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RESEARCH ARTICLE
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Abstract
Epidemiological studies suggest a dose-response relationship exists between physical activ-

ity and cognitive outcomes. However, no direct data from randomized trials exists to support

these indirect observations. The purpose of this study was to explore the possible relationship

of aerobic exercise dose on cognition. Underactive or sedentary participants without cognitive

impairment were randomized to one of four groups: no-change control, 75, 150, and 225 min-

utes per week of moderate-intensity semi-supervised aerobic exercise for 26-weeks in a com-

munity setting. Cognitive outcomes were latent residual scores derived from a battery of 16

cognitive tests: Verbal Memory, Visuospatial Processing, Simple Attention, Set Maintenance

and Shifting, and Reasoning. Other outcomemeasures were cardiorespiratory fitness (peak

oxygen consumption) and measures of function functional health. In intent-to-treat (ITT) anal-

yses (n = 101), cardiorespiratory fitness increased and perceived disability decreased in a

dose-dependent manner across the 4 groups. No other exercise-related effects were

observed in ITT analyses. Analyses restricted to individuals who exercised per-protocol (n =

77) demonstrated that Simple Attention improved equivalently across all exercise groups

compared to controls and a dose-response relationship was present for Visuospatial Pro-

cessing. A clear dose-response relationship exists between exercise and cardiorespiratory fit-

ness. Cognitive benefits were apparent at low doses with possible increased benefits in

visuospatial function at higher doses but only in those who adhered to the exercise protocol.

An individual’s cardiorespiratory fitness response was a better predictor of cognitive gains

than exercise dose (i.e., duration) and thus maximizing an individual’s cardiorespiratory fit-

ness may be an important therapeutic target for achieving cognitive benefits.
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Introduction
As the population grows older, public health must prioritize preventive strategies to reduce
age-related functional and cognitive disability [1]. Aerobic exercise (AEx)–most commonly
walking–is accessible, cost effective [2], has proven health benefits [3], and may protect against
cognitive decline and dementia [4–7]. Unlike with prescription drugs, however, the minimum
and maximum effective exercise doses remain unknown.

Consensus guidelines, based on indirect data from epidemiological and prospective studies
[8] state a dose-response relationship exists between exercise and health benefits. Some exercise
is better than none and higher doses generally convey greater benefit. Epidemiological studies
suggest this dose-response relationship also applies to cognitive outcomes, with greater cogni-
tive performance and lower dementia risk in individuals who have greater levels of physical
activity [6, 7, 9]. Higher levels of cardiorespiratory fitness are associated with slower longitudi-
nal cognitive decline [10]. And in a parallel literature, exercise has demonstrated some effect in
cognitively impaired older adults [11–13]. However, no direct data from randomized trials
exists to support these indirect observations and meta-analyses have not clearly demonstrated
a linear relationship between fitness and cognition [14, 15].

This study examines the potential dose-response relationship of AEx on cognitive and func-
tional outcomes for maximizing exercise-related cognitive benefit in older adults. To accom-
plish this, we performed a pilot randomized controlled 26-week trial of three doses of AEx
representing 50%, 100%, or 150% of the recommended exercise dose of 150 minutes per week
[16]. Our goals were to test the ability of a community-based, semi-supervised exercise pro-
gram to deliver a rigorously controlled exercise dose and perform a preliminary test of our
hypothesis that low doses of AEx would provide some cognitive and functional benefits and
that benefits would increase at higher doses of exercise.

Methods

Study Design
The Trial of Exercise on Aging and Memory (TEAM: ClinicalTrials.gov, NCT01129115; trial
active between 2/1/2010–2/18/2014) was a 26-week pilot study of AEx dose in individuals 65
years and older without cognitive impairment. Based on public health recommendations to
attain at least 150 minutes per week (min/wk) of moderate intensity AEx [16, 17], we randomly
assigned participants to 1 of 4 intervention arms: no change in current physical activity (con-
trol), 75 min/wk, 150 min/wk, or 225 min/wk. We modeled the intervention on a prior dose-
response study of AEx [18], altering the dose through exercise duration while keeping exercise
intensity consistent across groups. Cognition, cardiorespiratory fitness, and functional health
were measured at baseline and post-intervention.

