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California, nor any of their employees, makes any warranty, express or implied, or 
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INTRODUCTION 

During the last two years, our group has been working 
on the concept of "feasible" images in the context of image 
reconstruction for emission tomography (ET) . The concept 
has been discussed previously in image processing in as­
tronomy (Skilling and Bryan, 1984; Ables, 1974; Gull and 
Daniell, 1978; Narayan and Nityananda, 1986) and in infor­
mation theory (Trussell, 1983; Trussell and Civanlar, 1984; 
Sezan and Stark, 1982), but had not been applied to tomo­
graphic image reconstruction until we related the deteri­
orition of Maximum Likelihood Estimator (MLE) images at 
large number of iterations to the unfeasibility of the re­
sulting images (Llacer, Veklerov and Hoffman, 1987; 
Veklerov and Llacer, 1987; Llacer and Veklerov, 1988; 
Llacer and Veklerov, 1989). We have described a feasible 
image as an image that, if it were a true radioisotope 
distribution in a patient, could have generated the 
measured data by the Poisson process that governs the 
radioactive decay process. Formal definition~ of 
feasibility, as well as tests that can be applied to 
computer generated data or to real tomographic data, have 
been given in the literature cited above. 

We consider feasibility necessary but not sufficient 
for a reconstruction to be acceptable. Indeed, the true 
radioisotope distribution in a patient is feasible since it 
did generate the data by a Poisson process. One would then 
hope that a reconstruction of that distribution is in the 
same set of feasible images. On the other hand, we have 



reported feasible images that contain artifacts due to 
having initiated the iterative process with an inappropri­
ate first guess (Llacer, Veklerov and Nunez, 1989) and we 
must, therefore, indicate that feasibility is not a suffi­
cient condition for image acceptability. 

We have found several ways of obtaining feasible im-
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a) by the MLE method stopping the iterations as 
soon as the images pass our test for feasibility 

b) by continuing . the iterations past feasibility 
and returning to it by slight Gaussian filtering 

c) by Bayesian methods with entropy prior (Nunez 
and Llacer, 1989; Nunez and Llacer, 1989a) 

d) by the method of- sieves (Snyder and Miller, 
1985; Snyder et al., 1987) 

All the feasible images that we have obtained are 
different from each other in some subtle ways. For the 
case of MLE reconstructions, H. Barrett (private 
communication), suggested that cutting the MLE iterative 
process short of maximizing the likelihood function may 
result in the loss of image eigenvectors corresponding to 
small eigenvalues~ We have examined methods of 
characterizing the differences among the different feasible 
images and it will be the objective of this paper to 
discuss the . preliminary results of our efforts in that 
direction. 

RECONSTRUCTION METHODS 

We will discuss results from the four different meth­
ods of obtaining feasible images listed above, starting in 
all cases from one single set of projection data from the 
ECAT-III tomograph of UCLA (Hoffman et al., 1983) in a 
measurement of the Hoffman brain phantom. Most of the re­
constructions have been carried out with transition 
matrices calculated by the simple Shepp-Vardi prescription 
of 1982 and also with Monte Carlo generated matrices that 
take into consideration detector geometry, detector 
material properties, positron range and cross-talk 
(Veklerov, Llacer and Hoffman, 1988). Random coincidences 
and backg.iound have been subtracted previous to the 
reconstruction and corrections due to absorption and 
detector gain have been made to the data for the MLE case 
and to the matrix for the Bayesian and sieve methods. 
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The number of variations that can be expected from 
all the possible combinations of processing steps is ex­
cessive for a reasonable presentation. A careful examina­
tion of the results allows, however, to draw some prelim­
inary conclusions about the major observed differences in 
the results. They are preliminary in the sense that they 
ar~ based on only one instance of the projection data and 
need, therefore, to be repeated adequately for verifica­
tion. 

The FMAPE Method 

Of the reconstruction methods indicated above, the 
one that is least known is the FMAPE, for Fast Maximum a 
Posteriori with Entropy (Nunez and Llacer, 1989a) . It will 
be described here briefly. 

