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ARTICLE

Predominant SARS-CoV-2 variant impacts
accuracy when screening for infection using
exhaled breath vapor
Mitchell M. McCartney 1,2,3,7, Eva Borras 1,2,7, Dante E. Rojas1,2, Tristan L. Hicks 1,2,

Katherine L. Hamera1,2, Nam K. Tran4, Tina Tham5, Maya M. Juarez5, Enrique Lopez6, Nicholas J. Kenyon2,3,5 &

Cristina E. Davis 1,2,3✉

Abstract

Background New technologies with novel and ambitious approaches are being developed to

diagnose or screen for SARS-CoV-2, including breath tests. The US FDA approved the first

breath test for COVID-19 under emergency use authorization in April 2022. Most breath-

based assays measure volatile metabolites exhaled by persons to identify a host response to

infection. We hypothesized that the breathprint of COVID-19 fluctuated after Omicron

became the primary variant of transmission over the Delta variant.

Methods We collected breath samples from 142 persons with and without a confirmed

COVID-19 infection during the Delta and Omicron waves. Breath samples were analyzed by

gas chromatography-mass spectrometry.

Results Here we show that based on 63 exhaled compounds, a general COVID-19 model had

an accuracy of 0.73 ± 0.06, which improved to 0.82 ± 0.12 when modeling only the Delta

wave, and 0.84 ± 0.06 for the Omicron wave. The specificity improved for the Delta and

Omicron models (0.79 ± 0.21 and 0.74 ± 0.12, respectively) relative to the general model

(0.61 ± 0.13).

Conclusions We report that the volatile signature of COVID-19 in breath differs between the

Delta-predominant and Omicron-predominant variant waves, and accuracies improve when

samples from these waves are modeled separately rather than as one universal approach.

Our findings have important implications for groups developing breath-based assays for

COVID-19 and other respiratory pathogens, as the host response to infection may sig-

nificantly differ depending on variants or subtypes.
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Plain language summary
In recent decades, scientists have

found we exhale thousands of com-

pounds that reveal much about our

health, including whether we are sick

with COVID-19. Our team asked whe-

ther the breath profile of someone

infected with the Delta variant of

COVID-19 would match the breath

profile caused by the Omicron variant

—a version of the virus that is more

transmissible. We analyzed breath

samples from 142 people, some sick

with either the Delta or Omicron var-

iant of COVID-19, and others who

were negative for COVID-19. Our

results indicate that the Delta variant

altered the contents of our breath in a

different way than theOmicron variant,

and breath-based tests improved when

optimized to detect only one of the

variants. These findings might impact

the design of future breath-based tests

for COVID-19.
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The coronavirus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has caused an ongoing pandemic. Subsequently, new diag-

nostic tests and screening tools have been established for both
clinical and at-home use to augment the nasal and oropharyngeal
swab procedures coupled with a reverse transcription polymerase
chain reaction (RT-PCR). Often, alternatives seek to increase the
speed that results are obtained and diversify reagents and sampling
materials to alleviate stress on global supply chains.

Institutions worldwide have heavily invested in the develop-
ment of novel—sometimes ambitious—assays and technologies
that diagnose or screen for SARS-CoV-2. In 2020, the National
Institutes of Health in the United States launched the RADx℠
Radical program to “support innovative, non-traditional diag-
nostic approaches to address gaps in COVID-19 testing and
surveillance” (www.radxrad.org). The 8 focus areas of RADx-rad
include the SCENT program to develop and commercialize new
technology platforms to screen for COVID-19 from metabolites
found in exhaled breath.

Breath is an opportunistic biospecimen to diagnose or screen
for SARS-CoV-2 infections as it can be collected non-invasively
and is readily available1. While some portions of breath research
can directly identify SARS-CoV-2 virus or proteins exhaled by
infected persons, most measure the hundreds to thousands of
endogenous human metabolites found in breath and train sta-
tistical models to identify the host response to infection.

