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Annika Öhrfelt, PhD,* Andréa L. Benedet, PhD,* Nicholas J. Ashton, PhD, Hlin Kvartsberg, PhD,

Manu Vandijck, MS, Michael W. Weiner, MD, PhD, John Q. Trojanowski, MD, PhD, Leslie M. Shaw, PhD,

Henrik Zetterberg, MD, PhD, and Kaj Blennow, MD, PhD, for the Alzheimer’s Disease Neuroimaging Initiative

Neurology® 2023;100:e275-e285. doi:10.1212/WNL.0000000000201417

Correspondence
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Abstract
Background and Objectives
To test the associations between the presynaptic growth-associated protein 43 (GAP-43),
quantified in CSF, and biomarkers of Alzheimer disease (AD) pathophysiology, cross-sectionally
and longitudinally.

Methods
In this retrospective study, GAP-43 was measured in participants from the AD Neuroimaging
Initiative (ADNI) cohort using an in-house ELISA method, and levels were compared between
groups, both cross-sectionally and longitudinally. Linear regression models tested the associ-
ations between biomarkers of AD (amyloid beta [Aβ] and tau pathologies, neurodegeneration,
and cognition) adjusted by age, sex, and diagnosis. Linear mixed-effect models evaluated how
baseline GAP-43 predicts brain hypometabolism, atrophy, and cognitive decline over time. Cox
proportional hazard regression models tested how GAP-43 levels and Aβ status, at baseline,
increased the risk of progression to AD dementia over time.

Results
This study included 786 participants from the ADNI cohort, which were further classified in
cognitively unimpaired (CU) Aβ-negative (nCU– = 197); CU Aβ-positive (nCU+ = 55), mild
cognitively impaired (MCI) Aβ-negative (nMCI– = 228), MCI Aβ-positive (nMCI+ = 193), and
AD dementia Aβ-positive (nAD = 113). CSF GAP-43 levels were increased in Aβ-positive
compared with Aβ-negative participants, independent of the cognitive status. In Aβ-positive
participants, high baseline GAP-43 levels led to worse brain metabolic decline (p = 0.01), worse
brain atrophy (p = 8.8 × 10−27), and worse MMSE scores (p = 0.03) over time, as compared
with those with low GAP-43 levels. Similarly, Aβ-positive participants with high baseline GAP-
43 had the highest risk to convert to AD dementia (hazard ratio [HR = 8.56, 95% CI
4.94–14.80, p = 1.5 × 10−14]). Despite the significant association with Aβ pathology (η2Aβ PET =
0.09, PAβ PET < 0.001), CSF total tau (tTau) and phosphorylated tau (pTau) had a larger effect
size on GAP43 than Aβ PET (η2pTau-181 = 0.53, PpTau-181 < 0.001; η

2
tTau = 0.59, PtTau < 0.001).
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Discussion
High baseline levels of CSF GAP-43 are associated with progression in Aβ-positive individuals, with a more aggressive
neurodegenerative process, faster rate of cognitive decline, and increased risk of converting to dementia.

Accumulation of amyloid-β (Aβ) plaques and neurofibrillary
tangles (NFT) togetherwith synaptic loss and neurodegeneration
are fundamental features of the Alzheimer disease (AD) patho-
physiology. It is known that both tau and Aβ aggregation exert
vulnerable effects on synapse integrity1 while synaptic loss and/or
synaptic degeneration are suggested to be much closer related to
cognitive decline than the other pathologic hallmarks of AD.2-4

Although synaptic degeneration and loss are core characteris-
tics of the AD pathophysiologic process, it is not evident how
early during disease progression synaptic dysfunction appears.
Together with the synaptic loss reported in AD,2,3,5-7 many
synaptic proteins have also been found at reduced levels
in hippocampus and neocortices, regions affected by AD
pathophysiology.4,8,9 In recent years, CSF synaptic biomarkers,
such as neurogranin, growth-associated protein 43 (GAP-43),
synaptosomal-associated protein 25, and synaptotagmin pro-
teins, were reported to be markedly increased in patients with
AD and prodromal AD.10-15 Furthermore, high levels of the
postsynaptic marker neurogranin correlates with future cog-
nitive decline in mild cognitive impaired (MCI) patients,10,14

further suggesting that CSF synaptic biomarkers indicate the
synaptic loss and degeneration that is known to occur in AD.3,6

