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Abstract: Drought and salinity have become major environmental problems that affect the production
of agriculture, forestry and horticulture. The identification of stress-tolerant genes from plants
adaptive to harsh environments might be a feasible strategy for plant genetic improvement to address
the challenges brought by global climate changes. In this study, a dehydration-upregulated gene
MfWRKY7 of resurrection Plant Myrothamnus f labellifolia, encoding a group IId WRKY transcription
factor, was cloned and characterized. The overexpression of MfWRKY7 in Arabidopsis increased root
length and tolerance to drought and NaCl at both seedling and adult stages. Further investigation
indicated that MfWRKY7 transgenic plants had higher contents of chlorophyll, proline, soluble
protein, and soluble sugar but a lower water loss rate and malondialdehyde content compared
with wild-type plants under both drought and salinity stresses. Moreover, the higher activities of
antioxidant enzymes and lower accumulation of O2

− and H2O2 in MfWRKY7 transgenic plants were
also found, indicating enhanced antioxidation capacity by MfWRKY7. These findings showed that
MfWRKY7 may function in positive regulation of responses to drought and salinity stresses, and
therefore, it has potential application value in genetic improvement of plant tolerance to abiotic stress.

Keywords: Myrothamnus flabellifolia; WRKY; transcription factor; drought stress

1. Introduction

Abiotic stresses, such as drought, salinity and low temperature, are the main environ-
mental factors negatively affecting plant growth and development [1]. Under long-term
natural selection, plants have evolved extremely complex mechanisms to adapt to adverse
environments through generating morphological, physiological and molecular responses.
Transcription factors (TFs) are among the most important regulators in these processes.
Many TFs families, such as WRKY, AP2/ERF and NAC, have been reported to play impor-
tant and unique roles in responses to abiotic stress [2].

WRKY TFs belong to a plant-specific transcription factor family [3]. All WRKY proteins
are featured by the highly conserved WRKY domain comprising of amino acids WRKYGQK
at its N-terminus and the zinc-finger-like motifs of C-X4-5C-X22-23-H-X-H or C-X7-CX23-
H-X-C at its C-terminus, which enable them to bind with W-box in the promoter region
of target genes with a DNA sequence of (C/T)TGAC(C/T) [4]. According to the structure
of the WRKY protein, they could be divided into three groups: members with two WRKY
domains belong to group I, while members of groups II and III have only one WRKY
domain [5,6].
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In recent years, increasing evidence indicates that WRKYs are involved in various
abiotic stress responses in plants, especially in responses to salt and drought stresses [7,8].
For example, the overexpression of Eriobotrya japonica EjWRKY17, wheat (Triticum aestivum)
TaWRKY75-A, and bamboo (Phyllostachys edulis) PheWRKY86 enhanced drought tolerance in
transgenic Arabidopsis [9–11], and significantly enhanced salt tolerance was found in trans-
genic Arabidopsis overexpressing Polygonum cuspidatum PcWRKY11, sweetpotato (Ipomoea
batatas) IbWRKY2 and Tartary buckwheat (Fagopyrum tataricum) FtWRKY46 [12–14]. There-
fore, WRKY TFs are considered as the reservoir of regulators for abiotic stress responses
and need to be further investigated.

WRKY transcription factor WRKY7 belongs to the subgroup IId of the WRKY family,
and its main role is to regulate plant response to pathogens [15,16]. The heterologous
expression of BrWRKY7 from Brassica rapa enhanced resistance against bacterial soft rot
caused by Pectobacterium carotovorum in Arabidopsis [17], while pathogen-induced WRKY7
transcription factor played a negative role in defense responses to P. syringae [18]. However,
the involvement of WRKY7 in abiotic stress responses was seldom reported. Recently,
Yang et al. [19] found that both JrWRKY2 and JrWRKY7 of Juglans regia mediate responses
to abiotic stresses and abscisic acid (ABA) through the formation of homodimers and
interaction. The overexpression of JrWRKY2 and JrWRKY7 improved plant tolerance to
NaCl, PEG, abscisic acid (ABA) and cold stress. However, it remains unclear whether
WRKY7 is involved in response to other plant abiotic stresses, such as drought [19].