Few breath tests have received regulatory approval, such as the
ethanol breathalyzer or urea breath test for Helicobacter pylori.
However, the US Food and Drug Administration approved the first
COVID-19 diagnostic test based on exhaled breath metabolites on
April 14, 2022 under emergency use authorization (EUA). After
validation in a large study of 2409 individuals, the test has a sen-
sitivity of 91.2% and 99.3% specificity2. It is anticipated that the
FDA and other international regulatory agencies will consider other
breath tests to screen for SARS-CoV-2 infections as new technol-
ogies emerge.

Two major breath fractions can be collected. Exhaled breath
condensate is the condensation of exhaled aerosols and contains
larger, non-volatile metabolites3,4 which can be used to assess
pulmonary health and disease state5,6. Because it is comprised of
aerosol droplets, exhaled breath condensate is a known vector for
SARS-CoV-2 transmission7, though deactivation procedures have
been reported for safe clinical handling8.

Exhaled breath vapor is the collection of gas-phase compounds,
including respiratory gases like O2, CO2, and NO, but also hundreds
of volatile organic compounds (VOCs) known as the breath
volatilome9. While exogenous compounds are the result of inspiring
VOCs from the room or environment, endogenous compounds
derive from metabolic processes and can reflect imbalances due to
injury or disease10.

Clinical practices have been developed to safely collect, handle,
and deactivate potentially transmissible viral material in breath
vapor samples for COVID-19 screening11–13. Worldwide, breath
research groups have shown that exhaled vapor reflects SARS-
CoV-2 infection status14–16. Breath biomarkers have even been
established to distinguish SARS-CoV-2 infection in children17. As
with other breath researchers, we hypothesized that a profile of
metabolites in exhaled breath vapor could distinguish patients
with SARS-CoV-2 infection from uninfected patients. However,
we observed a shift in the breathprint of infection as the domi-
nant variant of transmission shifted in our community.

As far as we know, we are the first to detail how the exhaled
breath vapor profile differs in those infected during the Delta
(B.1.617.2) versus Omicron (B.1.1.259) waves as measured by
thermal desorption-gas chromatography-mass spectrometry (TD-
GC-MS). Validated statistical models have increased accuracies

when modeling the variant waves independently, rather than
creating a universal COVID-19 model that does not consider the
dominant variant. These findings have significant implications for
teams developing breath-based diagnostics or screening tools for
SARS-CoV-2.

Methods
Participant recruitment. Recruitment of 142 volunteers and
sample collection was conducted under a previously approved
protocol for human subjects research (UC Davis IRB #1636182).
We recruited persons aged 18 and older from the UC Davis
campus, its medical center and surrounding clinics, and from the
greater Sacramento community. All participants signed informed
consent and then completed a questionnaire to obtain demo-
graphic data, such as age, race, ethnicity, COVID-19 vaccination
status, medical history, symptoms, and more. Volunteers then
provided a breath sample (procedure below) and were compen-
sated with a $25 gift card for their time.

Confirmatory SARS-CoV-2 testing. Not all participants were
tested for SARS-CoV-2 at the time of breath collection. Those
recruited into the COVID(+) cohort were either hospitalized for
ongoing COVID-19 treatments and had recently tested positive for
SARS-CoV-2, or were pending a COVID-19 test result at the time
of collection that subsequently returned as positive. SARS-CoV-2
tests were all PCR-based. Subjects were either tested as part of their
clinical treatment for COVID-19 at the UC Davis Medical Center
or were voluntarily testing due to respiratory symptoms at the
Healthy Davis Together community site, a COVID-19 testing
operation open to the community and funded by both UC Davis
and the City of Davis, California. Inclusion criteria for participants
recruited for the COVID(−) cohort were that they were either: (a)
asymptomatic with no known exposure to the virus and had not
received a positive test result within 2 weeks prior, or (b) were
symptomatic at time of collection and pending a COVID-19 test
result subsequently returned as negative.

