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Imagine the sound of waves. This sound may evoke the memories of days at the beach.

A single sound serves as a bridge to connect multiple instances of a visual scene. It can group

scenes that ’go together’ and set apart the ones that do not. Co-occurring sensory signals can thus

be used as a target to learn powerful representations for visual inputs without relying on costly

human annotations.

In this thesis, I introduce effective self-supervised learning methods that curb the need

for human supervision. I discuss several tasks that benefit from audio-visual learning, including

representation learning for action and audio recognition, visually-driven sound source localization,

and spatial sound generation. I introduce an effective contrastive learning framework that learns
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audio-visual models by answering multiple-choice audio-visual association questions. I also

discuss critical challenges we face when learning from audio supervision related to noisy audio-

visual associations, and the lack of spatial grounding of sound signals in common videos.
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Chapter 1

Introduction
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Convolutional neural networks [106, 116] have become incredibly powerful over the last

few years, leading to remarkable progress in predicting what objects are present in an image

[78, 209, 189] and predicting each object’s location [65, 66, 77, 24, 26], even at the pixel level

[151, 125, 222, 188]. They can also predict remarkably well the location of different human body

parts and their pose [52, 162, 25, 77]. These models, however, are trained using a supervised

learning paradigm, where model parameters are trained to map each input (an image or video) to

the desired output, which has been defined in advance by a human. To find the optimal parameters,

deep learning models require large datasets of input-output relationships. For example, in human

pose prediction, inputs are images of human subjects, and the desired outputs are the location

of all body parts of all humans in each image. Hence, to collect such a dataset, human labelers

had to annotate all body locations manually, which can be very time-consuming. This can be

especially problematic in areas of computer vision that require expert annotations like medical

imaging.

Furthermore, deep learning models often improve as the model size grows and are trained

on larger datasets. While this can is good in practice, as it gives us the formula to build better

models, it also increases our dependency on human annotations. Thus, this thesis focuses

on making computer vision models more accessible by lowering the dependence on human

annotations. Specifically, this thesis tackles the question of how to learn deep learning models

without human annotations. This learning framework is often referred to as self-supervised

learning.

1.1 Self-supervised learning

Self-supervised learning is an area of machine learning that seeks to learn models by

solving pre-designed tasks, where the answer can be algorithmically defined without human

input. Several tasks have been proposed over the years. One example shown here is to make
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networks solve jigsaw puzzles [142]. The reasoning is, to predict the relative position of different

tiles, the model needs to understand the contents of the underlying image. However, this and

other tasks often don’t work well in practice. Although models get very good at solving jigsaw

puzzles, they are still weak when transferring the models to other tasks. In fact, designing reliable

self-supervised learning tasks that generalize well to different tasks has proven hard, as most tasks

cannot compete with supervised learning. Therefore, it is not surprising that the most significant

progress in recent years has been the formulation of self-supervised learning as a supervised

learning problem, where the labels come for free, by thinking of each image as a unique class.

This task is called instance discrimination since the goal is to distinguish instances from each

other [206, 47].

1.1.1 Instance discrimination

Instance discrimination is a self-supervised learning technique which tasks models with

predicting whether two views belong to the same instance or not. Since datasets we can have a

million instances or more, traditional classifiers can struggle due to the number of instances/classes.

Thus, instead of traditional classification, models are learned with a technique called contrastive

learning, exemplified in Figure 1.1. Given one instance, we can apply two data transformations to
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Figure 1.2: Visual transformations.

form a positive pair. We can also apply data transformations to two different instances to form

negative pairs. With contrastive learning, the model is asked to distinguish positive from negative

pairs.

At a high level, instance discrimination and contrastive learning encapsulate the main

progress of self-supervised learning in computer vision. Note, however, that this framework

relies heavily on data transformations to create positive pairs. If we apply small transformations,

then finding positives is trivial, and the network does not need to learn refined representations.

However, if we apply large transformations, then we change the input distribution significantly.

That is, images no longer look like natural images (Figure 1.2). This thesis’s contribution is to

break the dependence of contrastive learning methods on data transformations to generate positive

pairs. Instead of data transformations, we treat different data modalities, like audio and video, as

a way to provide truly distinct but related views of the same instance (Figure 1.3). This allows us

to push contrastive learning into the multimedia domain, enabling new multi-modal applications.
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1.1.2 Challenges of audio-visual self-supervised learning

Audio-visual instance discrimination (Figure 1.3) can be used to learn strong models.

However, while often correlated, audio and video sometimes are not informative of each other.

Sometimes, people edit their videos to include background music or voice-over narrations. Other

times, the video is naturally silent, e.g., the video of a person doing yoga or meditating in silence.

In these cases, establishing the correspondence between audio and video clips is impossible, and

forcing these correspondences is detrimental for the learned representations. Also, contrastive

learning relies on negatives randomly sampled from a dataset. As a result, negatives that are

semantically similar to the base instance are often used as negatives. Since representation

learning aims at learning an embedding function that yields similar outputs for similar instances,

semantically similar negatives are also detrimental. Therefore, robust learning frameworks are

necessary to tackle unreliable correspondences.

In addition to unreliable correspondences, another challenge is the fact that vanilla audio-

visual instance discrimination only leverages global correspondences. In other words, models are

asked to match audio signals to the whole video, instead of matching to the parts that contain

audio sources. The lack of sound source localization can introduce ambiguities. For example,
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consider the case of videos showing a car with the engine rumbling. While the association

between the two modalities is good, most videos of cars also contain roads. Thus, from the

model’s perspective, which has no prior knowledge of the world, it is hard to distinguish what

causes the rumbling sound – the car, the road, or both?

In the natural world, however, most animals possess spatial hearing, allowing them to

perceive sound sources’ spatial location. The spatial perception of audio signals can be replicated

in 360 video content with spatial audio, as it captures all spatial information of both audio and

visual signals. Therefore, the ability to localize sound sources can be used to differentiate between

co-occurring objects, and as a result to learn better representations. I’ll show that reasoning about

the spatial location of sounds enhances representation learning.

Beyond representation learning, we also studied how well the spatial associations between

audio and visual signals can be predicted, not just as a means to learn visual models but as an end

in itself. In other words, we seek to generate the spatial components of audio given the 360-video

content and mono (non-spatial) audio alone. Spatial audio generation can be a very practical task.

Since many 360 video cameras only record mono, it would allow us to upgrade their audio into

spatial sound and provide viewers with a more immersive experience. The question is, how can

we accomplish this in a self-supervised manner, i.e., without asking humans to manually label the

spatial location of every sound in the video.

1.2 Contributions of the Thesis

In this thesis, we introduce a self-supervised framework for learning audio and visual

representations from natural audio-visual associations, and tackle the main challenges mentioned

above.
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1.2.1 A strong framework for audio-visual instance discrimination

Chapter 2 presents a self-supervised learning approach to learn audiovisual representations

from video and audio. Our method uses contrastive learning for cross-modal discrimination

of video from audio and vice versa. We show that optimizing for cross-modal discrimination,

rather than within-modal discrimination, is important to learn good representations from video

and audio. With this simple but powerful insight, our method achieves state-of-the-art results

when finetuned on action recognition tasks. While recent work in contrastive learning defines

positive and negative samples as individual instances, we generalize this definition by exploring

cross-modal agreement. We group together multiple instances as positives by measuring their

similarity in both the video and the audio feature spaces. Cross-modal agreement creates better

positive and negative sets, and allows us to calibrate visual similarities by seeking within-modal

discrimination of positive instances.

1.2.2 Robust cross-modal instance discrimination

Chapter 3 presents a self-supervised learning method to learn audio and video representa-

tions. Prior work uses the natural correspondence between audio and video to define a standard

cross-modal instance discrimination task, where a model is trained to match representations from

the two modalities. However, the standard approach introduces two sources of training noise.

First, audio-visual correspondences often produce faulty positives since the audio and video

signals can be uninformative of each other. To limit the detrimental impact of faulty positives,

we optimize a weighted contrastive learning loss, which down-weighs their contribution to the

overall loss. Second, since self-supervised contrastive learning relies on random sampling of

negative instances, instances that are semantically similar to the base instance are often used as

faulty negatives. To alleviate the impact of faulty negatives, we propose to optimize an instance

discrimination loss with a soft target distribution that estimates relationships between instances.
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We validate our contributions through extensive experiments on action recognition tasks and

show that they address the problems of audio-visual instance discrimination and improve transfer

learning performance.

1.2.3 Towards increased spatial resolution of audio-visual associations

Chapter 4 introduces a novel self-supervised pretext task for learning representations

from audio-visual content. Prior work on audio-visual representation learning leverages corre-

spondences at the video level. Approaches based on audio-visual correspondence (AVC) predict

whether audio and video clips originate from the same or different video instances. Audio-visual

temporal synchronization (AVTS) further discriminates negative pairs originated from the same

video instance but at different moments in time. While these approaches learn high-quality repre-

sentations for downstream tasks such as action recognition, their training objectives disregard

spatial cues naturally occurring in audio and visual signals. To learn from these spatial cues,

we tasked a network to perform contrastive audio-visual spatial alignment of 360◦video and

spatial audio. The ability to perform spatial alignment is enhanced by reasoning over the full

spatial content of the 360◦video using a transformer architecture to combine representations from

multiple viewpoints. The advantages of the proposed pretext task are demonstrated on a variety

of audio and visual downstream tasks, including audio-visual correspondence, spatial alignment,

action recognition and video semantic segmentation.

1.2.4 Self-supervised generation of spatial audio

Chapter 5 introduces an approach to convert mono audio recorded by a 360◦video camera

into spatial audio, a representation of the distribution of sound over the full viewing sphere.

Spatial audio is an important component of immersive 360◦video viewing, but spatial audio

microphones are still rare in current 360◦video production. Our system consists of end-to-end
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trainable neural networks that separate individual sound sources and localize them on the viewing

sphere, conditioned on multi-modal analysis of audio and 360◦video frames. We introduce several

datasets, including one filmed ourselves, and one collected in-the-wild from YouTube, consisting

of 360◦videos uploaded with spatial audio. During training, ground-truth spatial audio serves

as self-supervision and a mixed down mono track forms the input to our network. Using our

approach, we show that it is possible to infer the spatial location of sound sources based only on

360◦video and a mono audio track.
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Chapter 2

Audio-visual instance discrimination
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2.1 Introduction

Imagine the sound of waves. This sound can evoke the memory of many scenes - a beach,

a pond, a river, etc. A single sound serves as a bridge to connect multiple sceneries. It can group

visual scenes that ‘go together’, and set apart the ones that do not. We leverage this property of

freely occurring audio to learn video representations in a self-supervised manner.

A common technique [148, 150, 105, 8] is to setup a verification task that requires

predicting if an input pair of video and audio is ‘correct’ or not. A correct pair is an ‘in-sync’

video and audio and an incorrect pair can be constructed by using ‘out-of-sync’ audio [105] or

audio from a different video [8]. However, a task that uses a single pair at a time misses a key

opportunity to reason about the data distribution at large.

In our work, we propose a contrastive learning framework to learn cross-modal represen-

tations in a self-supervised manner by contrasting video representations against multiple audios

at once (and vice versa). We leverage recent advances [206, 70, 190, 147] in contrastive learning

to setup a Audio-Visual Instance Discrimination (AVID) task that learns a cross-modal similar-

ity metric by grouping video and audio instances that co-occur. We show that the cross-modal

discrimination task, i.e., predicting which audio matches a video, is more powerful than the within-

modal discrimination task, predicting which video clips are from the same video. With this insight,

our technique learns powerful visual representations that improve upon prior self-supervised

methods on action recognition benchmarks like UCF-101 [182] and HMDB-51 [109].

We further identify important limitations of the AVID task and propose improvements

that allow us to 1) reason about multiple instances and 2) optimize for visual similarity rather than

just cross-modal similarity. We use Cross-Modal Agreement (CMA) to group together videos

with high similarity in video and audio spaces. This grouping allows us to directly relate multiple

videos as being semantically similar, and thus directly optimize for visual similarity in addition

to cross-modal similarity. We show that CMA can identify semantically related videos, and
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Figure 2.1: Comparison of audio-visual instance discrimination and cross-modal agreement to
prior audio-video self-supervised methods.

that optimizing visual similarity among related videos significantly improves the learned visual

representations. Specifically, CMA is shown to improve upon AVID on action recognition tasks

such Kinetics [196], UCF-101 [182] and HMDB-51 [109] under both linear probing and full

fine-tuning evaluation protocols.

2.2 Related work

Self-supervised learning is a well studied problem [145, 135, 130, 171, 39, 115]. Self-

supervised methods often try to reconstruct the input data or impose constraints on the representa-

tion, such as sparsity [117, 145, 144], noise [195] or invariance [70, 166, 46, 91, 133, 22, 27, 28]

to learn a useful and transferable feature representation. An emerging area of research uses the

structural or domain-specific properties of visual data to algorithmically define ‘pretext tasks’.

Pretext tasks are generally not useful by themselves and are used as a proxy to learn semantic rep-

resentations. They can use the spatial structure in images [44, 142, 64, 214], color [215, 114, 41],

temporal information in videos [134, 118, 54, 93, 153, 143, 201, 72, 49] among other sources

of ‘self’ or naturally available supervision. We propose an unsupervised learning technique that

leverages the naturally available signal in video and audio alignment.
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Representation Learning using Audio

Self-supervised learning can also make use of multiple modalities, rather than the visual

data alone. As pointed out in [39, 97], co-occurring modalities such as audio can help learn

powerful representations. For example, audio self-supervision has shown to be useful for sound

source localization and separation [7, 175, 58, 60, 221, 220, 57], lip-speech synchronization [37]

and visual representation learning [8, 105, 148] and audio spatialization [137].

Audio-Visual Correspondence (AVC)

AVC is a standard task [8, 105, 148, 7] used in audio-video cross-modal learning. This

task tries to align the visual and audio inputs by solving a binary classification problem. However,

most methods use only a single video and single audio at a time for learning. Thus, the model

must reason about the distribution over multiple samples implicitly. In our work, we use a

contrastive loss [70, 147, 190, 206] that opposes a large number of samples simultaneously. We

show in §2.5 that our method performs better than recent methods that use AVC.

Contrastive Learning

Contrastive learning techniques use a contrastive loss [70] to learn representations either

by predicting parts of the data [147, 80, 83], or discriminating between individual training

instances [206, 46, 76, 133, 223, 53, 211, 84]. Contrastive learning has also been used for

learning representations from video alone [72, 176]. Tian et al. [190] also use a contrastive

approach, but propose to learn with a cross-modal objective applied to images and depth, video

and flow. In contrast, our method learns visual representations using audio as cross-modal targets.

Compared to [190], we present a new insight for audio-visual learning that optimizing cross-modal

similarity is more beneficial than within-modal similarity. We also identify important limitations

of cross-modal discrimination and present an approach that goes beyond instance discrimination

by modeling Cross-Modal Agreement. This identifies groups of related videos and allows us
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to optimize for within-modal similarity between related videos. The concurrently proposed [4]

uses alternating optimization to find clusters in visual and audio feature spaces, independently

and uses them to improve cross-modal features. While our CMA method bears a resemblance

to theirs, we do not use alternating optimization and use agreements between the visual and

audio representations to directly improve visual similarity rather than only cross-modal similarity.

Finally, similar to our work, the concurrently proposed [74] also uses co-occurring modalities

(optical flow and RGB) to expand the positive set. However, instead of mining positives based on

an agreement between both modalities, [74] relies on the opposite modality alone.

Multi-view Learning

Multi-view learning aims to find common representations from multiple views of the

same phenomenon, and has been widely used to provide learning signals in unsupervised and

semi-supervised applications. Classical approaches can be broadly categorized in co-training

procedures [21, 20, 200, 111, 127, 164, 74] that maximize the mutual agreement between views,

multiple kernel learning procedures [112, 15, 104] which use kernels to model different views,

and subspace learning procedures [43, 165] which seek to find the latent space that generates

all views of the data. Multi-view data is an effective source of supervision for self-supervised

representation learning. Examples include the motion and appearance of a video [190, 74], depth

and appearance [216, 92], luminance and chrominance of an image [216, 190], or as in our work

sound and video [8, 13, 150, 37].

2.3 Audio-Visual Instance Discrimination

We learn visual representations in a self-supervised manner from unconstrained video

and audio by building upon recent advances in instance discrimination [206, 46, 129, 190] and

contrastive learning [70, 69, 147].
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Figure 2.2: Variants of the AVID task.

2.3.1 Goal and Intuition.

Consider a dataset of N samples (instances) S = {si}N
i=1 where each instance si is a

video sv
i with a corresponding audio sa

i . The goal of Audio-Visual Instance Discrimination

(AVID) is to learn visual and audio representations (vi,ai) from the training instances si. The

learned representations are optimized for ‘instance discrimination’ [46, 206, 129], i.e., must be

discriminative of si itself as opposed to other instances s j in the training set. Prior work [46, 206]

shows that such a discriminative objective among instances learns semantic representations that

capture similarities between the instances.

To accomplish this, two neural networks extract unit norm feature vectors vi = fv(sv
i ) and

ai = fa(sa
i ) from the video and audio independently. Slow moving (exponential moving average)

representations for both video and audio features {(v̄i, āi)}N
i=1 are maintained as ‘memory features’

and used as targets for contrastive learning. The AVID task learns representations (vi,ai) that are

more similar to the memory features of the instance (v̄i, āi) as opposed to memory features of

other instances (v̄ j, ā j), j 6= i. However, unlike previous approaches [206, 46] defined on a single

modality (but similar to [190]), AVID uses multiple modalities, and thus can assume multiple

forms as depicted in Figure 2.2.

1. Self-AVID requires instance discrimination within the same modality - vi to v̄i and ai to āi.
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This is equivalent to prior work [46, 206] independently applied to the two modalities.

2. Cross-AVID optimizes for cross-modal discrimination, i.e., the visual representation vi is

required to discriminate the accompanying audio memory āi and vice-versa.

3. Joint-AVID combines the Self-AVID and Cross-AVID objectives.

It is not immediately obvious what the relative advantages, if any, of these variants are. In §2.3.3,

we provide an in-depth empirical study of the impact of these choices on the quality of the learned

representations. We now describe the training procedure in detail.

2.3.2 AVID training procedure.

AVID is trained using a contrastive learning framework [70, 69], where instance represen-

tations are contrasted to those of other (negative) samples.

While various loss functions have been defined for contrastive learning [147, 173], we

focus on noise contrastive estimation (NCE) [69]. Let x̄i denote the (memory) target representation

for a sample si. The probability that a feature x belongs to sample si is modeled by a generalized

softmax function

P(si|x) = 1
NZ̄ exp(xT x̄i/τ) (2.1)

where Z̄ = 1
N ∑x̄[exp(xT x̄/τ)] is the normalized partition function and τ is a temperature hyper-

parameter that controls the softness of the distribution. In the case of AVID, x and x̄ may or may

not be from the same modality.

The network f is trained to learn representations by solving multiple binary classification

problems where it must choose its own target representation x̄i over representations x̄ j in a

negative set. The negative set consists of K ‘other’ instances drawn uniformly from S , i.e.,

Ni = U(S)K . The probability of a feature x being from instance si as opposed to the instances
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from the uniformly sampled negative set Ni is given as

P(D = 1|x, x̄i) =
P(si|x)

P(si|x)+K/N
. (2.2)

The NCE loss is defined as the negative log-likelihood

LNCE(xi; x̄i,Ni) =− logP(D = 1|xi, x̄i)− ∑
j∈Ni

logP(D = 0|xi, x̄ j), (2.3)

where P(D = 0|·) = 1−P(D = 1|·).

The three variants of AVID depicted in Figure 2.2 are trained to optimize variations of the

NCE loss of Equation 2.3, by varying the target representations x̄i.

LSelf-AVID = LNCE(vi; v̄i,Ni)+LNCE(ai; āi,Ni) (2.4)

LCross-AVID = LNCE(vi; āi,Ni)+LNCE(ai; v̄i,Ni) (2.5)

LJoint-AVID = LSelf-AVID(vi,ai)+LCross-AVID(vi,ai) (2.6)

We analyze these variants next and show that the seemingly minor differences between

them translate to significant differences in performance.

2.3.3 Analyzing AVID

We present experiments to analyze various properties of the AVID task and understand

the key factors that enable the different variants of AVID to learn good representations.

Experimental Setup

We briefly describe the experimental setup for analysis and provide the full details in the

supplemental.
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Pre-training Dataset. All models are trained using the Audioset dataset [61] which

contains 1.8M videos focusing on audio events. We randomly subsample 100K videos from

this dataset to train our models. We use input video and audio clips of 1 and 2-second duration,

respectively. The video model is trained on 16 frames of size 112×112 with standard data

augmentation [187]. We preprocess the audio by randomly sampling the audio within 0.5 seconds

of the video and compute a log spectrogram of size 100×129 (100 time steps with 129 frequency

bands).

Video and audio models. The video model is a smaller version of the R(2+1)D models

proposed in [191] with 9 layers. The audio network is a 9 layer 2D ConvNet with batch

normalization. In both cases, output activations are max-pooled, projected into a 128-dimensional

feature using a multi-layer perceptron (MLP), and normalized into the unit sphere. The MLP is

composed of three fully connected layers with 512 hidden units.

Pre-training details. AVID variants are trained to optimize the loss in Equations 2.4-2.6

with 1024 random negatives. In early experiments, we increased the number of negatives up

to 8192 without seeing noticeable differences in performance. Following [206], we set the

temperature hyper-parameter τ to 0.07, the EMA update constant to 0.5, and the normalized

partition function Z̄ is approximated during the first iteration and kept constant thereafter (Z̄ =

2.2045). All models are trained with the Adam optimizer [101] for 400 epochs with a learning

rate of 1e-4, weight decay of 1e-5, and batch size of 256.

Downstream tasks. We evaluate both the visual and audio features using transfer learning.

• Visual Features: We use the Kinetics dataset [196] for action recognition. We evaluate the

pre-trained features by linear probing [68, 216] where we keep the pre-trained network

fixed and train linear classifiers. We report top-1 accuracy on held-out data by averaging

predictions over 25 clips per video.

• Audio Features: We evaluate the audio features on the ESC-50 [160] dataset by training

linear classifiers on fixed features from the pre-trained audio network. Similar to the video
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Table 2.1: Accuracy of linear probing on Kinetics.