Participants
Participants were recruited as a convenience sample of volunteers through print and online
advertising, community talks, and existing databases of individuals willing to be in research
studies. Interested individuals underwent a telephone screen of medical history for inclusion
and exclusion criteria. Participants had to be at least 65, sedentary or underactive as defined by
the Telephone Assessment of Physical Activity [19], and free of cognitive impairment. Partici-
pants could not be insulin-dependent, have significant hearing or vision problems, uncon-
trolled hypertension, or have had recent history (<2 years) of major cardiorespiratory,
musculoskeletal or neuropsychiatric impairment.
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After telephone screen, we scheduled candidate participants who remained interested for
baseline evaluation visits. We obtained written, informed consent under a study protocol
(#11883) approved by the University of Kansas Medical Center Institutional Review Board,
which also acted as the human subjects research compliance entity for the YMCA of Greater
Kansas City. The baseline evaluation included a thorough clinical examination by a trained cli-
nician that included a Clinical Dementia Rating (CDR) to exclude the presence of dementia
[20]. A trained psychometrician administered a comprehensive cognitive testing battery and
the clinical and psychometric test results were reviewed and discussed at a weekly consensus
conference that included clinicians, a neuropsychologist, and raters. All eligible participants
were deemed cognitively normal as defined by a CDR of 0 (no dementia) and determination of
no clinical significant impairment on cognitive tests as determined by clinical review. Eligible
individuals then underwent physical function and cardiorespiratory fitness testing. The cogni-
tive test battery at screening was used as baseline. The same testing was conducted again after
26 weeks of intervention.

Randomization and Blinding
Participants were block randomized, stratified by age (split at 75) and sex, to ensure the groups
were well-matched. Our enrollment goal of 100 was based on reported exercise-related effect
sizes on cognition [21], with a goal of powering a definitive dose-response trial. Intervention
allocation was performed after completion of baseline testing by staff not involved with out-
come measure testing. One investigator constructed the allocation schedule using Random
Allocation Software and stored it in an electronic, password protected file prior to study start
[22]. Psychometric and exercise testers were blinded to the participant’s intervention arm at all
times.

Intervention
Participants were asked not to start or stop any new regular physical activities other than those
prescribed by the study team. The control group was instructed not to change their previous
sedentary or underactive level of physical activity.

For those randomized to an exercise group, the intervention was conducted at their nearest
Young Men’s Christian Association of Greater Kansas City (YMCA) under the guidance of cer-
tified personal trainers who were trained and monitored by study staff. Personal trainers over-
saw personalized prescription for weekly duration and intensity under the direction of the
study team. At each session, participants manually recorded the duration of exercise on an
exercise study log. All exercise groups began with a goal of 60 total minutes during Week 1 and
increased their goal by approximately 21 min/wk until they achieved their exercise duration
(i.e., 75, 150 or 225 min/wk, S2 Table). Participants exercised 3–5 days a week, never more
than 50 minutes a day to reduce likelihood of overuse injury. Intensity was prescribed as a tar-
get heart rate zone (F4 or FT4, Polar Electro Inc., Lake Success, NY) based on percentage of
heart rate reserve (HRR) as calculated by the Karvonen formula. In the first 4 weeks of exercise,
the target heart rate zone was 40–55% of HRR. In Weeks 5–18, it was 50–65% of HRR. In
weeks 19–26, it was 60–75% of HRR. We selected a 26-week intervention period to maximize
physiological adaptation [23] without overburdening participants.

Trainers supervised all exercise sessions for the first 6 weeks of exercise after which direct
supervision occurred during at least 1 session a week. Treadmill walking served as the primary
exercise modality but participants were allowed to use a different aerobic modality (e.g. ellipti-
cal) once a week. Facility and trainer fees were paid by the study. No other compensation was
provided.
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Adherence and Safety
Trainers asked about changes in health status (adverse events [AE]) and medication changes
every visit. Study staff also inquired about AEs during phone calls every 6 weeks and during
incidental contact at weekly YMCA visits. An independent safety committee reviewed AEs
quarterly.

Intent-to-treat analyses were performed on all enrollees (n = 101, ITT cohort). Per-protocol
analyses (PP, n = 77) excluded individuals not achieving 80% of their exercise duration goal,
those who engaged in other activities (e.g. resistance training), or those who withdrew. All par-
ticipants were asked about exercise outside the intervention at each phone call.

