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Abstract

While anatomical pathways between forebrain cognitive and brainstem autonomic nervous centers 

are well-defined, autonomic–central interactions during sleep and their contribution to waking 

performance are not understood. Here, we analyzed simultaneous central activity via 

electroencephalography (EEG) and autonomic heart beat-to-beat intervals (RR intervals) from 

electrocardiography (ECG) during wake and daytime sleep. We identified bursts of ECG activity 

that lasted 4-5 seconds and predominated in non-rapid-eye-movement sleep (NREM). Using 

event-based analysis of NREM sleep, we found an increase in delta (0.5-4 Hz) and sigma (12-15 

Hz) power and an elevated density of slow oscillations (0.5-1 Hz) about 5 secs prior to peak of the 

heart rate burst, as well as a surge in vagal activity, assessed by high-frequency (HF) component of 

RR intervals. Using regression framework, we show that these Autonomic/Central Events (ACE) 

positively predicted post-nap improvement in a declarative memory task after controlling for the 

effects of spindles and slow oscillations from sleep periods without ACE. No such relation was 

found between memory performance and a control nap. Additionally, NREM ACE negatively 

correlated with REM sleep and learning in a non-declarative memory task. These results provide 

the first evidence that coordinated autonomic and central events play a significant role in 

declarative memory consolidation.

Introduction

It is now well-established that specific electrophysiological central events during sleep 

support the transformation of recent experiences into long-term memories, i.e., memory 

consolidation. Another direction of research has demonstrated evidence for a critical role of 

autonomic activity during waking in memory and learning. We have recently shown that 
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autonomic activity during sleep may also be related to consolidation. What is not known is 

whether the coupling of central and autonomic systems during wake or sleep plays a role in 

memory consolidation. Here, we identify a novel coupling between the autonomic and 

central nervous systems during sleep, but not wake, that predicts the outcome of the memory 

consolidation.

Research has consistently shown that a period of non-rapid eye movement (NREM) sleep 

yields greater memory retention of declarative memories (e.g., explicit, episodic memories) 

than a comparable period of rapid eye movement (REM) sleep or waking activity (Gais & 

Born, 2004). Several EEG features of NREM sleep have been linked with memory 

consolidation, with most studies focusing on spectral power in the slow wave activity (0.5–4 

Hz) and sigma (12–15 Hz) bands, or specific events including hippocampal sharp wave-

ripples (~150–250 Hz), cortical slow oscillations (SO, ~0.5–1 Hz), and thalamic sleep 

spindles (~12–15 Hz). In fact, co-occurring SOs and sigma/spindles may be a key 

mechanism of memory consolidation during sleep (Staresina, et al., 2015).

In humans, increases in sigma power during the SO up-states has been shown following 

learning of a declarative memory task (Mölle, Eschenko, Gais, Sara, & Born, 2009). 

Furthermore, pharmacologically increasing spindles with zolpidem resulted in greater 

coupling of spindles and SOs (Niknazar, Krishnan, Bazhenov, & Mednick, 2015) and 

declarative memory improvements (Mednick, et al., 2013); (also see (Arbon, Knurowska , & 

Dijk, 2015) (Hall, et al., 2014)). In rodents, the replay of neural activity from encoding 

during sleep has been proposed to occur through the temporal coupling of thalamic spindles, 

hippocampal sharp wave ripples, and cortical slow oscillations (Staresina, et al., 2015). 

Thus, although a full mechanistic understanding of sleep-dependent memory consolidation 

is far from realized, research suggests that the coordination of brain rhythms from several 

cortical and subcortical regions may be critical.

A different line of research has demonstrated a significant contribution of the autonomic 

nervous system for memory consolidation during waking (McGaugh, 2013). These studies 

implicate the tenth cranial “vagus” nerve as the primary pathway of communication between 

the autonomic and central nervous systems. The vagus communicates information about 

peripheral excitation and arousal via projections to the brainstem, which then project to 

many memory-related brain areas, including the amygdala complex, hippocampus and 

prefrontal cortex (PFC) (Packard , Williams, Cahill, & McGaugh, 1995). Descending 

projections from the PFC to autonomic/visceral sites of the hypothalamus and brainstem 

create a feedback loop allowing for bidirectional communication between central memory 

areas and peripheral sites (Thayer & Lane, 2009). In male sprague-dawley rats, post-

encoding vagotomy impairs memory (Williams & Jensen, 1993). In humans, vagal nerve 

stimulation during verbal memory consolidation enhances recognition memory (Clark, 

Naritoku, Smith, Browning, & Jensen, 1999). Thus, the autonomic nervous system (ANS) 

appears to play a substantial role in waking memory consolidation.

We have recently shown that ANS activity during REM sleep is also associated with 

memory consolidation (Whitehurst, Cellini, McDevitt, Duggan, & Mednick, 2016). In this 

study, subjects were given a memory test before and after a daytime nap. Along with 
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measuring central activity during sleep, we also measured ANS activity using the traditional 

approach of heart rate variability (HRV), defined as the variance between consecutive 

heartbeats averaged within each sleep stage, as well as during a pre-nap wake period. We 

found that vagally-mediated ANS activity during sleep 1) is associated with the 

consolidation of implicit and explicit information, and 2) is sleep stage specific.