Method block1 block2 block3 block4 Best
Cross-AVID 19.80 26.98 34.81 39.95 39.95
Self-AVID 17.10 22.28 27.23 32.08 32.08
Joint-AVID 18.65 23.60 29.47 33.04 33.04

Table 2.2: Accuracy of linear probing on ESC.

block1 block2 block3 block4 Best
Cross-AVID 67.25 73.15 74.80 75.05 75.05
Self-AVID 66.92 72.64 71.45 71.61 72.64
Joint-AVID 65.45 68.65 71.77 68.41 71.77

case, we report top-1 accuracy by averaging predictions over 25 clips per video.

Cross vs. within-modal instance discrimination

We study the three variants of AVID depicted in Figure 2.2 to understand the differences

between cross-modal and within-modal instance discrimination and its impact on the learned

representations. We evaluate the video and audio feature representations from these variants and

report results in Table 2.1 and Table 2.2. We observe that Self-AVID is consistently outperformed

by the Cross-AVID variant on both visual and audio tasks.

We believe the reason is that Self-AVID uses within-modality instance discrimination,

which is an easier pretext task and can be partially solved by matching low-level statistics of

the data [44, 8]. This hypothesis is supported by the fact that Joint-AVID, which combines the

objectives of both Cross-AVID and Self-AVID, also gives worse performance than Cross-AVID.

These results highlight that one cannot naively use within-modality instance discrimination when

learning audio-visual representations. In contrast, Cross-AVID uses a “harder” cross-modal

instance discrimination task where the video features are required to match the corresponding

audio and vice-versa. As a result, it generalizes better to downstream tasks.
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2.4 Beyond Instance Discrimination

We will show in §2.5 that Cross-AVID achieves state-of-the-art performance on action

recognition downstream tasks. However, we identify three important limitations in the instance

discrimination framework of Equation 2.3 and the cross-modal loss of Equation 2.5.

1. Limited to instances: Instance discrimination does not account for interactions between in-

stances. Thus, two semantically related instances are never grouped together and considered

‘positives’.

2. False negative sampling: The negative set Ni, which consists of all other instances s j, may

include instances semantically related to si. To make matters worse, contrastive learning

requires a large number K of negatives, increasing the likelihood that semantically related

samples are used as negatives. This contradicts the goal of representation learning, which

is to generate similar embeddings of semantically related inputs.

3. No within-modality calibration: The Cross-AVID loss of Equation 2.5 does not directly

optimize for visual similarity vT
i v j. In fact, as shown experimentally in §2.3.3, doing so

can significantly hurt performance. Nevertheless, the lack of within-modality calibration is

problematic, as good visual representations should reflect visual feature similarities.

2.4.1 Relating instances through agreements

We extend AVID with Cross-Modal Agreement (CMA) to address these shortcomings.

CMA builds upon insights from prior work [169] in multi-view learning. We hypothesize that,

if two samples are similar in both visual and audio feature space, then they are more likely to

be semantically related than samples that agree in only one feature space (or do not agree at all).

We thus consider instances that agree in both feature spaces to be ‘positive’ samples for learning

representations. Similarly, examples with a poor agreement in either (or both) spaces are used as
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negatives. When compared to instance discrimination methods [206, 190, 46], CMA uses a larger

positive set of semantically related instances and a more reliable negative set.

2.4.2 CMA Learning Objective

We define an agreement score for two instances si and s j as

ρi j = min(vT
i v j,aT

i a j). (2.7)

This is large only when both the audio and video similarities are large. A set of positives and

negatives is then defined per instance si. The positive set Pi contains the samples that are most

similar to si in both spaces, while the negative set Ni is the complement of Pi.

Pi = TopK
j=1,...,N

(ρi j) Ni = { j|s j ∈ (S \Pi)} (2.8)

Furthermore, CMA enables self-supervision beyond single instances. This is achieved

with a generalization of the AVID task, which accounts for the correspondences of Equation 2.8.

At training time, Kn negative instances are drawn per sample si from the associated negative set

Ni to form set N ′
i = U(Ni)

Kn . The networks fv, fa are learned to optimize a combination of

cross-modal instance discrimination and within-modal positive discrimination (wMPD). The

former is encouraged through the Cross-AVID loss of Equation 2.5. The latter exploits the fact

that CMA defines multiple positive instances Pi, thus enabling the optimization of within-modality

positive discrimination

LwMPD =
1

Kp
∑

p∈Pi

LNCE(vi; v̄p,N ′
i )+LNCE(ai; āp,N ′

i ). (2.9)

Note that, unlike the Self-AVID objective of Equation 2.4, this term calibrates within-modal

similarities between positive samples. This avoids within-modal comparisons to the instance
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itself, which was experimentally shown to produce weak representations in §2.3.3. We then

minimize the weighted sum of the two losses

LCMA = LCross-AVID(vi,ai)+λLwMPD(vi,ai), (2.10)

where λ > 0 is an hyper-parameter that controls the weight of the two losses.

Implementation

After Cross-AVID pre-training, cross-modal disagreements are corrected by finetuning

the audio and video networks to minimize the loss in Equation 2.10. Models are initialized with

the Cross-AVID model at epoch 200, and trained for 200 additional epochs. We compare these

models to a Cross-AVID model trained for 400 epochs, thus controlling for the total number

of parameter updates. For each sample, we find 32 positive instances using the CMA criterion

of Equation 2.8 applied to video and audio memory bank representations. For efficiency purposes,

the positive set is updated every 50 epochs. In each iteration, 1024 negative memories (not

overlapping with positives) were sampled. These positive and negative memories were then used

to minimize the CMA loss of Equations 2.9-2.10. For evaluation purposes, we use the same

protocol as in §2.3.3.

2.4.3 Analyzing CMA

The CMA objective consists of two terms that optimize cross-modal (Equation 2.5) and

within-modal (Equation 2.9) similarity. We observed in §2.3.3 that within-modal comparisons

for instance discrimination result in poor visual representations due to the relatively easy task

of self-discrimination. Intuitively, since CMA identifies groups of instances (Pi) that are likely

related, calibrating within-modal similarity within these groups (instead of within the instance

itself) should result in a better visual representation. To study this, we use CMA to obtain a
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positive set Pi and analyse the CMA objective of Equation 2.10 by evaluating with different

values of the hyper-parameter λ. The results shown in Figure 2.3 validates the advantages of

CMA over Cross-AVID.

CMA calibration

To understand the effect of the CMA procedure on within-modal similarities, we analyzed

the embedding space defined by memory bank representations obtained with AVID and CMA

trained on the Kinetics dataset. Since representations are restricted to the unit sphere (due to

normalization), the average inner-product between two randomly chosen samples should be 0

(assuming a uniform distribution of samples over the sphere). However, when training with

Cross-AVID, the average inner-product is 0.23. This means that Cross-AVID learns collapsed

representations (i.e. features are on average closer to other random features than the space

permits). This is likely due to the lack of within-modal negatives when training for cross-modal

discrimination. By seeking within modal-discrimination of positive samples, CMA effectively

addresses the feature collapsing problem observed for Cross-AVID, and yields an average dot-

product between random memories of 0 as expected.

CMA vs. within-modal expansion

CMA expands the positive set Pi to include instances that agree in both video and audio

spaces. We inspected whether modeling this agreement is necessary for relating instances by

exploring alternatives that do not model agreements in both spaces (see Figure 2.4). We consider

alternatives that expand the set Pi by looking at instances that are similar in 1) only the audio

space; 2) only the video space; or 3) either video or audio space. Each method in Figure 2.4 is

trained to optimize the objective of Equation 2.10 with the corresponding Pi. We also compare

against the Cross-AVID baseline that uses only the instance itself as the positive set. Transfer

performance is reported in Table 2.3.
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Figure 2.3: Impact of within-modal positive sample discrimination. Positive sample discrimina-
tion can improve the performance of Cross-AVID.
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Figure 2.4: Comparison of CMA to expansion methods that relate instances without modeling
agreement.

Compared to Cross-AVID, expanding the set of positives using only audio similarity

(third row) hurts performance on Kinetics, and relying on video similarities alone (second row)

only provides marginal improvements. We believe that expanding the set of positives only based

on visual similarity does not improve the performance of visual features since the positives are

already close in the feature space, and do not add extra information. CMA provides consistent

gains over all methods on Kinetics, suggesting that modeling agreement can provide better

positive sets for representation learning of visual features.
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Table 2.3: Top-1 accuracy of linear probing on Kinetics. CMA enables better transfer for action
recognition.

Method block1 block2 block3 block4 Best
Cross-AVID (Base) 19.80 26.98 34.81 39.95 39.95
Base + Video-Exp. 19.93 27.39 35.64 40.17 40.17
Base + Audio-Exp. 20.14 27.28 35.68 39.62 39.62
Base + AV Exp 20.04 27.61 36.14 40.58 40.58
Base + CMA 20.16 27.98 36.98 41.11 41.11
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Figure 2.5: Precision@K. Expansion methods generate agreements of worse precision.

Qualitative Understanding

We show examples of positive and negative samples found by CMA in Figure 2.6 and

observe that CMA can group together semantically related concepts. As it uses agreement

between both spaces, visually similar concepts, like ‘ambulance‘ and ‘bus‘ (second row), can be

distinguished based on audio similarity. This leads to more precise positive sets Pi, as can be

verified by inspecting the precision@K of Pi measured against ground truth labels (Figure 2.5).

CMA consistently finds more precise positives compared to within-modal expansion methods

showing the advantages of modeling agreement.
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Reference Positives Visual Negatives

Figure 2.6: Examples extracted by the CMA procedure showing three images in their positive
sets (Equation 2.8), and three negatives that were rejected from the positive set due to low audio
similarity.

2.5 Cross-AVID and CMA at scale

Previous sections provide experimental validation for the proposed Cross-AVID and CMA

procedures when training on a medium-sized dataset (100K videos from Audioset). We now

study the proposed methods on large-scale datasets. We also compare Cross-AVID and CMA

to prior work, including video-based self-supervised learning methods [134, 118, 210, 72], and

methods that leverage the natural correspondence between audio and video [8, 148, 105].
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Experimental setup.

We briefly describe the experimental setup, and refer the reader to supplementary material

for full details. We use the 18-layer R(2+1)D network of [191] as the video encoder and a

9-layer (2D) CNN with batch normalization as the audio encoder. Models are trained on Kinetics-

400 [196] and the full Audioset [61] datasets, containing 240K and 1.8M video instances,

respectively. Video clips composed of 8 frames of size 224×224 are extracted at a frame rate

of 16fps with standard data augmentation procedures [187]. Two seconds of audio is randomly

sampled within 0.5 seconds of the video at a 24kHz sampling rate, and spectrograms of size

200×257 (200 time steps with 257 frequency bands) are used as the input to the audio network.

For Cross-AVID, the cross-modal discrimination loss of Equation 2.5 is optimized with K = 1024

negative instances. We then find 128 positive instances for each sample using cross-modal

agreements (Equation 2.8), and optimize the CMA criterion of Equation 2.10 with Kp = 32

positives, Kn = 1024 negatives and λ = 1.0. Video representations are evaluated on action

recognition (§2.5.1), and audio representations on sound classification (§2.5.2).

2.5.1 Action recognition

We first evaluate the visual representations learned by Cross-AVID and AVID+CMA by

training a linear classifier for the task of action recognition on the Kinetics dataset. The top-1

accuracy is reported for clip and video-level predictions. Clip-level predictions are obtained

from a single 8-frame clip, while video-level predictions are computed by averaging clip-level

predictions from 10 clips uniformly sampled from the whole video. The results shown in Table 2.4

clearly demonstrate the advantage of calibrating AVID representations using the CMA procedure,

yielding significant gains across both metrics and pretraining datasets. These results demonstrate

the value of the CMA procedure in large-scale datasets, thus showing that its effect goes beyond

a simple regularization procedure to prevent overfitting.
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Table 2.4: Top-1 accuracy of linear probing on Kinetics.

Pretraining DB Kinetics Audioset
Method \ Metric Clip@1 Video@1 Clip@1 Video@1

Cross-AVID 33.3 43.1 35.2 46.6
AVID+CMA 35.1 44.5 37.4 48.9

To compare to prior work, we follow [72, 105, 190] and evaluate visual representations

on the UCF-101 [182] and HMDB-51 [109] datasets, by full network fine-tuning. Due to the

large variability of experimental setups used in the literature, it is unrealistic to provide a direct

comparison to all methods, as these often use different network encoders trained on different

datasets with input clips of different lengths. To increase the range of meaningful comparisons,

we fine-tuned our models using clips with both 8 and 32 frames. At inference time, video-level

predictions are provided by averaging clip-level predictions for 10 uniformly sampled clips [105].

We report top-1 accuracy averaged over the three train/test splits provided with the original

datasets.

Table 2.5 compares the transfer performance of Cross-AVID and CMA with previous

self-supervised approaches. To enable well-grounded comparisons, we also list for each method

the pre-training dataset and clip dimensions used while finetuning on UCF and HMDB. Despite

its simplicity, Cross-AVID achieves state-of-the-art performance for equivalent data settings

in most cases. In particular, when pre-trained on Audioset, Cross-AVID outperformed other

audio-visual SSL methods such as L3 and AVTS by at least 1.0% on UCF and 2.5% on HMDB.

Similar to Cross-AVID, L3 and AVTS propose to learn audio-visual representations by predicting

whether audio/video pairs are in-sync. However, these methods optimize for the audiovisual

correspondence task, which fails to reason about the data distribution at large. Cross-AVID also

outperformed the concurrently proposed XDC [4] under equivalent data settings. When pretrained

on Audioset and finetuned on UCF with 32 frames, XDC [4] does report higher accuracy, but

the model was pretrained and finetuned using 32 frames, while we pretrain using only 8 frames.
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Table 2.5: Top-1 accuracy on UCF and HMDB by full network finetuning with various pre-
training datasets and clips of different sizes.

Method Pretraining
DB

Finetune
Input Size UCF HMDB

Shuffle&Learn [134] UCF 1×2272 50.2 18.1
OPN [118] UCF 1×2272 56.3 23.8

ST Order [23] UCF 1×2272 58.6 25.0
CMC [190] UCF 1×2272 59.1 26.7

3D-RotNet [93] Kinetics400 16×1122 62.9 33.7
ClipOrder [210] Kinetics400 16×1122 72.4 30.9

DPC [72] Kinetics400 25×1282 75.7 35.7
CBT [186] Kinetics400 16×1122 79.5 44.6

L3∗ [8] Kinetics400 16×2242 74.4 47.8
AVTS [105] Kinetics400 25×2242 85.8 56.9

Kinetics400 8×2242 74.2 39.0
XDC [4]

Kinetics400 32×2242 86.8† 52.6†

Kinetics400 8×2242 82.3 49.1
Cross-AVID (ours)

Kinetics400 32×2242 86.9 59.9
Kinetics400 8×2242 83.7 49.5

AVID+CMA (ours)
Kinetics400 32×2242 87.5 60.8

L3∗ [8] Audioset 16×2242 82.3 51.6
Multisensory [148] Audioset 64×2242 82.1 –

AVTS [105] Audioset 25×2242 89.0 61.6
Audioset 8×2242 84.9 48.8

XDC [4]
Audioset 32×2242 93.0† 63.7†

Audioset 8×2242 88.3 57.5
Cross-AVID (ours)

Audioset 32×2242 91.0 64.1
Audioset 8×2242 88.6 57.6

AVID+CMA (ours)
Audioset 32×2242 91.5 64.7

It should be noted that, when pretraining and finetuning with clips of 8 frames, Cross-AVID

outperforms XDC by 3.4% (84.9% vs 88.3%). CMA further improves the performance of Cross-

AVID on all settings considered (i.e., using both Kinetics and Audioset pretraining datasets, and

evaluating on UCF and HMDB). We observed, however, that the improvements of CMA over

Cross-AVID are smaller under the fine-tuning protocol than the linear evaluation of Table 2.4.

Prior work [68, 216] observes that full fine-tuning significantly modifies the visual features and
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tests the network initialization aspect of pre-training rather than the semantic quality of the

representation. Thus, we believe that the feature calibration benefits of CMA are diminished

under the full finetuning protocol.

2.5.2 Sound recognition

Audio representations are evaluated on the ESC-50 [160] and DCASE [183] datasets by

linear probing [68] for the task of sound recognition. Following [105], both ESC and DCASE

results are obtained by training a linear one-vs-all SVM classifier on the audio representations

generated by the pre-trained models at the final layer before pooling. For training, we extract

10 clips per sample on the ESC dataset and 60 clips per sample on DCASE [105]. At test

time, sample level predictions are obtained by averaging 10 clip level predictions, and the top-1

accuracy is reported in Table 2.6. For the ESC dataset, performance is the average over the 5

original train/test splits. Similarly to video, audio representations learned by Cross-AVID and

CMA outperform prior work, outperforming ConvRBM on the ESC dataset by 2.7% and AVTS

on DCASE by 3%.

2.6 Discussion

We proposed a self-supervised method to learn visual and audio representations by

contrasting visual representations against multiple audios, and vice versa. Our method, Audio-

Visual Instance Discrimination (AVID) builds upon recent advances in contrastive learning [206,

190] to learn state-of-the-art representations that outperform prior work on action recognition and

sound classification. We propose and analyze multiple variants of the AVID task to show that

optimizing for cross-modal similarity and not within-modal similarity matters for learning from

video and audio.

We also identified key limitations of the instance discrimination framework and proposed
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Table 2.6: Top-1 accuracy of linear classification on ESC-50 and DCASE datasets.

Method Pretraining
DB ESC DCASE

RandomForest [160] None 44.3 –
ConvNet [159] None 64.5 –

ConvRBM [170] None 86.5 –
SoundNet [13] Flickr-SoundNet 74.2 88

L3 [8] Flickr-SoundNet 79.3 93
AVTS [105] Kinetics 76.7 91

XDC [4] Kinetics 78.5 –
Cross-AVID (Ours) Kinetics 77.6 93
AVID+CMA (Ours) Kinetics 79.1 93

AVTS [105] Audioset 80.6 93
XDC [4] Audioset 85.8 –

Cross-AVID (Ours) Audioset 89.2 96
AVID+CMA (Ours) Audioset 89.1 96

CMA to use agreement in the video and audio feature spaces to group together related videos.

CMA helps us relate multiple instances by identifying more related videos. CMA also helps

us reject ‘false positives’, i.e., videos that are similar visually but differ in the audio space.

We show that using these groups of related videos allows us to optimize for within-modal

similarity, in addition to cross-modal similarity, and improve visual and audio representations. The

generalization of CMA suggests that cross-modal agreements provide non-trivial correspondences

between samples and are a useful way to learn improved representations in a multi-modal setting.

2.7 Appendix

2.7.1 Experimental setup

Architecture details

The architecture details of the video and audio networks used in the analysis experiments

are shown in Table 2.12 and Table 2.13, and those used for comparison to prior work is shown
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in Table 2.14 and Table 2.15.

Pre-training hyper-parameters

Optimization and data augmentation hyper-parameters for AVID and CMA pre-training

are provided in Table 2.9.

Action recognition hyper-parameters

Optimization and data augmentation hyper-parameters for action recognition tasks are

provided in Table 2.10.

Video pre-processing

Video clips are extracted at 16 fps and augmented with standard techniques, namely

random multi-scale cropping with 8% minimum area, random horizontal flipping and color and

temporal jittering. Color jittering hyper-parameters are shown in Table 2.9 for pre-training and

Table 2.10 for transfer into downstream tasks.

Audio pre-processing

Audio signals are loaded at 24kHz, instead of 48kHz, because a large number of Audioset

audio samples do not contain these high frequencies. The spectrogram is computed by taking

the FFT on 20ms windows with either 10ms (§4, §5) or 20ms (§6) hop-size. We then convert

the spectrogram to a log scale, and Z-normalize its intensity using mean and standard deviation

values computed on the training set. We use volume and temporal jitering for data augmentation.

Volume jittering is accomplished by multiplying the audio waveform by a constant factor randomly

sampled between 0.9 and 1.1, and applied uniformly over time. Temporal jittering is done by

randomly sampling the audio starting time within 0.5s of the video, and randomly selecting the
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total audio duration between 1.4s and 2.8s and rescaling back to the expected number of audio

frames.

2.7.2 Longer AVID pre-training

To ensure that the benefits of CMA are not caused by longer training, we trained Cross-

AVID for the same number of epochs as AVID+CMA. The Cross-AVID performance on Kinetics

after 200 and 400 training epochs are shown in Table 2.7. Cross-AVID transfer performance seem

to have already saturated after 200 epochs of pre-training.

2.7.3 CMA calibration

To further study the benefits effect of the CMA procedure, we measured the classification

performance of memory representations obtained with both AVID and CMA trained on the

Kinetics dataset. We randomly split the 220K training samples, for which memory representations

are available, into a train/validation set (70/30% ratio). We then train a linear classifier on the

training set (using either video, audio or the concatenation of both, ConvNet is kept fixed), and

evaluate the performance on the validation set. The train/validation splits are sampled 5 times

and average performance is reported. The top-1 accuracies are shown in Table 2.8.
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Table 2.7: Top-1 accuracy of linear probing on Kinetics evaluated after 200 and 400 epochs of
Cross-AVID training.

Method block1 block2 block3 block4 Best
Cross-AVID (ep 200) 19.84 26.87 34.64 39.87 39.87
Cross-AVID (ep 400) 19.80 26.98 34.81 39.95 39.95

Table 2.8: Top-1 accuracy of linear probing of memory representations (video, audio and both
concatenated).

Method Video Mem Audio Mem Combined Mem
Cross-AVID 29.01±0.14 19.67±0.09 34.68±0.15

CMA 34.00±0.25 21.98±0.11 38.91±0.14

Table 2.9: Pre-training optimization hyper-parameters. CMA models are initialized by the
AVID model obtained at epoch 200.