The resurrection plant Myrothamnus flabellifolia, which is believed to be one of the
most ancient plants on the planet, is widely used as African traditional medicine [20,21].
They are distributed throughout southern Africa in disjunct populations from Namibia
to Tanzania, with the highest density of plants occurring in South Africa and Zimbabwe.
It was known in isiZulu as Uvukakwabafile, which means ‘awake from the dead’. This
might originate from its adaptability to extreme drought surroundings, which benefits
from evolved powerful survival strategies including a well-developed root system and the
capability to recover from dehydration [22–24]. However, few genes related to the drought
tolerance of M. flabellifolia have been characterized, and the underlying molecular mecha-
nisms are largely unknown. A previous study showed that many transcription factors were
involved in the dehydration responses of M. flabellifolia by transcriptome sequencing, in
which MfWRKY7 is immediately upregulated in the early stage of dehydration, but its roles
in stress responses are unclear [25]. In this study, we cloned MfWRKY7 and overexpressed
it in Arabidopsis. The drought and salt treatments were performed to evaluate its function
in stress tolerance. Phenotype and physiological index analysis before and after treatments
were compared, and the potential regulatory mechanisms were speculated and discussed.

2. Results
2.1. Isolation and Characterization of MfWRKY7

The cDNA sequence of MfWRKY7 was cloned from M. flabellifolia by PCR amplifica-
tion. The length of nucleotide sequence of MfWRKY7 is 987 bp, encoding 328 amino acid
residues. The deduced protein has a predicted molecular weight of 36 kD and an isoelectric
point (pI) of 9.88. Two nuclear localization signals (NLS) “SLLKRKCSSM” at 205aa and
“RCHCSKKRKSR” at 227aa were predicted according to NLS-MAPPER program. SMART
analysis indicated that MfWRKY7 contains a typical WRKY motif “WRKYGQK” locating
at 261–267aa and a Cx5Cx23HxH-type zinc finger structure. (Figure 1a).

Multiple sequence alignment between MfWRKY7 and thirteen mostly homologous
WRKY proteins indicated that MfWRKY7 belongs to the second class of the WRKY tran-
scription factor family (Figure S1). The phylogenetic analysis revealed that the MfWRKY7
is most homologous to Jatropha curcas JcWRKY7, which was grouped to a separated clade
(Figure 1b).
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represented WRKY domain, red boxes represented zinc finger structure, and red line represented 
nuclear location signal, respectively. (b) Phylogenetic tree constructed using neighbor-joining 
method. MfWRKY7 was indicated by a red box. The GenBank accession numbers for the sequences 
used are listed in Supplementary Table S1. 
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by constructing a binary vector 35S::pGSA1403-MfWRKY7. T1 transgenic lines were ac-
quired by kanamycin resistance screening, and two T3 homozygous transgenic lines ob-
tained by PCR, OE1 and OE2, were randomly selected for further evaluation of abiotic 
stress tolerance. Quantitative real-time PCR (qRT-PCR) analysis indicated that MfWRKY7 
was expressed in OE1 and OE2, in which that of OE1 was slightly higher than that of OE2 
(Figure S2) 

We performed drought and salt treatments for plants at seedling and adult stages. 
At the seedling stage, treatments of artificially simulated drought stress by applying dif-
ferent concentrations of mannitol and salt stress by applying different concentrations of 
NaCl in the 1/2 solid MS medium were conducted. No significant differences of lateral 
roots number were observed between WT and transgenic plants under normal conditions. 
However, the root length of two OE lines, especially OE1, was longer than that of the WT. 
After treatments with mannitol and NaCl, root growth was inhibited in all plants. How-
ever, the OE1 and OE2 exhibited significantly longer roots than those of WT under all 
stress treatments (Figure 2a–c). Concurrently, a clearly larger leaf area was also observed 
in transgenic lines (Figure 2a). 

Figure 1. Sequence analysis of MfWRKY7. (a) The nucleotide and deduced amino acid sequences of
MfWRKY7. Black boxes represented start codons and stop codons (also indicated by *), black line
represented WRKY domain, red boxes represented zinc finger structure, and red line represented
nuclear location signal, respectively. (b) Phylogenetic tree constructed using neighbor-joining method.
MfWRKY7 was indicated by a red box. The GenBank accession numbers for the sequences used are
listed in Supplementary Table S1.