COVID-19 status was determined by SARS-CoV-2 RNA
detection by FDA emergency use authorized RT-PCR tests. At
our institution, RT-PCR testing was performed via the high-
throughput cobas 6800/8800 SARS-CoV-2 assay (Roche Mole-
cular Systems). Patients admitted with COVID-19 from the
Emergency Department are confirmed by the cobas Liat SARS-
CoV-2 assay (Roche Molecular Systems). One Delta-wave subject
had their COVID positive status confirmed by a loop-mediated
isothermal amplification test rather than PCR.

Paired breath and environmental VOC collection. Briefly,
participants exhaled into Tedlar bags. The volatile contents of the
breath samples were loaded from the bags onto sorbent-packed
tubes and then chemically analyzed using thermal desorption-gas
chromatography-mass spectrometry. A corresponding back-
ground environmental VOC sample was also collected to remove
exogenous artefacts. A full description follows.

For VOC analysis, Tenax TA packed thermal desorption tubes
were used (Gerstel Inc, #020810-005-00). Before each use, tubes
were conditioned at 280 °C for 15 min under a flow of helium and
analyzed using the same method described below to ensure tubes
were void of contaminant volatiles.

Volunteers were asked to not eat or drink 1 h prior to breath
collection. No nose clip or mouth rinse was used. Volunteers were
instructed to fill a 5 L Tedlar bag (Millipore Sigma SKU 24655)
using normal, tidal breathing. After collection, the sample was
connected to a VOC extraction platform previously described18

that was designed to load gas-phase samples onto sorbent-packed
tubes for subsequent thermal desorption analysis. Briefly, the
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VOC extractor was calibrated daily to a flow rate of 250 mL/min.
Exactly 2 L of exhaled breath vapor was extracted onto a sorbent-
packed tube.

Paired background VOC samples were collected by inserting a
second thermal desorption tube into the sampler, which extracted
2 L of the room or environment air. At least one background
sample was collected to represent no more than 3 participants
collected within 1 h and within the same room or location.

After extraction, an aliquot of a first internal standard,
chlorobenzene-d5, was added to each sorbent tube (1 µL of 23.11
ppm) and refrigerated until analysis. This first internal standard
was intended to monitor any error resulting from storage and
subsequent instrument analysis of each sample. Samples were
typically analyzed within 2–3 days of collection and never stored
for more than 5 days. Just before analysis, samples were spiked with
a second internal standard, naphthalene-d8 (1 µL of 500 ppb).
This second internal standard was intended to monitor only any
error resulting from the instrumental analysis of each sample. The
internal standard response for every sample was inspected prior to

any statistical analysis to screen for potential outliers due to sample
handling or instrumental analysis; no such issues were found and
no samples were removed from the dataset.

Thermal desorption-gas chromatography-mass spectrometry
(TD-GC-MS) analysis. Samples underwent TD-GC-MS analysis
with a Gerstel TDU2 thermal desorption unit, CIS4 cryofocusing
unit and MPS autosampler system. The thermal desorption tem-
perature started at 30 °C and held for 3min, then ramped 300 °C/
min to a final temperature of 280 °C, holding for 5min. Desorbed
volatiles were led by carrier gas via a transfer line set to 280 °C to the
cryofocusing CIS, which held at −100 °C during desorption. After
desorption was complete, the CIS4 splitlessly injected volatiles onto
the column by ramping at 12 °C/s to 280 °C, and held for 3min. For
chromatography, an Agilent 7890A GC was used, equipped with a
DB-5ms column (30m× 250 µm× 0.25 µm, Agilent Technologies
Inc.). The column oven was initially set to 38 °C for 3min, then
ramped at 3 °C/min to 110 °C, then 5 °C/min to 170 °C for 1min,
then 20 °C/min to 280 °C for 4.5min, for a total run time of 50min.
Constant flow mode was used with 1.8mL/min of ultra-high purity
helium. VOCs were detected with an Agilent 5975 C single quad-
rupole mass spectrometer, which scanned an m/z range of 30–350,
with source temperature 230 °C and quadrupole temperature 150 °C.