Method DB bs lr wd ep es msc hf bj sj cj hj
AVID (§2.3) Audioset 32 5e-4 1e-5 400 1e5 X 0.5 0.4 0.4 0.4 0.2
AVID (§2.5) Audioset 32 5e-4 1e-5 200 1.8e6 X 0.5 0.4 0.4 0.4 0.2
AVID (§2.5) Kinetics 32 2e-4 1e-5 300 2.4e5 X 0.5 0.4 0.4 0.4 0.2
CMA (§2.4) Audioset 32 5e-4 1e-5 200 1e5 X 0.5 0.4 0.4 0.4 0.2
CMA (§2.5) Audioset 32 5e-4 1e-5 200 1.8e6 X 0.5 0.4 0.4 0.4 0.2
CMA (§2.5) Kinetics 32 2e-4 1e-5 300 2.4e5 X 0.5 0.4 0.4 0.4 0.2
bs - batch size; lr - learning rate; wd - weight decay; ep - number of epochs; es - number of samples per epoch;

msc - multi-scale cropping; hf - horizontal flip probability;
bj/sj/cj/hj - brightness/saturation/contrast/hue jittering intensity.

Table 2.10: Transfer learning optimization hyper-parameters.

DB input size bs lr wd ep es gm mls
Kinetics (§2.3, §2.4) 16×1122 32 1e-4 0. 20 1e4 0.3 8,12,15,18

UCF (§2.5) 8×2242 32 1e-4 0. 160 1e4 0.3 60,100,140
UCF (§2.5) 32×2242 16 1e-4 0. 80 1e4 0.3 30,50,70

HMDB (§2.5) 8×2242 32 1e-4 0. 250 3.4e3 0.3 75,150,200
HMDB (§2.5) 32×2242 16 1e-4 0. 100 3.4e3 0.3 30,60,80

bs - batch size; lr - learning rate; wd - weight decay; ep - number of epochs; es - number of samples per epoch;
gm - learning rate decay factor; mls - milestones for learning rate decay;
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Table 2.11: Data augmentation hyper-parameters.

DB msc hf bj sj cj hj
Kinetics (§4, §5) X 0.5 0. 0. 0. 0.

UCF (§2.5) X 0.5 0.4 0.4 0.4 0.2
HMDB (§2.5) X 0.5 1. 1. 1. 0.2

msc - multi-scale cropping; hf - horizontal flip probability;
bj/sj/cj/hj - brightness/saturation/contrast/hue jittering intensity.

Table 2.12: Architecture details of R(2+1)D video network for analysis experiments. The video
network is based of R(2+1)D convolutions with ReLU activations and batch normalization at
each layer.

Video Network
Layer Xs Xt C Ks Kt Ss St
video 112 16 3 - - - -
conv1 56 16 64 7 3 2 1

block2.1 56 16 64 3 3 1 1
block2.2 56 16 64 3 3 1 1
block3.1 28 8 128 3 3 2 2
block3.2 28 8 128 3 3 1 1
block4.1 14 4 256 3 3 2 2
block4.2 14 4 256 3 3 1 1
block5.1 7 2 512 3 3 2 2
block5.2 7 2 512 3 3 1 1
max pool 1 1 512 7 2 1 1

fc1 - - 512 - - - -
fc2 - - 512 - - - -
fc3 - - 128 - - - -

Xs spatial activation size; Xt temporal activation size; C number of channels
Ks spatial kernel size; Kt temporal kernel size; Ss spatial stride; St temporal stride;
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Table 2.13: Architecture details of Conv2D audio network for analysis experiments. The audio
network is based on 2D convolutions with ReLU activations and batch normalization at each
layer.

Audio Network
Layer X f Xt C K f Kt S f St
audio 129 100 1 - - - -
conv1 65 50 64 7 7 2 2

block2.1 65 50 64 3 3 1 1
block2.2 65 50 64 3 3 1 1
block3.1 33 25 128 3 3 2 2
block3.2 33 25 128 3 3 1 1
block4.1 17 13 256 3 3 2 2
block4.2 17 13 256 3 3 1 1
block5.1 17 13 512 3 3 1 1
block5.2 17 13 512 3 3 1 1
max pool 1 1 512 17 13 1 1

fc1 - - 512 - - - -
fc2 - - 512 - - - -
fc3 - - 128 - - - -

Xt temporal activation size; X f frequency activation size; C number of channels
Kt temporal kernel size; K f frequency kernel size; St temporal stride; S f frequency stride.
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Table 2.14: Architecture details of R(2+1)D video network for comparison to prior work. The
video network is based of R(2+1)D convolutions with ReLU activations and batch normalization
at each layer.

Video Network
Layer Xs Xt C Ks Kt Ss St
video 224 8 3 - - - -
conv1 112 8 64 7 3 2 1

max-pool 56 8 64 3 1 2 1
block2.1.1 56 8 64 3 3 1 1
block2.1.2 56 8 64 3 3 1 1
block2.2.1 56 8 64 3 3 1 1
block2.2.2 56 8 64 3 3 1 1
block3.1.1 28 4 128 3 3 2 2
block3.1.2 28 4 128 3 3 1 1
block3.2.1 28 4 128 3 3 1 1
block3.2.2 28 4 128 3 3 1 1
block4.1.1 14 2 256 3 3 2 2
block4.1.2 14 2 256 3 3 1 1
block4.2.1 14 2 256 3 3 1 1
block4.2.2 14 2 256 3 3 1 1
block5.1.1 7 1 512 3 3 2 2
block5.1.2 7 1 512 3 3 1 1
block5.2.1 7 1 512 3 3 1 1
block5.2.2 7 1 512 3 3 1 1
max-pool 1 1 512 7 2 1 1

fc1 - - 512 - - - -
fc2 - - 512 - - - -
fc3 - - 128 - - - -

Xs spatial activation size, Xt temporal activation size, C number of channels
Ks spatial kernel size, Kt temporal kernel size, Ss spatial stride, St temporal stride.
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Table 2.15: Architecture details of Conv2D audio network for comparison to prior work. The
audio network is based on 2D convolutions with ReLU activations and batch normalization at
each layer.

Audio Network
Layer X f Xt C K f Kt S f St
audio 257 200 1 - - - -
conv1 129 100 64 7 7 2 2

block2.1 65 50 64 3 3 2 2
block2.2 65 50 64 3 3 1 1
block3.1 33 25 128 3 3 2 2
block3.2 33 25 128 3 3 1 1
block4.1 17 13 256 3 3 2 2
block4.2 17 13 256 3 3 1 1
block5.1 17 13 512 3 3 1 1
block5.2 17 13 512 3 3 1 1
max pool 1 1 512 17 13 1 1

fc1 - - 512 - - - -
fc2 - - 512 - - - -
fc3 - - 128 - - - -

Xt temporal activation size, X f frequency activation size, C number of channels
Kt temporal kernel size, K f frequency kernel size, St temporal stride, S f frequency stride
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Chapter 3

Robust Audio-Visual Instance

Discrimination
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3.1 Introduction

Self-supervised representation learning aims to learn feature representations that can

transfer to downstream tasks without costly human annotations. Many recent self-supervised

methods [29, 76, 133, 32, 202, 190] use a variant of the instance discrimination framework [206,

47], which matches features from multiple views/augmentations of the same instance, while

distinguishing these features from those of other instances. This often relies on a contrastive

loss [70], where different augmentations are considered ‘positives’ and other samples ‘negatives.’

Cross-modal instance discrimination (xID) extends instance discrimination to the realm

of multiple modalities, where data modalities, such as video, audio, or text, act as the different

‘views’ of an instance. Since there is a strong correlation between audio and visual events (e.g.,

the sound of an instrument or a baseball match), audio-visual instance discrimination has gained

popularity [8, 148, 105, 138, 161, 4, 155, 3]. Representations learned by these methods show

promising performance on tasks like action recognition and environmental sound classification.

xID methods rely on two key assumptions - (1) the audio and video of a sample are informative

of each other, i.e., positives; (2) the audio and video of all other samples are not related, i.e.,

negatives. In practice, both these assumptions are too strong and do not hold for a significant

amount of real-world data. This results in faulty positive samples that are not related to each other

and faulty negative samples that are semantically related.

Figure 3.1 shows examples of these faulty correspondences. Videos where the audio is

uninformative of the visual content can lead to faulty positives, e.g., videos containing audio from

sources outside of the camera field-of-view or containing post-edited sounds like a soundtrack.

Similarly, random negative sampling can produce faulty negatives, i.e., negative samples that are

semantically related to the positive. These faulty correspondences undermine the primary goal of

representation learning, i.e., to ensure that similar instances have similar feature representations.

As we show empirically in Figure 3.7 and Table 3.1, they can hurt representation learning and
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Figure 3.1: Example of a positive audio/video pair and negative instances used for contrastive
learning. Faulty positive and negative samples are a common occurrence in audio-visual
contrastive learning and hurt representation learning.

degrade downstream performance. Thus, we believe cross-modal learning should be seen as a

problem of learning with noisy targets. This raises the question of how to identify faulty positive

and negative samples in the absence of human annotations.

We propose to use cross-modal information during self-supervised training to detect both

faulty positive and negative instances. This is done by estimating the quality of the audio-visual

correspondence of each instance and optimizing a weighted contrastive learning loss that down-

weighs the contribution of faulty positive examples. To address faulty negatives, we estimate the

similarity across instances to compute a soft target distribution over instances. The model is then

tasked to match this distribution. As a result, instances with enough evidence of similarity are no

longer used as negatives and may even be used as positives.

The contributions of this work are as follows (Figure 3.2). We identify two sources of

training noise in cross-modal learning: instances with weak cross-modal correspondence, which

create faulty positives, and the sampling of semantically similar instances as negatives, which

create faulty negatives. We show that removing faulty positives and negatives using an oracle can

significantly improve the performance of a state-of-the-art xID method [138]. We then propose a

mechanism to replace the oracle and a robust cross-modal instance discrimination loss that limits

the impact of faulty correspondences. The effectiveness of the proposed method is demonstrated

on several downstream tasks.
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Figure 3.2: Comparison between standard cross-modal instance discrimination (xID) and the
proposed procedure. The proposed method addresses the two main sources of noisy training
signals: faulty positives and faulty negatives.

3.2 Related work

Self-supervised representation learning

Self-supervised representation learning aims to learn representations by solving pretext

tasks defined from the data alone, i.e. without human annotations. In computer vision, pretext tasks

involve reasoning about spatial context [142, 44, 99, 154, 64, 73, 163], temporal context [134,

118, 204, 99, 135, 72, 54, 199, 18, 73, 74, 163], other visual properties such as hue, brightness

and flow [41, 113, 215, 114, 216, 190, 161], or clusters of features [27, 12, 29, 202]. One

promising technique is the instance discrimination task proposed in [206, 47] and further explored

in [76, 133, 32, 202, 208]. However, contrastive learning from a single modality requires

heavy data augmentations to generate distinct views. Instead, we focus on cross-modal instance

discrimination, which avoids this issue by generating views from different modalities.

Representation learning from audio-visual correspondences

Since, in video, the audio is naturally paired and synced with the visual component, audio-

visual correspondences have been used to draw direct supervision for several tasks, such as visually

guided-source separation and localization [58, 60, 221, 220, 57, 175], visually guided audio

spatialization [137, 59], audio-visual embodied navigation [31], lip-speech synchronization [37]
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and audio-visual speech recognition [2, 36].

In the context of contrastive learning, audio-visual correspondences are used to generate

alternative views of an instance. While this has been known for a long time [39], self-supervised

audio-visual representation learning gained popularity in recent years. For example, [8, 7] propose

to learn representations by solving a binary classification problem that identifies audio and video

clips belonging to the same instance. [105, 148] predict if audio and video clips are temporally

synchronized, and [136] predicts if audio and video clips extracted from a 360 video are spatially

aligned. [138, 155] improve upon the audio-visual correspondence problem [8] by posing it as a

cross-modal instance discrimination task, where instances are contrasted to a large number of

negatives. As a result, [138, 155] achieve impressive performance on downstream tasks such as

action recognition.

In this work, we address two issues inherent to cross-modal instance discrimination,

namely the detrimental impact of faulty positives and negatives. Recently, [4, 11] proposed to

learn representations by iteratively clustering the audio and visual representations and seeking

to predict cluster assignments from the opposite modality. While clustering can also discourage

faulty negatives from acting as repelling forces, our method accomplishes this by optimizing a

simple instance discrimination loss with soft targets, thus avoiding the significant computational

overhead of clustering.

Supervised learning from noisy labels

Our work is closely related to supervised learning from noisy labels [167, 217, 156, 71,

122]. Since label collection is expensive and time-consuming, scaling human annotation to large

datasets often requires the use of non-experts or non-curated labels such as user tags, which are

prone to noise. Since deep neural networks can easily overfit to noisy labels [212], this results in

poor generalization. Several techniques have been developed to increase the robustness of learning

algorithms to label noise, including losses that reduce the impact of outliers [63, 217, 203], loss
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correction approaches that model the sources of label noise [156, 81, 30, 167, 9, 128, 180], meta-

learning procedures that learn how to correct the sources of label noise [122, 168, 121, 178, 219]

and regularization procedures tailored to lower the impact of noise [213, 158]. We refer the

reader to [181, 55] for a detailed survey of prior work on learning with label noise. In this work,

we show that cross-modal instance discrimination should be seen as a problem of learning with

noisy targets. However, instead of the class mislabeling, we identify two main sources of noise

for cross-modal instance discrimination (faulty positives and faulty negatives) and propose an

algorithm to mitigate them.

3.3 Analysis: Instance Discrimination

We analyze the cross-modal instance discrimination method [138, 190, 155] and show

that faulty positives and negatives have a disproportionately large contribution to the training

updates. Additionally, in Table 3.1, we document the detrimental empirical effects of faulty

samples.

Cross-Modal Instance Discrimination

Consider a dataset D = {(vi,ai)
N
i=1} containing N samples (or instances) of video vi

and audio ai. Cross-modal instance discrimination uses a contrastive loss [70] to learn video

and audio encoders, fv(·) and fa(·), so as to align the two modalities belonging to the same

instance [190, 138, 155] by minimizing

LxID(vi,ai) =− logP(āi|vi;τ)− logP(v̄i|ai;τ) (3.1)

where P(t̄i|si;τ) =
exp(sT

i t̄i/τ)

∑k exp(sT
i t̄k/τ)

, (3.2)
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where vi = fv(vi) and ai = fa(ai) are visual and audio features normalized to the unit sphere, v̄i

and āi are target representations, and τ is a temperature hyper-parameter. Prior works differ by

the type of target representations employed. For example, v̄i and āi can be entries of a memory

bank as in [138, 206], the network representations themselves v̄i = fv(vi) and āi = fa(ai) as in

SimCLR [32], the outputs of momentum encoders as in MoCo [76], or the centroids of an online

clustering procedure as in SwAV or CLD [29, 202]. In this work, we build on the Audio-Visual

Instance Discrimination (AVID) method of [138], focusing on target representations sampled

from a memory bank. However, the principles introduced below can also be applied to SimCLR,

MoCo or SwAV style targets.

Faulty positives and negatives in practice

The contrastive loss of Equation 3.1 is minimized when audio and visual representations

from the same instance are aligned (dot-product similarities vT
i āi and aT

i v̄i as close to 1 as

possible), and representations from different instances are far apart. In practice, however, the two

modalities are not informative of each other for a significant number of instances (see Figure 3.1).

We refer to these unclear correspondences as faulty positives.1 On the other hand, a significant

number of contrastive learning negatives are semantically similar to the base instance. We term

these semantically similar negatives as faulty negatives since they should ideally be used as

positives.

Figure 3.3 shows the histogram of similarities v̄T
i āi after training an audio-visual model

with the loss of Equation 3.1. As can be seen, instances with higher scores tend to have stronger

correspondences (i.e. the audio and video signals are informative of each other). Instances where

the two modalities are uninformative of each other tend to have lower scores and are generally

faulty positives. On the other hand, Figure 3.4 shows the histograms of similarities between a

video i and negatives j. As can be seen, faulty negatives tend to occur for negatives j with high

1We prefer ‘faulty positives’ over ‘false positives’ to distinguish from supervised learning where one has access
to labels.
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similarity v̄T
i ā j.

How do faulty positives and negatives affect learning?

Faulty positives and negatives have a disproportionately large contribution to the training

updates. To see this, examine the gradients that are computed when optimizing Equation 3.1. The

partial derivatives are given as

−
∂LxID

∂vi
=

āi

τ
(1−P(āi|vi))︸ ︷︷ ︸
Attraction force

−∑
n6=i

ān

τ
P(ān|vi)︸ ︷︷ ︸

Repulsion force

(3.3)

−
∂LxID

∂ai
=

v̄i

τ
(1−P(v̄i|ai))︸ ︷︷ ︸
Attraction force

−∑
n6=i

v̄n

τ
P(v̄n|ai)︸ ︷︷ ︸

Repulsion force

. (3.4)

Intuitively, the target representations v̄i and āi of the instance itself act as ‘attraction points’

for the encoder of the opposing modality, while the target representations of other (negative)

instances, v̄n and ān, act as ‘repelling points’. For example, in Equation 3.3, the negative gradient

pushes vi toward āi and away from ān,n 6= i. The attraction forces are weighed by the complement

of the prediction confidence, i.e., 1−P(v̄i|ai) or 1−P(āi|vi). When positive samples are faulty,

these gradients lead to noisy training signals. As show in Figure 3.3, faulty positives tend to

have lower similarities and thus less confident predictions. As a result, the cross-modal loss

of Equation 3.1 assigns stronger gradients to faulty positive samples. On the other hand, the

repelling forces of negative instances are also weighted by the likelihood of matching the base

sample, i.e. P(v̄n|ai) and P(ān|vi). However, as shown in Figure 3.4, faulty negatives tend to

have high similarity scores, leading to high posteriors P(v̄n|ai) and P(ān|vi). Thus, the targets v̄n

and ān of faulty negatives act as strong repelling forces for a and v (see Equation 3.3-3.4), even

though they should ideally be close in feature space.
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Figure 3.3: Faulty positives in a pretrained cross-modal model. Histogram of similarity scores
v̄T

i āi between video and audio representations, and examples obtained at various points of the
distribution.

3.4 Robust audio-visual representation learning

We have seen that contrastive learning places too much emphasis on the impossible goals

of bringing together the audio-visual components of faulty positives and repelling the feature

representations from faulty negatives. We next propose solutions to these two problems.

3.4.1 Weighted xID: Tackling Faulty Positives

To reduce the impact of faulty positives, we propose to optimize a weighted loss. Let

wi ∈ [0,1] be a set of sample weights that identify faulty positives. Robustness is achieved by

re-weighting the xID loss of Equation 3.1

LRxID =
∑i wiLxID(vi,ai)

∑i wi
. (3.5)
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To estimate sample weights wi, we leverage observations from Figure 3.3. Since low similarities

v̄T
i āi are indicative of faulty positives, we define the weights wi to be proportional to the cumulative

distribution of these scores. We assume the scores to be normally distributed and define wi as

wi = twmin

(
CN
(
āT

i v̄i;µ+δσ,κσ
2)) , (3.6)

where µ and σ2 are the sample mean and variance of the scores, CN is the cumulative distribution

of a transformed normal distribution N (µ+ δσ,κσ2), and twmin(x) = x · (1−wmin)+wmin is a

soft truncation function used to assign a non-zero weight wmin to low score instances. δ, κ and

wmin are shape hyper-parameters that provide flexibility to the weight function, adjusting the

location and rate of decay of the weights. Figure 3.5 shows how the weighting function varies

with the shape hyper-parameters δ, κ and wmin.

3.4.2 Soft Targets: Tackling Faulty Negatives

As observed in §3.3, faulty negatives are overemphasized during training. The underlying

reason is that the xID loss of Equation 3.1 has too strict a definition of negatives: every negative

instance j 6= i is considered ‘equally negative.’ To limit the impact of faulty negatives, we

introduce a ‘softer’ definition by introducing soft targets T ( j|i), based on the similarity between

instance i and negative j. We then minimize a soft-xID loss

LSoft-xID(vi,ai) =−∑ j Tv( j|i) logP(ā j|vi;τ)

−∑ j Ta( j|i) logP(v̄ j|ai;τ) (3.7)

Tv( j|i) = (1−λ)1i= j +λSv( j|i) (3.8)

Ta( j|i) = (1−λ)1i= j +λSa( j|i) (3.9)
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Figure 3.4: Faulty negatives in a pretrained cross-modal model. Two instances vi and the
corresponding negatives used by a xID model sorted by their similarity scores. The actual videos
are provided in supplementary material. xID often uses faulty negatives for contrastive learning.

where 1i= j is the one-hot targets of vanilla xID, Sv and Sa ∈ [0,1] are softening scores (described

next) used to adjust the one-hot targets, and λ ∈ [0,1] is a mixing coefficient that weighs the two

terms. Equations 3.1 and 3.7 are identical when λ = 0. Since T ( j|i) is no longer strictly zero for

similar instances, minimizing Equation 3.7 reduces the force to repel faulty negatives and thus

their impact.
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Figure 3.5: Weights as function of similarity scores v̄T
i āi for different values of shape parameters

δ, κ and wmin. Parameters µ,σ are automatically determined from the histogram of similarity
scores v̄T

i āi (shown in red).

Estimating softening scores S

Since our approach focuses on self-supervised learning, we must estimate the softening

scores S automatically, i.e., without class labels. We describe multiple strategies for estimating

these values and illustrate them in Figure 3.6.

• Bootstrapping [167] is a well established procedure to create soft targets. It uses the

model’s own predictions (posteriors) as the softening scores, i.e.,

Sv( j|i) = P(ā j|v̄i;τs) and Sa( j|i) = P(v̄ j|āi;τs), (3.10)

where τs controls the peakiness of the distribution. However, bootstrapping computes the target

distribution without aggregating information from any other source other than each model’s own

posterior.

• Swapped prediction improves upon bootstrapping by using the posteriors of the

opposite modality, i.e., the softening scores Sv for the video modality are computed using the

posterior of the audio encoder and vice-versa,

Sv( j|i) = P(v̄ j|āi;τs) and Sa( j|i) = P(ā j|v̄i;τs). (3.11)
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As a result, in addition to the instance itself, the model is asked to predict which other instances

are deemed similar in the opposite modality.

• Neighbor prediction relies on within-modal relationships to estimate the similarity be-

tween instances, thus avoiding potential mismatched audio and visual modalities when computing

the soft targets. Specifically, we define

Sv( j|i) = ρ(v̄T
i v̄ j/τs) and Sa( j|i) = ρ(āT

i ā j/τs), (3.12)

where ρ is the softmax operator.