2.2. Overexpressing MfWRKY7 in Arabidopsis Increased Drought and Salt Tolerance

In order to investigate whether MfWRKY7 is associated with drought and salt stress
tolerance, heterologous expression of the MfWRKY7 gene in Arabidopsis was performed by
constructing a binary vector 35S::pGSA1403-MfWRKY7. T1 transgenic lines were acquired
by kanamycin resistance screening, and two T3 homozygous transgenic lines obtained
by PCR, OE1 and OE2, were randomly selected for further evaluation of abiotic stress
tolerance. Quantitative real-time PCR (qRT-PCR) analysis indicated that MfWRKY7 was
expressed in OE1 and OE2, in which that of OE1 was slightly higher than that of OE2
(Figure S2).

We performed drought and salt treatments for plants at seedling and adult stages. At
the seedling stage, treatments of artificially simulated drought stress by applying different
concentrations of mannitol and salt stress by applying different concentrations of NaCl in
the 1/2 solid MS medium were conducted. No significant differences of lateral roots number
were observed between WT and transgenic plants under normal conditions. However,
the root length of two OE lines, especially OE1, was longer than that of the WT. After
treatments with mannitol and NaCl, root growth was inhibited in all plants. However,
the OE1 and OE2 exhibited significantly longer roots than those of WT under all stress
treatments (Figure 2a–c). Concurrently, a clearly larger leaf area was also observed in
transgenic lines (Figure 2a).
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and NaCI. (b,c) The primary root length of WT and OE lines under conditions with or without man-
nitol and NaCl, respectively. Data were presented as mean and SD values of three independent 
experiments. The asterisk indicates a significant difference (* p < 0.05; ** p < 0.01, by Student’s t-test) 
comparing to WT. 
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the leaves in WT were withered and chlorotic, while OE1 and OE2 still maintained more 
green leaves; 3 days after rehydration, almost all WT plants died, while some transgenic 
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found on both WT and OE lines; after 13 days of salt treatment, the leaves of WT were 
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content in transgenic plants was increased and significantly higher than that in WT (Fig-
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rate (WLR). Therefore, we measured WLR under natural drought stress and found that 
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3d). 

Figure 2. Analysis of drought and salinity tolerance at the seedling stage. (a) Morphology of
transgenic and WT seedlings grown on 1/2 MS solid medium containing different contents of
mannitol and NaCI. (b,c) The primary root length of WT and OE lines under conditions with or
without mannitol and NaCl, respectively. Data were presented as mean and SD values of three
independent experiments. The asterisk indicates a significant difference (* p < 0.05; ** p < 0.01, by
Student’s t-test) comparing to WT.

At the adult stage, after being grown for 4 weeks in soil, WT and transgenic plants
were treated with natural drought (withholding watering) and salt (irrigating with 300 mM
NaCl solution) stresses. There was no obvious morphological difference between the
transgenic and WT plants before treatments (Figure 3a,b). At 9 days of natural drought, the
leaves of all lines were slightly withered; 15 days after withholding watering, most of the
leaves in WT were withered and chlorotic, while OE1 and OE2 still maintained more green
leaves; 3 days after rehydration, almost all WT plants died, while some transgenic plants
survived (Figure 3a). After 10 days of NaCl treatment, the wilt symptoms were found on
both WT and OE lines; after 13 days of salt treatment, the leaves of WT were seriously
wilted, whereas most leaves of OE1 and OE2 were still green. At 16 days of salt treatment,
more wilted leaves were detected, but the OE lines, especially line OE1, seemed to have a
larger portion of green leaves (Figure 3b). In conclusion, transgenic plants overexpressing
MfWRKY7 showed better growth under both drought and salt stresses.