Given the evidence of independent contributions of central and autonomic activity during 

sleep for memory consolidation, it is not known whether there is coupling between these 

systems and whether this coupling may support long-term memory formation. Prior work 

hints at a possible coordination between central features and autonomic activity. For 

example, auditory-evoked K-complexes were associated with increased heart rate (de 

Zambotti, et al., 2016) and have been shown to appear frequently 250 and 650 milliseconds 

after the onset of the P wave in the electrocardiogram (ECG) (Fruhistorfer , Partanen, & 

Lumio , 1971). Furthermore, the QRS complex of ECG has been shown to modulate sleep 

spindle phases (Lechinger, Heib, Gruber, Schabus, & Klimesch, 2015). In addition, the high 

frequency component of HRV, which reflects parasympathetic activity, has been shown to 

correlate with slow wave activity in the brain (Brandenberger, Ehrhart, Piquard, & Simon, 

2001). Finally, volitional effort during wake correlates both with increases in hippocampal 

activity and heart rate (Norton, Luchyshyn, & Shoemaker, 2013); and phase-locking 

between central hippocampal theta and autonomic R-waves has been shown in guinea pigs 

during wake, slow wave sleep (SWS) and REM sleep (Pedemonte, Goldstein-Daruech, & 

Velluti, 2003). Together, these findings suggest that cardiac autonomic activity may be 

coupled with hippocampo-thalamocortical communication that has been shown to underlie 

memory consolidation during sleep. Despite these intriguing associations, very little is 

known about the coupling of central and autonomic activity and its functional consequences.

Here, we used a high-temporal precision time-series approach to examine coupling between 

central and autonomic nervous system activity during wake and sleep and its impact on 

memory consolidation. Using this approach, we identified novel cardiovascular events 

during NREM sleep, heart rate bursts, which are temporally coincident with increases in 

electrophysiological central events that have previously been shown to be critical for sleep-

dependent memory consolidation. In addition, these Autonomic/Central Coupled Events 

(ACE) are directly following by a surge in vagal activity, indexed by the high-frequency 

component of RR intervals. Using a regression framework, we assessed the contribution of 

ACE events versus non-ACE central and autonomic activity to declarative memory 

improvement following a nap, and show that ACE events predict performance improvement 

to a greater extent than by either activity alone. No such relation was found between 

memory performance and a control nap. We, thus, demonstrate a heretofore-unrecognized 

important role of coordinated autonomic and central activity during sleep that supports 

declarative memory consolidation.

Results

We analyzed the RR (inter-beat interval) time-series from the ECG, and electrical brain 

activity from frontal and central EEG recording sites, during a daytime nap in 45 young, 

healthy subjects (see Figure 1A for Study Timeline). First, we assessed ANS activity using 
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the traditional method of analyzing heart rate in the frequency domain – heart rate variability 

(HRV). In the frequency domain, the low frequency (LF; 0.04–0.15 Hz) component of RR is 

considered a reflection of sympathetic nervous activity (Malik, et al., 1996) (although this is 

not universally accepted (Billman, 2013)), while the high frequency (HF; 0.15–0.4 Hz) 

component reflects parasympathetic (vagal) activity (Malik, et al., 1996). Prior studies have 

demonstrated a decrease in LF and an increase in HF components in NREM during 

nighttime sleep (Vanoli, et al., 1995) and naps (Cellini, Whitehurst, McDevitt, & Mednick, 

2016). In agreement with this literature, we found that the power spectrum of the RR time-

series was modulated by sleep stages (Figure 1B). Furthermore, different sleep stages 

showed distinct properties in the EEG frequency-domain. Peaks emerged in delta (0.5–4 

Hz), theta (4–8 Hz), alpha (8–13 Hz), and sigma (12–15 Hz) bandwidth of EEG power 

spectrum (Figure 1C).

We also employed a time-domain analysis approach to the ECG signal to investigate the 

events that last for few seconds and might be neglected by classic HRV analyses in 3-5 min 

epochs. After confirming the detected ECG R peaks by visual inspection, we intentionally 

analyzed all artifact-free RR intervals without rejecting RR intervals that were too short or 

too long (a common practice in traditional HRV studies (Malik, et al., 1996)), thereby 

retaining a larger amount of RR intervals than typical for HR analysis. Using this approach, 

we observed large bursts in heart rate (i.e., decreased RR intervals) over periods of 4-5 

seconds (Figure 1D). Further, these heart rate (HR) bursts were visually noted to co-occur 

with events in the EEG (see boxes in Figure 1E-H). In the next section we provide a detailed 

analysis of these heart rate bursts and their coincidence with events in the EEG.

Temporal analysis of RR intervals reveals distinct, intermittent reductions in RR intervals

The heart rate bursts sporadically emerged in the time series of RR intervals (Figure 1D). 

The signature of these heart rate bursts was an increase in HR from baseline to the peak of 

the heart rate bursts (Wake: 21.62% (s.d.=11.05); Stage 2: 20.69% (s.d.=7.53); SWS: 

14.49% (s.d.=6.02); REM: 21.40% (s.d.=8.85)). The densities of the heart rate bursts for 

Wake, Stage 2, SWS, and REM were 0.71 per minute (s.d.=0.52), 1.04 per minute 

(s.d.=0.32), 1.11 per minute (s.d.=0.34), and 1.00 per minute (s.d.=0.38), respectively. 

Shapiro-Wilk and Chi-square tests on inter-event-intervals revealed that these events are 

generally aperiodic (Figure S1).

Following the visual observation of the co-occurrence of heart rate bursts and EEG events 

we assessed the degree to which the heart rate bursts correlated with changes in EEG activity 

(Figure 1E-H). We found that EEG delta amplitude during heart rate bursts was significantly 

higher than during non-bursting periods of the RR signal in both Stage 2 (t(84)=2.14, p=.