• Cycle consistent prediction improves upon ‘swapped prediction‘ by focusing on

negatives that are good correspondences themselves, i.e., negatives with high similarity scores

v̄T
j ā j. In this case, we define

Sv( j|i) = ρ(v̄T
i āi/τt + āT

i v̄ j/τs + v̄T
j ā j/τt) (3.13)

Sa( j|i) = ρ(āT
i v̄i/τt + v̄T

i ā j/τs + āT
j v̄ j/τt) (3.14)

where τs and τt control the relative importance of swapped prediction target and avoiding negatives

with weak correspondences. As shown in Figure 3.6, the terms v̄T
i āi and v̄T

j ā j complete a cycle

over instances i and j.

How do soft targets mitigate faulty negatives?

The soft xID loss of Equation 3.7 prevents overemphasizing faulty negatives by relying on

soft targets T ( j|i) that encode similarities between instances. To better understand the mechanism,
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Figure 3.6: Strategies to estimate softening scores S(i| j).

we examine the partial derivatives of the soft-xID loss:

−∂LSoft-xID
∂vi

= ∑ j
ā j
τ
(Tv( j|i)−P(ā j|vi)) (3.15)

−∂LSoft-xID
∂ai

= ∑ j
v̄ j
τ
(Ta( j|i)−P(v̄ j|ai)). (3.16)

Since faulty negatives j tend to be similar to the base instance i, the soft targets T ( j|i) are higher.

Thus, the target representations v̄ j and ā j of faulty negatives act as weaker negatives, or even as

positives when T ( j|i) is larger than the model posteriors.

3.4.3 Training

We introduced two procedures to deal with noisy training signals inherent to cross-modal

instance discrimination. §3.4.1 presents a weighting mechanism that limits the effect of faulty

positives, while §3.4.2 proposes a soft instance discrimination loss that predicts relations between

instances, thus preventing the training algorithm from overemphasizing faulty negatives. Since

both procedures rely on the alignment between audio and visual target representations to find
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weak correspondences, we start by training the model for cross-modal instance discrimination

alone (Equation 3.1). After the initial warmup stage, the two procedures can be combined by

minimizing

L = 1
∑k wk ∑

i
wiLSoft-xID(vi,ai) (3.17)

where wi are the sample weights of Equation 3.6 and LSoft-xID is the xID loss with soft targets of

Equation 3.7.

3.5 Experiments

We perform experiments to better understand cross-modal learning and validate the

proposed improvements. We pretrain models on a subset of the Kinetics-400 [196] dataset

containing 50K videos and evaluate the pretrained models by transfer learning.

3.5.1 Experimental Setup

Video and audio preprocessing

During training, we extract video clips of length T = 8 frames and resolution 80× 80

at 16 fps. Video clips are augmented using temporal jittering, multi-scale cropping, horizontal

flipping, color jittering, gray-scaling, and Gaussian blur [32]. All data augmentations are applied

consistently over all frames. For the audio, we extract mono clips of length 2s at a sample rate

of 11025Hz, and compute log spectrograms on 50ms windows with a hop size of 25ms. The

spectrogram is then converted to a mel scale with 80 bands, yielding an audio input of size

80×80. Audio data is augmented by randomly changing the volume by at most 20%.
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Video and audio models

The video encoder is a 9-layer version of the R(2+1)D model of [191]. Following [8, 138],

we replaced global average pooling with max pooling. The audio encoder is a 9-layer 2D ConvNet

with batch normalization and global max pooling. Both encoders yield 512-dimensional features,

which are mapped into a 128-dimensional sphere using a non-linear projection head (as in [32])

followed by L2 normalization.

Pretraining

In the warm-up stage, the video and audio models are trained to optimize the loss

of Equation 3.1 using the Adam optimizer [101] with default hyper-parameters (β1 = 0.9 and

β2 = 0.999) for 400 epochs with a learning rate of 1e− 4 and a batch size of 224 split over 2

12Gb GPUs. In order to reduce the memory footprint of our models, we employ mixed-precision

training [132] using PyTorch AMP [152]. Following [138, 206], the audio and video target

representations, ā and v̄, are generated using memory banks updated by exponential moving

average with an update constant of 0.5. The contrastive loss of Equation 3.1 is defined by

opposing the target representation of the opposite modality to 1024 negatives randomly drawn

from the memory bank. The temperature hyper-parameter is set to τ = 0.07.

After the initial warm-up stage, models are trained for an additional 200 epochs to optimize

the loss of Equation 3.17 using the Adam optimizer and a cosine learning rate schedule starting

at 1e−4 and ending at 1e−5. The hyper-parameters for the weighting function (Equation 3.6)

and the soft xID loss (Equation 3.7) are discussed below. To provide a fair comparison to the

AVID baseline [138], we control for the number of epochs by training the baseline model for an

additional 200 epochs as well.
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Downstream tasks

We evaluate audio and video features using transfer learning. Video features are evaluated

on the UCF [182] and HMDB [109] datasets. Models are fine-tuned using 8-frame clips for 200

epochs using the Adam optimizer with a batch size of 192 on a single GPU and a cosine learning

rate schedule starting at 1e−4 and ending at 1e−5. To prevent overfitting, we use dropout after

the global max-pooling layer, weight decay of 1e−3, and reduced the learning rate for backbone

weights by a factor of 10. At test time, top-1 accuracy is measured on video level predictions

computed by averaging the predictions of 10 clips uniformly sampled over the entire video.

Following [11, 210], we also evaluate the quality of video representations by conducting

retrieval experiments without fine-tuning. Feature maps of size 4×4×512 are extracted from 10

clips per video and averaged. We then use videos in the test set to query the training set. As

in [11, 210], a correct retrieval occurs when the class of one of the top-k retrieved videos matches

the query, and performance is measured by the average top-k retrieval performance (R@K).

3.5.2 Weighted cross-modal learning

We analyze the impact of faulty positives on the representations learned by cross-modal

instance discrimination.

Faulty positives are detrimental to representation learning

We artificially control the number of faulty positives to assess their impact on representa-

tion learning. The pretraining dataset already contains an unknown (but significant) number of

faulty positives. We increase this number by injecting more faulty positives. A faulty positive

is injected by replacing the audio of an instance with a randomly selected audio that is not part

of the training set. After pretraining, the learned visual representation is evaluated on the UCF

and HMDB datasets using both classification and retrieval protocols. Figure 3.7 shows that
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Figure 3.7: Transfer learning performance with and without faulty positives. The weighted loss
(Weighted-xID) is less sensitive to faulty positives.

as the fraction of faulty positives increases, the transfer performance of cross-modal instance

discrimination (xID) decreases significantly.

Weighted xID reduces the impact of faulty positives

We evaluate the effectiveness of the weighted xID loss (Equation 3.5) as a function of

the number of faulty positives. We compare the representations learned by Weighted-xID to its

unweighted counterpart (xID), as well as an oracle weight function (Oracle-xID) which assigns

wi = 0 to artificially altered instances and wi = 1 otherwise. The weight function of Equation 3.5

is defined with κ = 0.5 and wmin = 0.25. For simplicity, we assume that the noise level is known

and set δ in Weighted-xID so that the midpoint of the weighting function coincides with the
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Table 3.1: Different strategies for computing soft targets in the pretraining loss of Equation 3.7.

Target
Distribution

UCF HMDB

Acc R@5 Acc R@5

Oracle∗ 73.6 76.0 45.4 53.6
xID [138] 68.0 63.2 39.0 43.4
Bootstrapping 69.2 64.4 40.5 44.7
Neighbor Pred. 70.5 65.4 41.2 45.0
Swapped Pred. 70.0 64.9 41.3 45.4
CCP 70.3 65.9 41.5 45.5
∗Uses class labels to generate target distribution.

known fraction of altered samples. In practice, the noise level would need to be estimated either by

cross-validation or by manual inspection. Weighted-xID is not very sensitive to these parameters

(see appendix).

Figure 3.7 shows the performance of the three approaches. Oracle-xID consistently

outperforms xID when the fraction of injected faulty positives is high. This shows that the

detrimental impact of noisy correspondences can be mitigated with a weighting strategy. Weighted-

xID also outperforms the unweighted version (xID) in nearly all cases, with larger margins for

larger fractions of noisy correspondences. In fact, Weighted-xID even outperforms the oracle

weight function, especially at lower noise levels. This is because the original Kinetics dataset

already contains a significant amount of weak correspondences, which the oracle weight function

treats as clean wi = 1, while the weighting function of Equation 3.6 can suppress them.

3.5.3 Instance discrimination with soft targets

To limit the impact of faulty negatives, we proposed to match a soft target distribution that

encodes instance similarity. We analyze different design decisions for creating the soft targets

and their effect on transfer performance.
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Comparison of strategies for computing targets

As summarized in Figure 3.6, the soft target distributions can be computed by aggregating

evidence from all modalities. Four different strategies were proposed, bootstrapping, swapped

or cycle consistent assignments. Models were trained to minimize the loss of Equation 3.7

with λ = 0.5. We empirically found that peakier target distributions work better, and set the

temperature parameter τs to 0.02. For cycle consistent assignments, the terms v̄T
j ā j are used so as

to focus on negatives that are good correspondences themselves. A temperature hyper-parameter

of τt = 0.07 was sufficient to impose such constraint. Beyond the baseline xID, we also compare

to an oracle target distribution that has access to class labels to determine the similarity between

instances. Specifically, the oracle considers two instances i and j to be similar if they share

the same class label, and computes Tv( j|i) and Ta( j|i) by assigning a uniform distribution over

similar instances, and 0 to non-similar ones.

Table 3.1 shows the performance of different target distributions. We observe a large gap

between vanilla xID and xID with an oracle soft target, which demonstrates the detrimental effect

of faulty negatives. In the self-supervised case, however, labels are not available for determining

the target distribution. Nevertheless, the estimated target distributions (bottom four rows) still

significantly improve over the xID loss. Regarding the various types of target distributions,

bootstrapping is the least effective. This is expected since, in this case, the target distribution

is a peakier version of the model posterior, i.e. it is obtained without aggregating information

from any other sources. Cycle consistent prediction is the most effective most often. This is

because cycle consistent prediction not only leverages the opposite modality to create the target

distribution, but it also avoids targets that are not good correspondences themselves, i.e., avoids

samples with low cross-modal similarities.
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Table 3.2: Combining weighted xID loss with soft targets.

Method Robust
Weighting

CCP
Soft Targets

UCF HMDB

Acc R@5 Acc R@5

xID [138] 7 7 68.0 63.2 39.0 43.4
Weighted-xID 3 7 69.7 64.1 40.1 44.3
Soft-xID 7 3 70.3 65.9 41.5 45.5
Robust-xID 3 3 71.6 67.4 41.9 46.2

3.5.4 Robust instance discrimination with soft targets

Sample weighting and soft targets are designed to address two different sources of noisy

training signals inherent to cross-modal contrastive learning: faulty positives and faulty negatives.

Table 3.2 shows that the two proposed improvements (Weighted-xID and Soft-xID) not only

improve upon the representations of vanilla xID, they are also complementary to each other.

By combining the two approaches using the loss of Equation 3.17, Robust-xID improved upon

Weighted and Soft-xID.

3.6 Comparison to prior work

We compare Robust-xID to prior work in self-supervised learning. We train our models

on the Kinetics dataset, using an 18-layer R(2+1)D model [191] for the video, and a 9-layer 2D

ConvNet with batch normalization for the audio. Video clips of length 8-frames and 112×112

resolution are extracted at 16fps, and the same data augmentations from §3.5 are used. We extract

audio clips of length 2s at 24KHz and compute log mel spectrograms with 128 time steps and

128 frequency bands. All models are trained with the Adam optimizer with a batch size of 512

distributed across 8 12Gb GPUs. We warm-up the models for 200 epochs by training on the xID

loss alone with a learning rate of 5e−4. The models are then trained with sample weights and

cycle consistent soft targets for an additional 200 epochs using a cosine learning rate schedule

from 5e−4 to 5e−5.

59



After pre-training, models are evaluated on UCF and HMDB. We fine-tune the models

using either 8 or 32 frame clips for action recognition and report the top-1 accuracy of video

level predictions (with 10 clips per video) in Table 3.3. The proposed procedure outperformed

all prior work where pretraining is limited to a single node (8 GPUs), and even outperformed

methods like SeLaVi, which require 8× more compute for training. We also conducted a close

comparison to the CMA procedure of [138] (xID+CMA). While CMA can also partially address

the problem of faulty negatives, Robust-xID showed better performance. Robust-xID is also

easier to implement as it identifies both faulty positives and negatives in a simpler online fashion.

We note that xID+CMA is a faithful implementation of AVID+CMA [138], as it follows the

original code with improved data augmentations. However, the results reported for xID+CMA

are lower than those originally reported in [138] because 1) distributed training was conducted on

8 GPUs instead of 64 (large batch sizes are known to have a substantial impact on contrastive

learning performance [32, 33, 29]), and 2) [138] is trained and evaluated with videos of higher

resolution (224 instead of 112). By training the proposed model with a larger batch size, we

expect the performance to improve further.

We also compare the learned representations to prior work without fine-tuning. Follow-

ing [11, 155], we conducted retrieval experiments, and report the retrieval performance R@K

for K = 1, K = 5 and K = 20 neighbors in Table 3.4. The retrieval protocol was described in

§3.5. Following [94, 155], we also assessed the few-shot learning performance of Robust-xID

models on UCF and HMDB. For the few-shot evaluation, we average the pretrained max-pooling

features of 10 clips per video. The features from n videos per class are then used to learn a

one-vs-all linear SVM classifier with C = 1. We report the top-1 accuracy averaged over 50 trials

in Table 3.5. On both the retrieval and few-shot learning tasks, Robust-xID improves significantly

over all prior work, reaffirming the importance of mitigating the training noise introduced by

faulty positives and faulty negatives.
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Table 3.3: Comparison to prior work (finetuning). Performance on the downstream UCF and
HMDB datasets by full network fine-tuning after pre-training on Kinetics.

Method Model Compute
# GPUs

Finetuning
Resolution UCF HMDB

DPC [72] S3D 4 25×1282 75.7 35.7
CBT [186] S3D 8 16×1122 79.5 44.6
Multisensory [148] 3D-ResNet18 3 32×2242 82.1 –
AVTS [105] MC3-18 4 25×2242 84.1 52.5
SeLaVi [11] R(2+1)D-18 64 32×1122 83.1∗ 47.1∗

R(2+1)D-18 64 8×2242 74.2∗ 39.0∗
XDC [4]

R(2+1)D-18 64 32×2242 86.8∗ 52.6∗

R(2+1)D-18 64 8×2242 83.7∗ 49.5∗
AVID-CMA [138]

R(2+1)D-18 64 32×2242 87.5∗ 60.8∗

GDT [155] R(2+1)D-18 64 32×2242 89.3∗ 60.0∗

R(2+1)D-18 8 8×1122 80.6 48.6
xID+CMA [138]

R(2+1)D-18 8 32×1122 84.9 54.7
R(2+1)D-18 8 8×1122 81.9 49.5

Robust-xID
R(2+1)D-18 8 32×1122 85.6 55.0

∗ Models pre-trained with more than one compute node (8 GPUs).

Table 3.4: Retrieval performance on UCF and HMDB datasets after pre-training on Kinetics for
different numbers of retried neighbors.

Method UCF HMDB

R@1 R@5 R@20 R@1 R@5 R@20

SpeedNet [18] 13.0 28.1 49.5 - - -
VCP [126] 18.6 33.6 53.5 7.6 24.4 53.6
VSP [35] 24.6 41.9 76.9 10.3 26.6 54.6
CoCLR [74] 55.9 70.8 82.5 26.1 45.8 69.7
SeLaVi [11] 52.0 68.6 84.5 24.8 47.6 75.5
GDT [155] 57.4 73.4 88.1 25.4 51.4 75.0
xID+CMA [138] 60.1 76.6 90.1 29.7 54.4 77.1
Robust-xID 60.9 79.4 90.8 30.8 55.8 79.7

3.7 Discussion and future work

We identified and tackled two significant sources of noisy training signals in audio-

visual instance discrimination, namely instances with weak audio-visual correspondence (or
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Table 3.5: Few-shot learning on UCF and HMDB after pre-training on Kinetics. Classification
is conducted using a one-vs-all SVM trained on the pretrained features of n images per class.

Method UCF HMDB

1-shot 5-shot 20-shot 1-shot 5-shot 20-shot

3D-RotNet [94] 15.0 31.5 47.1 - - -
GDT [155] 26.3 42.4 49.4 13.4 15.6 20.8
xID+CMA [138] 30.8 53.1 66.9 13.5 25.0 33.6
Robust-xID 32.8 54.6 67.8 14.1 25.9 34.9

faulty positives) and semantically similar negatives (or faulty negatives). We showed the impact

of faulty correspondences on representation learning by removing them using an oracle with

access to ground-truth annotations. We then proposed a method that mitigates the impact of

faulty correspondences without relying on ground-truth annotations. Extensive analysis and

experimental evaluations show that the proposed procedure enhances representation learning and

improves transfer performance significantly.

Our findings show that cross-modal learning should be seen as a problem of learning

with noisy targets. While we propose two specific methods to address faulty positives and

faulty negatives (i.e. weighting and soft targets), there is a rich literature regarding supervised

learning with noisy labels. Developing methods that tackle noisy correspondences are a promising

avenue for future research. Furthermore, we focused on audio-visual learning, but other pairs of

modalities such as RGB and flow or text from instructional videos also present similar problems.

We believe that our method will also benefit cross-modal learning from other modalities.

3.8 Appendix

3.8.1 Parametric studies

We provide a parametric study of key Robust-xID hyper-parameters.
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Weight function shape parameter δ

One critical parameter of Weighted-xID is the shape parameter δ, which specifies the

mid-point location of the weight function. For example, when δ =−2, the midpoint is located at

µ−2σ where µ and σ are the sample mean and standard deviation of the scores v̄T
i āi. This means

that for δ =−2, the majority of samples will have a weight of 1, and only a small fraction will

have a weight close to wmin. As δ increases, the proportion of samples that are down-weighted also

increases. To study the impact of δ, we trained several models using Weighted-xID with different

values of δ and for different amounts of injected faulty positives n0. Other hyper-parameters

were kept at their default values wmin = 0.25 and κ = 0.5. The transfer performance is shown

in Figure 3.8. As can be seen, the proposed robust xID procedure is not very sensitive to this

hyper-parameter. This suggests that Robust-xID can help representation learning as long as clear

faulty positives are suppressed.

Soft-xID: Mixing coefficient

The mixing coefficient λ specifies the degree to which the one-hot targets of instance

discrimination are softened in Soft-xID. The one-hot instance discrimination targets are used

when λ = 0. As λ increases, the softening scores S( j|i) are increasingly used to adjust the

one-hot targets. To study the impact of the mixing coefficient λ, we trained several models

using Soft-xID with various values of λ. Cycle consistent targets were used as the softening

strategy. Figure 3.9 shows the transfer performance of the learned models on UCF and HMDB

under the fine-tuning and retrieval protocols. The trend is consistent across the two datasets and

two evaluation protocols. Softening the instance discrimination targets enhances representation

learning, with the optimal performance achieved with a mixing coefficient between 0.25 and 0.5.

However, as the mixing coefficient increases substantially λ > 0.65, the targets are derived from

the model prediction alone and disregard instance labels. In this case of large λ, the pre-training

fails completely, i.e., the learned representations have very low transfer performance.
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Figure 3.8: Effect of shape parameter δ in Weighted-xID. Transfer learning performance is
evaluated on two datasets (UCF and HMDB) under two protocols (full finetuning and retrieval).

3.8.2 Additional analysis

The proposed approach learns high-quality feature representations that can be used to

discriminate several action classes. This was shown in the main paper by reporting transfer

learning results. We now provide additional qualitative evidence and analysis.

Retrieval

For each video, we extracted 4×4×512 feature maps from the video encoder learned

using Robust-xID on the full Kinetics dataset. Figure 3.11 depicts the top 4 closest videos for

several query samples. As can be seen, Robust-xID produces highly semantic features, enabling

correct retrievals for a large number of videos spanning a large number of classes. Furthermore,
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Figure 3.9: Effect of mixing coefficient λ in Soft-xID. Transfer learning performance is evalu-
ated on two datasets (UCF and HMDB) under two protocols (full finetuning and retrieval).

even when a video of a different class is retrieved, the errors are intuitive (for example, the

confusion between ‘American football‘ and ‘Hurling‘ in the third row). Failure cases also seem to

be correlated with classes that are hard to distinguish from the audio alone (eg, different types of

kicking sports or swimming strokes).

Class-based analysis

To better understand which classes are better modeled by the Robust-xID framework, we

measured the top-1 retrieval performance (R@1) averaged across all images of each class. Similar

to the analysis above, each video is represented by a 4×4×512 feature map extracted from a

video encoder learned using Robust-xID on the full Kinetics dataset. Figure 3.10 depicts a list

of Kinetics classes sorted by their average R@1 score. As can be seen, action classes which are
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Figure 3.10: Best (top) and worse (bottom) Kinetics classes. For each class, we depict the top-1
retrieval performance (R@1) averaged across all images of each class.

often accompanied by long and distinctive sounds (e.g., squash, harp, drums, accordion, or scuba

diving) tend to be more easily distinguished from others. In contrast, classes with less distinctive

audio (e.g., making a cake, eating cake, or hugging) or classes where distinctive sounds are

short-lived (e.g., blowing nose, gargling or kicking ball) are harder to model using a cross-modal

audio-visual framework. As a result, the features learned for such classes are less discriminative.

Faulty positive detection performance

To obtain a rough estimate of performance of the faulty positive detection procedure,

we randomly sampled 100 videos from the 10000 most likely faulty positives, as identified by

Robust-xID trained on the full Kinetics dataset. We then manually labeled them according to how

related their audio and visual signals are. From those, 67 were clear faulty pairs; 24 contained

narrative voice-overs (i.e., required natural language understanding to link the two modalities);

and 9 samples were clearly misidentified.
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Figure 3.11: Examples of nearest neighbor retrievals. In each row, the first image depicts the
query video, and the following four images depict the top 4 retrievals.
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Chapter 4

Audio-Visual Spatial Alignment
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4.1 Introduction

Human perception is inherently multi-sensory. Since real-world events can manifest

through multiple modalities, the ability to integrate information from various sensory inputs can

significantly benefit perception. In particular, neural processes for audio and visual perception

are known to influence each other significantly. These interactions are responsible for several

well known audio-visual illusions such as the “McGurk effect” [131], the “sound induced flash

effect” [177] or the “fusion effect” [6], and can even be observed in brain activation studies,

where areas of the brain dedicated to visual processing have been shown to be activated by sounds

that are predictive of visual events, even in the absence of visual input [50, 194].