We measured the chlorophyll content in WT and OE lines. Under normal conditions,
there was no significant difference in the chlorophyll content between WT and transgenic
plants. After treatments of 300 mM NaCl solution and natural drought, the chlorophyll con-
tent in transgenic plants was increased and significantly higher than that in WT (Figure 3c).
These results were consistent with that more green leaves were found in OE lines under
drought and salt stresses. Water stress tolerance is closely related to the water loss rate
(WLR). Therefore, we measured WLR under natural drought stress and found that both
lines OE1 and OE2 exhibited significantly lower WLR during the treatment (Figure 3d).
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Figure 3. Analysis of drought and salinity tolerance at the adult stage. (a,b) showed the growth 
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ments of chlorophyll content and water loss rate, respectively. The error bars are SDs, and the as-
terisk indicates a significant difference (* p < 0.05; ** p < 0.01). 
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and salt stresses induced accumulations of proline in WT and OE lines, while the latter 
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motic adjustment substances. Comparing to control conditions, the soluble protein con-
tent of WT and OE lines was increased under both stresses. Under salt stress, the mean 
soluble protein contents of OE1 and OE2 were higher than that of WT; however, the dif-
ference was not statistically significant. Under drought treatment, both OE lines exhibited 
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uble sugar in OE1 and OE2 were strongly upregulated by salt and drought stresses, and 
they were significantly higher than that of WT under both treatments (Figure 4c). These 
results indicated that the overexpression of MfWRKY7 improved the osmotic adjustment 
ability of transgenic Arabidopsis under salt and drought stresses. 

Figure 3. Analysis of drought and salinity tolerance at the adult stage. (a,b) showed the growth status
of transgenic and WT plants during drought and salinity treatments, (c,d) showed measurements of
chlorophyll content and water loss rate, respectively. The error bars are SDs, and the asterisk indicates
a significant difference (* p < 0.05; ** p < 0.01).

2.3. MfWRKY7 Improved Osmotic Adjustment Ability in Transgenic Arabidopsis

Proline is involved in the regulation of osmotic potential in plants by participating in
the maintenance of cellular water balance as well as avoiding ion toxicity. Both drought
and salt stresses induced accumulations of proline in WT and OE lines, while the latter
accumulated more (Figure 4a). Soluble sugar and soluble protein are also important osmotic
adjustment substances. Comparing to control conditions, the soluble protein content of
WT and OE lines was increased under both stresses. Under salt stress, the mean soluble
protein contents of OE1 and OE2 were higher than that of WT; however, the difference was
not statistically significant. Under drought treatment, both OE lines exhibited significantly
higher soluble protein contents than did the WT (Figure 4b). Contents of soluble sugar
in OE1 and OE2 were strongly upregulated by salt and drought stresses, and they were
significantly higher than that of WT under both treatments (Figure 4c). These results
indicated that the overexpression of MfWRKY7 improved the osmotic adjustment ability of
transgenic Arabidopsis under salt and drought stresses.
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Each measurement was performed in three replicates. The data are shown as mean and SD (bars) of 
three biological replicates, and the asterisk indicated the significant difference (* p < 0.05; ** p < 0.01). 
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stress treatment, leaves of both WT and transgenic plants were only stained in a very small 
part by DAB (deep blue), and they were almost not stained by NBT. Under both drought 
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in transgenic lines under both stresses (Figure 5c,d). These results indicated that less ROS 
was accumulated in the OE lines under drought and salt stresses. 

Malondialdehyde (MDA) accumulation represents the degree of cell membrane lipid 
peroxidation and the intensity of plant response to stressful circumstances. Although 
drought and salt treatments both increased the MDA content in all plants, OE1 and OE2 
remained at considerably lower levels than in WT (Figure 5e). The less MDA accumula-
tion in OE lines indicated that the degrees of membrane peroxidation and plasma mem-
brane damage were lower in OE plants. 

The antioxidant enzymes, such as superoxide dismutase (SOD) and peroxidase 
(POD), are key enzymes to scavenge ROS. Compared with WT plants, the activities of 
SOD and POD in OE lines were significantly increased under drought and salt treatments 
(Figure 5f,g), which was consistent with the lower level of ROS. 

Figure 4. Evaluation of physiological indices responsive to stress. Proline content (a), soluble protein
content (b) and soluble sugar content (c) were measured in OE lines and WT plants. Samples used
for measurements were leaves of plants treated by drought (stopping watering 4-week-old plants for
10 days) and salt (irrigating 4-week-old plants using 300 mM NaCl solution for 7 days) stresses. Each
measurement was performed in three replicates. The data are shown as mean and SD (bars) of three
biological replicates, and the asterisk indicated the significant difference (* p < 0.05; ** p < 0.01).