GAP-43, or neuromodulin, is a presynaptic protein vastly linked
to neurite outgrowth, axonal guidance, and synaptic plasticity.16-18

GAP-43 is highly expressed during synaptogenesis and neuronal
development19 and then later on in the hippocampus and asso-
ciation cortices in the adult human brain.20 Specifically in relation
to AD pathology, quantitative neuropathologic analyses have
shown decreased GAP-43 concentration in the frontal cortex and
altered in the subfield regions of the hippocampus,21,22 known
brain regions affected by Aβ plaques, NFT, and neuronal and
synaptic degeneration early in AD.3,23,24 Earlier studies have
shown increased CSF levels of GAP-43 in MCI and AD
dementia,13,25 which was also associated with both tau pathology
and amyloid pathologies.13 CSF GAP-43 has demonstrated po-
tential as a candidate biomarker of synaptic dysfunction in
AD,13,25 although larger studies evaluating the prognostic po-
tential of GAP-43 to predict cognitive decline and conversion to
AD dementia are limited.

In this study, we further investigated the cross-sectional and
longitudinal associations between CSF GAP-43 and biomarkers
of AD pathophysiology, using data from the multicentric AD
Neuroimaging Initiative (ADNI) cohort. In addition, we evalu-
ated how CSF GAP-43 changes over time and how well it pre-
dicts cognitive decline and clinical progression to dementia.

Methods
Participants
This report used data obtained from the ADNI database,26 which
was launched in 2004 by the National Institute on Aging, the
Food and Drug Administration, private pharmaceutical compa-
nies and nonprofit organizations as a highly innovative public-
private partnership, led by Principal Investigator Michael W.
Weiner, MD, VA Medical Center, and University of California,
San Francisco. This study was performed in accordance with the
transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis: reporting guideline.27

This study initially included 802 participants, ranging from clini-
cally diagnosed cognitively unimpaired (CU), MCI, and AD
dementia participants, which had available CSF GAP-43 mea-
surements and paired baseline CSF Aβ42 and phosphorylated tau
(pTau)-181 data (data accessed on June 2021). The AD partici-
pants met criteria for probable AD according to the National
Institute of Neurological and Communicative Disorders and
Stroke–Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA),28 with a Mini-Mental State Examination
(MMSE) ranging between 20 and 26 (inclusively) and Clinical
Dementia Rating (CDR)≥1. Participants were classified asMCI if
MMSE ranged between 24 and 30, CDRof 0.5 (with thememory
box score being 0.5 or greater), largely intact general cognition and
functional performance, and could not meet criteria for dementia
according to the NINCDS-ADRDA (for further details see Ref.
29). In addition, participants were classified according to the Aβ
status, as further described, and AD dementia participants with no
evidence of Aβ pathologywere excluded fromour analysis, leading
to a final sample size of 786 participants. Longitudinal GAP-43
quantifications were available for 344 participants (227 with

Glossary
AD = Alzheimer disease; ADNI = AD Neuroimaging Initiative; Aβ = amyloid beta; CDR = Clinical Dementia Rating; CU =
cognitively unimpaired; CV = coefficients of variation; FDG = fluorodeoxyglucose; GAP43 = growth-associated protein 43;
HR = hazard ratios; LM = linear regression models; LME = linear mixed effect; QC = quality control; MCI = mild cognitive
impairment;MMSE = Mini-Mental State Examination;NFT = neurofibrillary tangles; NINCDS-ADRDA = National Institute
of Neurologic and Communicative Disorders and Stroke–Alzheimer’s Disease and Related Disorders Association; pTau =
phosphorylated tau; SUVR = standardized uptake value ratio; tTau = total tau.
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baseline plus one follow-up visit, 116with baseline plus 2 follow-up
visits, and 1 with baseline plus 3 follow-up visits).

Standard Protocol Approvals, Registrations,
and Patient Consents
Participants have been recruited from over 50 sites across the
United States and Canada (for up-to-date information, see
Ref. 30), and ethical committees of all institutions have ap-
proved the study. All participants have provided informed
consent. The study was performed in accordance with the
provisions of the Declaration of Helsinki. The protocol was
approved by the Institutional Review Board from each
institute/site for the experiments using human participants
described in this study.