The notation that we are using is the following: 

a. 
]. 

f .. 
Jl 

h. 
J 

j l, ... ,D 

i l, ... ,B 

B 

L f .. a. 
Jl ]. 

i=l 

the projection data or the 
number of counts 

the radioisotope activity 
or emission density 

transition matrix elements, 
or probability that a d~s­
integration in box i will 
be detected in tube j. 

the forward projection 

The FMAPE is a Bayesian method based on maximizing 
the target function 

BY 

i=l 

where 

D 

(a./~a) log( a./~a)+~ [-h' .+(p*./~p.) ]. ]. .L..J J J J 
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- ~ ( 

3 

B 

L 
i=l 

a. 
]. 

- N) 

log(h' .) l 
J 

(1) 



h' 0 

J 
j 1, •.. , D (2) 

The first term is the Shannon entropy with one ad­
justable parameter, ~a, which controls the relative weight 
of the entropy vs. likelihood. It can be adjusted to yield 
reconstructions that converge to feasible images. The sec­
ond term is the likelihood which contains a vector of pro­
jection data p*. incorporating absorption and detector gain 
corrections and a vector of those corrections ~p* .. The 
third .term insures the conservation of counts and c1ntains 
one Lagrange multiplier Jl. The vector of elements h'. cor-

J responds to a modified projection of the current image a. 
. l 

and, in fact, prescribes that the corrections be applied to 
the matrix elements f ... The iterative algorithm we have 
devised for the maxirf?fzation is based on the "successive 
substitutions" method (Hildebrand, 1974) and is given by 

k+1 
a. 

l 

k 
K a. 

l 

D 

~aL(f .. (1/~p.)[(p*./~ f .. a~)-1]] Jl J J L.J Jl l 

i=1 
j=1 

i 1, ... , B 

n 

(3) 

There are two constants in Eq. 3 whose values are ar­
bitrary. Within the range of values for which the itera­
tive process converges, the convergence point is independ­
ent of their value. The first constant is the exponent n 
which controls the speed of convergence. We have found 
that for values 1 ~ n ~ 3, the rate of convergence is 
roughly proportional to n. The second is the constant C, 
which insures that no negative values will occur during the 
iterative process. We use routinely C = ~a with no prob­
lems. Finally, K is computed at the end of each iteration 
to conserve the number of counts and it is equivalent to 
calculating the Lagrange multiplier Jlby 

n 
K 1 I { 1 + ~a Jl - log(~a) + C} (4) 
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The Method of Sieves 

We have studied the method of sieves proposed by Sny­
der and Miller for the regularization of MLE reconstruc­
tions (Veklerov and Llacer, 1989) for the purpose of find­
ing whether a proper selection of the value for the sieve 
kernel width would result in feasible reconstructions. The 
results have been positive and the initial arbitrariness in 
the choice of that parameter can now be removed by the fea­
sibility requirement. From the computational point of 
view, the method of sieves consists in an MLE iterative 
procedure like that of Shepp and Vardi, with the difference 
that the transition matrix f.. is pre-convolved with a 
Gaussian kernel with paramete:z?J.B, controlling the smooth­
ness of the final result. In the notation of the present 
paper, the recursive formula is 

D 
B 

(k+1) (k+1) (k) L[ ] g .. P. I L a. a. g .. a. 
]. ]. Jl. J Jl. ]. 

i=1 
j=1 

i = 1, ... , B. (5) 

where 
B 

g .. ~f. K . 
Jl. L..J Jm mJ. 

m=1 

is the convolution with a Gaussian kernel K. 
erative procedure has converged, the final 
tained from 

a. 
]. 

K .. mJ. 

After the it­
image is ob-

(6) 

A small amount of experimentation with the parameter B of 
kernel K yielded feasible images for both computer genera­
ted and real data. 
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IMAGE EVALUATION PROCESS 

A basis for comparison of different reconstruction 
results of phantom images should be the phantom itself. 
With data from a real tomograph, however, the finite size 
of the detector elements will invariably result in projec­
tion data in which the frequency response of the instrument 
will limit the fidelity with,which the phantom can be re­
produced. It appears, then, that the comparison of recon­
struction results should be made with the "best" image that 
the tomograph can generate under ideal circumstances. For 
that purpose, we have used a data set with 55 million 
counts (SSM) and used a filtered backprojection algorithm 
with the Shepp-Legan filter (FBP), providing very sharp re­
sults and acceptably low noise. Because of the 'linearity 
of the FBP method, we expect the activity values obtained 
in the two regions-of-interest (ROis) that have been chosen 
for bias comparisons (shown in Fig. la) to be a good repre­
sentation of the ratio of hot vs. cold activity levels in 
the phantom. The size of the ROI-s is large enough to in­
clude many pixels, located within image features much 
larger than the point response of the instrument. 