2.4. Effect of MfWRKY7 on Antioxidant Metabolism in Arabidopsis under Drought and
Salinity Stresses

When plants are subjected to abiotic stress, an excessive accumulation of reactive
oxygen species (ROS), such as hydrogen peroxide (H2O2) and superoxide anion radicals
(O2
−), can cause oxidative damage to biomolecules. We used histochemical staining by

3,3′-diaminobenzi dine (DAB) and nitroblue tetrazolium (NBT) to detect cellular reactive
oxygen species levels under drought and salinity stresses. As shown in Figure 5a,b, before
stress treatment, leaves of both WT and transgenic plants were only stained in a very small
part by DAB (deep blue), and they were almost not stained by NBT. Under both drought
and salinity stresses, the larger leaf area of WT could be stained deeper comparing to those
of OEs (Figure 5a,b). Consistently, significantly lower H2O2 and O2

− levels were detected
in transgenic lines under both stresses (Figure 5c,d). These results indicated that less ROS
was accumulated in the OE lines under drought and salt stresses.

Malondialdehyde (MDA) accumulation represents the degree of cell membrane lipid
peroxidation and the intensity of plant response to stressful circumstances. Although
drought and salt treatments both increased the MDA content in all plants, OE1 and OE2
remained at considerably lower levels than in WT (Figure 5e). The less MDA accumulation
in OE lines indicated that the degrees of membrane peroxidation and plasma membrane
damage were lower in OE plants.

The antioxidant enzymes, such as superoxide dismutase (SOD) and peroxidase (POD),
are key enzymes to scavenge ROS. Compared with WT plants, the activities of SOD
and POD in OE lines were significantly increased under drought and salt treatments
(Figure 5f,g), which was consistent with the lower level of ROS.
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was performed in three replicates. Data were presented as mean and SD values of three independent 
experiments. Asterisks indicated significant difference (* p  <  0.05, ** p  <  0.01, by Student’s t-test) 
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− contents of OE and WT plants before
and after stress treatments, respectively. (e–g) indicated the MDA content and activities of SOD and
POD in the leaves of OE and WT plants, respectively. Samples used for staining and measurements
were leaves of plants treated by drought (stopping watering 4-week-old plants for 10 days) and salt
(irrigating 4-week-old plants using 300 mM NaCl solution for 7 days) stresses. Each measurement
was performed in three replicates. Data were presented as mean and SD values of three independent
experiments. Asterisks indicated significant difference (* p < 0.05, ** p < 0.01, by Student’s t-test)
between WT and OE lines.

2.5. MfWRKY7 Promoted Stomatal Closure Induced by Drought

Stomatal movement plays a central role in transpiration adjustment upon drought
stress. We analyzed stomatal closure in leaves of WT and transgenic plants under 300 mM
mannitol treatment. The stomata of both WT and OE lines were fully open under normal
circumstance with a stomatal aperture of about 1.5. After mannitol treatment, the stomatal
closure was found in both OE and WT plants (Figure 6a). The stomatal apertures of OE1
and OE2 were increased to about 3.2, which was significantly higher than the 2.0 of WT
(Figure 6b). This result showed that the overexpression of MfWRKY7 facilitated stomatal
closure under drought.
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Figure 6. Measurements of stomatal aperture. (a) Microscopy observation of stomatal aperture of
MfWRKY7 transgenic and WT plants in response to 300 mM mannitol. (b) Measurement of stomatal
aperture with or without mannitol treatment. Data were presented as mean and SD values of three
independent experiments. Asterisks indicated significant difference (** p < 0.01, by Student’s t-test)
between WT and OE lines.
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3. Discussion

