it were to turn that 
way and then move in the resultant direction. A turn deci-
sion is not a plan - it recommends a turn and anticipates a 
subsequent move, but does not commit to one. 

SemaFORR has three rationales that exploit its learned 
spatial affordances. CONVEY supports moves to high-count 
conveyors, with preference for those further from the robot. 
(When high-count conveyors are near one another, CONVEY 
promotes travel through them rather than to them.) Exits 
support loose connectivity among the regions, as follows. If 
the robot is in region R, a leaf region is one with exits only 
to R. (With perfect knowledge, a leaf region would be a 
dead-end.) If the target is in region T, UNLIKELY opposes ac-
tions into a leaf region other than T, and EXIT supports ac-
tions toward exits from R that do not go to a leaf other than 
T, in the spirit of (Björnsson & Halldórsson, 2006). 

Two SemaFORR rationales advocate exploration as a way 
to reduce uncertainty, a requisite human behavior in noisy, 
dynamic domains (Speekenbrink & Konstantinidis, 2014). 
EXPLORER encourages movement to novel (or rarely visited) 
locations, those that minimize the total Euclidean distance to 
previous decision points in the current task only. NOTOPPO-
SITE prevents oscillation in place by vetoing turns that 
change the previous rotation direction after a pause.  

GREEDY and the remaining rationales rely only on com-
monsense and local perception. When there is no interven-
ing wall, VICTORY supports a move directly to the target, or 
a turn that aligns the robot’s heading with the target. When 
the robot is near the target, CLOSEIN supports actions with 
comment strengths based both on distance to the target and 
the heading correction necessary to reach it. AVOIDWALLS 
opposes actions that would bring the robot too close to a 
wall, and thereby risk collision due to noisy actuators. BIG-
STEP supports the largest possible action in each direction, 
with comment strengths proportional to that action’s size. 
Because a broader expanse offers more alternatives and al-
lows larger movements, ELBOWROOM prefers actions that 
maintain a reasonable distance from any wall. Finally, when 
the robot is facing a wall, GOAROUND veers away from it, 
and prefers larger turns more strongly when a wall is closer. 
Disagreements among Advisors are anticipated, and re-
solved during a decision cycle. 

Hierarchical decision making 
To reach a target, SemaFORR repeatedly selects one action 
at a time with the decision cycle shown in Figure 3. 
SemaFORR alternately chooses a move (or pause) on one 
decision cycle and a turn on the next decision cycle. Pauses 
allow extended turns in one direction. If SemaFORR choos-
es an action other than pause, it sends a command that 
drives the robot’s motors for some period of time. This ac-
tuation either turns the robot or propels it forward, subject to 
the simulated actuator error described above.  

FORR partitions Advisors into three tiers, which its deci-
sion cycle treats hierarchically. Advisors assumed to be cor-
rect are placed in tier 1. All other Advisors, in tier 3, are 
heuristics. (Tier 2 is not used here; it includes planners, and 

Table 1. SemaFORR’s Advisor rationales. * = rationale uses 
spatial affordances. † = rationale applies only to turns.  

     Name Rationale 
Tier 1 in the order Advisors are considered 

VICTORY Go to a target within range 
AVOIDWALLS Do not go within ε of a wall 
NOTOPPOSITE†  Do not oscillate in place 
Tier 3 heuristic Advisors vote to choose an action 
*CONVEY  Go to frequent, distant conveyors 
*EXIT Leave a region via an exit 
*UNLIKELY Do not enter a target-free leaf region  
BIGSTEP Make a large move or turn toward one 
CLOSEIN When nearby the target, go closer 
ELBOWROOM Go where there is room to move 
EXPLORER Go to unfamiliar locations 
GOAROUND† Turn to avoid obstacles directly before you 
GREEDY Go closer to the target  

 
Figure 3: The FORR decision cycle. 
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is the focus of current work.) In FORR, a comment from a 
tier-1 Advisor either forces an action or vetoes one. If any 
tier-1 Advisor selects an action, it becomes the decision. 
Otherwise, tier-1 Advisors may forbid some actions, and 
FORR invokes tier 3 on the actions that remain.  