The FBP method assumes that the tomograph point re­
sponse function is space invariant. All the methods we 
have used to obtain our feasible reconstructions are based 
on transition matrices corresponding to non-space invariant 
response functions. A pixel-by-pixel comparison between 
the FBP results and those of the tested methods, in config­
uration space as well as in frequency or Hilbert space, re­
sults in failure by misregistration. Even comparisons be­
tween results of the Shepp-Vardi and the Monte-Carlo matri­
ces suffer from that effect, by as much as one pixel at the 
phantom edges. For that reason, we have limited our pixel­
by-pixel comparisons to within the groups of reconstruc­
tions using the same transition matrices. Inter-group 
comparisons, or comparisons with the FBP results, have been 
carried out only for major features in the phantom. 

The question of whether it would be of advantage to 
carry out comparisons through Fourier transforms, eigen­
images or eigenanalysis based on the eigenvectors of the 
transition matrices has been studied. The difficulty en­
countered by not being able to identify differences in the 
"frequency" domain as being differences in noise or in high 
frequency image features appears to render transform meth­
ods less useful, at this time, than work done in configura­
tion space, which is what we have done. 
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PRELIMINARY RESULTS AND DISCUSSION 

We present here our preliminary observations, based 
on one single data set of 1 million (1M) counts. All the 
reconstructions have been normalized to 80% activity corre­
sponding to the average of the high activity ROI shown in 
Fig. 1. Subtractions on a pixel-by-pixel basis have been 
carried out bi-directionally, with negative values sup­
pressed. The difference images have been displayed in a 
color scale 10 times (X 10) more sensitive than the sc.ale 
used t~ display the normal reconst~uctions. The abbrevi­
ations used ·to denominate the different reconstruction 
methods are the following: 

MLE. SR: 

MLE.PF: 

Maximum Likelihood.Estimator, stopped according 
to our Stopping Rule at the onset of feasibility 

MLE, stopped 
than MLE. SR, 
kernel of CJ = 

at a point with 60% more iterat:ions 
and Post-Filtered with ~ Gaussian 
0.7 to 0.8 pixels 

FMAPE.PF: FMAPE reconstruction, with ~a chosen for conver­
gence past feasibility, with Post-Filtering as 
above 

SIEVE: Reconstruction by the method of sieves, with pa­
rameter p chosen so that process converges to a 
feasible image 

The results that will be discussed here are for re­
constructions with the Shepp-Vardi (SV) matrix. In gener­
al, the reconstructions obtained with the Monte Carlo ma­
trices do not show any visible differences from the SV 
results, although profiles taken through the MC images 
indicate sharper results. 

Effect of Iterating Past Feasibility and Post-Filtering 

Figures la), b), c) and d) show, respectively, the 
MLE.SR and MLE.PF results and the X 10 differences between 
the two images. The differences between la) and lb) are 
too small to be noticeable in the printed image. This is a 
characteristic of all our results and, for that reason, the 
reconstruction results will not generally be shown. 
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c d 

Fig. 1 - Reconstructions of a data set with 1 million 
counts by the MLE method. a) Stopping at the onset of 
feasibility, at iteration 30 (SR), b) Continuing to iter­
ation 50 and post-filtering with a Gaussian kernel of cr = 0.8 
pixels (PF), c) Difference (SR-PF), magnified X 10, nega­
tive values set to zero, d) Difference (PF-SR), same con­
ditions as c). 

The difference image SR-PF shows pixel values in 
which the SR image has higher values than those of the PF 
image and vice-versa for the PF-SR image. The phantom per­
iphery is clearly visible in both cases and it is due prin­
cipally to the broadening and flattening effect of the 
Gaussian post-filtering in the PF image. In SR-PF of Fig. 
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lc), the most significant visible features are faintly vis­
ible narrow valleys and in PF-SR of Fig. ld), the most 
prominent features are. ·the smaller hot regions of the phan­
tom. 