In computer vision, the natural co-occurrence of audio and video has been extensively

studied. Prior work has shown that this co-occurrence can be leveraged to learn representations in

a self-supervised manner, i.e., without human annotations. A common approach is to learn to

match audio and video clips of the same video instance [8, 7, 138]. Intuitively, if visual events

are associated with a salient sound signature, then the audio can be treated as a label to describe

the visual content [39]. Prior work has also demonstrated the value of temporal synchronization

between audio and video clips for learning representations for downstream tasks such as action

recognition [105, 148].

Since these methods do not need to localize sound sources, they struggle to discriminate

visual concepts that often co-occur. For example, the sound of a car can be quite distinctive, and

thus it is a good target description for the “car” visual concept. However, current approaches use

this audio as a descriptor for the whole video clip, as opposed to the region containing the car.

Since cars and roads often co-occur, there is an inherent ambiguity about which of the two produce

the sound. This makes it is hard to learn good representations for visual concepts like “cars”,

distinguishable from co-occurring objects like “roads” by pure audio-visual correspondence or

temporal synchronization. This problem was clearly demonstrated in [175] that shows the poor
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audio localization achieved with AVC pretext training.

To address this issue, we learn representations by training deep neural networks with 1)

360◦video data that contain audio-visual signals with strong spatial cues and 2) a pretext task to

conduct audio-visual spatial alignment (AVSA, Figure 4.1). Unlike regular videos with mono

audio recordings, 360◦video data and spatial audio formats like ambisonics fully capture the

spatial layout of audio and visual content within a scene. To learn from this spatial information,

we collected a large 360◦video dataset, five times larger than currently available datasets. We also

designed a pretext task where audio and video clips are sampled from different viewpoints within

a 360◦video, and spatially misaligned audio/video clips are treated as negatives examples for

contrastive learning. To enhance the learned representations, two modifications to the standard

contrastive learning setup are proposed. First, the ability to perform spatial alignment is boosted

using a curriculum learning strategy that initially focus on learning audio-visual correspondences

at the video level. Second, we propose to reason over the full spatial content of the 360◦video

by combining representations from multiple viewpoints using a transformer network. We show

the benefits of the AVSA pretext task on a variety of audio and visual downstream tasks, includ-

ing audio-visual correspondence and spatial alignment, action recognition and video semantic

segmentation.

4.2 Related work

360◦media. The increasing availability of 360◦data has sparked interest in developing

vision systems for 360◦imagery. For example, the SUN-360 dataset of static 360◦images was

collected to learn to recognize viewpoints within a scene [207]. Self-supervised monocular

depth and camera motion estimation have also been studied by pairing 360◦imagery with depth

data [198, 157]. Another common topic of interest is to enhance 360◦video consumption by

guiding the viewer towards salient viewing angles within a video [218, 34], automating the
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Figure 4.1: Comparison of audio-visual spatial alignment to prior work. Prior work on audio-
visual representation learning leverages correspondences at the video level. Instead, we learn
representations by performing audio-visual spatial alignment (AVSA) of 360◦video and spatial
audio.

field-of-view control for 360◦video playback [86, 185], or by upgrading mono recordings into

spatial sounds [137].

Self-supervised learning. Self-supervised learning methods learn representations with-

out requiring explicit human annotation. Instead of predicting human labels, self-supervision

learns representations that are predictive of the input data itself (or parts of it) while imposing

additional constraints such as sparsity [117, 145, 144] or invariance [70, 166, 91, 133, 27]. An

emergent technique, known as contrastive learning, relies on contrastive losses [70] to learn

view invariant representations, where the different views of the data can be generated by data

augmentation [206, 133, 76, 32, 84], chunking the input over time or space [147, 72] or using

co-occurring modalities [8, 92, 138, 216, 190]. In this work, we also rely on contrastive losses,

but utilize contrastive learning to perform audio-visual spatial alignment.

Similarly to the proposed AVSA task, spatial context has previously been used in visual

representation learning. For example, [142, 44, 99] try to predict the relative locations of image
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or video patches, and [72] uses contrastive learning to learn representations that are predictive of

their spatio-temporal location. However, as shown in [138], using visual content as both the input

and target for representation learning can yield sub-optimal representations, as low-level statistics

can be explored to perform the task without learning semantic features. Our approach addresses

this issue by leveraging the spatial context provided by a co-occurring modality (audio) that also

contains strong spatial cues.

Audio-visual learning. The natural co-occurrence of vision and sound has been success-

fully used in various contexts such as visually guided source separation and localization [58, 60,

221, 220, 57], and audio spatialization [137, 59]. Audio-visual correspondences [8, 7] have also

been used for learning representations for objects and scenes in static images [8, 7, 150], action

recognition in video [148, 105, 138, 4], to perform temporal synchronization [37, 75, 148, 105]

and audio classification [13]. As discussed in Figure 4.1, prior work is often implemented either

by predicting audio-visual correspondences at the video level [8, 7, 138] or performing temporal

synchronization using out-of-sync clips as hard negatives [148, 105]. However, [175] shows that

basic audio-visual correspondences are ill-equipped to identify and localize sound sources in

the video. We argue that this is because audio-visual correspondences are imposed by matching

audio to the entire video clip. Thus, there is little incentive to learn discriminative features for

objects that often co-occur. To address this issue, we explore the rich spatial cues present in both

the 360◦video and spatial audio. By learning to spatially align visual and audio contents, the

network is encouraged to reason about the scene composition (i.e. the locations of the various

sources of sound), thus yielding better representations for downstream tasks.

4.3 Audio-visual spatial alignment

We learn audio-visual representations by leveraging spatial cues in 360◦media. 360◦video

and spatial audio encode visual and audio signals arriving from all directions (θ,φ) around
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the recording location, where θ denotes the longitude (or horizontal) angle, φ the latitude (or

elevation) angle. We adopt the equi-rectangular projection as the 360◦video format and first-order

ambisonics [62] for the spatial audio. Both formats can be easily rotated and/or decoded into

viewpoint specific clips.

4.3.1 Pretext task

Regressive AVSA. A straight-forward implementation of audio-visual spatial alignment is

to generate random rotations R of either the video or audio so as to create an artificial misalignment

between them. A model can then be trained to predict the applied transformation by solving

min
fv, fa,g

Ev,a,R {d [g( fv(v), fa(R(a))),R]} , (4.1)

where fv and fa are the video and audio encoders, g a rotation regression head, and d the distance

between the predicted and ground-truth rotations R. However, this implementation has several

disadvantages. Due to the continuous nature of the target variable R, the loss of (4.1) is difficult

to optimize. Also, the task is defined on the full 360◦video v, which limits the use of data

augmentation techniques such as aggressive cropping that are critical for self-supervised learning.

Contrastive AVSA. Inspired by recent advances in contrastive learning [70, 147, 206,

190, 138], we propose to solve the audio-visual spatial alignment task in a contrastive fash-

ion. As shown in Figure 4.1, given a 360◦audio-video sample (vi,ai), K video and audio clips

{(vk
i ,a

k
i )}K

k=1 are extracted from K randomly sampled viewing directions {(θk,φk)}K
k=1. Video

clips vk
i are obtained by extracting normal field-of-view (NFOV) crops using a Gnomonic projec-

tion [205] centered around (θk,φk), and audio clips ak
i by realigning the global frame of reference

of the ambisonics signal such that the frontal direction points towards (θk,φk) [108]. Audio-visual

spatial alignment is then encouraged by tasking a network to predict the correct correspondence

between the K video {vk
i }K

k=1 and the K audio {ak
i }K

k=1 signals.
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Figure 4.2: Architecture overview for contrastive audio-visual spatial alignment.

4.3.2 Architecture

Figure 4.2 summarizes the architecture used to solve the spatial alignment task. First,

video and audio encoders, fv and fa, extract feature representations from each clip independently,

vk
i = fv(vk

i ) and ak
i = fa(ak

i ). (4.2)

These representations are then converted between the two modalities using audio-to-video ga2v

and video-to-audio gv2a feature translation networks

v̄1
i , . . . , v̄

K
i = ga2v(a1

i , . . . ,a
K
i ) and ā1

i , . . . , ā
K
i = gv2a(v1

i , . . . ,v
K
i ). (4.3)

One important distinction between audio and video is the spatial localization of the

signals. Unlike video, any sound source can be heard regardless of the listening angle. In other

words, while an audio clip ak
i sampled at position (θk,φk) contains audio from all sound sources

present in a scene, only those physically located around (θk,φk) can be seen on the video clip vk
i .

This implies that, to enable accurate feature translation, networks gv2a and ga2v should combine
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features from all sampled locations. This is accomplished by using a translation network similar

to the transformer of [193]. As shown in Fig. 4.3, given a set of K features {xk}K
k=1, a transformer

of depth D alternates D times between two modules. The first module combines the K features xk

using attention

αk,1, . . . ,αk,K = Softmax

(〈
W T

keyxk,W T
qrx1

〉
√

d
, . . . ,

〈
W T

keyxk,W T
qrxK

〉
√

d

)
(4.4)

yk = Norm
(

xk +W T
0 ∑k′ αk,k′W

T
valxk′

)
. (4.5)

The second module computes a simple clip-wise feed-forward transformation

zk = Norm
(
yk +W T

2 max(W T
1 yk,0)

)
. (4.6)

In (4.4)-(4.6), Wkey,Wqr,Wval,W0,W1 and W2 are learnable weights and Norm is layer normal-

ization [14]. We omit the biases of linear transformations and layer indices for simplicity of

notation. Compared to the original transformer [193], the proposed translation network differs

in two aspects. First, motivated by early empirical results which showed no improvements on

downstream tasks when utilizing multi-head attention, we simplified the transformer architecture

to rely on a single attention head. Second, we removed positional encodings which are used to

indicate the position of each token xk. While these encodings could be used to encode the viewing

direction (θk,φk) of each clip, doing so would allow the model to solve the spatial alignment task

without learning semantic representations.

4.3.3 Learning strategy

AVSA is a difficult task to optimize since it requires discriminating between various crops

from the same video. To enhance learning, we employed a curriculum learning strategy [19]. In

the first phase, the network is trained to identify audio-visual correspondences (AVC) [8, 138] at
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the video level. This is accomplished by extracting a single crop (vi,ai) for each video i from

a randomly drawn viewing angle. The visual and audio encoders, fv and fa, are then trained to

minimize

LAVC = ∑
i

LInfoNCE
(

vi,ai,
{

a j
}N

j=1

)
+LInfoNCE

(
ai,vi,

{
v j
}N

j=1

)
(4.7)

where vi = fv(vi) and ai = fa(ai) are the video and audio representations. LInfoNCE is the

InfoNCE loss [147] defined as

LInfoNCE(x,xt ,Px) =− log
exp(h(xt ,x)/τ)

∑xp∈Px exp(h(xp,x)/τ)
(4.8)

where h(x,xt) is a prediction head that computes the cosine similarity between x and xt after

linear projection into a low-dimensional space, and τ is a temperature hyper-parameter. In the

case of AVC, the target representation xt for the InfoNCE loss is the feature from the crop of

same video but opposing modality, and the proposal distribution Px is composed by the target

feature representations of all videos in the batch.

In the second phase, the network is trained on the more challenging task of matching

audio and video at the crop level, i.e. matching representations in the presence of multiple crops

per video. This is accomplished by augmenting the proposal set Px to include representations

from multiple randomly sampled viewing angles {(vk
i ,a

k
i )}K

k=1 from the same video. In this phase,

we also introduce the feature translation networks gv2a and ga2v and require the translated features

(v̄k
i and āk

i ) to match the encoder outputs (vk
i and ak

i ) obtained for the corresponding viewing

angle k. Encoders fv and fa and feature translation networks gv2a and ga2v are jointly trained to

minimize

LAVSA = ∑
i

∑
k

LInfoNCE

(
v̄k

i ,v
k
i ,
{

vl
j

}N,K

j,l=1

)
+LInfoNCE

(
āk

i ,a
k
i ,
{

al
j

}N,K

j,l=1

)
. (4.9)
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4.4 YouTube-360 dataset

We collected a dataset of 360◦video with spatial audio from YouTube, containing clips

from a diverse set of topics such as musical performances, vlogs, sports, and others. This diversity

is critical to learn good representations. Similarly to prior work [137], search results were cleaned

by removing videos that 1) did not contain valid ambisonics, 2) only contain still images, or

3) contain a significant amount of post-production sounds such as voice-overs and background

music. The resulting dataset, denoted YouTube-360 (YT-360), contains a total of 5 506 videos,

which was split into 4 506 videos for training and 1 000 for testing. Since we use audio as target

for representation learning, periods of silence were ignored. This was accomplished by extracting

short non-overlapping clips whose volume level is above a certain threshold. In total, 88 733 clips

of roughly 10s each were collected (246 hours of video content). As shown in Table 4.1, the

YT-360 dataset contains five times more videos than the largest 360◦video dataset previously

collected.

To assess the ability of AVSA pre-training to localize objects in a scene, we conduct

evaluations on semantic segmentation as a downstream task. Due to the large size of our dataset,

collecting ground-truth annotations is impractical. Instead, we used the state-of-the-art ResNet101

Panoptic FPN model [103] trained on the MS-COCO dataset [124] to segment the 32 most

frequent objects and background classes on YT-360. A description of the segmentation procedure,

including the selected classes, is provided in appendix. These segmentation maps are used to

evaluate AVSA representations by knowledge distillation, as discussed in Section 4.5.3. Examples

from the YT-360 dataset are shown in Figure 4.4 together with the predicted segmentation maps

and a heat-map representing the directions of higher audio volume.
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Table 4.1: Comparison of 360◦video datasets.

Spatial Audio Unique Videos Hours

Duanmu et al. [48] 12 0.3
Li et al. [120] 73 3.8

Pano2VID [185] 86 7.3
SptAudioGen [137] X 1146 113

YT-360 X 5506 246

Frames Audio energy Segmentation maps

Figure 4.4: Examples from Youtube-360 dataset.
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4.5 Experiments

We evaluate the representations learned by AVSA pre-training on several downstream

tasks. We explain the experimental setting below, and refer the reader to appendix for additional

details.

4.5.1 Experimental setting

Video pre-processing

We sampled K = 4 crops per video at different viewing angles. Since up and down

viewing directions are often less informative, we restrict the center of each crop to latitudes

φ ∈ {−60◦,60◦}. We also ensure that viewing angles are sampled at least 36◦apart. Normal

field-of-view (NFOV) crops are extracted using a Gnomonic projection with random angular

coverage between 25◦and 90◦wide for data augmentation. If naive equi-rectangular crops were

taken, the distortion patterns of these crops at latitudes outside the horizon line could potentially

reveal the vertical position of the crop, allowing the network to “cheat” the AVSA task. Following

NFOV projection, video clips are resized into 112×112 resolution. Random horizontal flipping,

color jittering and Z normalization are applied. Each video clip is 0.5s long and is extracted at

16fps.

Audio pre-processing

First-order ambisonics (FOA) are used for spatial audio. Audio clips for the different

viewing angles are generated by simply rotating the ambisonics [108]. One second of audio is

extracted at 24kHz, and four channels (FOA) of normalized log mel-spectrograms are used as the

input to the audio encoder. Spectrograms are computed using an STFT with a window of size

21ms, and hop size of 10ms. The extracted frequency components are aggregated in a mel-scale

with 128 levels.
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Architecture and optimization

The video encoder fv is the 18-layer R2+1D model [191], and the audio encoder fa is a

9-layer 2D convolutional neural network operating on the time-frequency domain. The translation

networks, gv2a and ga2v, are instantiated with depth D = 2. Training is conducted using the Adam

optimizer [101] with a batch size of 28 distributed over 2 GPUs, learning rate of 1e−4, weight

decay of 1e− 5 and default momentum parameters (β1,β2) = (0.9,0.999). Both curriculum

learning phases are trained for 50 epochs. To control for the number of iterations, models trained

only on the first or second phases are trained for 100 epochs.

Baseline pre-training methods

We compare AVSA to Audio-Visual Correspondence (AVC) [8, 7, 138] and Audio-Visual

Temporal Synchronization (AVTS) [105, 148]. Since prior works perform pretext training on

flat video datasets (i.e. without spatial audio), a direct comparison is impossible. Instead, we

train AVC and AVTS models on the YouTube-360 dataset. For fair comparisons, we use the

architecture and optimization settings described above. AVC is trained to optimize the loss

of (4.7), which only uses negatives from different videos. Note that (4.7) is similar to the loss

used in [8, 7] but considers multiple negatives simultaneously. This has actually been shown to

improve generalization in [138]. To implement AVTS, we augment the proposal set Px of the

InfoNCE loss of (4.8) with clips sampled from different moments in time. Following [105, 148],

we ensure that negative pairs of audio and video clips are sufficiently separated in time. We also

use a curriculum learning strategy composed by an AVC pre-training phase as in [105]. In the

base AVC and AVTS implementations, we directly match the audio and visual features computed

by the encoders fv and fa directly, as done in the original papers [8, 138, 105, 148]. However, to

control for the number of seen crops, we also conduct AVC and AVTS pre-training using multiple

crops of the same video and the feature translation networks ga2v and gv2a. Since AVC requires

predictions at the video level (not for each individual clip), clip representations are combined by
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Table 4.2: Accuracy of binary AVC and AVSA predictions using one or four viewpoints on the
YT-360 test set.

Evaluation Task AVC-Bin AVSA-Bin
# Viewpoints 1 4 1 4

AVC
no transf. 79.82 82.68 59.48 59.25

transf. – 83.87 – 61.20

AVTS
no transf. 80.08 82.77 59.78 60.37

transf. – 83.77 – 60.73

AVSA
no transf. 86.19 91.67 64.97 68.87

transf. – 89.83 – 69.97

max-pooling.

4.5.2 Audio-visual spatial alignment

We start by considering the performance on the AVC and AVSA tasks themselves. AVC

performance is measured by randomly generating 50% of audio-video pairs from the same sample

(positives), and 50% of pairs from different samples (negatives). Similarly, we designed a binary

AVSA evaluation task in which positive audio-video pairs are spatially aligned, while negative

pairs were artificially misaligned by randomly rotating the ambisonic audio of a positive pair.

Rotations are constrained around the yaw axis (horizontal) to ensure the audio from positive and

negative pairs have the same distribution, and thus making the AVSA task more challenging.

Since models trained by AVC are not tuned for AVSA evaluation and vice-versa, the pretext

models cannot be directly evaluated on the above binary tasks. Instead, we trained a new binary

classification head on top of video and audio features, while keeping pretext representations

frozen. Also, since NFOV video crops only cover a small portion of the 360◦frame, we also

consider predictions obtained by averaging over four viewpoints.

Table 4.2 shows that the proposed AVSA pretext training mechanism significantly outper-

forms AVC and AVTS on both evaluation tasks. Remarkably, even though AVC pretext training
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optimizes for the AVC task directly, representations learned with AVSA outperformed those

learned with AVC by more than 6% on the AVC task itself (AVC-Bin). Furthermore, both AVC

and AVTS models learned by audio-video correspondence or temporal synchronization do not

transfer well to the spatial alignment task (AVSA-Bin). In result, AVSA outperforms AVC and

AVTS by more than 5% on spatial alignment. By learning representations that are discriminative

of different viewpoints, AVSA also learns a more diverse set of features. This is especially helpful

when combining information from multiple viewpoints, as demonstrated by the differences in the

gains obtained by 4 crop predictions. For example, AVC and AVTS only benefit by a 2-3% gain

from 4 crop predictions on the AVC-Bin task, while AVSA performance improves by 5.5%. On

the AVSA-Bin task, 4 crop predictions do not improve AVC or AVTS significantly, while AVSA

performance still improves by 4%. We also observe improvements by using the transformer

architecture in 5 out of 6 configurations (3 pretext tasks× 2 evaluations), showing its effectiveness

at combining information from different viewpoints.

4.5.3 Semantic segmentation by knowledge distillation

AVSA representations are also evaluated on semantic segmentation. As shown in Fig-

ure 4.5, the video encoder fv was used to extract features at multiple scales, which were combined

using a feature pyramid network (FPN) [123] for semantic segmentation. To measure the value

added by audio inputs, we concatenate the features from the audio encoder fa at the start of the

top-down pathway of the FPN head. Similarly, to measure the benefits of combining features

from multiple viewpoints, we concatenate the context-aware representations computed by the

feature translation modules gv2a and ga2v. Since the goal is to evaluate the pretext representations,

networks trained on the pretext task were kept frozen. The FPN head was trained by knowledge

distillation, i.e. using the predictions of a state-of-the-art model as targets. We also compare to a

fully supervised video encoder pre-trained on Kinetics for the task of action recognition. Similar

to the self-supervised models, the fully supervised model was kept frozen. To provide an upper
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bound on the expected performance, we trained the whole system end-to-end (encoders, feature

translation modules and the FPN head). A complete description of the FPN segmentation head

and training procedure is given in appendix.

Table 4.3 shows the pixel accuracy and mean IoU scores obtained using video features

alone, or their combination with audio and context features. Examples of segmentation maps

obtained with the AVSA model with context features are also shown in Figure 4.6. The results

support several observations. AVSA learns significantly better visual features for semantic

segmentation than AVC. This is likely due to the fine-grained nature of the AVSA task which

requires discrimination of multiple crops within the same video frame. As a result, AVSA

improves the most upon AVC on background classes such as rocks (34.7% accuracy vs. 27.7%),

window (46.0% vs. 41.2%), pavement (36.8% vs. 33.3%), sand (42.1% vs. 38.8%), sea (50.1%

vs. 46.8%) and road (47.1% vs. 45.1%).

AVSA also learns slightly better visual features than AVTS. While the gains over AVTS

using visual features alone are smaller, AVTS cannot leverage the larger spatial context of

360◦video data. When context features from four viewpoints are combined, using the translation

networks gv2a and ga2v, further improvements are obtained. With context features, AVSA yields a

3% mIoU improvement over AVC and 1% over AVTS.