Since the isolation of the first WRKY TF from sweet potato [26], it has been widely
reported that WRKY transcription factors in plants play a critical role in abiotic stress re-
sponses [27,28]. In this study, we isolated a dehydration-inducible WRKY gene MfWRKY7
from M. flabellifolia. Sequence analysis illustrated that MfWRKY7 contains a highly con-
served WRKY motif of ‘WRKYGQK’ and a C2H2 zinc finger structure (Figure 1a). Phy-
logenetic analysis showed that MfWRKY7 is highly homologous to JcWRKY7 of Jatropha
curcas, which is native to tropical America and is a stress-tolerant plant being advocated for
growing on wastelands [29]. The overexpression of JcWRKY in tobacco enhanced salinity
resistance in transgenic plants [30]. Similarly, our results showed that the overexpression of
MfWRKY7 can significantly increase the tolerance of transgenic Arabidopsis to drought and
salt stresses. These results suggest that plant species adapting to wastelands and extremely
drought environments, such as M. flabellifolia, can be exploited and utilized as an important
stress-tolerant genetic resources.

Under adverse environmental conditions, enhancing the growth of primary roots
would offer an advantage to the plants by expanding their domains of water supply [31].
Therefore, root length is an important indicator of drought tolerance. CsWRKY7 of Camellia
sinensis responded to NaCl, mannitol, PEG, and diverse hormones treatments. Seedlings
of transgenic Arabidopsis overexpressing CsWRKY7 showed longer primary roots than the
WT. However, no significant difference in root growth was observed between WT and
the transgenic lines in the presence of different stresses [32]. In our study, we found that
the root length of OE lines was longer than that of WT under normal conditions. Such a
difference is more significant under drought and salt treatments (Figure 2). These results
indicated that MfWRKY7 promotes root growth under both normal condition and stress
treatments. Furthermore, the OE lines displayed higher chlorophyll content than WT at
the adult stage. The chlorophyll content is positively correlated to photosynthetic rate,
and also highly associated with improved transpiration efficiency under water-limited
conditions [33–35]. These results indicated that MfWRKY7 may play a positive regulatory
role in maintaining the stability of chlorophyll content to ensure plants have relatively
normal growth under stress.

Transpirational water loss through the stomata is a key determinant of drought toler-
ance [36]. The rational regulation of stomatal movement and aperture size will help to keep
water balance in vivo under water-deficit conditions [37]. Here, we found that the stomata
apertures of MfWRKY7 OE plants were significantly higher than that of WT when treated
by 300 mM mannitol. This result indicated that MfWRKY7 may increase the sensitivity of
stomatal movement to water conditions and promote its closure under a water deficit. This
is also supported by the result that the OE lines exhibited a significantly lower water loss
rate compared to WT. Thus, the promoted root growth and stomata movement as well as
the decreased WLR brought by the introduction of MfWRKY7 may lead to better water
uptake and retention abilities under water-deficit conditions and hence higher tolerance.

Plants can produce osmoregulatory substances, including proline, soluble proteins
and soluble sugars, under stress. Proline can serve as an ROS scavenger [38,39], while
soluble proteins and soluble sugars mitigate dehydration stress and help maintain the
macromolecules structure and function [40]. In our data, the levels of these three osmoregu-
latory substances were significantly increased after drought and salinity stresses (Figure 4).
The results showed that MfWRKY7 overexpression enhanced the osmoregulation ability of
transgenic lines under stress. CsWRKY7 gene expression was induced by various osmotic
stresses. However, the overexpression of CsWRKY7 in Arabidopsis did not enhance tolerance
to osmotic stress [32]. JrWRKY7 was induced by NaCl and polyethylene glycol (PEG). The
overexpression of JrWRKY7 improved plant tolerance to NaCl, PEG, abscisic acid, and cold
stress [19]. These results indicated that different WRKY7 TFs may have divergent functions.

A stress-induced excessive accumulation of ROS causes oxidative damage in plants [41].
Therefore, the ability of scavenging ROS is essential for stress tolerance. By MfWRKY7
overexpression, the oxidative stress of OE lines is significantly lower than those of WT,
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which was indicated by a lower degree of lipid peroxidation (lower MDA accumulation)
(Figure 5e) and ROS accumulation (O2