035)) and SWS (t(70)=1.70, p=.046), but not Wake (t(62)=1.14, p=.257) and REM 

(t(56)=0.38, p=.706). Traditional measures of HR in the frequency domain examine LF and 

HF power by collapsing across time. However, given our interest in moment-to-moment 

changes in ANS/CNS signals, we filtered the RR time-series by LF and HF frequency bands 

(RRLF and RRHF, respectively), thereby maintaining the integrity of the time-series data. 

Similarly, we filtered the EEG time-series within the delta frequency to analyze the 

dynamics of the ANS/CNS interaction. We noted that during Stage 2 and SWS, bursts in 
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delta amplitude co-occurred with large troughs in RRLF (corresponding to heart rate bursts), 

which were followed by increases in RRHF (see an example in Figure 2A). We further 

investigated this coincidence by examining the the phase/amplitude coupling (PAC) between 

delta and RRLF, where the slow frequency RRLF provides the phase and the faster frequency 

delta provides the amplitude. During Stage 2 and SWS, the distribution of delta amplitude in 

the LF phase was non–uniform and peaked at a preferred phase (Figure 2B). Across 

participants, the average preferred phase was −70.1°(s.d.=26.7°) for Stage 2 and −79.4° 

(s.d.=67.6°) for SWS. This also indicates that the elevation in EEG delta activity preceded 

the peak of the Heart rate bursts (which occurred at LF phase of 0°). Interestingly, when we 

compared the density of the heart rate bursts to the traditional FFT analysis of LF power 

(i.e., likely sympathetic activity) within Stage 2 and SWS, total LF power was not 

significantly associated with heart rate burst density in Stage 2 (r= −.04, p= .81; Figure 2C) 

or SWS (r= −.08, p= .64). We next set out to investigate the PAC between EEG and RR 

across a broader frequency range.

EEG power is modulated by RR phase

We used the comodulogram method, utilizing normalized modulation index (nMI) as the 

PAC measure, to examine how the fast EEG signal was nested within the slower RR time-

series signal across Wake, Stage 2, SWS and REM sleep. Conceptually, for each frequency 

pair in the comodulograms the modulation of EEG amplitude by RR phase was compared to 

amplitude-shuffled surrogate data. Figure 2E shows the phase of the RR time-series in 

frequencies below 0.2 Hz strongly modulated the amplitude in EEG in frequencies below 4 

Hz, slow wave activity (SWA), during Stage 2. The same relation was apparent for SWS, but 

to a lesser extent (unpaired t-test between LF–SWA nMI of Stage 2 and SWS: (t(77)=3.21, 

p=.002) (Figure 2F). The LF–SWA modulation during Stage 2 and SWS was significantly 

higher than that of other RR/EEG frequency pairs (i.e., LF–theta, LF–alpha, LF–sigma, HF–

SWA, HF–theta, HF–alpha, and HF–sigma; Stage 2: F7,336=5.83, p=.000002; SWS: 

F7,280=2.97, p=.005). Taken together, the time series analysis indicates that EEG SWA 

amplitude in Stage 2 and SWS was modulated by the LF component of the RR time-series 

(RRLF).

Though LF–SWA modulation was the strongest effect observed, the comodulogram also 

revealed other bands of EEG (<16 Hz) that were modulated by LF phase in Stage 2 

compared with Wake and other sleep stages (LF-SWA: F3,145=10.44, p=.00001; LF-theta: 

F3,145=13.20, p=.004; LF-alpha: F3,145=17.58, p=.0005; LF-sigma: F3,145=13.93, p=.003). 

For REM sleep (Figure 2G), HF-modulated EEG theta activity was significantly higher than 

that of Wake (t(69)=4.85, p=.000007) and SWS (t(66)=2.06, p=.043) (F2,103=7.34, p=.002) 

but not Stage 2 (t(73)=0.45, p=.65). The other clusters visualized by the SWS 

comodulograms were not significantly different from Wake and sleep stages. In the 

following section, we will test the hypothesis that the above-mentioned modulation results 

from temporal coupling of autonomic and central events (ACE).

Coordination between heart rate bursts and EEG—We investigated ACE coupling 

during wake and sleep stages by tracking fluctuations in the EEG in a 20-sec window from 

10 second before to 10 second after the peak of the Heart rate burst (Figure 3A–B). In 
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addition to the rapid acceleration in HR, we also noted a slowing of HR after the burst or 

peak of the HR. We chose to use the peak of the Heart rate burst as reference points because 

we found a larger number of heart rate bursts compared to HR troughs. The percentage of 

heart rate bursts which were followed by HR declines was 12.61±2.71 % during Wake, 

20.30±2.14% during Stage 2, 13.30±2.65 % during SWS, and 27.02±4.00% during REM. 

2). Therefore, the detection of the peaks was a more reliable metric of the heart rate bursts 

compared to detection of slower and smaller changes in HR. Furthermore, the magnitude of 

the HR slowing after the peak of HR was highly variable across heart rate bursts (see Figure 

S2).

As we were specifically interested in EEG activity related to memory consolidation, we 

narrowed our frequencies of interest to SWA (and SOs) and sigma activity (and spindles). 

EEG data were binned into 5-sec intervals within the 20-sec windows around the Heart rate 

burst. Repeated measures ANOVAs indicated significant differences in SWA (Figure 3E) 

across the 5-sec bins and periods with no Heart rate burst (baseline) during Stage 2 

(F4,168=94.37, p<.00001) as well as during SWS (F4,140=21.59, p<.00001). Post hoc 

comparisons revealed the highest SWA occurred during the 5-sec bin prior to the Heart rate 

burst during Stage 2 (t(84)=8.94, p<.00001) as well as during SWS (t(70)=2.05, p=.044). 