Sorbent tube blanks, breath samples and corresponding environ-
mental samples were randomly injected on the instrument to obtain
reliable data. Alongside every batch of samples, a Grob mix was
injected in triplicate to monitor instrument performance, and a
Kovats mixture of C7–C30 alkanes was injected to monitor retention
time drift and to calculate Kovats retention indices of measured
VOCs. TD-GC-MS system blanks were collected every 20 sample
injections to ensure the system was clear of artefacts.

Putative compound identifications were completed by compar-
ing the obtained mass spectra to the NIST 2020 database and by
comparing the obtained Kovats Index for each compound to
indices reported in the literature.

Statistics and reproducibility. Raw mass spectral data were
deconvoluted and aligned using Agilent Profinder B.08 and Mass
Profiler Professional (MPP, V13.0). Statistical analyses were
performed using Mathworks MATLAB R2022a and Eigenvector
Research’s PLS_Toolbox version 9.0. Data were normalized by
a log10 transformation, followed by Pareto scaling and mean-
centering.

GC-MS analysis of 408 sorbent tube blank injections
and breath/environmental samples resulted in a table of 530
features/variables. Data were cleaned by removing non-
informative features and background environmental artefacts.
First, system blank (no sample injection) and sorbent tube blank
(clean sorbent tubes) features that appeared with a sample:blank
ratio less than 3 were removed, as well as features missing in more
than 25% of samples. Then, features appearing in both breath
samples and their corresponding environmental VOC samples
were removed when the breath:background ratio was lower than 2.

Table 2 Sequencing surveillance data from the UC Davis Health (UCDH) and genotyping surveillance data from Healthy Davis
Together (HDT), showing when the Omicron variant overwhelmed Delta among COVID(+) patients in our region.

Week of 12/06/2021 12/13/2021 12/20/2021 12/27/2021 01/03/2022

UCDH HDT UCDH HDT UCDH HDT UCDH HDT UCDH HDT

Delta 80% (4) 97% (71) 83% (10) 57% (62) 55% (6) 20% (57) 20% (3) 5% (41) 0% (0) 2% (8)
Omicron 20% (1) 3% (2) 17% (2) 43% (46) 45% (5) 80% (222) 80% (12) 95% (835) 100% (5) 98% (433)

Percentages are reported with total numbers of analyzed samples in parentheses.

Table 1 Demographic information.

Delta Omicron Non-COVID
controls

Number of subjects 12.7% (18) 19.7% (28) 67.6% (96)
Respiratory symptoms
at time of samplinga

55.6% (10) 82.1% (23) 31.3% (30)

Age (mean ± standard
deviation)

49 ± 19 45 ± 22 40 ± 18

Race
American Indian or
Alaska Native

0.0% (0) 0.0% (0) 1.0% (1)

Asian or Pacific
Islander

0.0% (0) 10.7% (3) 13.5% (13)

Black or African
American

11.1% (2) 14.3% (4) 6.3% (6)

Caucasian 72.2% (13) 57.1% (16) 55.2% (53)
Other 16.7% (3) 17.8% (5) 22.9% (22)
Multi-racial 0.0% (0) 0.0% (0) 1.0% (1)

Hispanic, Latino, or
Spanish origin

11.1% (2) 17.8% (5) 29.2% (28)

Biological sex
Female 55.6% (10) 64.3% (18) 58.3% (56)
Male 44.4% (8) 34.7% (10) 41.7% (40)

Gender identity
Female 55.6% (10) 64.3% (18) 56.3% (54)
Male 44.4% (8) 35.7% (10) 43.8% (42)