CSF Biomarkers
The GAP-43 analysis was performed using an in-house ELISA
method at the Clinical Neurochemistry Laboratory at the
Sahlgrenska University Hospital (Mölndal, Sweden) by a
board-certified laboratory technician blinded to clinical in-
formation as previously described.13 All standards and control
samples were analyzed in duplicate. The intermediate precision
of the GAP-43 assay was determined using 2 quality control
human CSF samples (quality control [QC 1] and QC 2),
which had an intra-assay coefficient of variation (CV) of 5.5%
and 11% and interassay CV of 6.9% and 15.6%, respectively.

For this study, the first GAP-43 measurement was used to
define the baseline visit in all analyses.

CSF Aβ42, total tau (tTau), and pTau-181 were quantified
using the fully automated Elecsys assays (Roche Diagnos-
tics) as reported elsewhere.31 A positive Aβ status was given
to participants who had CSF pTau-181/Aβ (1–42) ratio
>0.028 at the baseline GAP-43 visit.32 Only cross-sectional
Aβ (1–42), tTau, and pTau-181 data were used in our
analyses.

Neuroimaging Methods
MRI and PET summary measures were downloaded from the
ADNI database, and scan acquisitions followed the reported
protocols.33

Cross-sectional brain Aβ burden was estimated using [18F]
florbetapir PET, in which the global load is given based on the
average standardized uptake value ratio (SUVR) of the pre-
cuneus, cingulate, inferior parietal, medial prefrontal, lateral
temporal, and orbitofrontal cortices, and had the pons as
reference region.34 Glucose uptake was indexed by [18F]flu-
orodeoxyglucose (FDG) PET, and the global SUVR was the
average SUVR of the bilateral angular, posterior cingulate, and
inferior temporal gyri, with the cerebellar vermis and the pons
used as the reference regions.35 Longitudinal FDG PET was

Table 1 Demographic and Biomarker Summary Information of the Sample

CU2 (n = 197) CU+ (n = 55) MCI2 (n = 228) MCI+ (n = 193) AD (n = 113)

Age, y 72.0 (5.78) 75.9 (5.61)c 70.1 (7.61)b 72.8 (6.93) 73.9 (8.39)a

Female, n (%) 104 (52) 37 (67)d 110 (48) 81 (44)d 50 (44)

Education, y 16.8 (2.49) 16.0 (2.33)c 16.2 (2.58)a 16.0 (2.72)c 15.6 (2.68)c

APOE-«4 carriers, n (%) 44 (22) 29 (52)c 63 (27) 143 (74)c 82 (72)c

MMSE 29.0 (1.16) 28.9 (1.20) 28.5 (1.47)c 27.4 (1.85)c 23.0 (2.05)c

CSF pTau-181/Aβ(1-42) 0.01 (0.004) 0.04 (0.01)c 0.01 (0.005) 0.05 (0.02)c 0.06 (0.03)c

CSF pTau-181, pg/mL 18.9 (6.26) 31.7 (11.7)c 18.0 (6.11) 36.3 (15.0)c 38.7 (16.1)c

CSF tTau, pg/mL 215.0 (72.0) 317.8 (110.8)c 204.2 (65.0) 358.7 (135.0)c 387.7 (156.4)c

CSF GAP-43, pg/mL 4,570 (2,200) 6,460 (3,600)c 4,040 (2,000)a 6,420 (3,120)c 6,430 (3,230)c

Aβ PET, SUVR 1.06 (0.11) 1.36 (0.20)c 1.05 (0.12) 1.40 (0.17)c 1.44 (0.18)c

FDG PET, SUVR 1.32 (0.10) 1.21 (0.09) 1.30 (0.11)a 1.21 (0.13)c 1.04 (0.13)c

Hippocampal vol, mm3 7,633 (783) 7,391 (692) 7,368 (1,085)c 6,688 (1011)c 5,950 (801)c

Whole-brain vol, cm3 1,070 (54.8) 1,050 (44.6) 1,070 (62.2)a 1,050 (58.6)c 1,010 (57)c

Abbreviations: Aβ(1-42) = amyloid-β 1-42; AD =Alzheimer disease; CU− =Aβ-negative cognitively unimpaired; CU+ =Aβ-positive cognitively unimpaired; FDG=
[18F]fluorodeoxyglucose =GAP-43 = growth-associated protein 43 =MCI+ = Aβ-positivemild cognitive impairment;MMSE=Mini-Mental State Examination; p-
tau181 = tau phosphorylated at threonine 181; tTau = total tau.
Data are shown as mean (SD) or n (%), as appropriate. One-way analysis of covariance was used to compare age, education y, and MMSE between groups
(adjusting by sex) and Pearson χ2 to compare sex and APOE-e4 frequencies between groups. Imaging and fluid biomarkers were compared with a one-way
ANCOVA adjusted by age and sex. Aβ status for group definitionwas based on CSF pTau-181/Aβ42 ratio. Hippocampal andwhole-brain volumes are adjusted
by intracranial volume.
a p < 0.05.
b p < 0.01.
c p < 0.001; for these, CU− was the reference group.
d p < 0.05 between these groups.