Finally, we evaluated two ablations of AVSA. To verify the benefits of curriculum learning,

we optimized the AVSA loss of (4.9) directly. Without curriculum, AVSA achieved 1.5% worse

mIoU (see Table 4.3 AVSA no curr.). We next verified the benefits of modeling spatial context

by disabling the transformer ability to combine information from all viewpoints. This was

accomplished by replacing the attention module of Figure 4.3 with a similarly sized multi-layer

perceptron, which forced the translation networks to process each viewpoint independently. While

this only produced slightly worse visual representations, the ability to leverage spatial context

was significantly affected. Without the transformer architecture, AVSA yielded 1.5% worse mIoU

scores when using context features (see Table 4.3 AVSA mlp).
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Figure 4.5: Architecture used for semantic segmentation. Pre-trained networks are kept frozen.
A lightweight FPN segmentation head [123] is trained by knowledge distillation.

Table 4.3: Pixel accuracy and mean IoU of semantic segmentation predictions on YT-360 test
set. We evaluate the performance of an FPN head that uses 1) visual features alone, 2) visual
and audio features, and 3) visual, audio and context features obtained from four viewpoints.

Video only +Audio +Audio+Context
Pix Acc mIoU Pix Acc mIoU Pix Acc mIoU

AVC 71.16 32.85 71.07 32.69 – –
AVTS 73.24 34.88 72.97 34.88 – –
AVSA 73.44 35.11 73.11 34.63 73.85 35.83

AVSA (no curr.) 71.95 33.66 71.49 33.23 72.06 34.30
AVSA (mlp) 73.10 35.02 73.21 34.83 72.68 34.35

Kinetics (sup) 75.47 36.91 – – – –
End-to-end (upper bound) 77.37 41.05 77.93 42.00 79.65 43.21

4.5.4 Action recognition

Action recognition is a common downstream task used to benchmark audio-visual self-

supervised approaches. Following standard practices, we finetuned the pretext models either on

the UCF [182] or the HMDB [109] datasets, and measure the top-1 accuracies obtained for a

single clip or by averaging predictions over 25 clips per video. For comparison, we also provide

the performance of our model trained on UCF and HMDB from a random initialization (Scratch),

or finetuned from a fully supervised model trained on Kinetics [196] (Kinetics Sup.). Full details

of the training procedure are given in appendix. The results shown in Table 4.4 show once more
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Figure 4.6: Predictions from an AVSA pre-trained model with an FPN segmentation head on
the YT-360 test set.

the benefits of AVSA pretext training. AVSA dense predictions outperform AVC by 4% on UCF

and 3% on HMDB, and outperform AVTS by 3.5% on UCF and 2% on HMDB.

4.6 Discussion, future work and limitations

We presented a novel self-supervised learning mechanism that leverages the spatial cues

in audio and visual signals naturally occurring in the real world. Specifically, we collected a

360◦video dataset with spatial audio, and trained a model to spatially align video and audio clips

extracted from different viewing angles. The proposed AVSA task was shown to yield better

representations than prior work on audio-visual self-supervision for downstream tasks like audio-

visual correspondence, video semantic segmentation, and action recognition. We also proposed

to model 360◦video data as a collection of NFOV clips collected from multiple viewpoints,

using a transformer architecture to combine view specific information. Being able to summarize
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Table 4.4: Action recognition performance on UCF and HMDB datasets. The top-1 accuracy of
single clip and dense predictions are reported.

UCF HMDB
Clip@1 Video@1 Clip@1 Video@1

Scratch 54.85 59.95 27.40 31.10
Kinetics Sup. 78.50 83.43 46.45 51.90

AVC 64.63 69.68 31.33 34.58
AVTS 65.65 70.34 32.29 35.89
AVSA 68.52 73.80 32.96 37.66

information from the whole 360◦video frame was proven advantageous for downstream tasks

defined on 360◦video data. For additional parametric and ablation studies, we refer the reader to

supplementary material, where we ablate several components of the proposed approach, including

the type of audio input provided to the network, the number and type of viewpoints in the AVSA

objective, and the influence of curriculum learning and the transformer module.

Since AVSA requires discrimination of different viewpoints within a 360◦scene, the

learned models are encouraged to localize sound sources in the video and audio signals in order

to match them. In addition to better performance on downstream tasks, this pre-training objective

also translates into improved localization ability, based on a qualitative analysis. Fig. 4.7 shows

several examples of GradCAM [174] visualizations for AVC and AVSA models (GradCAM

is applied to each model’s audio-visual matching score). As can be seen, AVSA models tend

to localize sound sources better. Furthermore, while the proposed method relies on randomly

extracted video and audio clips, more sophisticated sampling techniques are an interesting

direction of future work. For example, sampling can be guided towards objects using objectness

scores, towards moving objects using optical flow, or towards sound sources by oversampling

viewpoints with high audio energy. Such sampling techniques would better mimic a human

learner, by actively choosing which parts of the environment to dedicate more attention. They

would also under-sample less informative viewpoints (e.g. crops dominated by background),
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Figure 4.7: Sound localization maps (GradCAM of audio-visual matching scores) obtained
from models trained by AVC (first image of each pair) and AVSA (second of each pair).

which are hard to match to the corresponding sound, and thus may harm the quality of learned

representations.

Finally, we note that AVSA requires 360◦data with spatial audio, which is still less

prevalent than regular video. Previous methods, such as AVC and AVTS [8, 148, 105, 138], are

often trained on datasets several orders of magnitude larger than YT-360, and can achieve better

performance on downstream tasks such as action recognition. However, this work shows that,

for the same amount of training data, AVSA improves the quality of the learned representations

significantly. Due to the growing popularity of AR/VR, 360◦content creation is likely to grow

substantially. As the number of available 360◦videos with spatial audio increases, the quality of

representations learned by AVSA should improve as well.
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4.7 Appendix

4.7.1 Implementation details

In this section, we describe in detail the implementation of the proposed AVSA pre-

training as well as the semantic segmentation and action recognition downstream tasks.

Audio-visual spatial alignment

The architecture of the video and audio encoder networks, fv and fa, are shown in Table 4.5

and Table 4.6. The feature translation networks are described in Section 3.2 and depicted in

Figure 3 of the main text. These are transformer networks of base dimension 512 and expansion

ration 4. In other words, the output dimensionality of the linear transformations of parameters

Wkey,Wqr,Wval,W0 and W2 are 512, and that of W1 is 2048. Models are pre-trained to optimize

loss (7) for AVC task or (9) for AVTS and AVSA tasks. AVTS models are trained using negatives

obtained from the same viewpoint but different moments in time. AVSA models are obtained

using negatives obtained from the same moment in time but different viewpoints. All models were

trained using the Adam optimized. Pre-training hyper-parameters are summarized in Table 4.7.

Semantic segmentation

For semantic segmentation, we used a lightweight FPN segmentation head. As originally

proposed, lateral connections are implemented with a 1×1 convolution that maps all feature maps

into a 128 dimensional space followed by a 3×3 convolution for increased smoothing. Since the

FPN head is used to perform semantic segmentation of a single frame given a video clip with

multiple frames, we perform global temporal pooling of the feature maps before feeding them

to the lateral connections. Semantic segmentation predictions are then computed based on the

features at all levels. First, features from low-resolution layers are upsampled through a sequence

of 3×3 convolutions with dilation of 2 into 56×56 resolution and added together to perform
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Table 4.5: Architecture details of R(2+1)D video network based of R(2+1)D convolutions, and
the audio on 2D convolutions with ReLU activations and batch normalization at each layer.

Video Network
Layer Xs Xt C Ks Kt Ss St
video 112 8 3 - - - -
conv1 56 8 64 7 3 2 1

block2.1 56 8 64 3 3 1 1
56 8 64 3 3 1 1

block2.2 56 8 64 3 3 1 1
56 8 64 3 3 1 1

block3.1 28 4 128 3 3 2 2
28 4 128 3 3 1 1

block3.2 28 4 128 3 3 1 1
28 4 128 3 3 1 1

block4.1 14 2 256 3 3 2 2
14 2 256 3 3 1 1

block4.2 14 2 256 3 3 1 1
14 2 256 3 3 1 1

block5.1 7 1 512 3 3 2 2
7 1 512 3 3 1 1

block5.2 7 1 512 3 3 1 1
7 1 512 3 3 1 1

max pool 1 1 512 7 1 1 1
Xs spatial activation size, Xt temporal activation size, C number of channels

Ks spatial kernel size, Kt temporal kernel size, Ss spatial stride, St temporal stride.

pixel-wise classification. All parameters of the FPN head are trained to minimize the softmax

cross-entropy loss average across all pixels. Since we are using the output of a state-of-the-art

model as ground truth, we avoid using low-confidence ground-truth labels. Thus, all pixels for

which the state-of-the-art model was less than 75% confident were kept unlabeled. These low

confidence regions were also ignored while computing evaluation metrics. The model was trained

using the Adam optimizer with batch size 20, learning rate 1e−4 and weight decay 5e−4 for

10 epochs. The learning rate was decayed at epochs 5 and 8. Video clips were extracted from

random viewpoints within the 360◦video, with random angular coverage between 45◦and 90◦for

data augmentation. Color jittering and horizontal flipping was also applied.
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Table 4.6: Architecture details of Conv2D audio network based on 2D convolutions with ReLU
activations and batch normalization at each layer.

Audio Network
Layer X f Xt C K f Kt S f St
audio 129 100 N - - - -
conv1 65 50 64 7 7 2 2

block2.1 65 50 64 3 3 1 1
block2.2 65 50 64 3 3 1 1
block3.1 33 25 128 3 3 2 2
block3.2 33 25 128 3 3 1 1
block4.1 17 13 256 3 3 2 2
block4.2 17 13 256 3 3 1 1
block5.1 17 13 512 3 3 1 1
block5.2 17 13 512 3 3 1 1
max pool 1 1 512 17 13 1 1

Xt temporal activation size, X f frequency activation size, C number of channels,
Kt temporal kernel size, K f frequency kernel size, St temporal stride, S f frequency stride.

Table 4.7: Pre-training optimization hyper-parameters. AVSA models are initialized by the
AVC model obtained at epoch 100.

Method bs nv lr wd cj hf hfovmin hfovmax in sn tn τ

AVC 112 1 1e-4 1e-5 X 0.5 25 90 X 0.07
AVTS 28 4 1e-4 1e-5 X 0.5 25 90 X X 0.07
AVSA 28 4 1e-4 1e-5 X 0.5 25 90 X X 0.07

bs–batch size; nv–number of viewpoints; lr–learning rate; wd–weight decay; cj–color jittering;
hf–horizontal flip probability; hfovmin/hfovmax–minimum/maximum horizontal field-of-view in degrees;

in/sn/tn–instance/spatial/temporal negatives; τ–InfoNCE temperature.

Action recognition

The video encoder network was evaluated on the task of action recognition using UCF

and HMDB datasets. We augmented the video encoder with a linear classification layer after the

global max-pooling operation, and finetune the whole network. We used Adam optimization for

100 epochs, with batch size 28, learning rate 10−4 decayed at epochs 40, 60 and 80. Performance

is reported on first train/test split originally defined for the UCF and HMDB datasets.
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4.7.2 Ablations and parametric studies

We assess different components of the proposed pre-trained mechanism through several

ablation and parameteric studies shown in Table 4.8. All models are evaluated on AVC-Bin,

AVSA-Bin, semantic segmentation, and action recognition tasks as introduced in §5.2–5.4 of

main text (4 crops per video are used for AVC-Bin and AVSA-Bin). We report accuracies for the

AVC-Bin, AVSA-Bin tasks using 4 viewpoints, mean IoU for the semantic segmentation task and

clip level accuracy for action recognition on UCF.

Influence of spatial audio

To demonstrate the value of spatial audio, we train the AVSA pretext task using different

inputs to the audio network: single channel mono audio, two channel stereo audio, and four

channel ambisonic audio. The three versions of the audio input can be easily computed from the

full ambisonics signal. The mono version of audio is generated by taking the projection of the

ambisonic signal into the spherical harmonics at each viewing angle. To generate stereo, we use

a standard ambisonic binauralizer that models a human listener looking at each viewing angle.

To generate ambisonics, we simply rotate the original signal to align with each viewing angle.

Assuming a typical ambisonics format with 4 channels, this is done by applying a 3D rotation

matrix to its first-order spherical harmonic components (X , Y and Z channels), while keeping the

zeroth-order component (W channel) fixed.

Table 4.8a shows substantial improvement (∼ 7%) in AVC and AVSA tasks by using full

ambisonics for each crop over mono audio, suggesting that the latter may not be sufficient to

encode spatial information of sound sources. Using stereo audio which retains partial spatial

information also improves over mono input, but with a smaller margin. For semantic tasks

(segmentation and action recognition on UCF), learning with ambisonics also proved to be more

effective.
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Influence of number of viewpoints

As more viewpoints are extracted from each sample, the difficulty of the AVSA task

increases since more options are provided for matching. To investigate whether the increased dif-

ficulty correlates with the quality of the learned representation, we vary the number of viewpoints

during AVSA pre-training.

Table 4.8b shows the AVC and AVSA performance increases monotonically as more

viewpoints are used. However, these gains not always translates into better performance on

semantic tasks. Semantic segmentation achieved the best performance by training to discriminate

2 or 4 viewpoints, while action recognition peaked at 4 viewpoints.

Influence of type of negative crops

The AVSA pretext tasks uses a combination of easy and hard (spatial) negatives: Easy

negatives are clips from different video instances. Hard (spatial) negatives are sampled from

different viewpoints, but the same moment in time. We also trained a network with hard spatio-

temporal negatives, which can be sampled from any viewpoint and moment in time within the

video. Table 4.8c shows the performance of models trained with different kinds of negatives crops.

As can be seen, the combination of instance-based and spatial negatives (as used by the AVSA

approach) yields better performance than using instance-based negatives alone (as used by AVC

approaches). This shows the use of spatial negatives is complementary to AVC. However, the

results are mixed when combining AVSA with temporal negatives (as used by AVTS approaches),

producing slightly better semantic segmentations, but worse UCF performance.

Influence of curriculum learning

Prior work indicates that curriculum learning can benefit training by starting from easier

sub-tasks and progressively increase the difficulty of the task being learned. To test this hypothesis

in the AVSA context, we evaluate our network trained with and without the curriculum learning
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Table 4.8: Ablation studies.

AVC@4 AVSA@4 Segm UCF

Mono 82.39 62.95 34.21 64.90
Stereo 84.47 71.11 34.54 64.68

Ambisonics 89.83 69.97 35.83 68.52
(a) Spatial audio format.

AVC@4 AVSA@4 Segm UCF

1 Viewpoint 84.60 61.77 35.37 64.71
2 Viewpoints 87.70 63.71 36.63 66.64
4 Viewpoints 89.83 69.97 35.83 68.52
8 Viewpoints 91.65 74.64 34.84 66.44

(b) Number of viewpoints.

AVC@4 AVSA@4 Segm UCF

Instance 83.87 61.20 34.05 64.09
+ Spatial 89.83 69.97 35.83 68.52

+ Spatial + Temporal 89.65 72.81 36.11 65.77
(c) Negative crop type.

AVC@4 AVSA@4 Segm UCF

Easy Only 83.87 61.20 34.05 64.09
Hard Only 93.22 77.71 20.97 59.15

No Curriculum 91.93 71.77 35.29 65.49
Curriculum 89.83 69.97 35.83 68.52

(d) Curriculum learning.

AVC@4 AVSA@4 Segm UCF

Direct Prediction 91.67 68.87 34.50 65.59
Transformer (Depth=1) 90.64 72.95 35.77 66.97
Transformer (Depth=2) 89.83 69.97 35.83 68.52
Transformer (Depth=4) 89.86 70.09 35.97 66.88

(e) Modeling spatial context.

strategy (first optimizing for easy negatives, i.e. AVC, then optimizing for easy and hard negatives

combined). We also compare to baselines where the model is only optimized for easy or hard

95



negatives.

Table 4.8d shows that training on hard negatives directly leads to the best AVC and AVSA

performance. However, the learned representations significantly overfit to the pretext task, and do

not transfer well to semantic tasks, as seen by the low performance on semantic segmentation and

action recognition. Using a combination of easy and hard negatives proved to be beneficial for

these two downstream tasks, with the curriculum learning strategy achieving the best results.

Influence of modeling spatial context

We propose to use a transformer network to leverage the rich spatial context of spatial

audio and 360◦video while translating features across the two modalities. To assess the importance

of modeling spatial context, we evaluate models trained with and without the transformer networks.

We further vary the depth of transformer module in search of a good trade-off between model

complexity and quality of learned representations.

Table 4.8e shows that modeling spatial context is not required to predict whether audio

and video clips originate from the same sample (achieving lower AVC accuracy). However, the

ability to perform spatial alignment is significantly impacted without the transformer network,

showing that it is harder to perform spatial alignment without combining information from

multiple viewpoints. The lack of spatial context also impacted both semantic segmentation and

action recognition on UCF. For semantic tasks, a transformer of depth D = 2 provided a good

trade-off between model complexity and model performance.
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Chapter 5

Spatial Audio Generation
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5.1 Introduction

360◦ video provides viewers an immersive viewing experience where they are free to

look in any direction, either by turning their heads with a Head-Mounted Display (HMD), or by

mouse-control while watching the video in a browser. Capturing 360◦ video involves filming

the scene with multiple cameras and stitching the result together. While early systems relied on

expensive rigs with carefully mounted cameras, recent consumer-level devices combine multiple

lenses in a small fixed-body frame that enables automatic stitching, allowing 360◦ video to be

recorded with a single push of a button.

As humans rely on audio localization cues for full scene awareness, spatial audio is

a crucial component of 360◦ video. Spatial audio enables viewers to experience sound in all

directions, while adjusting the audio in real time to match the viewing position. This gives users

a more immersive experience, as well as providing cues about which part of the scene might

have interesting content to look at. However, unlike 360◦ video, producing spatial audio content

still requires a moderate degree of expertise. Most consumer-level 360◦ cameras only record

mono audio, and syncing an external spatial audio microphone can be expensive and technically

challenging. As a consequence, while most video platforms (e.g., YouTube and Facebook) support

spatial audio, it is often ignored by content creators, and at the time of submission, a random

polling of 1000 YouTube 360◦ videos yielded less than 5% with spatial audio.

In order to close this gap between the audio and visual experiences, we introduce three

main contributions: (1) we formalize the 360◦ spatialization problem; (2) design the first 360◦

spatialization procedure; and (3) collect two datasets and propose an evaluation protocol to

benchmark ours and future algorithms. 360◦ spatialization aims to upconvert a single mono

recording into spatial audio guided by full 360 view video. More specifically, we seek to generate

spatial audio in the form of a popular encoding format called first-order ambisonics (FOA), given

the mono audio and corresponding 360◦ video. In addition to formulating the 360◦ spatialization
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Figure 5.1: Architecture overview. Our approach is composed of four main blocks: analysis
block; separation block; localization block; and ambisonics generation.

task, we design the first data-driven system to upgrade mono audio using self-supervision from

360◦ videos recorded with spatial audio. The proposed procedure is based on a novel neural

network architecture that disentangles two fundamental challenges in audio spatialization: the

separation of sound sources from a mixed audio input and respective localization. In order to

train and validate our approach, we introduce two 360◦ video datasets with spatial audio, one

recorded by ourselves in a constrained domain, and a large-scale dataset collected in-the-wild

from YouTube. During training, the captured spatial audio serves as ground truth, with a mixed

down mono version provided as input to our system. Experiments conducted in both datasets

show that the proposed neural network can generate plausible spatial audio for 360◦ video. We

further validate each component of the proposed architecture and show its superiority over a

state-of-the-art, but domain-independent baseline architecture.

In the interest of reproducibility, code, data and trained models will be made available to

the community at https://pedro-morgado.github.io/spatialaudiogen.
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5.2 Related Work

To the best of our knowledge, we propose the first system for audio spatialization. In

addition to spatial audio, the fields most related to our work are self-supervised learning, audio

generation, source separation and audio-visual cross-modal learning, which we now briefly

describe.

Spatial audio

Artificial environments, such as those rendered by game engines, can play sounds from

any location in the video. This capability requires recording sound sources separately and mixing

them according to the desired scene configuration (i.e., the positions of each source relative

to the user). In a real world recording, however, sound sources cannot be recorded separately.

In this case where sound sources are naturally mixed, spatial audio is often encoded using

Ambisonics [62, 42, 107].

Ambisonics aims to approximate the sound pressure field at a single point in space using

a spherical harmonic decomposition. More specifically, an audio signal f (θθθ, t) arriving from

direction θθθ = (ϕ,ϑ) (where ϕ is the zenith angle and ϑ the azimuth angle) at time t is represented

by a truncated spherical harmonic expansion of order N

f (θθθ, t) = ∑
N
n=0 ∑

n
m=−nY m

n (ϕ,ϑ)φm
n (t) (5.1)

where Y m
n (ϕ,ϑ) is the real spherical harmonic of order n and degree m, and φm

n (t) are the

coefficients of the expansion. For ease of notation, Y m
n and φm

n can be stacked into vectors yyyN and

φφφN , and (Eq. 5.1) written as f (θθθ, t) = yyyT
N(θθθ)φφφN(t).

In a controlled environment, sound sources with known locations can be synthetically

encoded into ambisonics using their spherical harmonic projection. More specifically, given a set

100



of k audio signals s1(t), . . . ,sk(t) originating from directions θθθ1, . . . ,θθθk,

φφφN(t) = ∑
k
i=1yyyN(θθθi)si(t). (5.2)

For ambisonics playback, φφφN is then decoded into a set of speakers or headphone signals in order

to provide a plane-wave reconstruction of the sound field. In sum, the coefficients φφφN , also known

as ambisonic channels, are sufficient to encode and reproduce spatial audio. Hence, our goal is to

generate φφφN from non-spatial audio and the corresponding video.

Self-supervised learning

Neural networks have been successfully trained through self- supervision for tasks such

as image super-resolution [45, 100] and image colorization [88, 215]. In the audio domain,

self-supervision has also enabled the detection of sound-video misalignment [148] and audio

super-resolution [110]. Inspired by these approaches, we propose a self-supervised technique for

audio spatialization. We show that the generation of ambisonic audio can be learned using a dataset

of 360◦ video with spatial audio collected in-the-wild without additional human intervention.