Outcomes
Our primary physical function outcome was 26-week percent difference (%Δ) in cardiorespira-
tory fitness, measured as peak oxygen consumption normalized to body mass (VO2 peak, ml/
kg/min) [24, 25]. VO2 peak was as the highest observed value during a maximal cardiopulmo-
nary exercise test following the Cornell modified Bruce protocol [26]. To maximize validity of
the test, all participants were required to achieve a respiratory exchange ratio of at least 1.0
before enrollment and exercise prescription.

Our primary objective measure of functional health was the Physical Performance Test
(PPT) [27]. The Late-Life Function and Disability Index (LLFDI) and Short Form 36 Health
Survey Physical and Mental Component Scores (SF-36v2, Quality Metric, Inc.) were consid-
ered primary measures of perceived functional health [28–30].

Our primary cognitive outcomes were domain latent factor scores constructed from a com-
prehensive cognitive test battery constructed to sample from five cognitive domains: Verbal
Memory, Visuospatial Processing, Simple Attention, Set Maintenance and Shifting, and Rea-
soning. A trained psychometrician administered the battery listed in S1 Table.

Statistical Methods
All analyses were performed on the ITT and PP cohorts. We first tested group differences in
cardiorespiratory fitness and functional ability outcome measures. For repeated measures
(LLFDI, SF-36, PPT) we used mixed-effects models (SAS-9.4, PROC MIXED; Group + Time
+ Group-by-Time). For change scores (%Δ in VO2 peak) we used ANOVA (PROC-GLM). In
cases where we detected group differences in these omnibus tests, we used a nested contrast
analysis to characterize patterns in the group differences [31]. We posited that group differ-
ences would fit one of three patterns: 1) Practice Effect, equivalent improvement across ALL
groups; 2) Intervention Effect, equivalent improvement across exercise dose (Control<75min/
wk = 150min/wk = 225min/wk); 3) Linear Dose-Response, linear improvement across exercise
dose (Control<75min/wk<150min/wk<225min/wk). Because of the pilot nature of the study
and the broad consensus that exercise is systemically beneficial [3] we used 1-tailed tests (α =
0.05).

For cognitive outcomes, we tested latent factors using a well-validated [32] multistep struc-
tural equation model of latent residual scores (SEM-LRS) [33]. These models provide purer
estimates of a given cognitive ability than raw test scores and isolate variance associated with
specific cognitive domains. Use of composite cognitive domain scores has been suggested as a
powerful alternative to raw scores [34]. Analyses were conducted in PROC CALIS with direct
estimation using full information maximum likelihood. SEM-LRS uses the variance and covari-
ance of multiple tests to predict group means and standard errors. (See S1 File for further
description.)
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Lastly, we explored the relationship of changes in cardiorespiratory fitness and cognitive
outcomes. We used longitudinal mediation analysis [35] to generate causal inferences about
the relationship between cardiorespiratory fitness and cognition [36]. This approach specifi-
cally tested whether our experimental variable dose (duration of exercise in total minutes)
drove cognitive change (latent residual score of a cognitive domain) directly or through cardio-
respiratory adaptation (%Δ in VO2peak).

Results
Of a potential 1,413 individuals who contacted the University of Kansas Alzheimer’s Disease
Center while the trial was active a total of 101 participants elected to participate, met criteria,
and were randomized to one of the four intervention arms: no change control (n = 25), 75min/
wk (n = 25), 150min/wk (n = 27), and 225min/wk (n = 24) of AEx. This recruitment yield of
7% is similar to other exercise trials [18]. Most participants who contacted the center were
uninterested or did not return follow-up contact (n = 947) after completing an initial phone
screen. Others were medically ineligible (n = 241), primarily because of significant hearing or
vision problems or too physically active to participate (n = 68). See Fig 1 for enrollment flow.
Baseline measures of enrolled participants are provided in Table 1.