Neurology.org/N Neurology | Volume 100, Number 3 | January 17, 2023 e277

Copyright © 2023 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


used in this study, counting from baseline GAP-43, and 375
participants had data for more than one visit.

Brain atrophy was determined using hippocampal and
whole-brain volumes. Automated volume measures were
performed using FreeSurfer software package36 and were
adjusted for total intracranial volume using data from all
cognitively impaired subjects as baseline, as previously
described.37 Longitudinal brain volume was used in this
study, counting from baseline GAP-43, and 729 partici-
pants had data for more than one visit.

Statistical Analysis
Biomarker and demographic data were compared between
groups using the χ2 test for categorical variables and one-way
analysis of variance, followed by the Tukey post hoc test when
variables were continuous. Linear regression models (LM)
tested the associations between GAP-43 concentrations and
other variables at baseline, always adjusting for age, sex, and
diagnostic group. Participants were also grouped according to
baseline levels of GAP-43 in terciles (low, medium, and high)
and according to baseline Aβ PET and CSF pTau-181 in
quartiles (first, second, third, and fourth).

Linear mixed-effect (LME) models were used to evaluate
longitudinal relationships, which always included random in-
tercepts and were adjusted for age, sex, and baseline measures
when needed. Adjusting for APOE4 did not affect the in-
terpretation of findings and, therefore, was not included in this
report. The models were fit using maximum likelihood esti-
mation, and time was set as continuous variable, counting from
baseline GAP-43. First, GAP-43 progression over time was
compared between categorical groups. Then, participants were
grouped according to baseline GAP-43 extreme terciles (low

and high) and Aβ status, and biomarker longitudinal changes
were assessed. These models had longitudinal FDG PET,
longitudinal MMSE, and longitudinal brain atrophy as out-
come measures (independently); time as continuous variable;
random intercept and age, sex, education, and baseline mea-
surements as covariates.

Cox proportional hazard regression models tested the as-
sociation between groups (GAP-43 extreme terciles and Aβ
status) and the risk of incident AD dementia or risk of
diagnosis progression. The Cox proportional hazard re-
gression analyses included only CU and MCI participants,
with follow-up data up to 75 months. The outcome of the
model was time to diagnosis change, and it was adjusted for
age and sex. Participants were sensored at their last follow-
up visit. Hazard ratios (HR) were reported. Schoenfield
residuals tested the assumption of proportional hazards and
Martingale residuals assessed nonlinearity.

To facilitate comparison and interpretation of findings, LM and
LMEwere performed using standardized variableswhen indicated.
GAP-43 was log transformed before standardization. All statistical
analyses were performed in R statistical platform v.3.6.3.38

Data Availability
The data sets used and/or analyzed during this study are
available from the corresponding author on reasonable request.

Results
Main Characteristics of the Study Sample
A total of 786 participants were included in the study: 197
Aβ-negative CU (CU−), 55 Aβ-positive CU (CU+), 228 Aβ-

Figure 1 Cross-sectional GAP-43

Distribution of CSFGAP-43 concentrations across groups, showing Aβ-negative groupswith lower levels of GAP-43 as comparedwith Aβ-positive groups (A; all
Aβ-positive groups are significantly different from Aβ-negative groups, p < 0.0001). GAP-43 levels were also compared between Aβ PET (B; third and fourth
quartiles are significantly higher than first and second quartiles, p < 0.001) and CSF pTau-181 (C; all groups are significantly different from each other, p <
0.0001) quartile groups. p values of group comparisons were corrected for multiple comparisons. Aβ = amyloid beta; GAP43 = growth-associated protein 43;
pTau = phosphorylated tau.