− and H2O2 contents) (Figure 5a–d) under both
drought and salt treatments. It is well known that antioxidant enzymes, such as SOD, POD
and CAT, have important roles in scavenging ROS and promoting plant tolerance to abiotic
stresses [42,43]. In our study, there was no obvious difference of activities of SOD and
POD before treatment between WT and OE plants, whereas those in OE plants were signifi-
cantly higher than WT plants after drought and NaCl treatments (Figure 5e,f). The data
demonstrated that MfWRKY7 overexpression effectively activated the antioxidant system
in transgenic Arabidopsis lines to reduce the ROS-induced oxidative damage and maintain
the dynamic balance of ROS, thereby improving tolerance to drought and salinity stresses.
Previous studies showed that overexpressing CmWRKY10, SbWRKY30, or MfWRKY17
could enhance the activities of antioxidant enzymes and hence stress tolerance [44–46].
Therefore, strengthening the antioxidant system might be a generally common strategy of
WRKY TFs to increase plant’s tolerance to abiotic stress. It is worth further study on which
pathways MfWRKY7 works through to enhance root elongation and the antioxidation
system. MfWRKY7 might be potentially valuable for the genetic improvement of drought
and salt tolerance in economically important plants, such as crops and ornamental plants.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The wild-type Arabidopsis (Col-0, WT) and M. flabellifolia used in this study were
provided by the Department of Plant Sciences of the University of California, Davis.
M. flabellifolia plants were grown under conditions of 12 h light/12 h dark at tempera-
tures of 22 ◦C/18 ◦C, respectively, with a relative air humidity of 60%.

Seeds of WT and OE lines were sterilized with diluted bleach solution for 5 min and
washed 3–5 times with sterilized deionized water. Seeds were placed on plates containing
1/2 Murashige and Skoog (MS) solid medium with pH ≈ 6.0. After 2 days of stratification
at 4 ◦C, plates were transferred in an illuminated incubator for about 10 days. Seedlings
were transplanted into pots with soil and vermiculite (1:1) as the cultivation substrate and
were grown for 4 weeks under condition of 16 h light/8 h dark, 24 ◦C/22 ◦C, and 75%
relative humidity.

4.2. Cloning and Sequence Analysis of MfWRKY7

Total RNA was extracted from fresh leaves of M. flabellifolia using the Plant Total RNA
Isolation Kit (LANBO, Chengdu, China). The first strand of cDNA was then synthesized
with reverse transcriptase Reverse Transcriptase M-MLV (RNaseH-) (TaKaRa, Dalian,
China) under the guidance of the kit. The open reading frame sequence of MfWRKY7 was
obtained by reverse transcription polymerase chain reaction (RT-PCR) in combination with
specific primers (forward primers: 5′-TCCCCCGGGATGGCGGTTGAGCTTATGTT-3′ (Sma
I site is underlined) and reverse primers 5′-GGACTAGTCTAAGAAGATTCGAGGACCA-
3′ (Spe I site is underlined)). PCR product was ligated into the pEasy-Tl Simple vector
(TRANSGENE, Beijing, China), and the positive clones identified by PCR were sequenced
by Sanger sequencing (Chengdu Qingke Biotechnology Co., Ltd., Chengdu, China). The
multiple sequence alignment was performed by DNAMAN9.0, and the phylogenetic
analysis was performed by MEGA 11.0 Software. The homologous sequences used were
obtained by Blastp search against the NCBI (https://www.ncbi.nlm.nih.gov/ accessed on
1 July 2022) NR protein dataset using the sequence of MfWRKY7 as the query.

4.3. Vector Construction and Generation of Transgenic Lines

The amplified fragment of coding sequence of MfWRKY7 was double-digested by
Sma l and Spe l, and the purified amplicon was inserted into the digested linear DNA
of pGSA1403 by T4 DNA Ligase (TaKaRa, Dalian, China). The resulting 35: pGSA1403-
MfWRKY7 vector was transformed into Agrobacterium tumefaciens strains LBA4404, and
the floral-dip transformation method was used to transform the 35: pGSA1403-MfWRKY7

https://www.ncbi.nlm.nih.gov/
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into Arabidopsis [47]. T1 seeds were selected on 1/2 MS medium with 50 mg/L kanamycin.
Homozygous T3 lines were obtained by self-pollination of T1 and PCR. Two positive lines
confirmed by reverse transcription PCR (RT-PCR) were selected for further analysis.