Vaccination status
No doses 77.8% (14) 17.9% (5) 9.4% (9)
1 dose 0.0% (0) 3.6% (1) 2.1% (2)
2 doses 16.7% (3) 39.3% (11) 45.8% (44)
3+ doses 5.6% (1) 39.3% (11) 42.7% (41)

Percentages are reported with total numbers in parentheses.
aSubjects that self-reported having at least one of the following at time of breath collection:
cough, shortness of breath or difficulty breathing, new loss of taste or smell, sore throat.
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These filtering resulted in an initial dataset containing 142 breath
samples and 108 variables.

Variables were further filtered to those that may discriminate
COVID(+) and COVID(−) samples. Each model (Delta+
Omicron, Delta-only, Omicron-only) was built using partial

least squares-discriminant analysis in 50 iterations. All iterations
were calibrated on an equal ratio of COVID and non-COVID
samples, using a random 66% of samples from the group with
fewer samples. Models were then validated with the remaining
samples. From these initial models, a total of 63 VOCs had
a variance in projection (VIP) score 1. Using only these 63
compounds, final models (Delta+Omicron, Delta-only, Omi-
cron-only) were rebuilt using the same 50 iteration fashion and
random 66% calibration strategy. Values resulting from these
final models (VIP scores, accuracies, etc.) are presented in the
following Results and discussion section.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Fig. 1 Comparisons of breath-based models calibrated with and without regard to COVID variant. Partial least squares-discriminant analysis (PLS-DA)
model comparisons when models were developed using a breath samples collected during the wave of both variants, b just the Delta wave, and c just the
Omicron wave. Data show scatter plots of latent variable (LV) scores; boxplots of PLS-DA prediction scores from breath samples with 1 modeled as COVID(−)
and 0 as COVID(+); and receiver operator characteristics (ROC) curves showing model accuracies to predict COVID infection from breath volatile organic
compounds (VOCs). Analyses were conducted from breath samples of n= 96 COVID(−), n= 12 Delta COVID(+), n= 28 Omicron COVID(+) persons.

Table 3 PLS-DA results showing mean ± standard deviation
values for validation sets after 50 iterations of each model,
built on the 63 VOCs presented in Supplementary Data 2.

Delta+Omicron waves Delta wave Omicron wave

Accuracy 0.73 ± 0.06 0.82 ± 0.12 0.84 ± 0.06
Sensitivity 0.70 ± 0.08 0.71 ± 0.12 0.78 ± 0.08
Specificity 0.61 ± 0.13 0.79 ± 0.21 0.74 ± 0.12

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00221-5

4 COMMUNICATIONS MEDICINE |           (2022) 2:158 | https://doi.org/10.1038/s43856-022-00221-5 | www.nature.com/commsmed

www.nature.com/commsmed


Results and discussion
Demographic information for participants enrolled in this study
is presented in Table 1. Because a portion of enrollment occurred
at a community testing site for those experiencing symptoms,
31.3% of non-COVID control participants self-reported respira-
tory symptoms at the time of breath collection. 90.6% of non-

COVID control subject had at least one vaccine dose at the time
of collection, whereas only 22.3% of the Delta-wave cohort but
82.2% of the Omicron wave cohort were vaccinated.

PCR samples from COVID(+) participants were not
sequenced and thus we were unable to confirm the SARS-CoV-2
variant of infection. However, based on sequencing surveillance