As a FORR-based system, SemaFORR consults its tier-1 
Advisors first, in the order shown in Table 1. For example, 
assume that the robot in Figure 1(a) is about to select a turn. 
If its target is not in range, VICTORY does not comment, and 
AVOIDWALLS vetoes those turns to the right that would 
bring it too close to the wall. Then, if the last turn was to the 
right and the last move was a pause, NOTOPPOSITE vetoes 
all left turns, and SemaFORR then invokes tier 3 on the re-
maining turns. Because no tier-1 Advisor ever vetoes pause, 
there will always be at least one remaining action. If pause 
is selected or if only pause remains, the robot does nothing 
until the next decision cycle. 

Unlike tier 1, all tier-3 Advisors are consulted together. In 
tier 3, voting sums the comment strengths for each action, 
and the action with maximum total strength is the decision. 
(Ties are broken at random.) For example, a long (BIGSTEP) 
move that gets close to the target (GREEDY) and goes where 
the robot has not traveled in the current task (EXPLORER) is 
likely to have considerable support. Those Advisors also 
provide a human-friendly explanation for the decision. 

Experimental design 
We tested multiple navigators. SemaFORR-A* is our gold 
standard. From the map, it uses A* to plan an optimal path 
as a sequence of waypoints from the robot’s initial location 
to its target. SemaFORR-A* avoids walls and selects the ac-
tion that brings the robot closest to its next waypoint in the 
plan. To limit actuator error, SemaFORR-A* always choos-

es the smallest moves and turns. When a waypoint is ob-
structed, or when noisy actuators drive the robot too far 
from its next waypoint, SemaFORR-A* replans.  

SemaFORR uses all the Advisors in Table 1. To evaluate 
the impact of its components, we also tested ablated naviga-
tors with all the tier-1 Advisors but only subsets of the tier-3 
Advisors. SemaFORR-B, for basic, uses only commonsense 
and perception: BIGSTEP, CLOSEIN, ELBOWROOM, 
GOAROUND, and GREEDY. SemaFORR-E, for explore, is 
SemaFORR-B plus EXPLORER. SemaFORR-C and 
SemaFORR-R add to SemaFORR-E only the Advisors for 
conveyors or regions, respectively.  

Because SemaFORR is expected to improve its perfor-
mance over a sequence of tasks in unfamiliar, unmarked ter-
ritory, it should do lifelong (i.e., cumulative) learning. We 
tested each navigator in three worlds (A, B, and C) shown in 
Figures 1(b) and 4. A setting for a world is the robot’s start-
ing location (here, always in the lower left) and a randomly 
ordered list of 40 randomly generated targets to visit. In a 
trial, the robot begins a setting in its starting location and 
then attempts to travel from one target to the next, in order. 
There is a 250-decision limit to reach any one target. If the 
robot fails (does not reach a target), it begins travel toward 
the next target from its current position. Performance is av-
eraged over 5 trials in each of 5 settings, a total of 25 trials 
(1000 targets) per world for each navigator. Testing for the 
data reported here was performed in simulation.  

In each world, each navigator is evaluated on its trial 
time, the distance it travels, and the frequency with which it 
reaches its target within 250 decisions. Time includes time 
to sense (the wall register), to decide (consult the Advisors), 
to act (send and execute the command), and to learn (calcu-
late the affordances). In the following, cited results are sta-
tistically significant at p < 0.05 unless otherwise noted. 