Intervention Adherence
We indexed adherence as minutes exercised as a percent of the total prescribed, accounting for
the gradual build-up to their final dose (75min/wk = 1935min, 150min/wk = 3638min,
225min/wk = 5085min). In the ITT cohort, there were no differences in adherence across
groups (p = 0.13) with the 75min/wk group completing 82.3% (1595 minutes), the 150min/wk
completing 85.5% (3109 minutes), and the 225 min/wk group completing 70.1% (3562 min-
utes) of their prescribed exercise duration. The PP cohort excluded individuals who did not
achieve over 80% of their prescribed exercise minutes. These individuals were generally fully
adherent to the exercise prescription, achieving over 95% of their prescribed dose with no dif-
ference across groups (p = 0.9).

Cardiorespiratory Fitness and Functional Health Outcomes
We observed a dose-response effect of AEx on cardiorespiratory fitness in the ITT cohort with
linearly increasing gains in cardiorespiratory fitness (%Δ in VO2 peak) across dose groups: con-
trol = -4.4%, 75min/wk = 6.8%, 150min/wk = 7.7%, 225min/wk = 9.9% (Table 2). This dose-
response was also observed in the PP cohort: control = -4.4%, 75min/wk = 6.4%, 150min/
wk = 8.7%, 225min/wk = 11.0%. In ITT analyses, improvement in perceived disability was
observed as a function of exercise dose (LLFDI Disability Total score: control = 0, 75min/
wk = 0.7, 150min/wk = 1.3, 225min/wk 2.3), but this was not seen in the PP analysis. There
were no observed changes in physical function (Physical Performance Test), perceived function
(LLFDI Function Total score) or perceived physical and mental health (SF-36 composite
scores) across dose groups.

Cognitive Outcomes
We first tested the validity of our structural equation modeling of latent residual scores. Mea-
surement models indicated the 5 derived cognitive domains were identically configured and
loaded consistently onto the domain factors at baseline and 6-month follow-up (S3 Table and
S4 Table detail ITT and PP latent factor construction, and latent factor and component subtest
change scores.)

Dose-Response of Aerobic Exercise on Cognition
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In ITT analyses, AEx was not associated with gains in any cognitive domain. In PP analyses
Visuospatial Processing and Simple Attention improved with 6-months of any exercise. (Fig 2;
S5 Table lists latent residual change score tests for all domains.) Simple Attention improved in

Fig 1. Study enrollment flow. Baseline measures of enrolled participants are provided in Table 1. Of the intent-to-treat (ITT) cohort (n = 101), 8 individuals
withdrew due to time or travel concerns, 8 withdrew due to medical issues, 1 was dissatisfied with his group allocation, and 1 was lost to follow-up. Another 6
individuals were non-adherent to the exercise prescription. Those who did not adhere had slightly more education (17.8yrs [3.2] vs 16.1yrs [2.4]) otherwise
there were no significant differences. The remaining 77 individuals were included in per-protocol (PP) analyses: control (n = 23), 75min/wk (n = 18), 150min/
wk (n = 21), and 225min/wk (n = 15).

doi:10.1371/journal.pone.0131647.g001
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all exercise groups equivalently indicating an intervention effect (ΔX2 = 22.0). Visuospatial
Processing improved in a dose-response like function across the four doses of exercise,
although the 75min/wk and 150min/wk groups were similar (ΔX2 = 18.0). The Verbal Memory
(ΔX2 = 29.8) and Reasoning (ΔX2 = 34.1) domains also improved from baseline; however, all
groups including controls improved equivalently, indicating a practice effect.

Cognition and Cardiorespiratory Fitness Relationship
To clarify whether cognitive gain in the PP group was mediated by cardiorespiratory fitness,
we performed mediation modeling. In the basic model, exercise duration (minutes exercised
over 26 weeks) was correlated with change in Visuospatial Processing (Fig 3, p<0.05). If this
relationship was due to another variable, such as cardiorespiratory fitness improvement, the
significant relationship observed in the basic model should disappear when the candidate
mediating variable was added to the model. Indeed, change in cardiorespiratory fitness (%Δ in
VO2 peak) fully mediated the dose-response relationship between exercise duration and
changes in Visuospatial Processing, rather than exercise duration alone.