Interestingly, the change in SWA in the 5-sec bin prior to the heart rate bursts was 

significantly correlated with the increase in HF power in the 5-sec bin after the Heart rate 

burst (Figure 3C) during Stage 2 (r=.54, p=.002), likely reflecting a compensatory increase 

in vagal activity. This elevated increase in HF power after the Heart rate burst was also 

present during other sleep stages (Figure 3C; Wake: t(44)=1.78, p=.082; SWS: t(70)=1.94, 

p=.056; REM: t(36)=2.12, p=.041, nonsignificant after FDR correction). Similar to SWA, 

density in SOs in the 5-sec bin prior to the Heart rate burst was significantly increased in 

Stage 2 (Figure 3D, t(84)=8.83, p<.00001) as well as during SWS (t(70)=3.10, p=.007). 

Note that SWA without SO events (1-4 Hz, 33.25±2.88 % of incidences) was also increased 

prior to the Heart rate burst (t(82)=2.77, p=.003) during Stage 2. No significant correlation 

between heart rate bursts and SWA was found during Wake (F3,112=1.41, p=.24) or REM 

(F3,116=0.24, p=.87). To summarize, we found that ACE in Stage 2 and SWS, but not wake 

and REM sleep, were characterized by an increase in EEG SWA that occurred 5-sec before 

the peak of the Heart rate burst and ended simultaneously with the heart rate bursts.

Repeated measures ANOVAs also indicated significant differences in sigma activity (Figure 

3F) across the 5-sec bins and periods with no Heart rate burst during Stage 2 (F4,168=56.87, 

p<.00001). The highest sigma power occurred during the 5-sec bin prior the Heart rate burst 

(t(84)=4.71, p=.00001). The early change in sigma power (10 secs prior the peak of the 

Heart rate bursts) was not significant after FDR correction (t(84)=1.90, p=.061; Figure 3F). 

Similarly, repeated measure ANOVA indicated significant differences in spindle density 

across the 5-sec bins and periods with no Heart rate burst (F4,168=2.93, p=.022, Figure S3). 

Post hoc paired-samples t-tests between baseline spindle density and the spindle density 

during the 5-sec bins revealed a significant density difference during the 5-sec bin prior the 

Heart rate burst peak (t(84)=3.679, p=.0004) and a nonsignificant significant difference 

during the 5-sec bin started 10 sec before the Heart rate burst peak (t(84)=1.871, p=.065). 

No significant modulation in sigma power was found during SWS (t(70)=0.17, p=.86).
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In addition to SWA and sigma activity, the coupling of SO and spindles as a function of the 

HR was investigated. For each subject, the average SO/spindle modulation index (Tort, 

Komorowski , Eichenbaum , & Kopell, 2010) was calculated for two groups of SOs: 1) SOs 

occurred during the 20-sec windows around heart rate bursts and 2) SOs during periods with 

no Heart rate burst. Paired t-test showed no difference in MI for the two SO groups 

(t(87)=0.177, p=.860). That is, ACE-related sleep activity did not have any measurable 

impact on the temporal coupling of SO and spindles.

In summary, Sigma and SWA power in Stage 2 and SWA in SWS increased from baseline 

(periods with no Heart rate burst) to a maximum level prior to the peak of the heart rate 

bursts, and returned to baseline post-burst. Although we focused on slow wave and sigma 

frequencies here, we conducted exploratory analyses on theta and beta activity, which are 

presented in the Supplementary Materials. These data are consistent with the hypothesis that 

cortical EEG activity precedes and perhaps catalyzes these sudden and short-lived surges in 

HR in NREM sleep. We next investigated the functional impact of ACE events on memory 

consolidation during sleep.

Correlations with cognitive tasks

In this section, we investigated the contribution of ACE coupling to post-nap memory 

consolidation. For this purpose, we computed the change scores for both performance and 

EEG features coupled with ACE (i.e., ACE difference scores). The following EEG features 

were analyzed: density of SOs and magnitude of SWA and sigma power in Stage 2 and 

SWS, and a linear composite of SWA and sigma power changes (i.e., a simple sum of z-

scores of SWA and sigma power changes) in Stage 2 (Figure 4); we focused on Stage 2 and 

SWS, as ACE were not significantly modulated during wake or REM. ACE difference 

scores were calculated as average values of each EEG feature of interest 5 secs prior to the 

peak of the heart rate bursts subtracted from baseline. We conducted exploratory analyses on 

the application of modulation index between heart rate bursts and EEG activities, which are 

presented in the Supplementary Materials. (see Figure S5). Two memory tasks were 

considered for this study: declarative memory for face-name associations and non-

declarative perceptual learning on a texture discrimination task. We calculated difference 

scores between pre-nap and post-nap memory performance for total (first and last name) 

recall and perceptual learning thresholds.