Results 
Results appear in Table 2. SemaFORR-B, without explora-
tion or spatial affordances, is surprisingly effective in world 
B; it finishes within 12% of the optimal travel time. None-
theless, it fails on nearly a third of its targets in world C. 
When encouraged to explore (SemaFORR-E), however, the 
likelihood of success in worlds A and C improves consider-
ably. Compared to SemaFORR-E, conveyors (SemaFORR-
C) reduce the time and maintain the success rate in world C. 
Recall that SemaFORR-A* is limited to only the smallest 
moves and turns. SemaFORR, however, takes larger steps 

Table 2: Mean time in seconds, distance traveled, and the percentage of targets reached in 250 decision cycles. Only 
SemaFORR-A* uses a map. All other navigators use some combination of commonsense, spatial affordances, and 
exploration. Time includes time to sense, decide, move, and learn, where applicable.  

 World A World B World C 
Navigator Time Distance Success Time Distance Success Time Distance Success 

SemaFORR-A* 1035.89  400.06  100.00% 884.58  335.14  100.00% 1119.93  437.87  100.00% 
SemaFORR-B 1947.64  927.82 90.30% 991.97 501.14 98.40% 2999.65  880.08  71.40% 
SemaFORR-E 1375.11  942.68  98.90% 1022.78 627.87  98.90% 1476.82  917.87  99.50% 
SemaFORR-C 1243.31 885.04  99.60% 937.56  646.51  99.30% 1350.26  896.61  99.80% 
SemaFORR-R 1330.93 920.29  100.00% 979.24  612.62 98.90% 1492.19 915.14 99.30% 
SemaFORR 1279.04 915.89 99.50% 1010.99 686.24 99.30% 1458.90 967.27 99.40% 

        
 (a) (b)  
Figure 4: After navigation to 40 targets, a learned spatial 
model superimposed on the true map for (a) world B and (b) 
world C. For a model of world A, see Figure 1(b). 
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that may incur larger actuator errors, and thus travels about 
twice as far to reach the same targets.  

Although how hard it is to travel in these worlds is clearly 
correlated with learning time, both SemaFORR-A* and 
SemaFORR spend most of their time in travel. SemaFORR 
devotes 17%–18% of its time to decisions; SemaFORR-A* 
devotes about 19%, including planning; Moreover, 
SemaFORR’s learning is relatively fast; it spends 0.78% of 
its time learning in world A, 0.77% in B, and 0.89% in C.  

From local perception, SemaFORR learns the global spa-
tial models shown in Figures 1(b) and 4. Overall, after 40 
targets these models varied little across settings and trials. 
Because wall register values depend upon the robot’s head-
ing, they are necessarily approximations (e.g., the region in 
the center of world C crosses undetected walls and an upper 
room in world B is not captured). Emphases (e.g., the upper 
left conveyors in world A) are artifacts of the setting that 
generated the model. Nonetheless, regions capture the 
rooms in world A, and conveyors learn its hallway. In world 
B, SemaFORR learned a diagonal conveyor “highway” 
along with regions that captured every room it entered. In 
world C, conveyors learned the center aisle and the periph-
ery, with regions chained together by their exits.  

Related Work 
An early application of FORR to navigation (Epstein, 1998) 
was restricted to a grid world, where the robot occupied an 
entire cell. Its sensors had no range limit, its actuators were 
perfect, and it moved only orthogonally. Because its learn-
ing was not based on what is now known about human spa-
tial perception, that system did best in grids with randomly 
generated obstructions or centralized open space. Built 
spaces like those here proved considerably more difficult. 

SemaFORR draws from both empirical and theoretical re-
search on spatial mental models and navigation. It embodies 
this knowledge in how it perceives its environment, in what 
it learns, and in the multiple ways it integrates that infor-
mation with high-level reasoning. SemaFORR is similar in 
spirit to the Spatial Semantic Hierarchy (Kuipers, 2000). 
SemaFORR also considers moves and turns separately, and 
senses at the lowest level (the wall register) to build more 
complex representations (corrected paths and regions, which 
in turn support conveyors). Rather than culminate in places 
and paths with a single control rule, however, SemaFORR’s 
multiple rationales use spatial affordances: empty spaces 
and ways to move through and among them. 