Adverse Events
There were 94 AE possibly or definitely-related to the intervention or VO2 peak testing: 86
(91%) mild, and 8 (9%) moderate severity. There were no severe AEs. Within the 3 exercising
groups, AE were more common (X2[2] = 11.3, p = 0.003) in individuals exercising at 150min/
wk (n = 40, 35 mild) and 225 min/wk (n = 36, 34 mild) than 75 min/wk (n = 15, 15 mild).
Common mild AE related to the intervention included low back, hip, knee or foot pain. Moder-
ate severity AE included lower extremity pain (n = 4), heart rhythm abnormalities (n = 3), and
chest pain (n = 1).

Discussion
There are three primary results from this pilot study. 1) Analyses restricted to individuals
adhering to and completing the study suggest that visuospatial and attention benefits may be
attained at low doses of exercise with visuospatial benefits appearing to increase with increasing

Table 1. Demographic and descriptive baseline data.

Control (n = 25) 75min/wk (n = 25) 150min/wk (n = 27) 225min/wk (n = 24)

Age (yrs) 72.5 (5.8) 73.5 (5.9) 72.5 (5.7) 73.2 (5.3)

Education (yrs) 16.6 (2.4) 16.1 (2.8) 16.7 (3.4) 16.6 (2.2)

% Female (n) 64.0 (16) 63.0 (16) 63.0 (17) 66.7 (16)

Cardiorespiratory Fitness and Physical Function

VO2 peak (ml/kg/min) 21.7 (4.2) 22.4 (4.1) 21.8 (4.3) 21.0 (4.5)

Total Minutes Exercised NA 1595 (481) 3109 (808) 3562 (1812)

% of Prescribed Minutes Exercised / Week NA 82.4 (24.7) 85.5 (21.3) 70.1 (32.5)

Physical Performance Test 32.0 (2.2) 31.8 (3.6) 32.3 (2.2) 31.9 (2.6)

Late-Life Disability Frequency Total 52.4 (4.6) 53.8 (5.8) 55.7 (4.9) 53.4 (3.6)

Late-Life Function Total 69.2 (9.0) 66.6 (9.7) 68.7 (7.5) 70.8 (8.2)

SF-36 Physical Component 56.4 (6.7) 54.2 (9.1) 56.4 (5.5) 57.7 (6.2)

SF-36 Mental Component 43.6 (4.2) 42.7 (5.1) 41.9 (3.9) 41.3 (5.0)

All values are group mean (standard deviation). LLFDI and SF-36 n = 100 due to computer malfunction. Baseline scores on component cognitive tests

can be found in S2 Table.

doi:10.1371/journal.pone.0131647.t001
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exercise dose. 2) There is a clear dose-response effect of AEx on cardiorespiratory fitness for
older adults validating our community-based protocol for the delivery of a rigorously con-
trolled exercise dose. 3) In mediation analyses, the apparent cognitive benefits of AEx are best
explained by gains in cardiorespiratory fitness, suggesting that prescribing individualized exer-
cise to maximize cardiorespiratory fitness may be important for realizing exercise-related cog-
nitive benefits.

Our finding of a dose-response relationship between exercise and cardiorespiratory fitness
replicates the findings from a randomized dose-response study in post-menopausal women
[18]. Cardiorespiratory fitness is an important health measure, strongly linked to mortality,
cardiovascular disease risk, functional health, and cognitive decline [3]. In older adults, cardio-
respiratory fitness declines>2% a year [37]. Our data demonstrate that even modest levels of

Table 2. Mean fitness and physical function change from baseline in both the intent-to-treat and per protocol cohorts.

26-Week Change Hypothesis Testing

Control
(n = 25)

75 min/wk
(n = 25)

150 min/wk
(n = 27)

225 min/wk
(n = 24)

Group * Time
Interaction

Best Fitting Model

Intent-to-Treat Cohort (N = 101)

VO2 peak (% change) -4.4 (7.1) 6.8 (7.6) 7.7 (7.1) 9.9 (9.1) F(3,89) = 14.2,
p<0.001

Dose-response t(89) = 3.8,
p<0.001

VO2 peak (ml/kg/min) -1.0 (1.6) 1.4 (1.5) 1.7 (14) 2.0 (1.9) F(3,89) = 16.2,
p<0.001

Dose-response t(89) = 4.0,
p<0.001

Physical Performance Test 0.2 (1.7) 0.1 (2.0) -0.9 (1.9) 0.5 (2.3) F(3,133) = 1.4,
p = 0.13