Declarative Memory—Recall difference scores were positively correlated with ACE 

difference scores in density of SOs in Stage 2 (r= .47, p= .002, significant after FDR 

correction; Figure 4A) and SWS (r= .47, p= .004, significant after FDR correction; Figure 

4D), as well as SWA (r= .32, p= .039, marginally significant after FDR correction; Figure 

4B), sigma power (r= .3, p=.05; Figure 4C), and the linear composite of SWA and sigma 

power in Stage 2 (r= .38, p=.012, significant after FDR correction; Figure 4F). The 

correlation between changes in performance and SWA in SWS was not significant (r= .11, 

p= .54; Figure 4E). Additionally, the ACE difference score for HF power in Stage 2 sleep (5-

sec bin after the peak of the Heart rate burst) was significantly correlated with recall 

improvement (r=.32, p=.03, marginally significant after FDR correction).
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To assess the relative importance for memory performance of independent autonomic and 

central events as well as their coupling, we utilized a hierarchical, linear regression 

framework. For Stage 2 and SWS, two linear regression models were calculated to predict 

recall difference. In Model 1, SO density, spindle density, burst density, and baseline HF 

power in each sleep stage were the independent variables. In Model 2, we added the ACE 

difference scores for SO density and spindle density before and HF power after the heart rate 

bursts. The regression results for Stage 2 and SWS variables are tabulated in Table 1 and 

Table 2, respectively. Stage 2 results showed that Model 1 was not significant (F4,37=0.08, 

p= .99; adj R2 = −.10), whereas Model 2 significantly predicted performance (F7,34=2.77, 

p= .022; adj R2 = .23) with both ACE SO density change and HF amplitude change as 

significant predictors. Comparing Model 1 and 2, we found that Model 2 explained 

significantly more of the variance in recall than Model 1 (change in adj R2=.33, F3,34=6.30, 

p=.002). For SWS, Model 1 was not significant (F4,30=.36, p=.84; adj R2 = −.08), but adding 

the ACE measures in Model 2 elevated the model to a marginal significance level 

(F7,27=1.53, p=.20; adj R2 = .10), with SO density change the only significant predictor. 

Again, Model 2 accounted for significantly more of the variance in recall improvement than 

Model 1 (change in adj R2=.21, F3,27=3.01, p= .048). In summary, while the baseline HF 

power, SO, spindle, and Heart rate burst densities did not independently predict recall 

difference, ACE events predicted up to 23% of the variance in performance improvement on 

this declarative memory task.

Perceptual Learning—We found perceptual learning was negatively related to the ACE 

SWA increase in Stage 2 (r=− .30, p= .048; Figure 4H) and SWS (r= −.35, p= .035; Figure 

4K), as well as with the linear composite of SWA and sigma power changes in Stage 2 (r= −.

34, p=.025; Figure 4L). In addition, non-significant negative correlations were apparent 

between perceptual learning and ACE SOs increases in Stage 2 (r= − .07, p= .67; Figure 4G) 

and SWS (r= − .27, p= .11; Figure 4J) and Stage 2 sigma power (r= −.25, p=.11; Figure 4I). 

Thus, in contrast with the positive association between ACE-mediated increases in NREM 

sleep events and declarative memory, perceptual learning was negatively associated with 

these ACE events. Given that prior studies have demonstrated the critical importance of both 

NREM and REM sleep for perceptual learning, the trade-off between ACE-NREM features 

supporting declarative memory and REM features supporting perceptual learning may not be 

surprising. Indeed, Figure 4M shows a similar significant positive correlation between REM 

sleep and perceptual learning (r=.37, p=.013, marginally significant after FDR correction). 

We also showed a reciprocally negative correlation between ACE SWA difference score and 

minutes in ReM (r= −.36, p=.029; Figure 4N). These negative associations with REM and 

REM-dependent learning may be related to the experimental conditions of the nap, in which 

subjects have a two-hour nap opportunity. Such restrictions on sleep provide boundaries on 

the total sleep time and may thus create a trade-off between NREM and REM sleep.

In summary, we find that sleep features associated with consolidation of hippocampal-

dependent memories (SO events, SWA, and sigma power) are specifically boosted during 

heart rate bursts and that these ACE increases may be an important contributor in 

hippocampal-dependent memory consolidation. However, these benefits to declarative 
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memory during a nap may come at the expense of REM sleep and REM-dependent 

perceptual learning.

Control Nap—A subset of subjects (n=22) were given a control nap one week after the 

experimental nap. The rationale we then employed was to test whether ACE coupling during 

a separate napping consolidation period was associated with individual differences in 

memory consolidation on the experimental day. On both experimental and control days, 

subjects were tested on cognitive tasks in the morning and evening and had a nap between 

test sessions, however, different cognitive tasks were tested on these days. This is an 

appropriate within-subjects control because the subjects had the same magnitude of 

cognitive burden, but with different information to encode, which allows us to test the 

specificity of the relationship between changes in the autonomic/central events during sleep 

and the specific memories learned. Underscoring this point, we found similar levels of Heart 

rate burst density (0.97 per minute) and changes in HF power (control: 20.07%, 

experimental: 18.61%), delta power (control: 17.65%, experimental: 21.37%), and sigma 

power (control: 7.64%, experimental: 8.63%) in the experimental and control naps during 

Stage 2 and SWS.

Next, we confirmed that these subjects had the same magnitude of effect size for the 

association between nap ACEs and memory on the experimental day as the entire sample. 

We re-ran the regression models from Table 1, in which Model 1 compared non-ACE 

predictors to declarative memory, and Model 2 added the ACE predictors. Indeed, a model 

with baseline variables did not significantly predict the declarative learning (adj R2 = −.23, 

p=0.95), whilst adding ACE difference scores in Model 2 significantly improved the 

prediction (adj R2 = .47, p=0.04).