e278 Neurology | Volume 100, Number 3 | January 17, 2023 Neurology.org/N

Copyright © 2023 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


negative MCI (MCI−), 193 Aβ-positive MCI (MCI+), and
113 Aβ-positive AD dementia (AD) participants. The aver-
age age of the population was 72.2 (±7.2) years, 48% were
women, and the average years of formal education was 16.2
(±2.6) years. Specifics about groups characteristics can be
found in Table 1, where we show that CU+ (p < 0.0001) and
AD (p = 0.02) are in average older than CU−, whereas MCI−
are younger (p = 0.005). As expected, MMSE scores are
found to be lower in MCI−, MCI+, and AD groups in
comparison with CU groups. In addition, AD and MCI+
participants have a larger proportion of APOE-e4 carriers in
comparison with CU− group. As expected, biomarkers
profiles of Aβ and tau pathologies are abnormal in Aβ-pos-
itive groups as compared with CU− participants.

Baseline Levels of GAP-43 Better Reflects Tau
Pathology Than Aβ Pathology
Cross-sectional GAP-43 levels were shown to be significantly
increased in Aβ-positive groups as compared with CU− partic-
ipants (average increase of 41% in CU+ and 40% in MCI+ and
AD), whereas MCI− were unchanged from CU− (Figure 1A).
We found no association between GAP-43 and age (p = 0.25;
adjusting by sex and diagnosis), but a sex effect was found, where
women had higher levels than men (p = 0.02; adjusting by age
and diagnosis). Linear models tested the effect of Aβ PET, CSF
pTau-181, and tTau on GAP-43, and despite all being signifi-
cantly associated, CSF pTau-181 and tTau had a medium effect
size on GAP-43, whereas Aβ PET had a small effect size (η2Aβ
PET = 0.09, PAβ PET < 0.001; η

2
pTau-181 = 0.53, PpTau-181 < 0.001;

Figure 2 Longitudinal Progression of GAP-43

Linear mixed-effect models tested the evolution of CSF GAP-43 over time between groups. (A) We found no difference between the slopes of the groups
(shaded areas represent CI), which is also represented in (B) forest plots. (C and D) When participants were grouped according to baseline GAP-43 levels
(tercile groups), high GAP-43 at baseline showed no changes over time, which was significantly different from steeper biomarker progression when baseline
GAP-43 levels were low (***p = 3 × 10−5; shaded areas represent CI). GAP43 = growth-associated protein 43.
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η2tTau = 0.59, PtTau <0.001). This relationship was clearly visu-
alized when we compared GAP-43 levels between quartile
groups (Figure 1, B and C).

GAP-43 Has Steeper Increasing Levels in
Participants With Low Baseline Measurements
When evaluating longitudinal changes, we did not observe
differences on GAP-43 levels between pure clinically de-
fined or “biomarker defined” diagnostic groups over time
(Figure 2, A and B). However, when segregating partici-
pants based on GAP-43 terciles (first tercile GAP-43 <
3,681.3 pg/mL; 2nd tercile GAP-43 3681.3 pg/mL ≤ × <

5,760.7 pg/mL; and third tercile GAP-43 has concentra-
tions above or equals to 5,760.7 pg/mL), we found that low
baseline GAP-43 levels lead to a significantly steeper tra-
jectory than does high baseline GAP-43, suggesting that
GAP-43 plateaus over time (Figure 2, C and D).

Baseline Levels of GAP-43 Is Associated With
More Rapid Rate of Hypometabolism andMore
Rapid Rate of Brain Atrophy Over Time
GAP-43 showed no association with baseline brain hypo-
metabolismmeasured by FDGPET (p = 0.57). However, there
was an association between longitudinal FDG PET and the

Figure 3 GAP-43 Levels Predicting Longitudinal Metabolic Decline and Brain Atrophy

Linear mixed-effect models first compared FDG changes between GAP-43 and Aβ groups over time. (A and B) All groups have faster FDG decline in
comparison with Aβ-negative (Aβ−) participants with low baseline GAP-43 (***PLow GAP-43 Aβ+ = 1.1 × 10−4; ***PHigh GAP-43 Aβ− = 7.5 × 10−5; ***PHigh GAP-43 Aβ+