-

Late-Life Disability Frequency
Total

0.0 (2.0) 0.7 (4.2) 1.3 (3.9) 2.3 (1.1) F(3,123) = 3.1,
p<0.015

Dose-response t(123) = 1.8,
p = 0.015

Late-Life Function Total -0.9 (9.2) -0.3 (4.6) 0.0 (5.1) -0.4 (7.9) F(3,117) = 0.3,
p = 0.43

-

SF-36 Physical Component -0.3 (6.5) -0.3 (4.6) 0.5 (6.1) -0.8 (7.1) F(3,125) = 0.3,
p = 0.41

-

SF-36 Mental Component -1.5 (4.5) -0.2 (15.9) -0.2 (4.0) -0.4 (5.9) F(3,153) = 0.3,
p = 0.42

-

Per-Protocol Cohort (N = 77)

Control
(n = 23)

75 min/wk
(n = 18)

150 min/wk
(n = 21)

225 min/wk
(n = 15)

Group * Time
Interaction

Best Fitting Model

VO2 peak (% change) -4.4 (7.1) 6.4 (6.7) 8.7 (7.4) 11.0 (8.9) F(3,76) = 15.8,
p<0.001

Dose-response t(76) = 4.0,
p<0.001

VO2 peak (ml/kg/min) -1.0 (1.6) 1.4 (1.6) 1.9 (1.5) 2.4 (1.9) F(3,76) = 17.9,
p<0.001

Dose-response t(76) = 4.2,
p<0.001

Physical Performance Test 0.1 (1.7) 0.1 (2.0) -0.5 (2.0) -0.1 (1.5) F(3,114) = 1.0,
p = 0.21

-

Late-Life Disability Frequency
Total

0.0 (2.0) 1.4 (3.2) 1.0 (4.2) 1.9 (5.3) F(3,96) = 2.0, p = 0.06 -

Late-Life Function Total -0.9 (9.2) 0.0 (4.9) 0.7 (4.7) 1.0 (9.2) F(3,98) = 0.9, p = 0.20 -

SF-36 Physical Component -0.3 (6.5) -0.1 (5.2) 2.0 (4.9) 1.1 (4.8) F(3,92) = 1.3p = 0.15 -

SF-36 Mental Component -1.5 (4.5) -0.1 (6.2) -0.8 (4.2) -1.2 (5.1) F(3,122) = 1.3,
p = 0.14

-

The Group * Time interaction tests for group differences in response to exercise. The Best Fitting Model was assessed using an orthogonal contrast to

test the shape of the dose-response. Both the interaction and the contrast had to reach a level of significance to be adopted as the best fitting model. In

the ITT cohort, eleven individuals did not return for follow-up physical function testing and an additional six refused follow-up cardiopulmonary exercise

test. Nine individuals did not return for follow-up cognitive testing. All values mean (standard deviation) unless otherwise noted.

doi:10.1371/journal.pone.0131647.t002
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Fig 2. Visuospatial processing but not attention increases with increasing aerobic exercise dose.
Percent change in VO2 peak (blue bars) increases in a dose-response fashion across the PP exercise
groups. The best fitting model of Visuospatial Processing (red bars) follows a similar dose-response pattern.
The best fitting model of Simple Attention (green bars) shows that any exercise results in improvement.

doi:10.1371/journal.pone.0131647.g002

Fig 3. Cardiorespiratory fitness changemediates exercise duration effects on visuospatial performance. In the basic model without cardiorespiratory
fitness change (%change in VO2 peak over 26 weeks) as a mediator, total number of minutes exercised (Exercise Duration) was associated with change in
Visuospatial Processing. When change in cardiorespiratory fitness was added to the model as a potential mediator, it fully mediated the relationship of
Exercise Duration and Visuospatial Processing improvement. Betas (Standard Error) are reported as the product of simultaneous regression with bootstrap
replacement.

doi:10.1371/journal.pone.0131647.g003
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exercise in older adults provide fitness benefits, with increasing physiologic benefits at higher
doses. These data reinforce the idea that systemic physiologic adaptations to exercise are well-
preserved in older adults, even at low doses of AEx, and support the general consensus that
greater benefits are achieved at higher doses of exercise. These findings also validate the rigor-
ous delivery of varying doses of exercise through a community-based semi-supervised exercise
program. Further, our results suggest achieving a modest goal of 75 min/wk of AEx provides
benefits to cognition and perceived health, consistent with epidemiological data that high exer-
cise levels are not necessary to achieve cognitive benefits [7].