4.4. Phenotype Analysis under Drought and Salt Stresses

For seedling treatments, a 1/2 MS medium containing mannitol (0, 200 mM, 250 mM,
300 mM) and NaCl (0, 75 mM, 100 mM, 125 mM) was used, respectively. Sterilized seeds
of WT and OE lines were spotted in plates containing the above-mentioned medium with
15 seeds per line per plate. Two days of dark treatment at 4 ◦C were followed by vertical
placement in a light incubator, and root length was photographed and measured after
1 week of normal incubation. Each treatment was repeated three times.

For adult treatments, seeds of WT, OE1 and OE2 were sown in pots with the same
weight of the cultivation substrate (soil: vermiculite = 1:1) and incubated in a greenhouse
for 4 weeks before drought and salt treatments. For the drought treatment, the WT and
OE lines were fully watered first, and then, the watering was stopped. All plants were
growing under same condition as described above except that no watering was applied.
Plant growth was observed and photographed daily. The salt treatment is similar to that
of drought treatment, except that after fully watering, 300 mL NaCl solution (300 mM)
was applied in each pot with a 2-day interval. Phenotypic differences between WT and
transgenic plants were observed and photographed daily. The experiment was repeated
three times.

4.5. Measurement of Chlorophyll Content

The 4-week-old plants of WT and OE lines were treated by 200 mM NaCl solution
for 2 days and natural drought for 7 days, respectively. Then, 0.5 g of fresh leaves of each
line were sampled. The chlorophyll content was extracted using 95% ethanol as described
previously [48] and was measured by a spectrophotometer under a wavelength of 649 nm
and 655 nm. The 95% ethanol solution was used as a blank control. The experiment was
carried out three times with three biological replicates.

4.6. Measurement of Water Loss Rate

To measure the water loss rate, rosette leaves of 4-week-old WT and transgenic lines
were sampled and weighed (0.5 g). The 0.5 g leaf sample was placed on clean filter paper
to dehydrate it naturally under condition of 25 ◦C and 60% relative humidity. Leaf mass
was measured at 0.5 h, 1 h, 2 h, 3 h, 4 h, 5 h, and 6 h, respectively. Three replicates were
measured for each treatment.

4.7. Physiological Measurements

The proline content was determined by a modified method using the acidic ninhydrin
reaction [49]. Malondialdehyde (MDA) content was determined by the thiobarbituric acid
method [50]. Soluble protein and soluble sugar contents were determined using the Komas
Brilliant Blue method and the plant soluble sugar content assay kit (Nanjing Jiancheng,
Nanjing, China), respectively. The accumulation of hydrogen peroxide (H2O2) and su-
peroxide anion radical (O2

−) in the leaves was illustrated by histochemical staining with
3, 3′-diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) [51], respectively, which
was followed by decolorization in 95% ethanol and a photograph. The hydrogen peroxide
level and superoxide anion activity were determined by employing the hydrogen peroxide
assay kit and superoxide anion kit (Nanjing Jiancheng, Nanjing, China). The superoxide
dismutase (SOD) activity and the peroxidase (POD) activity were determined as described
previously [52]. Three biological repeats and three technical repeats were executed.

4.8. Stomatal Aperture Analysis

Ten rosette leaves of 4-week-old WT and transgenic Arabidopsis were sampled and
placed in 100 mL of MES-KCl buffer (10 mM MES, 0.1 mM CaCl2, 50 mM KCl, pH = 6.15).
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After 2.5 h of photoinduction, leaves were transferred in 100 mL of MES-KCl buffer contain-
ing 300 mM mannitol for 2 h under light treatment. Then, the upper and lower epidermis
of the leaves were quickly separated using transparent tape, and the residual chloroplasts
on the tape were gently scraped off. The lower epidermis of the leaf was observed and pho-
tographed using an optical microscope (DP 80, Olympus, Japan). For the stomatal aperture
analysis, about 100 stomata of each sample was measured. Three biological replicates were
performed for each strain.

4.9. Statistical Analysis

Data from this study were analyzed by Student’s t-test in SPSS 23.0. The measured
values were expressed as the mean ± standard deviation (SD) of three replicates, and
significance of difference was illustrated by * (p < 0.05) or ** (p < 0.01).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23147890/s1. Ref. [53] is cited in the supplementary materials.
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