= 2.2 × 10−16). The results also showed that in Aβ-positive (Aβ+) participants, high GAP-43 levels led to worse FDG hypometabolism over time as compared
with low GAP-43 levels (*p = 0.01; shaded areas represent CI). Similar models were also performed to compare changes in brain volume over time. (C and
D) Rates of brain atrophywere greater in participants with lowGAP-43 and Aβ+ (***p = 1.2 × 10−5), highGAP-43 and Aβ− (**p = 0.008), and high GAP-43 and
Aβ+ groups (**p = 0.001) in contrast with low GAP-43 and Aβ− group. In addition, in Aβ+ individuals, longitudinal brain atrophy was worse in those who
had highGAP-43 at baseline in comparisonwith thosewith lowGAP-43 (***p = 8.8 × 10−27). Aβ = amyloid beta; FDG = fluorodeoxyglucose; GAP43 = growth-
associated protein 43.
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interaction between GAP-43 and time (p = 1.24 × 10−6).
Similarly, when participants were grouped according to GAP-
43 levels and their Aβ status, higher GAP-43 was associated
with more rapid rate of hypometabolism over 96 months
(Figure 3, A and B). In addition, GAP-43 showed no

associations with cross-sectional hippocampal volume (p =
0.83), but it was associated with brain volume (p < 0.001;
adjusted by age, sex, diagnosis, and education). High baseline
GAP-43 was also linked to more rapid rate of brain atrophy
over time when GAP-43 was evaluated as a continuous variable

Figure 4 GAP-43 Levels Suggesting Cognitive Decline

(A and B) Linear mixed-effect models compared MMSE changes between GAP-43 and Aβ groups over time. Aβ-positive (Aβ+) groups had worse decline in
MMSE scores when compared with participants Aβ-negativea (Aβ−) with low baseline GAP-43 levels (***PLow GAP-43 Aβ+ = 1.8 × 10−22; ***PHigh GAP-43 Aβ+ = 3.3 ×
10−46). In Aβ+ participants, high GAP-43 at baseline also indicated worse MMSE scores over time as compared with those with low GAP-43b (*p = 0.03). Cox
proportional hazard model (adjusted by age, sex, and education) showing that, in comparison with low GAP-43 Aβ-groupa, low levels of baseline GAP-43 and
Aβ+ are associatedwith an increased risk to convert to ADdementia (HR =4.17, 95%CI 2.04–8.49, p= 8.3 × 10−5), which the highest riskwas found for highGAP-
43 and Aβ+ group (HR = 8.56, 95%CI 4.94–14.80, p = 1.5 × 10−14), as evidenced by (C) the Kaplan-Meier curves.When comparing Aβ+ groupsb, high GAP-43 had
highest conversion rate (HR = 2.05, 95%CI 1.13–3.07, p = 0.01). Similarly, when evaluating rates of diagnosis progression, as shownby (D) Kaplan-Meier curves,
in comparison with low GAP-43 Aβ-group, low levels of baseline GAP-43 and Aβ+ are associated with an increased risk to progress clinically (HR = 3.67, 95% CI
1.98–6.78, p = 3,3 × 10−5), which the highest risk was found for high GAP-43 and Aβ+ group (HR = 5.80, 95% CI 3.61–9.33, p = 3,8 × 10−13). Aβ = amyloid beta;
GAP43 = growth-associated protein 43; HR = hazard ratios; MMSE = Mini-Mental State Examination.
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(p = 1.04 × 10−8) or when groups were considered (Figure 3, C
and D).

High Baseline Levels of GAP-43 Predict Faster
Cognitive Decline and Higher Risk of Dementia
Higher levels of GAP-43, cross-sectionally, were found to be
associated with worse cognitive performance on the MMSE (p
= 0.01) and associated withmore rapid rate of cognitive decline
over 96 months, when GAP-43 was considered a continuous
variable (p = 2.97 × 10−12) or when GAP-43 groups were
evaluated (Figure 4, A and B). Corroborating these findings,
survival analysis showed that high baseline GAP-43 in combi-
nation with positivity for Aβ pathology was the profile that
showed the greatest risk of converting to dementia (HR = 8.56,
95% CI 4.94–14.80; Figure 4C) or to clinically progress (HR =
5.80, 95% CI 3.61–9.33; Figure 4D) over the period of 6 years.

Discussion
In this study, we show that highCSFGAP-43 levels are associated
with increased risk of dementia onset and with faster cognitive
decline. Particularly in Aβ-positive individuals, amore rapid rate of
decline in cognitive performancewas observed in participantswith
high CSF levels in contrast to participants with lower GAP-43
levels. Similarly, in the presence of amyloid pathology, high CSF
GAP-43 concentrations indicated an increased risk to convert to
AD dementia. In addition, baseline CSF GAP-43 levels were
associated with more rapid rates of hypometabolism and more
rapid rates of brain atrophy over time.