Generative models

Recent advances in generative models such as Generative Adversarial Networks (GANs) [67]

or Variational Auto-Encoders (VAE) [102] have enabled the generation of complex patterns, such

as images [67] or text [95]. In the audio domain, Wavenet [146] has demonstrated the ability

to produce high fidelity audio samples of both speech and music, by generating a waveform

from scratch on a sample-by-sample basis. Furthermore, neural networks have also outper-

formed prior solutions to audio super-resolution [110] (e.g. converting from 4kHz to 16kHz

audio) using a U-Net encoder-decoder architecture, and have enabled “automatic-Foley” type

applications [179, 149]. In this work, instead of generating audio from scratch, our goal is to
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augment the input audio channels so as to introduce spatial information. Thus, unlike Wavenet,

efficient audio generation can be achieved without sacrificing audio fidelity, by transforming the

input audio. We also demonstrate the advantages of our approach, inspired by the ambisonics

encoding process in controlled environments, over a generic U-Net architecture.

Source separation

Source separation is a classic problem with an extensive literature. While early methods

present the problem as independent component analysis, and focused on maximizing the statistical

independence of the extracted signals [96, 38, 17, 5], recent approaches focus on data-driven

solutions. For example, [87] proposes a recurrent neural-network for monaural separation of two

speakers, [1, 56, 51] seek to isolate sound sources by leveraging synchronized visual information

in addition to the audio input, and [197] studies a wide range of frequency-based separation

methods. Similarly to recent trends, we rely on neural networks guided by cross-modal video

analysis. However, instead of only separating human speakers [197] or musical instruments [221],

we aim to separate multiple unidentified types of sound sources. Also, unlike previous algorithms,

no explicit supervision is available to learn the separation block.

Source localization

Sound source localization is a mature area of signal processing and robotics research [10,

141, 140, 184]. However, unlike the proposed 360◦ spatialization problem, these works rely on

microphone arrays using beamforming techniques [192] or binaural audio and HRTF cues similar

to those used by humans [85]. Furthermore, the need for carefully calibrated microphones limits

the applicability of these techniques to videos collected in-the-wild.
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Cross visual-audio analysis

Cross-modal analysis has been extensively studied in the vision and graphics community,

due to the inherently paired nature of video and audio. For example, [13] learns audio feature

representations in an unsupervised setting by leveraging synchronized video. [90] segments

and localizes dominant sources using clustering of video and sound features. Other methods

correlate repeated motions with sounds to identify sources such as the strumming of a guitar

using canonical correlation analysis [97, 98], joint embedding spaces [179, 149] or other temporal

features [16].

5.3 Method

In this section, we define the 360◦ spatialization task to upconvert common audio record-

ings to support spatial audio playback. We then introduce a deep learning architecture to address

this task, and two datasets to train the proposed architecture.

5.3.1 Audio spatialization

The goal of 360◦ spatialization is to generate ambisonic channels φφφN(t) from non-spatial

audio i(t) and corresponding video v(t). To handle the most common audio formats supported by

commercial 360◦ cameras and video viewing platforms (e.g., YouTube and Facebook), we upgrade

monaural recordings (mono) into first-order ambisonics (FOA). FOA consists of four channels

that store the first-order coefficients, φ0
0,φ
−1
1 ,φ0

1 and φ1
1, of the spherical harmonic expansion in

(Eq. 5.1). For ease of notation, we refer to these tracks as φw,φy,φz and φx, respectively.

Self-supervised audio spatialization

Converting mono to FOA ideally requires learning from videos with paired mono and

ambisonics recordings, which are difficult to collect in-the-wild. In order to learn from self-
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supervision, we assume that monaural audio is recorded with an omni-directional microphone.

Under this assumption, mono is equivalent to zeroth-order ambisonics (up to an amplitude scale)

and, as a consequence, the upconversion only requires the synthesis of the missing higher-order

channels. More specifically, we learn to predict the first-order components φx(t),φy(t),φz(t) from

the (surrogate) mono audio i(t) = φw(t) and video input v(t). Note that the proposed framework

is also applicable to other conversion scenarios, e.g. FOA to second-order ambisonics (SOA),

simply by changing the number of input and output audio tracks (see Sec 5.5).

5.3.2 Architecture

Audio spatialization requires solving two fundamental problems: source separation and

localization. In controlled environments, where the separated sound sources si(t) and respective

localization θθθi are known in advance, ambisonics can be generated using (Eq. 5.2). However,

since si(t) and θθθi are not known in practice, we design dedicated modules to isolate sources

from the mixed audio input and localize them in the video. Also, because audio and video are

complementary for identifying each source, both separation and localization modules are guided

by a multi-modal audio-visual analysis module. A schematic description of our architecture

is shown in Fig. 5.1. We now describe each component. Details of network architectures are

provided in Appendix A.

Audio and visual analysis

Audio features are extracted in the time-frequency domain, which has produced successful

audio representations for tasks such as audio classification [82] and speaker identification [139].

More specifically, we extract a sequence of short-term Fourier transforms (STFT) computed on

25ms segments of the input audio with 25% hop size and multiplied by Hann window functions.

Then, we apply a (two-dimensional) CNN encoder to the audio spectrogram, which progressively

reduces the spectrogram dimensionality and extracts high-level features.
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Video features are extracted using a two-stream network, based on Resnet-18 [79], to

encode both appearance (RGB frames) and motion (optical flow predicted by FlowNet2 [89]).

Both streams are initialized with weights pre-trained on ImageNet [40] for classification, and

fine-tuned on our task.

A joint audio-visual representation is then obtained by merging the three feature maps

(audio, RGB and flow) produced at each time t. Since audio features are extracted at a higher

frame rate than video features, we first synchronize the audio and video feature maps by nearest

neighbor up-sampling of video features. Each feature map is then projected into a feature vector

(1024 for audio and 512 for RGB and flow), and the outputs concatenated and fed to the separation

and localization modules.

Audio separation

Although the number of sources may vary, this is often small in practice. Furthermore,

psycoaccoustic studies have shown that humans can only distinguish a small number of simul-

taneous sources (three according to [172]). We thus assume an upper-bound of k simultaneous

sources, and implement a separation network that extracts k audio tracks f i(t) from the input

audio i(t). The separation module takes the form of a U-Net decoder that progressively restores

the STFT dimensionality through a series of transposed convolutions and skip connections from

the audio analysis stage of equivalent resolution. Furthermore, to visually guide the separation

module, we concatenate the multi-modal features to the lowest resolution layer of the audio

encoder. In the last up-sampling layer, we produce k sigmoid activated maps ai(t,ω), which are

used to modulate the STFT of the mono input ΦΦΦ(t;ω). The STFT of the ith source ΦΦΦ
i(t;ω) is thus

obtained through the soft-attention mechanism ΦΦΦ
i(t;ω) = ai(t,ω) ·ΦΦΦ(t;ω), and the separated

audio track f i(t) reconstructed as the inverse STFT of ΦΦΦ
i(t;ω) using an overlap-add method.
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Localization

To localize the sounds f i(t) extracted by the separation network, we implement a module

that generates, at each time t, the localization weights wi(t) = (wi
x(t),w

i
y(t),w

i
z(t)) associated

with each of the k sources, through a series of fully-connected layers applied to the multi-modal

feature vectors of the analysis stage. In a parallel to the encoding mechanism of (Eq. 5.2) used in

controlled environments, wi(t) can be interpreted as the spherical harmonics yyyN(θθθi(t)) evaluated

at the predicted position of the ith source θθθi(t).

Ambisonic generation

Given the localization weights wi(t) and separated wave-forms f i(t), the first-order

ambisonic channels φφφ(t) = (φx(t),φy(t),φz(t)) are generated by

φφφ(t) =
k

∑
i=1

wi(t) f i(t). (5.3)

In summary, we split the generation task into two components: generating the attenuation maps

ai(t,ω) for source separation, and the localization weights wi(t). As audio is not generated from

scratch, but through a transformation of the original input inspired by the encoding framework of

(Eq. 5.2), we are able to achieve fast deployment speeds with high quality results.

5.3.3 Evaluation metrics

Let φφφ(t) and φ̂φφ(t) be the ground-truth and predicted ambisonics, and ΦΦΦ(t;ω) and Φ̂ΦΦ(t;ω)

their respective STFTs. We now discuss several metrics used for evaluating the generated signals

φ̂φφ(t).
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STFT distance

Our network is trained end-to-end to minimize errors between STFTs, i.e.,

MSEstft = ∑p∈{x,y,z}∑t ∑ω ‖Φp(t,ω)− Φ̂p(t,ω)‖2, (5.4)

where ‖·‖ is the euclidean complex norm. MSEstft has well-defined and smooth partial derivatives

and, thus, it is a suitable loss function. Furthermore, unlike the euclidean distance between raw

waveforms, the STFT loss is able to separate the signal into its frequency components, which

enables the network to learn the easier parts of the spectrum without distraction from other errors.

Envelope distance (ENV)

Due to the high-frequency nature of audio and the human insensitivity to phase differences,

frame-by-frame comparison of raw waveforms do not capture perceptual similarity of two audio

signals. Instead, we measure the euclidean distance between envelopes of φφφ(t) and φ̂φφ(t).

Earth Mover’s Distance (EMD)

Ambisonics model the sound field f (θθθ, t) over all directions θθθ. The energy of the sound

field measured over a small window wt around time t along direction θθθ is

E(θθθ, t) =
√

1
T ∑τ∈wt f (θθθ,τ)2 =

√
1
T ∑τ∈wt

(
yyyT

N(θθθ)φφφN(τ)
)2
. (5.5)

Thus, E(θθθ, t) represents the directional energy map of φφφ(t). In order to measure the localization

accuracy of the generated spatial audio, we propose to compute the EMD [119] between the

energy maps E(θθθ, t) associated with φφφ(t) and φ̂φφ(t). In practice, we uniformly sample the maps

E(θθθ, t) over the sphere, normalize the sampled map so that ∑i E(θθθi, t) = 1, and measure the

distance between samples over the sphere’s surface using cosine (angular) distances for EMD
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REC-STREET YT-ALL

YT-MUSIC YT-CLEAN

Figure 5.2: Example video frames from each dataset.

calculation.

5.3.4 Datasets

To train our model, we collected two datasets of 360◦ videos with FOA audio. The first

dataset, denoted REC-STREET, was recorded by us using a Theta V 360◦ camera with an attached

TA-1 spatial audio microphone. REC-STREET consists of 43 videos of outdoor street scenes,

totaling 3.5 hours and 123k training samples (0.1s each). Due to the consistency of capture

hardware and scene content, the audio of REC-STREET videos is relatively easier to spatialize.

The second dataset, denoted YT-ALL, was collected in-the-wild by scraping 360◦ videos

from YouTube using queries related to spatial audio, e.g., spatial audio, ambisonics, and ambix.

To clean the search results, we automatically removed videos that did not contain valid ambisonics,

as described by YouTube’s format, keeping only videos containing all 4 channels or with only the

Z channel missing (a common spatial audio capture scenario). Finally, we performed a manual

curation to remove videos that consisted of 1) still images, 2) computer generated content, or

3) containing post-processed and non-visually indicated sounds such as background music or

voice-overs. During this pruning process, 799 videos were removed, resulting in 1146 valid videos
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Figure 5.3: Dataset statistics

totaling 113.1 hours of content (3976k training samples). YT-ALL was further separated into

live musical performances, YT-MUSIC (397 videos), and videos with a small number of super-

imposed sources which could be localized in the image, YT-CLEAN (496 videos). Upgrading

YT-MUSIC videos into spatial audio is especially challenging due to the large number of mixed

sources (voices and instruments). We also identified 489 videos that were recorded with a

“horizontal” spatial audio microphone (i.e. only containing φw(t),φx(t) and φy(t) channels). In

this case, we simply ignore the Z channel φz(t) when computing each metric including the STFT

loss. Fig. 5.2 shows illustrative video frames and summarizes the most common categories for

each dataset.

5.4 Evaluation

For our experiments, we randomly sample three partitions, each containing 75% of all

videos for training and 25% for testing. Networks are trained to generate audio at 48kHz from
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Table 5.1: Quantitative comparisons. We report three quality metrics: Envelope distance (ENV),
Log-spectral distance (LSD), and earth-mover’s distance (EMD).

REC-STREET YT-CLEAN YT-MUSIC YT-ALL

STFT ENV EMD STFT ENV EMD STFT ENV EMD STFT ENV EMD

SPATIAL PRIOR 0.187 0.958 0.492 1.394 2.063 1.478 4.652 4.355 3.479 2.691 3.394 2.246
U-NET BASELINE 0.180 0.935 0.449 1.361 2.039 1.403 4.338 4.678 2.855 2.658 3.239 2.137

OURS-NOVIDEO 0.178 0.973 0.450 1.370 2.081 1.428 4.220 4.591 2.654 2.635 3.200 2.117
OURS-NORGB 0.158 0.779 0.425 1.339 1.847 1.405 3.664 3.569 2.432 2.546 2.907 2.063

OURS-NOFLOW 0.172 0.784 0.440 1.349 1.778 1.402 3.615 3.467 2.403 2.455 2.665 2.023
OURS-NOSEP 0.152 0.790 0.422 1.381 1.773 1.415 3.627 3.602 2.447 2.435 2.694 2.050

OURS-FULL 0.158 0.767 0.419 1.379 1.776 1.417 3.524 3.366 2.350 2.447 2.649 2.019

input mono audio processed at 48kHz and video at 10Hz. Each training sample consists of a

chunk of 0.6s of mono audio and a single frame of RGB and flow, which are used to predict

0.1s of spatial audio at the center of the 0.6s input window. To make the model more robust

and remove any bias to content in the center, we augment datasets during training by randomly

rotating both video and spatial audio around the vertical (z) axis. Spatial audio can be rotated by

multiplying the ambisonic channels with the appropriate rotation matrix as described in [107],

and video frames (in equirectangular format) can be rotated using horizontal translations with

wrapping. Networks are trained by back-propagation using the Adam optimizer [101] for 150k

iterations (roughly two days) with parameters β1 = 0.9, β2 = 0.999 and ε = 1e−8, batch size of

32, learning rate of 1e−4 and weight decay of 0.0005. During evaluation, we predict a chunk of

0.1s for each second of the test video, and average the results across all chunks. Also, to avoid

bias towards longer videos, all evaluation metrics are computed for each video separately, and

averaged across videos.

5.4.1 Real time performance

The proposed procedure can generate 1s of spatial audio at 48000Hz sampling rate in

103ms, using a single 12GB Titan Xp GPU (3840 cores running at 1.6GHz).
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GT Ours

Figure 5.4: Qualitative Results. Comparison between predicted and recorded FOA. Spatial
audio is visualized as a color overlay over the frame, with darker red indicating locations with
higher audio energy.
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Figure 5.5: Comparison of predicted FOA produced by different procedures.
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Figure 5.6: Predicted FOA on videos recorded with a real mono microphone (unknown FOA).

5.4.2 Baselines

Since spatial audio generation is a novel task, no established methods exist for comparison

purposes. Instead, we ablate our architecture to determine the relevance of each component, and

compare it to the prior spatial distribution of audio content and a popular, domain-independent

baseline architecture. Quantitative results are shown in Table 5.1.

To determine the role of the visual input, we remove the RGB encoder (NORGB), the flow

encoder (NOFLOW), or both (NOVIDEO). We also remove the separation block entirely (NOSEP),

and multiply the localization weights with the input mono directly. The results indicate that the

network is highly relying on visual features, with NOVIDEO being one of the worse performers

overall. Interestingly, most methods performed well on REC-STREET and YT-CLEAN. However,

the visual encoder and separation block are necessary for more complex videos as in YT-MUSIC

and YT-ALL.

Since the main sound sources in 360◦ videos often appear in the center, we validate the

need for a complex model by directly using the prior distribution of audio content (SPATIAL-
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PRIOR). We compute the spatial prior Ē(θ) by averaging the energy maps E(θ, t) of (Eq. 5.5) over

all videos in the training set. Then, to induce the same distribution on test videos, we decompose

Ē(θ) into its spherical harmonics coefficients (cw,cx,cy,cz) and upconvert the input mono using

(φw(t),φx(t),φy(t),φz(t)) = (1,cx/cw,cy/cw,cz/cw) i(t). As shown in Table 5.1, relying solely on

the prior distribution is not enough for accurate ambisonic conversion.

We finally compare to a popular encoder-decoder U-NET architecture, which has been

sucessfully applied to audio tasks such as audio super-resolution [110]. This network consists of

a number of convolutional downsampling layers that progressively reduce the dimension of the

signal, distilling higher level features, followed by a number of upsampling layers to restore the

signal’s resolution. In each upsampling layer, a skip connection is added from the encoding layer

of equivalent resolution. To generate spatial audio, we set the number of units in the output layer

to the number of ambisonic channels, and concatenate video features to the U-Net bottleneck (i.e.,

the lowest resolution layer). See Appx. A for details. Our approach significantly outperforms the

U-NET architecture, which demonstrates the importance of an architecture tailored to the task of

spatial audio generation.

5.4.3 Qualitative results

Designing robust metrics for comparing spatial audio is an open problem, and we found

that only so much can be determined by these metrics alone. For example, fully flat predictions

can have a similar EMD to a mis-placed prediction, but perceptually be much worse. Therefore,

we also rely on qualitative evaluation and a user study. Fig. 5.4 shows illustrative examples of the

spatial audio output of our network, and Fig. 5.5 shows a comparison with other baselines. To

depict spatial audio, we overlay the directional energy map E(θθθ, t) of the predicted ambisonics

(Eq. 5.5) over the video frame at time t. As can be seen, our network generates spatial audio that

has a similar spatial distribution of energy as the ground truth. Furthermore, due to the form of

the audio generator, the sound fidelity of the original mono input is carried over to the synthesized
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audio. These and other examples, together with the predicted spatial audio, are provided in

Supp. material.

The results shown in Table 5.1 and Fig. 5.4 use videos recorded with ambisonic micro-

phones and converted to mono audio. To validate whether our method extends to real mono

microphones, we scraped additional videos from YouTube that were not recorded with ambisonics,

and show that we can still generate convincing spatial audio (see Fig. 5.6 and Supp. material).

5.4.4 User study

The real criteria for success is whether viewers believe that the generated audio is correctly

spatialized. To evaluate this, we conducted a “real vs fake” user study, where participants were

shown a 360◦ video and asked to decide whether the perceived location of the audio matches the

location of its sources in the video (real) or not (fake). Two studies were conducted in different

viewing environments: a popular in-browser 360◦ video viewing platform (YouTube), and with

a head-mounted display (HMD) in a controlled environment. We recruited 32 participants

from Amazon Mechanical Turk for the in-browser study. For the HMD study, we recruited 9

participants (aged between 20 and 32, 1 female) through an engineering school email list of a

large university. In both cases, participants were asked to have normal hearing, and to listen to

the audio using headphones. In the HMD study, participants were asked to wear a KAMLE VR

Headset. To familiarize participants with the spatial audio experience, each participant was first

asked to watch two versions of a pre-selected video with and without correct spatial audio. After

the practice round, participants watched 20 randomly selected videos whose audio was generated

by one of four methods: GT, the original ground-truth recorded spatial audio; MONO, just the

mono track (no spatialization); U-NET, the baseline method; and OURS, the result of our full

method. After each video, participants were asked to decide whether its audio was real or fake.

In total, 280 clips per method were watched for the in-browser study, and 45 per method in the

HMD study.
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Figure 5.7: User studies results. Percentage of videos labeled as ”Real” when viewed with audio
generated by various methods (GT, OURS, U-NET and MONO) under two viewing experiences
(using a HMD device, and in-browser viewing).

The results of both studies, shown in Fig 5.7, support several conclusions. First, our

approach outperforms the U-NET baseline and MONO by statistically significant margins in

both studies. Second, in comparison to in-browser video platforms, HMD devices offers a

more realistic viewing experience, which enables non-spatial audio to be identified more easily.

Thus, participants were convinced by the ambisonics predicted by our approach at higher rates

while wearing an HMD device (62% HMD vs. 55% in-browser). Finally, spatial audio may not

always be experienced easily, e.g., when the video does not contain clean sound sources. As a

consequence, even videos with GT ambisonics were misclassified in both studies at a significant

rate.

5.5 Discussion

Limitations

We observe several cases where sound sources are not correctly separated or localized.

This occurs with challenging examples such as those with many overlapping sources, reverberant

environments which are hard to separate, or where there is an ambiguous mapping from visual
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Ground truth Ours

Figure 5.8: Limitations. Our algorithm predicts the wrong people who are laughing in a room
full of people (top), and the wrong violin who is currently playing in the live performance
(right).

FOA SOA

Figure 5.9: Comparison of spatial resolution between first and second order ambisonics. Exam-
ples from our synthetic FOA to SOA conversion experiment.

MONO→ FOA FOA→ SOA

ENV 1.870 0.333
LSD 3.228 0.513

EMD 1.400 0.232

Figure 5.10: Comparison between Mono to FOA and FOA to SOA conversion tasks.
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appearance to sound source (such as multiple, similar looking cars). Fig. 5.8 shows a few

examples. While general purpose spatial audio generation is still an open problem, we provide a

first approach. We hope that future advances in audio-visual analysis and audio generation will

enable more robust solutions. Also, while total amount of content (in hours) is on par with other

video datasets, the number of videos is still low, due to the limited number of 360◦ video with

spatial audio available from online sources. As this number increases, our method should also

improve significantly.

Future work

Although hardware trends change and we begin to see commercial cameras that include

spatial audio microphone arrays capable of recording FOA, we believe that up-converting to

spatial audio will remain relevant for a number of reasons. Besides the spatialization of legacy

recordings with only mono or stereo audio, our method can be used to further increase spatial

resolution, for example by up-converting first into second-order ambisonics (SOA). Unfortunately,

ground-truth SOA recordings are difficult to collect in-the-wild, since SOA microphones are rare

and expensive. Instead, to demonstrate future potential, we applied our approach to the FOA to

SOA conversion task, using a small synthetic dataset where pre-recorded sounds are placed at

chosen locations, which move over time in random trajectories. These are accompanied by an

artificially constructed video consisting of a random background image with identifying icons

synchronized with the sound location (see Fig. 5.10). The results shown in Fig. 5.10 indicate that

converting FOA into SOA may be significantly easier than ZOA to FOA. This is because FOA

signals already contain substantial spatial information, and partially separated sounds. Given

these findings, a promising area for future work is to synthesize a realistic large scale SOA dataset

for learning to convert FOA into high-order ambisonics and in order to support more realistic

viewing experience.
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5.6 Conclusion

We presented the first approach for up-converting conventional mono recordings into

spatial audio given a 360◦ video, and introduced an end-to-end trainable network tailored to this

task. We also demonstrate the benefits of each component of our network and show that the

proposed generator performs substantially better than a domain independent baseline.