Finally, in order to confirm the specificity of the encoded material on the experimental day, 

correlations between control nap ACE difference scores and memory changes on the 

experimental day were tested. Here, evidence of no relation between the control nap ACE 

features and experimental memory performance would indicate a high degree of specificity 

to the encoded material on the experimental day. For the declarative memory task, no 

significant correlation was found with ACE SO density difference score in control nap Stage 

2 (r=−0.04, p=0.85) and SWS (r=−0.14, p=0.61), as well as with the SWA changes in Stage 

2 (r=0.26, p=0.24) and SWS (r=−0.35, p=0.16), and sigma power changes in Stage 2 

(r=0.11, p=0.63) and SWS (r=0.14, p=0.60). Unlike experimental day, there was no 

correlation between declarative learning and HF power change in Stage 2 (r=0.15, p=0.49). 

Similarly, no significant correlation was found between perceptual learning and ACE SO 

density increase in Stage 2 (r=0.05, p=0.82) and SWS (r=−0.18, p=0.49), as well as with the 

SWA changes in Stage 2 (r=0.02, p=0.93) and SWS (r=0.07, p=0.78), and sigma power 

changes in Stage 2 (r=0.12, p=0.59) and SWS (r=0.08, p=0.75). In summary, ACE changes 

in the control nap were not associated with memory consolidation of information encoded 

on the experimental day.
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Discussion

Here, we have identified for the first time an autonomic cardiac event (heart rate bursts) 

during NREM sleep that is temporally-coupled with a significant boost in central oscillations 

associated with systems consolidation. Specifically, we show 1) increases in the EEG 

amplitude in SWA and sigma bands directly preceded these large-amplitude heart rate bursts, 

2) a surge in vagal activity (measured in the HF component of heart rate) directly following 

the Heart rate burst, 3) that the uptick in autonomic/central events (ACE) (SO, delta, sigma) 

and vagal activity were positively associated with declarative memory improvement and 

negatively associated with non-declarative memory, and 4) ACE changes in the experimental 

nap were only associated with memory consolidation of information encoded on the 

experimental day (although we note that given that the specificity of this finding is based on 

the absence of such associations in one control nap, further research is required with more 

extensive controls). Together these results present compelling evidence of a coupling 

between signals from the brain and heart that have a critical and specific impact on memory 

consolidation during sleep.

Traditional calculations of EEG/ECG signals in the frequency domain using 3–5 min bins of 

uninterrupted nocturnal sleep have found results that differ from the present outcomes. One 

such study reported no association between delta power and normalized HF power at peak of 

SWA (Rothenberger, et al., 2015). Also different from the present result, cardiac changes 

have been found to precede EEG changes by several minutes (Brandenberger, Ehrhart, 

Piquard, & Simon, 2001). Here, unlike typical HRV analyses that discard large changes in 

HR, we intentionally analyzed all artifact-free RR intervals, which allowed for the discovery 

of these heart rate bursts. In addition, we used a time-domain analysis within short 20 sec 

windows around the heart rate bursts to examine fluctuations in the EEG/ECG signals, 

which allowed for more finegrained assessment of event-related changes in both signals. 

Similarly, using an event-related analysis in near-infrared spectroscopy, Mensen and 

colleagues (Mensen, Zhang, Qi, & Khatami, 2016) reported an oscillating blood flow signal 

at HR frequency that was time-locked to the onset of slow waves. This study posited that the 

arterial pulsation evokes a down-state, or that a third generator regulating HR and slow 

waves may be involved. More in line with our findings, another event-based analysis 

revealed an increase in HR followed by a deceleration after spontaneous and tone-induced 

K-complexes (de Zambotti, et al., 2016). Besides HR, other physiological responses such as 

pupil diameter in mice has been shown to be tightly coupled with brain activity during 

NREM sleep (Yüzgeç, Prsa, Zimmermann, & Huber, 2018). Pupil diameter is further known 

to be influenced by neuromodulator levels (Larsen & Waters, 2018) and thus suggesting a 

link between HR and neuromodulatory state.

By focusing on fine resolution of HR events for our event-based analysis, we found distinct 

bursts in HR during wake and sleep. heart rate bursts of similar duration have been identified 

in REM sleep in cats, with the average incidence rate of 1 burst per 6.1 min of REM sleep. 

These heart rate bursts were accompanied by ponto-geniculo-occipital waves and theta 

activity (Rowe, et al., 1999), which have been associated with memory consolidation in rats 

(Datta, 2006). Our event-based analyses showed SWA modulation in both Stage 2 and SWS, 

and sigma modulation in Stage 2 by the LF component of the RR time-series. Our results 
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suggest that the mechanism of SWA modulation was an increase in density of SOs, and 

power in SWA, and sigma activity ~5 sec prior to the peak of the Heart rate bursts that 

returned to baseline directly after the heart rate bursts. In addition, there was no significant 

SWA modulation in wake and REM, which is not surprising due to low SWA activity in 

these stages. The characteristics of the SWA and sigma modulation in NREM sleep resemble 

the cyclic alternating pattern (CAP) (Terzano, et al., 1985) in NREM sleep which is 

characterized by repeated sequences of transient events and which clearly break away from 

the ongoing background rhythm recurring at intervals up to 1 min long. However, the 

average duration of SWA reactivation in CAP was reported as 12.66 s which is longer than 

our ACE observations. Lecci et al (Lecci, et al., 2017) found periodic sigma activity (but not 

SWA) that was more prevalent in Stage 2 sleep than SWS and associated with memory 

consolidation in a declarative task (human) as well as hippocampal ripple activity (in mice). 

The present results, on the other hand, identified a heretofore undescribed burst in HR 

activity, that correlated with prominent, aperiodic, ACE-related increases in SWA and sigma, 

as well as parasympathetic activity, that predicted gains in declarative memory during Stage 

2 and SWS. Differences between findings may be due to the focus of the Lecci paper on 

periodic changes in EEG activity, as opposed to using ECG as the reference point for 

analysis. Notwithstanding these differences in approach and outcomes, both studies point to 

an important link between memory consolidation and autonomic/central events during sleep.