In the current study, we showed that baselineGAP-43 levels were
increased in Aβ-positive groups as compared with CU Aβ-neg-
ative group. Our results are in agreement with previous studies
reporting elevated CSF levels of GAP-43 in AD13,39,40 and in
MCI because of AD compared with CU participants.25,39 In-
terestingly, the observation that levels of GAP-43 already signif-
icantly increased in the CU+ group compared with CU− but not
changed inMCI− indicates that synaptic alterations are related to
amyloidosis, and it may occur even before clinical symptoms are
manifested.15,41 In addition, as previously described, CSF GAP-
43 was linked to both Aβ and tau pathologies.13,42 Interestingly,
when we investigated the association between GAP-43 and core
AD biomarkers, linear models showed that CSF tTau and pTau-
181 had a medium effect on GAP-43 and Aβ PET had a small
effect on GAP43, suggesting that CSF GAP-43 are more tightly
associated with tau pathology and neurodegeneration than it is
with Aβ pathology. In line with our results, previous studies
showed a strong association betweenGAP-43 and tau pathology,
indexed by Braak staging, as well as with tTau and pTau-181 in
AD at a cross-sectional level.13,25

We showed that GAP-43 levels were associated with lon-
gitudinal cognitive performance, corroborating previous
reports showing that synaptic loss is the pathologic change
that most closely correlates with cognitive decline.3 High
baseline levels of GAP-43 predicted worse cognitive

decline, indexed by MMSE, over time in the Aβ-positive
group when these were compared with participants with
initial low levels of GAP-43. In agreement with these
findings, Aβ-positive individuals with high baseline GAP-43
had the highest risk to progress clinically and to convert to
dementia. In alignment with those results, the levels of
neurogranin, the postsynaptic counterpart of GAP-43, were
previously associated with the severity of cognitive decline
in AD.10,43,44 These calmodulin-binding proteins seem to
be inevitable for neuronal transmission and synaptic
plasticity,45,46 thereby their changes might reflect early
signs of cognitive decline. Despite that amyloid-positive
participants with high CSF GAP-43 had the worst cognitive
performance, lower levels of GAP-43 in Aβ-positive par-
ticipants were also associated with subsequent cognitive
decline and clinical progression to AD. This suggests that
the inclusion of GAP-43 to a diagnostic biomarker panel
can increase the possibility to identify the patients who will
have the most rapid rate of cognitive decline.

In the context of the A/T (N) framework, biomarkers of the
Aβ pathology seem to change first in AD, followed by bio-
markers of tau-related neuronal injury.47 Studies based on
CSF biomarkers have also shown that synaptic alterations
precede and/or parallel neurodegeneration in preclinical
AD.48,49 In line with that, this study demonstrates that high
baseline GAP-43 levels in Aβ-positive participants was asso-
ciated with greater brain atrophy and worse metabolic decline
over time, as proxied by longitudinal measures of brain vol-
ume and FDG-PET. As these biomarkers generally indicate
neurodegeneration,47 these findings further support the
concept that synaptic abnormalities precede cell dysfunction
and death, as previously suggested.42,47,50,51 However, future
studies with biomarkers that more specifically measure syn-
aptopathies, e.g., synaptic vesicle glycoprotein 2A PET, are
needed to closely examine the relationship between CSF
GAP-43 and synaptic dysfunction in living individuals.52

The major strength of this study was its longitudinal design
that made it possible to investigate how GAP-43 was associ-
ated with cognitive deterioration over time. Furthermore,
CSF GAP-43 was assessed in a large multicentric cohort and
quantified with a robust in-house assay.

There are some limitations to our study. First, although
models were adjusted for them, demographic characteristics
differed between groups. Second, the CSF biomarkers were
used as an index of AD pathology; however, still autopsy is the
golden standard for examination of AD pathology.

High baseline levels of GAP-43 were mostly linked to in-
creased tau pathology and associated with future decline in
brain metabolism, progressive brain atrophy, cognitive decline
and higher risk to progress to dementia. Altogether, these
results support the framework that synaptic changes stand
in between AD pathologic changes and future neuro-
degeneration and cognitive symptoms. Furthermore, findings
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point to GAP-43 as a potential marker of clinical progression
particularly in participants with Aβ pathology, being a valuable
tool for enrolling participants in clinical trials.
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