5.7 Appendix

5.7.1 Network Architectures

Both video and flow encoders use the ResNet-18 architecture up to the last convolutional

layer. Then, a 1x1 convolutional layer reduces the dimensionality of the feature maps to 128,

and a fully-connected layer is used to compute from the resulting map of size 7x14x128, a 512-

dimensional global feature vector. Flow features are extracted from the X and Y displacements,

as well as the magnitude of the corresponding velocity vector. The audio encoder is a 5 layer

CNN applied to the input STFT and detailed in Fig. 5.11.

The concatenated audio and video features are then fed to the separation and localization

blocks, shown in Figs. 5.12 and 5.13, respectively. The separation net outputs the k = 32 frequency

activation maps to be used for modulation of the input STFT, and separated wave-forms f i(t)

are computed by inverse STFT. In our implementation, the number of frequency components is

1024. The localization net outputs, for each of the k = 32 sources, the 3 localization weights wi

associated with the three ambisonics channels φφφ = (φx,φy,φz).

Given the localization weights wi(t) and separated wave-forms f i(t), the FOA are gener-

ated by φφφ(t) = ∑
k
i=1 wi(t) f i(t).
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Figure 5.11: Detailed representation of audio encoder architecture. Forward pass is left to right.
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Figure 5.12: Detailed representation of source separation architecture. Forward pass is top to
bottom.
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Figure 5.13: Detailed representation of localization architecture. Forward pass is top to bottom.
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Chapter 6

Conclusion
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In this thesis, we have studied the value of audio as targets for self-supervision. We have

proposed a series of self-supervised learning frameworks that build on each other to learn better

models, and accomplish more with less human annotations.

We started by demonstrating that paired modalities, like audio and vision, offer correlated

but distinct views of an instance. As a result, they can be used to form strong positive pairs for

contrastive learning. We proposed a strong self-supervised learning task that can learn powerful

representations by leveraging these audio-visual associations. The learned representations were

proven useful for human action recognition and environmental sound classification tasks.

We then identified a major challenge with audio supervision, i.e., the existence of faulty

audiovisual correspondences. We showed that, if left unaddressed, these faulty correspondences

can be detrimental and proposed effective solutions for them. The proposed method addresses

the two main sources of noisy training signals: faulty positives and faulty negatives. Faulty

positives are discounted by down-weighting instances with poor audio-visual correspondence.

Faulty negatives are addressed by optimizing the loss over a soft target distribution that encodes

instance similarity. This work shows that self-supervised learning, in general, should be treated

as a problem of learning with noisy targets.

We then showed that the lack of spatial grounding of audio signals can lead to misleading

associations. This was addressed by solving a spatial alignment task where models are required to

reason about the spatial context of audio and visual signals. We also propose a new cross-modal

translation network that can translate between audio and visual features from multiple viewpoints

of a 360 video. The proposed model is inspired by a class of models, called transformers, very

popular for language translation and NLP in general, and combines representations from multiple

viewpoints through a stack of self-attention layers. Extensive experiments show that effective

localization is critical to maximize the value of audio supervision.

Finally, we introduced a new task, spatial audio generation, where the goal is to upgrade

the mono audio of 360 videos. We also developed an architecture inspired by the spatial audio
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generation process that proved effective for solving this task. Spatial audio generation is an

example of a practical task for which human annotations would be hard or even impossible to

collect.

In general, these works show that naturally co-occurring sensory signals like audio and

video can be used as a target to learn powerful representations for visual inputs without relying

on costly human annotations. When done properly, audiovisual learning can benefit many

applications, including representation learning for action and audio recognition, visually-driven

sound source localization, and spatial sound generation.
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[8] Relja Arandjelović and Andrew Zisserman. Look, listen and learn. Int. Conf. Computer
Vision (ICCV), 2017.

[9] Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor, and Kevin Mcguinness. Unsuper-
vised label noise modeling and loss correction. In Int. Conf. on Machine Learning (ICML),
2019.

[10] Sylvain Argentieri, Patrick Danès, and Philippe Souères. A survey on sound source
localization in robotics: From binaural to array processing methods. Computer Speech &
Language, 34(1):87–112, 2015.

125



[11] Yuki M. Asano, Mandela Patrick, Christian Rupprecht, and Andrea Vedaldi. Labelling un-
labelled videos from scratch with multi-modal self-supervision. In Adv. Neural Information
Processing Systems (NeurIPS), 2020.

[12] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simulta-
neous clustering and representation learning. In Int. Conf. on Machine Learning (ICML),
2019.

[13] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Soundnet: Learning sound representa-
tions from unlabeled video. In Adv. Neural Information Processing Systems (NeurIPS),
2016.

[14] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

[15] Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel learning, conic
duality, and the smo algorithm. In Int. Conf. on Machine Learning (ICML), 2004.

[16] Zohar Barzelay and Yoav Y Schechner. Harmony in motion. In IEEE/CVF Conf. Computer
Vision and Pattern Recognition (CVPR), pages 1–8. IEEE, 2007.

[17] Anthony J Bell and Terrence J Sejnowski. An information-maximization approach to blind
separation and blind deconvolution. Neural computation, 7(6):1129–1159, 1995.

[18] Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, William T Freeman, Michael
Rubinstein, Michal Irani, and Tali Dekel. Speednet: Learning the speediness in videos. In
IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), 2020.
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[130] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked convolutional
auto-encoders for hierarchical feature extraction. In ICANN. Springer, 2011.

[131] Harry McGurk and John MacDonald. Hearing lips and seeing voices. Nature,
264(5588):746–748, 1976.

[132] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al.
Mixed precision training. arXiv preprint arXiv:1710.03740, 2017.

[133] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant
representations. In IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR),
2020.

[134] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised
learning using temporal order verification. In Eur. Conf. Computer Vision (ECCV), 2016.

[135] Hossein Mobahi, Ronan Collobert, and Jason Weston. Deep learning from temporal
coherence in video. In Int. Conf. on Machine Learning (ICML), 2009.

[136] Pedro Morgado, Yi Li, and Nuno Vasconcelos. Learning representations from audio-visual
spatial alignment. In Adv. Neural Information Processing Systems (NeurIPS), 2020.

[137] Pedro Morgado, Nuno Vasconcelos, Timothy Langlois, and Oliver Wang. Self-supervised
generation of spatial audio for 360 video. In Adv. Neural Information Processing Systems
(NeurIPS), 2018.

[138] Pedro Morgado, Nuno Vasconcelos, and Ishan Misra. Audio-visual instance discrimination
with cross-modal agreement. In IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR), 2021.

[139] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb: A large-scale speaker
identification dataset. Conf. of the International Speech Communication Association
(EuroCOLT), pages 2616–2620, 2017.

[140] Kazuhiro Nakadai, Hiroshi G Okuno, and Hiroaki Kitano. Real-time sound source local-
ization and separation for robot audition. In International Conference on Spoken Language
Processing, 2002.

[141] Keisuke Nakamura, Kazuhiro Nakadai, Futoshi Asano, and Gökhan Ince. Intelligent
sound source localization and its application to multimodal human tracking. In IEEE/RSJ
International Conf. on Intelligent Robots and Systems (IROS), 2011.

[142] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by
solving jigsaw puzzles. In Eur. Conf. Computer Vision (ECCV), 2016.

[143] Mehdi Noroozi, Hamed Pirsiavash, and Paolo Favaro. Representation learning by learning
to count. In Int. Conf. Computer Vision (ICCV), 2017.

[144] Bruno A Olshausen. Sparse coding of time-varying natural images. In Proc. of the Int.
Conf. on Independent Component Analysis and Blind Source Separation, 2000.

[145] Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381(6583):607, 1996.

134



[146] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A
generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[147] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[148] Andrew Owens and Alexei A Efros. Audio-visual scene analysis with self-supervised
multisensory features. In Eur. Conf. Computer Vision (ECCV), 2018.

[149] Andrew Owens, Phillip Isola, Josh McDermott, Antonio Torralba, Edward H Adelson, and
William T Freeman. Visually indicated sounds. In IEEE/CVF Conf. Computer Vision and
Pattern Recognition (CVPR), 2016.

[150] Andrew Owens, Jiajun Wu, Josh H McDermott, William T Freeman, and Antonio Torralba.
Ambient sound provides supervision for visual learning. In Eur. Conf. Computer Vision
(ECCV), 2016.

[151] George Papandreou, Liang-Chieh Chen, Kevin P Murphy, and Alan L Yuille. Weakly-and
semi-supervised learning of a deep convolutional network for semantic image segmentation.
In Int. Conf. Computer Vision (ICCV), 2015.

[152] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Adv. Neural Information
Processing Systems (NeurIPS). 2019.

[153] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell, and Bharath Hariharan. Learn-
ing features by watching objects move. In IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR), 2017.

[154] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros.
Context encoders: Feature learning by inpainting. In IEEE/CVF Conf. Computer Vision
and Pattern Recognition (CVPR), 2016.

[155] Mandela Patrick, Yuki M Asano, Ruth Fong, João F Henriques, Geoffrey Zweig, and
Andrea Vedaldi. Multi-modal self-supervision from generalized data transformations.
arXiv preprint arXiv:2003.04298, 2020.

[156] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen
Qu. Making deep neural networks robust to label noise: A loss correction approach. In
IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), 2017.

[157] Greire Payen de La Garanderie, Amir Atapour Abarghouei, and Toby P Breckon. Elimi-
nating the blind spot: Adapting 3d object detection and monocular depth estimation to 360
panoramic imagery. In Eur. Conf. Computer Vision (ECCV), pages 789–807, 2018.

[158] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey Hinton.
Regularizing neural networks by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548, 2017.

135



[159] Karol J Piczak. Environmental sound classification with convolutional neural networks. In
IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2015.

[160] Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In Proceedings of
the 23rd Annual ACM Conference on Multimedia, pages 1015–1018. ACM Press, 2015.

[161] AJ Piergiovanni, Anelia Angelova, and Michael S. Ryoo. Evolving losses for unsupervised
video representation learning. IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR), 2020.

[162] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo Andriluka,
Peter V Gehler, and Bernt Schiele. Deepcut: Joint subset partition and labeling for multi
person pose estimation. In IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR), 2016.

[163] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang, Serge
Belongie, and Yin Cui. Spatiotemporal contrastive video representation learning. In
IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), 2021.

[164] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Yuille. Deep co-training for
semi-supervised image recognition. In Eur. Conf. Computer Vision (ECCV), 2018.

[165] Novi Quadrianto and Christoph Lampert. Learning multi-view neighborhood preserving
projections. In Int. Conf. on Machine Learning (ICML), 2011.

[166] Marc’aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau, and Yann LeCun. Unsupervised
learning of invariant feature hierarchies with applications to object recognition. In
IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), 2007.

[167] Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and
Andrew Rabinovich. Training deep neural networks on noisy labels with bootstrapping.
arXiv preprint arXiv:1412.6596, 2014.

[168] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight
examples for robust deep learning. In Int. Conf. on Machine Learning (ICML), 2018.

[169] Chuck Rosenberg, Martial Hebert, and Henry Schneiderman. Semi-supervised self-training
of object detection models. In WACV, 2005.

[170] Hardik B Sailor, Dharmesh M Agrawal, and Hemant A Patil. Unsupervised filterbank
learning using convolutional restricted boltzmann machine for environmental sound classi-
fication. In Conf. of the International Speech Communication Association (EuroCOLT),
2017.

[171] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial
intelligence and statistics, pages 448–455, 2009.

[172] Olli Santala and Ville Pulkki. Directional perception of distributed sound sources. The
Journal of the Acoustical Society of America, 129(3):1522–1530, 2011.

[173] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

136



[174] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Int. Conf. Computer Vision (ICCV), pages 618–626, 2017.

[175] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, and In So Kweon. Learning
to localize sound source in visual scenes. In IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR), 2018.

[176] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal,
Sergey Levine, and Google Brain. Time-contrastive networks: Self-supervised learning
from video. In Proceedings of the International Conference on Robotics and Automation
(ICRA), 2018.

[177] Ladan Shams, Yukiyasu Kamitani, and Shinsuke Shimojo. What you see is what you hear.
Nature, 408(6814):788–788, 2000.

[178] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng.
Meta-weight-net: Learning an explicit mapping for sample weighting. In Adv. Neural
Information Processing Systems (NeurIPS), 2019.

[179] Matthias Soler, Jean-Charles Bazin, Oliver Wang, Andreas Krause, and Alexander Sorkine-
Hornung. Suggesting sounds for images from video collections. In Eur. Conf. Computer
Vision (ECCV), pages 900–917. Springer, 2016.

[180] Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Refurbishing unclean samples for
robust deep learning. In Int. Conf. on Machine Learning (ICML), 2019.

[181] Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-Gil Lee. Learning from noisy labels
with deep neural networks: A survey. arXiv preprint arXiv:2007.08199, 2020.

[182] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of
101 human actions classes from videos in the wild. Technical Report CRCV-TR-12-01,
University of Central Florida, 2012.

[183] Dan Stowell, Dimitrios Giannoulis, Emmanouil Benetos, Mathieu Lagrange, and Mark D
Plumbley. Detection and classification of acoustic scenes and events. IEEE Transactions
on Multimedia, 17(10):1733–1746, 2015.

[184] N Strobel, S Spors, and R Rabenstein. Joint audio-video object localization and tracking.
IEEE Signal Processing Magazine, 18(1):22–31, 2001.

[185] Yu-Chuan Su, Dinesh Jayaraman, and Kristen Grauman. Pano2vid: Automatic cine-
matography for watching 360◦videos. In Asian Conference on Computer Vision (ACCV),
2016.

[186] Chen Sun, Fabien Baradel, Kevin Murphy, and Cordelia Schmid. Contrastive bidirectional
transformer for temporal representation learning. arXiv preprint arXiv:1906.05743, 2019.

[187] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR),
2015.

137



[188] Towaki Takikawa, David Acuna, Varun Jampani, and Sanja Fidler. Gated-scnn: Gated
shape cnns for semantic segmentation. In Int. Conf. Computer Vision (ICCV), pages
5229–5238, 2019.

[189] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In Int. Conf. on Machine Learning (ICML), pages 6105–6114. PMLR,
2019.

[190] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In
Eur. Conf. Computer Vision (ECCV), 2020.

[191] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A
closer look at spatiotemporal convolutions for action recognition. In IEEE/CVF Conf. Com-
puter Vision and Pattern Recognition (CVPR), 2018.

[192] Jean-Marc Valin, François Michaud, and Jean Rouat. Robust localization and tracking of
simultaneous moving sound sources using beamforming and particle filtering. Robotics
and Autonomous Systems, 55(3):216–228, 2007.

[193] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Adv. Neural
Information Processing Systems (NeurIPS), pages 5998–6008, 2017.

[194] Petra Vetter, Fraser W Smith, and Lars Muckli. Decoding sound and imagery content in
early visual cortex. Current Biology, 24(11):1256–1262, 2014.

[195] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extract-
ing and composing robust features with denoising autoencoders. In Int. Conf. on Machine
Learning (ICML). ACM, 2008.

[196] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T.
Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman. The kinetics human action
video dataset. arXiv:1705.06950, 2017.

[197] DeLiang Wang and Jitong Chen. Supervised speech separation based on deep learning: an
overview. arXiv preprint arXiv:1708.07524, 2017.

[198] Fu-En Wang, Hou-Ning Hu, Hsien-Tzu Cheng, Juan-Ting Lin, Shang-Ta Yang, Meng-Li
Shih, Hung-Kuo Chu, and Min Sun. Self-supervised learning of depth and camera motion
from 360◦videos. In Asian Conf. Computer Vision (ACCV), pages 53–68. Springer, 2018.

[199] Jiangliu Wang, Jianbo Jiao, and Yun-Hui Liu. Self-supervised video representation learning
by pace prediction. In Eur. Conf. Computer Vision (ECCV), 2020.

[200] Wei Wang and Zhi-Hua Zhou. Analyzing co-training style algorithms. In Proceeding of
the European Conference on Machine Learning (ECML). Springer, 2007.

[201] Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using
videos. In Int. Conf. Computer Vision (ICCV), 2015.

[202] Xudong Wang, Ziwei Liu, and Stella X Yu. Unsupervised feature learning by cross-level
discrimination between instances and groups. In Adv. Neural Information Processing
Systems (NeurIPS), 2020.

138



[203] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric
cross entropy for robust learning with noisy labels. In Int. Conf. Computer Vision (ICCV),
2019.

[204] Donglai Wei, Joseph J Lim, Andrew Zisserman, and William T Freeman. Learning and
using the arrow of time. In IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR), 2018.

[205] Eric W Weisstein. Gnomonic projection. From MathWorld–A Wolfram Web Resource.
http://mathworld. wolfram. com/GnomonicProjection. html, 2020.

[206] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning
via non-parametric instance discrimination. In IEEE/CVF Conf. Computer Vision and
Pattern Recognition (CVPR), 2018.

[207] Jianxiong Xiao, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Recognizing scene
viewpoint using panoramic place representation. In IEEE/CVF Conf. Computer Vision and
Pattern Recognition (CVPR), pages 2695–2702. IEEE, 2012.

[208] Jiahao Xie, Xiaohang Zhan, Ziwei Liu, Yew Soon Ong, and Chen Change Loy. Delv-
ing into inter-image invariance for unsupervised visual representations. arXiv preprint
arXiv:2008.11702, 2020.

[209] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In IEEE/CVF Conf. Computer Vision
and Pattern Recognition (CVPR), pages 1492–1500, 2017.

[210] Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and Yueting Zhuang. Self-supervised
spatiotemporal learning via video clip order prediction. In IEEE/CVF Conf. Computer
Vision and Pattern Recognition (CVPR), 2019.

[211] Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang. Unsupervised embedding learning
via invariant and spreading instance feature. In IEEE/CVF Conf. Computer Vision and
Pattern Recognition (CVPR), 2019.

[212] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Un-
derstanding deep learning requires rethinking generalization. In Int. Conf. on Machine
Learning (ICML), 2017.

[213] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. Mixup: Beyond
empirical risk minimization. In Int. Conf. Learning Representations (ICLR), 2018.

[214] Liheng Zhang, Guo-Jun Qi, Liqiang Wang, and Jiebo Luo. Aet vs. aed: Unsupervised
representation learning by auto-encoding transformations rather than data. In IEEE/CVF
Conf. Computer Vision and Pattern Recognition (CVPR), 2019.

[215] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In
Eur. Conf. Computer Vision (ECCV), 2016.

[216] Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain autoencoders: Unsupervised
learning by cross-channel prediction. In IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR), 2017.

139



[217] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural
networks with noisy labels. In Adv. Neural Information Processing Systems (NeurIPS),
2018.

[218] Ziheng Zhang, Yanyu Xu, Jingyi Yu, and Shenghua Gao. Saliency detection in 360 videos.
In Eur. Conf. Computer Vision (ECCV), pages 488–503, 2018.

[219] Zizhao Zhang, Han Zhang, Sercan O Arik, Honglak Lee, and Tomas Pfister. Distilling
effective supervision from severe label noise. In IEEE/CVF Conf. Computer Vision and
Pattern Recognition (CVPR), 2020.

[220] Hang Zhao, Chuang Gan, Wei-Chiu Ma, and Antonio Torralba. The sound of motions. In
Int. Conf. Computer Vision (ICCV), 2019.

[221] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Vondrick, Josh McDermott, and
Antonio Torralba. The sound of pixels. In Eur. Conf. Computer Vision (ECCV), 2018.

[222] Yi Zhu, Karan Sapra, Fitsum A Reda, Kevin J Shih, Shawn Newsam, Andrew Tao, and
Bryan Catanzaro. Improving semantic segmentation via video propagation and label
relaxation. In IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), pages
8856–8865, 2019.

[223] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised
learning of visual embeddings. In Int. Conf. Computer Vision (ICCV), 2019.

140


	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Self-supervised learning
	Instance discrimination
	Challenges of audio-visual self-supervised learning

	Contributions of the Thesis
	A strong framework for audio-visual instance discrimination
	Robust cross-modal instance discrimination
	Towards increased spatial resolution of audio-visual associations
	Self-supervised generation of spatial audio


	Audio-visual instance discrimination
	Introduction
	Related work
	Audio-Visual Instance Discrimination
	Goal and Intuition.
	AVID training procedure.
	Analyzing AVID

	Beyond Instance Discrimination
	Relating instances through agreements
	CMA Learning Objective
	Analyzing CMA

	Cross-AVID and CMA at scale
	Action recognition
	Sound recognition

	Discussion
	Appendix
	Experimental setup
	Longer AVID pre-training
	CMA calibration

	Acknowledgements

	Robust Audio-Visual Instance Discrimination
	Introduction
	Related work
	Analysis: Instance Discrimination
	Robust audio-visual representation learning
	Weighted xID: Tackling Faulty Positives
	Soft Targets: Tackling Faulty Negatives
	Training

	Experiments
	Experimental Setup
	Weighted cross-modal learning
	Instance discrimination with soft targets
	Robust instance discrimination with soft targets

	Comparison to prior work
	Discussion and future work
	Appendix
	Parametric studies
	Additional analysis

	Acknowledgements

	Audio-Visual Spatial Alignment
	Introduction
	Related work
	Audio-visual spatial alignment
	Pretext task
	Architecture
	Learning strategy

	YouTube-360 dataset
	Experiments
	Experimental setting
	Audio-visual spatial alignment
	Semantic segmentation by knowledge distillation
	Action recognition

	Discussion, future work and limitations
	Appendix
	Implementation details
	Ablations and parametric studies

	Acknowledgements

	Spatial Audio Generation
	Introduction
	Related Work
	Method
	Audio spatialization
	Architecture
	Evaluation metrics
	Datasets

	Evaluation
	Real time performance
	Baselines
	Qualitative results
	User study

	Discussion
	Conclusion
	Appendix
	Network Architectures

	Acknowledgements

	Conclusion
	Bibliography