The finding that cardiorespiratory adaptation predicts cognitive benefit may indicate that
cardiorespiratory fitness (or aerobic capacity) is a useful therapeutic target for achieving cogni-
tive benefits. If so, exercise prescription should be individualized to impact cardiorespiratory
fitness rather than simply prescribing a standard amount of physical activity. Health care pro-
viders and exercise professionals can assist individuals following standard principles of exercise
prescription, including varying frequency, intensity, time, and type of activity to maximize
cardiorespiratory gain. Our finding that duration of exercise may be less important than the
physiological cardiorespiratory fitness response also underscores prior work suggesting that
subpopulations of non-responders with genetic or physiologic limiting factors may exist [38],
warranting further investigation into predictors of exercise response.

We applied longitudinal modeling techniques to measure domain-specific cognitive
changes. In the ITT cohort, we found no effect of exercise on cognitive performance. However,
when we narrowed our analysis to those who exercised per-protocol, we found Simple Atten-
tion improved over 26 weeks for all exercise groups (but not in a dose-dependent manner)
compared to controls and Visuospatial Processing improved non-linearly with increasing exer-
cise dose. Our Visuospatial Processing factor is largely dependent on executive function, the
cognitive domain that prior exercise studies have suggested most responds to exercise. Execu-
tive function is a loosely-defined concept that is dependent on selective attention, speed of pro-
cessing, and visuospatial information. It is therefore likely that both our Attention and
Visuospatial Processing domains reflect core features of executive function. We previously
identified this Visuospatial Processing domain as one that declines in the years prior to the
onset of dementia [39]. Our finding that participants perceived dose-dependent improvement
in disability (LLFDI) suggests gains in visuospatial function and attention may also be associ-
ated with real-world benefits.

This study has a number of notable strengths and limitations. Because this study was
designed as a pilot trial to inform the development of more definitive trials, the sample size and
intervention duration of 6-months are modest. Our control group had no sham activity and
thus we are unable to control for psychosocial effects. We used intensive clinical methods
(Clinical Dementia Rating) and a comprehensive cognitive testing battery to carefully exclude
individuals with subtle cognitive impairment. As exercise intensity was standardized across
groups, we have no direct data on the importance of exercise intensity, an important determi-
nant of cardiorespiratory adaptation [3], in mediating cognitive benefits. Finally, exercise was
semi-supervised after the first 6 weeks and thus at times exercise time and intensity was self-
reported. Nevertheless, our community-based approach enhances the generalizability and eco-
logical validity of the findings and we rigorously controlled the intervention across personal
trainers and facilities through intensive training and monitoring to minimize variability in pro-
tocol delivery. Despite this, it was difficult for the 225/wk group to achieve their exercise goals.
It may be that the rigid structure of a randomized controlled trial (e.g. controlled duration,
exercise modality) impedes adherence at higher doses. Anecdotally, there were more reports of
boredom in this group. While our results argue that this dose level is feasible for many, it
remains to be seen if it is the most efficacious dose.
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This 26-week pilot randomized controlled trial demonstrates a clear dose-response effect of
AEx on cardiorespiratory fitness and suggests that a dose-response may be present for exer-
cise-related cognitive benefits. Our data suggest that high levels of exercise are not necessary to
achieve fitness and cognitive benefits in those who adhere to the exercise program, supporting
the simple clinical directive that ‘any exercise is good, more is better’. Importantly, we found
that the presence and degree of physiologic adaptation to AEx (i.e., increased VO2 peak) is an
important predictor of cognitive benefit. In fact, a physiologic response to exercise was a better
predictor than exercise dose (total duration of exercise) in predicting cognitive benefits. This
suggests that maximizing an individual’s cardiorespiratory fitness may be an important thera-
peutic target to achieving visuospatial cognition and attention benefits. Public health efforts
aimed at initiating and maintaining any dose of exercise remain important [40] although
greater benefits are likely to be achieved with higher doses and through achieving gains in
cardiorespiratory fitness.
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