The interpretation of the difference images is that 
~terating past the ·onset o£ feasibility results in the nar~ 
row valleys of the phantom becoming deeper and the smaller 
hot regions becoming 'higher, i.e., increasing the contrast 
for small features. The ratio of hot to cold ROis o·f Fig. 
la) is 4.32 for the SSM FBP results, 4.SO for the SR and 
4.74 for the PF results. This number fluctuates in all the 
reconstructions with 1M counts between ~·low of 4.0 for the 
FMAPE reconstructions ·and a high of S .1 7 for the sieve re­
sults. Similar effects are obtained by comparisons within 
the set of MLE results obtained with the MC matrix or with 
the FMAPE results converging to just feasibility or past 
feasibility and post-filtering. 

Comparison Between MLE.PF and Bayesian FMAPE Results 

Figure 2a) shows the difference between MLE and FMAPE 
results, both with post-filtering, and the Shepp-Vardi ma­
trix. Only a few hot spots appear, indicating that the 
FMAPE has reduced the size of some of the "unstable" points 
of the MLE reconstruction. Figure 2b) shows the FMAPE -
MLE difference which shows a bias in the complete low ac­
tivity part of the phantom, with the FMAPE yielding an 
estimate which is higher than the MLE by approximately 3% 
of the maximum activity. In spite of misregistration prob­
lems, it is possible to compare the FMAPE and MLE results 
with the FBP reference. The suspected bias of the FMAPE is 
confirmed by that comparison. However, comparing MLE.PF 
results with FMAPE with the parameter ~a chosen so that the 
method converges substantially past feasibility (~a =8 0 0, 
instead of 400) and postfiltering yields an almost complete 
correction of the observed bias. 

Comparison Between MLE and SIEVE Results 

A comparison between MLE.SR or MLE.PF and sieve re­
sults indicates that the sieve results are too low in the 
regions of low activity by approximately 2% with respect to 
the MLE, making the ratio of high to low activity ROis of 
Fig. la) the highest measured in the present experiments. 
In addition, it appears that the sieve results are too high 
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a b 

XBB 896-4834 

Fig. 2 - Differences magnified X 10, between MLE with post 
filtering {MLE. PF) and Bayesian reconstruction with the 
FMAPE algorithm {FMAPE.PF). a) MLE-FMAPE and b) FMAPE-MLE. 
In both cases negative values have been set to zero. 

in regions of small hot features, or at edges, and too low 
in narrow valleys, i.e., it appears to suffer from ringing. 
This effects are seen in the X 10 difference images of 
Figs. 3a) and b) . 'I'he ringing effect has· already been ob­
served by Snyder et al. and they have proposed the use of a 
"resolution kernel" in the reconstruction. We have imple­
mented it approximately by a Gaussian post-filtering oper­
ation with the same kernel that we have used for the MLE 
results {cr = 0. 8 pixels). The differences between post­
filtered images are almost featureless and we conclude that 
the two images are essentially equivalent, although the 
ratio of ROis for the sieve image is still too high. 

We have also measured the ratio of ROis in the FBP.SL 
reconstruction for the 1M count data set used in the above 
reconstructions and we have found it to be 4.31, essential­
ly the same as with SSM counts. 

CONCLUSIONS 

The work described above confirms our early visual 
observation that not all feasible images are equivalent in 
terms of their possible medical content. We could rank the 
three main methods of reconstruction investigated in order 
of the range of values that they exhibit: 
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1) FMAPE reconstructions, with average values in la~ge 

ROis that are too compressed, by - 3% of the maximum, 
except when parameter .1a is chosen for convergence 
substantially past feasibility 

2) MLE reconstructions; that have ROI values that are 
somewhat expanded( withi'n 1 - 2% of the correct range 

3) Sieve methods that show a range of ROI values that is 
expanded by approximately 3%, although this effect has 
to be checked after incorporating the resolution ker­
nel into the algorithm 

We realize that these conclusions are· based on an 
analysis of reconstructions from only one set of data and 
that it is necessary to verify them by reconstructing more 
sets of data. We have just ~nitiated that process. 

a b 

Fig. 3 - Differences magnified X 10 between MLE reconstruc­
tions with post-filtering (MLE:PF) and sieve results, un­
filtered. 

All the feasible images that we have obtained are 
visually good, with the sieve images (without post-filter­
ing) being the most pleasing ones (smoother, higher con­
trast). 

The work that we have reported is preliminary to the 
selection of one or two main reconstruction methods for an 
extensive ROC analysis of the possible benefits of statis­
tically based algorithms in PET in collaboration with the 
Nuclear Medicine Group at UCLA. 
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