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00221-5 ARTICLE

COMMUNICATIONS MEDICINE |           (2022) 2:158 | https://doi.org/10.1038/s43856-022-00221-5 |www.nature.com/commsmed 5

www.nature.com/commsmed
www.nature.com/commsmed


data of COVID(+) patients from the UC Davis Health Emer-
gency and genotyping surveillance data from Healthy Davis
Together (Table 2), our community shifted from the Delta variant
to Omicron during the month of December 2021. COVID
instances in our region were only 3–20% Omicron the week of 12/
06/2021, but Omicron quickly accelerated to 98–100% of infec-
tions by 01/03/2022. The date that each breath sample was col-
lected is provided in Supplementary Data 1. Six COVID(+)
breath samples were collected in the month of December 2021, all
during the week of 12/13/2021. During that time, Omicron was
between 17 and 43% of COVID(+) cases in our community.
Thus, we could not confidently presume the variant of infection
for these six breath samples, and they were removed from the
dataset, reducing the total number of samples to 136 (from 142).
Samples from COVID(+) subjects collected through November
24, 2021 were presumed to be Delta-infected, and samples col-
lected after January 11, 2022 were presumed to be Omicron-
infected.

Figure 1 shows the results of partial least squares-discriminant
analysis (PLS-DA) models calibrated and validated from breath
samples. Three separate models were built using samples from
(A) both waves, (B) samples from the Delta wave, and (C)
samples from the Omicron wave. Each model underwent 50
iterations with a randomized calibration and validation dataset.
The accuracies, sensitivities, and specificities are provided in
Table 3.

The overall accuracies were higher when the waves of variants
were modeled independently, rather than when combined into
one universal model. An Omicron wave model had the highest
overall accuracy, 0.84 ± 0.06, followed by Delta (0.82 ± 0.12) and
the universal model (0.73 ± 0.06). Per a one-way analysis of
variance or ANOVA (p= 1.73 × 10−8), the universal model
accuracy was significantly different than the Delta- and Omicron-
only models.

The Delta wave and Omicron wave models had sensitivities, or
true positive proportions, of 0.71 ± 0.12 and 0.78 ± 0.08, respec-
tively, whereas universal model sensitivity was 0.70 ± 0.08. Per
ANOVA (p= 3.67 × 10−5), the universal and Delta model sen-
sitivities did not significantly differ between each other but were
both significantly lower than the Omicron-only model. The
specificity, or true negative proportions were not significantly
different between the Delta (0.79 ± 0.21) or the Omicron
(0.74 ± 0.12) waves but were significantly different from universal
model (0.61 ± 0.13) per ANOVA (p= 4.61 × 10−7).

Of the symptomatic non-COVID subjects, 90% were cor-
rectly identified as COVID(−) in the Delta+Omicron model,
which decreased to 33% in the Delta-wave model. However,
64% of symptomatic COVID(−)s were correctly identified in
the Omicron model. These findings suggest that Omicron was
more accurately identified from other respiratory infections or
symptoms, relative to the Delta-only models. Additional work
is needed to both train models to identify breathprints of
COVID infection apart from other common respiratory
pathogens, such as influenzae or rhinoviruses, to determine the
selectivity of breath-based test for SARS-CoV-2. More on this is
discussed below.

In December 2021, the Omicron variant (B.1.1.529) quickly
became the dominant variant circulating worldwide, replacing the
Delta variant (B.1.617.2). Numerous Omicron subvariants have
now arisen, which have enabled researchers to follow the genetic
mutations in this complex coronavirus, as well as the varying
clinical manifestations. All Omicron variants are significantly
more transmissible and evade primary-series vaccination19. There
is less infection of airway epithelial cells of the lower respiratory
tract, shorter illness periods and generally causes less severe
disease than previous variants20. Because exhaled breath meta-
bolites can reflect the cascade of thousands of biochemical
metabolic processes related to infection, particularly in the lower
airway compartment, it is likely the breathprint of COVID
infection differ measurably between variants. There is limited
understanding of this drift in exhaled metabolites, to date.

In our initial screening to find breath VOCs predictive of
COVID infection status, the 108 inputted variables used to
develop the PLS-DA models, there were a total of 63 breath VOCs
with a variable importance in projection (VIP) score >1, meaning
those compounds had an above average influence to discriminate
cohorts relative to other compounds. Final PLS-DA models were
built using only these 63 compounds. Supplementary Data 2
identifies these compounds and provides mean VIP scores on the
final COVID models, the higher the VIP score, the higher the
influence of that VOCs in the model classification. Figure 2 and
Fig. 3 show the distribution of VOC abundances, normalized to
the mean response from non-COVID subjects.