The present data also showed no significant correlation between heart rate bursts and 

traditional frequency based analysis of total LF power. This lack of relation may suggest a 

dissociation between mechanisms underlying LF-related sympathetic activity and heart rate 

bursts. In contrast, the increase in HF power directly following the heart rate bursts may 

instead implicate vagal inhibition (Chapleau & Sabharwal, 2011). Although specific 

mechanisms of ACE events are not known, we speculate that overlapping neural pathways 

between brain and heart centers may be an appropriate place to begin, and further 

investigation is needed to tease apart these mechanisms

Several candidate brainstem and cortical regions may be involved in the interaction between 

HR and sleep oscillations. One possibility, is that the nucleus of the solitary tract (NTS) and 

the rostral ventrolateral medulla (RVLM) mediate this interaction, since they act as one of 

the main bridges between CNS and cardiovascular systems (Guyenet, 2006). NTS is one of 

the critical components of the central autonomic network with afferent and efferent 

connections to the cardiovascular system and it receives projections from many cortical 

regions (van der Kooy, Koda, McGinty, Gerfen, & Bloom, 1994). Further, NTS, through its 

projections to RVLMs, influences activity in the locus coeruleus (Samuels & Szabadi, 2008) 

and indirectly influences the basal forebrain. Indeed, increased NTS activity is associated 

with reduced HR, and NTS stimulation has been shown to augment EEG theta and beta 

power during wake in cats (Martínez-Vargas, Valdés-Cruz, Magdaleno-Madrigal, Fernández-

Mas, & Almazán-Alvarado, 2016) potentially through the input to RVLM. The Heart rate 

burst may be a consequence of increases in spindle and slow oscillations through wide 

spread cortical projection to NTS (van der Kooy, Koda, McGinty, Gerfen, & Bloom, 1994). 

On the other hand, one potential mechanism for SO reduction post-Heart rate burst may be 

via NTS projections to basal forebrain and locus coeruleus. Stimulation of these areas by the 

NTS increases acetylcholine and norepinephrine release in cortex, which is known to reduce 
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slow oscillations (Krishnan, et al., 2016). Taken together, this suggests that the increase of 

SO prior to Heart rate burst could mediate an increase of HR through combination of 

sympathetic and parasympathetic pathways and that the reduction of SO following Heart 

rate burst may arise from increased activity of NTS through parasympathetic output via the 

vagal nerve. However, several other pathways are known to be involved in the interaction 

between neocortex and heart and have be examined to make definite conclusions.

A large prior literature suggests a critical role of the ANS during wake for memory 

consolidation (McGaugh, 2013). Studies have found that direct modification of peripheral 

hormonal activity following acquisition can enhance or impair the memory storage of new 

information (Roozendaal & McGaugh, 2012) via vagal afferent nerve fibers, which 

communicate information about ANS excitation via projections to the brainstem, which then 

project to memory-related areas including the hippocampus, amygdala complex, and 

prefrontal cortex (Packard , Williams, Cahill, & McGaugh, 1995). Bidirectional projections 

from the prefrontal cortex to the hypothalamus and brainstem create a feedback loop for 

communication between peripheral sites and central memory areas (Thayer & Lane, 2009). 

Lesions of the vagus nerve impair memory (Williams & Jensen, 1993), whereas pairing 

vagal nerve stimulation with auditory stimuli reorganizes neural circuits, strengthens neural 

response to speech sounds in the auditory cortex, and enhances extinction learning of fear 

memories in rodents (Peña, Engineer, & McIntyre, 2013). In humans, vagal nerve 

stimulation enhances consolidation of verbal memory (Clark, Naritoku, Smith, Browning, & 

Jensen, 1999) and working memory (Sun, et al., 2017). Recently, Whitehurst and colleagues 

used traditional methods to detect total sympathetic and parasympathetic power of the HRV 

signal during sleep and showed a correlation between parasympathetic activity during REM 

sleep (but not SWS) and implicit learning (Whitehurst, Cellini, McDevitt, Duggan, & 

Mednick, 2016). In contrast the current study used a fine-grained temporal analysis of 

EEG/ECG signals to reveal how the coupling of ANS/CNS Events (ACE) significantly 

improved the prediction of declarative memory, but not non-declarative memory, over and 

above total power of HR components and sleep events alone. Importantly, these effects are 

specific to the encoded memories directly preceding the nap. Follow-up experiments require 

interventions to better understand the mechanism promoting these effects, as well as probing 

different clinical populations that may have dampened autonomic tone during sleep, 

including older adults and sleep apnea. Taken together, these findings implicate a significant 

role of ANS modulation of plasticity and memory consolidation during sleep that is likely 

mediated by vagal afferents to the cortex via NTS brainstem.

Methods

A. Participants

Data reported here come from the first visit of a larger, mini-longitudinal study that included 

up to 7 visits per participant. Data from this study have been reported elsewhere (McDevitt, 

et al., 2018) (Whitehurst, Cellini, McDevitt, Duggan, & Mednick, 2016) (Cellini, 

Whitehurst, McDevitt, & Mednick, 2016) (Sattari, et al., 2017). Fifty-five (30 females) 

healthy, non-smoking adults between the ages of 18 and 35 with no personal history of sleep 

disorders, neurological, psychological, or other chronic illness gave informed consent to 
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participate in the experimental nap protocol explained below. A subset of this sample (n=22) 

also participated in a one-day control nap study, whereas the other subjects did not. We 

therefore had the opportunity to have half the subjects tested on a different hippocampal 

cognitive task to match the cognitive load as the experimental day. All experimental 

procedures were approved by the Human Research Review Board at the University of 

California, Riverside and were in accordance with federal (NIH) guidelines and regulations. 