SemaFORR’s sensorimotor experience uses a simple 
view (its wall register), similar to human reference frames 
(Meilinger, 2008). The construction of a corrected path from 
a true one and the wall registers recorded along it are a form 
of incremental model development that relies on human 
memories of visited locations (Battles & Fu, 2014). Two of 
SemaFORR’s spatial affordances are well documented in 
people. Regions are often noted as fundamental to wayfind-
ing (e.g., (Hölscher, Tenbrink, & Wiener, 2011; Reineking, 
Kohlhagen, & Zetsche, 2008)), and conveyors are similar to 
activation spread for navigation (Meilinger, 2008). Im-

proved performance with spatial affordances, and with more 
of them, confirms much empirical work (e.g., (Battles & Fu, 
2014; Tenbrink et al., 2011)).  

Like SMX (Zetzsche, Gerkensmeyser, Schmid, & Schill, 
2012), SemaFORR considers the actions it can perform and 
has only a partial view of its environment. SMX’s af-
fordances are its landmarks; SemaFORR’s are its descrip-
tives. Moreover, SemaFORR learns its affordances and how 
to reason with them. Advisors that enter or exit from re-
gions, without a plan for what to do next, emulate empirical 
observations on people (Battles & Fu, 2014). Finally, the 
GREEDY Advisors represent subjects who navigated primari-
ly by direction when they chose routes as they navigated 
(Hölscher et al., 2011).  

Discussion 
Worlds A, B, and C simulate office space, a rotunda, and a 
warehouse, “built” spaces familiar to people and constructed 
by them. For all our navigators, world B is the easiest and C 
the most difficult. Commonsense reasoning without spatial 
affordances suffices in world B. SemaFORR’s time there is 
close to optimal, and the model it provides is human-
friendly. In world C, however, exploration was essential to 
reach the targets. Conveyors further improved time in both 
A (p < 0.08) and C (p < 0.05). 

With experience, SemaFORR reaches its targets faster. 
By design, however, some targets are more difficult to 
reach. To demonstrate online learning, Figure 5 normalizes 
task time by how difficult it is to reach each target, underes-
timated (because it excludes turns) as the distance to the tar-
get in an A* plan. SemaFORR’s regression trend lines for 
the ratio of task time to the A* distance (y-axis) decline 
across 40 targets (x-axis). In other words, on results con-
trolled for task difficulty, SemaFORR improves its perfor-
mance over 40 tasks in worlds A and C. In contrast, the 
trend lines for SemaFORR-E show no improvement. 

We also experimented with learning during travel to a 
target, rather than learning once the robot arrived there. Use 
of the corrected path, however, significantly improves con-
veyors, and the corrected path is only available once the tar-
get is reached. (Data omitted.) This interplay between re-
membered perception and reasoning over it is, we believe, 
both novel and important. 

 
Figure 5: Regression trend lines show that SemaFORR’s 
normalized time (y-axis) improves across 40 tasks (x-axis), 
but SemaFORR-E’s (dashed) trend lines do not. 
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Current work includes planning and multiple robots. Sim-
ple reactive planners will be rationales for tier-2 Advisors 
that exploit the learned spatial model with situated cognition 
(Tenbrink et al., 2011). SemaFORR-A* now controls au-
tonomous Blackfins on our laboratory floor, each with its 
own copy of the software but a shared knowledge of their 
environment. A team of these robots addresses a setting 
simultaneously, with each assigned some of the 40 points. 
To adapt SemaFORR for multiple robots, we have designed 
several additional Advisors to avoid robot-robot collisions 
and discourage crowding. 

When people navigate in unfamiliar territory, they pro-
cess local percepts to construct representations that support 
their goal. SemaFORR produces rapid skill development, 
and translates perceptual signals into symbolic representa-
tions that become a long-term collage of semantic infor-
mation. This spatial model supports effective navigation and 
can readily be conveyed to people. 
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