PLS-DA models do not look at individual VOC abundances to
discriminate treatment groups, but rather look at a constellation
of relative abundances to make the prediction. However, per a
Kruskal–Wallis test, twelve compounds had significant differ-
ences between at least one pair of treatment groups. Nine com-
pounds (#10, 12, 16, 25, 26, 36, 43, 44, 55) were significant
between Delta and Omicron samples. Four compounds (#10, 12,
26, 30) were significant between non-COVID and Delta; and five
(#13, 16, 32, 44, 55) between non-COVID and Omicron. See
Supplementary Data 2 to map compound numbers to putative
identities.

The origin of compounds affected by SARS-CoV-2 (and other
respiratory pathogens) in breath is not well understood. What we
speculate is that some metabolites can be universal across
pathogens or specific to viruses or variants, but we do not know
the exact metabolic pathways related to this. They may originate
directly from airway cells infected by the virus or may enter the
airway through evaporation from blood at the alveolar interface
when respiratory gases (oxygen, carbon dioxide) are exchanged
with the lungs. Future cell culture studies could reveal the bio-
chemical processes that result in these compounds appearing in
exhaled breath.

From our work we make no claims to have developed a breath-
based diagnostic test for COVID-19, which would require greater
sample numbers, validation, and comparison to other respiratory
pathogens (discussed in more detail below). But these findings
have important implications towards the development of breath-
based viral diagnostics. A pre-print by Sharma et al. of portable
device to detect COVID-19 from breath VOCs, accessed in

Fig. 2 Abundances of exhaled volatile compounds considered by breath-based models to predict COVID-19 infection (see also Fig. 3). Boxplots
representing the abundances of the 63 volatile organic compounds (VOCs) (continued in Fig. 3) used by partial least squares-discriminant analysis (PLS-
DA) models to differentiate breath samples of non-COVID (NC) controls, n= 96, from COVID(+) samples collected during the Delta (D), n= 12, and
Omicron (O), n= 28, waves. For each compound, the data were normalized to the mean intensity from non-COVID controls, so y-axis values represent the
number of times greater relative to the mean non-COVID abundance. Asterisks indicate significant differences per a Kruskal–Wallis test between two
groups (*p < 0.05, **p < 0.01). See Supplementary Data 2 to map compound number to putative identification. The central red line indicates median,
bottom and top edges indicate 25th and 75th percentiles respectively, whiskers extend to the most extreme non-outlier data points, and outliers are plotted
with the red ‘+’ symbol.
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Fig. 3 Abundances of exhaled volatile compounds considered by breath-based models to predict COVID-19 infection (see also Fig. 2). Boxplots
representing the abundances of the 63 volatile organic compounds (VOCs) (continued in Fig. 2) used by partial least squares-discriminant analysis (PLS-
DA) models to differentiate breath samples of non-COVID (NC) controls, n= 96, from COVID(+) samples collected during the Delta (D), n= 12, and
Omicron (O), n= 28, waves. For each compound, the data were normalized to the mean intensity from non-COVID controls, so y-axis values represent the
number of times greater relative to the mean non-COVID abundance. Asterisks indicate significant differences per a Kruskal–Wallis test between two
groups (*p < 0.05, **p < 0.01). See Supplementary Data 2 to map compound number to putative identification. The central red line indicates median,
bottom and top edges indicate 25th and 75th percentiles, respectively, whiskers extend to the most extreme non-outlier data points, and outliers are
plotted with the red ‘+’ symbol.
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September 2022, concurs with our findings: that models
better distinguish COVID from non-COVID breath samples
when the Delta and Omicron variants are modeled indepen-
dently, and that the VOC biomarkers of infection differ between
the two variants21. The same goes for infections other than SARS-
CoV-210. For example, cell culture models of influenza infection
showed that viral subtype (H9N2, H6N2, and H1N1) impacted
the types and concentrations of emitted volatile compounds22. A
murine model showed that breath could distinguish the PA01
versus FRD1 strains of P. aeruginosa-infected mice23.

Other work suggests that some breath biomarkers may not
be specific to viral variants. In April 2022, the US FDA approved
the InspectIR COVID-19 Breathalyzer under Emergency Use
Authorization (EUA) for in vitro diagnostics. In a report made
public by the FDA, the sensitivity and specificity are based on
samples collected from November 2020 to May 2021 in Colorado,
Texas, Louisiana, and Florida24. Presumably, these subjects were
infected with earlier variants of SARS-CoV-2 as Delta did not
surge in the United States until mid-May 2021, according to
public data from the US Centers for Disease Control. The
InspectIR device was tested against 12 subjects in February 2022
with corresponding sequencing data. Eleven subjects had con-
firmed Omicron infections, and one did not test positive for
SARS-COV-2. Ten were correctly identified as COVID(+) per
the breathalyzer, with one false negative. The one negative subject
was correctly identified24.

A major barrier for breath-based diagnostics has been the
inability to validate the selectivity of models against respiratory
pathogens other than SARS-CoV-2. In the first 2 years of the
pandemic, governments largely adopted masking mandates, social
distancing and quarantine/isolation requirements, and stay-at-
home orders to prevent transmission of COVID-19. This has
caused a major disruption in the global cycle of other respiratory
pathogens, and many of them had nearly disappeared until late
202125. Because these breath-based assays measure the host
response to infection, it has been challenging, if not impossible, to
collect breath samples from individuals infected from other cor-
onaviruses, rhinoviruses, influenzae, etc. Multiplex testing for
these organisms is cost prohibitive for certain populations even
before the ongoing pandemic as part of patient care26. Addi-
tionally, COVID-19 related supply chain issues also limited the
availability of respiratory pathogen panels in clinical settings.

At the time of writing, however, these viruses have reemerged,
providing an opportunity for researchers to validate assays. It is
expected that these studies will be published in the upcoming
months. While we could not confirm their exact respiratory
infection, 90% of non-COVID subjects with respiratory symp-
toms enrolled into our study were correctly identified as
COVID(−) in the Delta+Omicron model and 33% in the Delta-
wave model. This true negative proportion increased to 64% in
the Omicron wave model.

Still, prior work indicates that breath signatures of infection are
specific to pathogens10. A cell culture model of primary tra-
cheobronchial epithelial cells showed that models could distin-
guish volatile emissions of influenza from rhinovirus infections27.
A study of breath condensate found metabolite differences in
breath from those infected with influenza A, human metapneu-
movirus, and rhinovirus5. Breath vapor could distinguish mice
infected with one of seven lung pathogens that represent the
primary causes of bacterial pneumonia28.

Conclusion
In our work, we reveal that exhaled breath VOCs differ in persons
with SARS-CoV-2 depending on the variant of infection. We find
that a breath-based diagnostic test may yield higher accuracies if

modeling the Delta versus Omicron separately, rather than
creating one universal model that does not regard variant. Our
findings urge other breath researchers to consider variant as a
variable when developing diagnostic tests for SARS-CoV-2 and
other respiratory pathogens. More work is needed to compare the
selectivity of a potential COVID-19 breath test against other
respiratory pathogens, such as influenzae, which had largely
disappeared in the first 2 years of the COVID-19 pandemic.

Data availability
The datasets generated during and/or analyzed during the current study, including raw
mass spectrometry data, are available from the corresponding author on reasonable
request. Source data used to plot Figs. 1, 2 and 3 are available in Supplementary Data 3.
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