Participants were thoroughly screened prior to participation in the study. The Epworth 

Sleepiness Scale (ESS; http://www.epworthsleepinessscale.com) and the reduced 

Morningness-Eveningness questionnaire (rMEQ (Adan & Almirall, 1991)) were used to 

exclude potential participants with excessive daytime sleepiness (ESS scores >10) or 

extreme chronotypes (rMEQ <8 or >21). Additionally, potential participants were 

interviewed about their medical history and quality and quantity of their sleep, including 

questions from the DSM-IV used to diagnose sleep-wake disorders. Participants included in 

the study had a regular sleep-wake schedule (reporting a habitual time in bed of about 7–9 h 

per night), and no presence or history of sleep, psychiatric, neurological, or cardiovascular 

disorders determined during screening. Participants received monetary compensation and/or 

course credit for participating in the study.

B. Data acquisition and pre-processing

- Study Procedure—Participants wore actigraphs to monitor sleep-wake activity for one 

week prior to the experiment to ensure participants were not sleep-deprived and spent at 

least 6.5 hours in bed the night prior to their visit. On both the experimental and control nap 

days, subjects arrived at the UC Riverside Sleep and Cognition lab at 9 AM for Test Session 

1. On the experimental day, cognitive tasks included a declarative and non-declarative 

memory task (see below), as well as a creativity measure (Whitehurst, Cellini, McDevitt, 

Duggan, & Mednick, 2016). On the control day, subjects were tested in a spatial navigation 

task and verbal memory task. The order of tasks was counterbalanced across subjects. In 

total, the declarative memory task took about 40 minutes to complete, and the non-

declarative task took about 20 minutes to complete (the creativity measure took about 50 

minutes, and all testing was done by approximately 11 AM). Between completing the tasks 

and starting the nap, participants were allowed to leave the lab and go about their normal 

activities, except avoiding caffeine and napping. At 12:30 PM, electrodes were attached for 

polysomnography (PSG) recording. At 1:30 PM, subjects took a PSG-recorded nap. They 

were given up to 2 hours time-in-bed to obtain up to 90 min total sleep time. Sleep was 

monitored online by a trained sleep technician. Nap sessions were ended if the participant 

spent more than 30 consecutive min awake. Naps were completed at approximately 3-3:30 

PM, electrodes were removed, and participants were given a break where they could leave 

the lab. At 5 PM, subjects returned to the lab for Test Session 2.

- Sleep recording—Polysomnography (PSG) data including electroencephalogram 

(EEG), electrocardiogram (ECG), chin electromyogram (EMG), and electrooculogram 

(EOG) were collected using Astro-Med Grass Heritage Model 15 amplifiers with Grass 

GAMMA software. Scalp EEG and EOG electrodes were referenced to unlinked 

contralateral mastoids (F3/A2, F4/A1, C3/A2, C4/A1, P3/A2, P4/A1, O1/A2, O2/A1, 

LOC/A2, ROC/A1) and two submental EMG electrodes were attached under the chin and 
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referenced to each other. ECG was recorded by using a modified Lead II Einthoven 

configuration. All data were digitized at 256 Hz.

- Sleep scoring—Raw data were visually scored in 30-sec epochs according to 

Rechtshaffen and Kales (Rechtschaffen & Kales, 1968). Wake and four sleep stages (i.e., 

Stage 1, Stage 2, SWS, and REM) were reclassified in continuative and undisturbed 3-min 

bins and the bins were used for further analysis. The rationale of using 3-min bins was based 

on HRV guidelines for assessing the LF and HF components (Malik, et al., 1996), as well as 

to have enough RR intervals to set the adaptive thresholds for heart rate burst detection.

- Data reduction—Ten subjects were excluded from further analyses for the following 

reasons: 1) Four subjects did not have ECG recordings, 2) three subjects had disconnected/

loose ECG reference electrodes and we were not able to detect heart beats from those 

subjects, 3) Three subjects had no 3-min Stage 2 and SWS epochs. Nine subjects out of the 

45 subjects did not have any 3-min continuous epochs of SWS. This led to lower number of 

samples for SWS group. Two subjects from Stage 2 group were also considered as outliers, 

due to artifacts. The total number of 3-minute epochs analyzed across subjects in Wake, 

Stage 2, SWS, and REM were 223, 415, 275, and 147, respectively.

- Heart-beat detection and RR time-series extraction—The ECG signals were 

filtered with a passband of 0.5-100 Hz by Butterworth filter. R waves were identified in the 

ECG using the Pan-Tompkins method (Pan & Tompkins, 1985), and confirmed with visual 

inspection. In order to extract continuous RR tachograms, the RR intervals were resampled 

(at 4 Hz for power spectrum estimation; at 256 Hz for co-modulogram analysis) and 

interpolated by piecewise cubic spline. Zero-phase Butterworth filters were applied to the 

interpolated RR time-series to extract RRLF and RRHF.

- Heart rate burst detection—Within 3-min bins during wake and sleep stages, the 

Heart rate burst events were detected as the minima in RR time-series with amplitude greater 

than two standard deviations below the mean of the RR time-series.

- Power spectra—The EEG power spectrum was computed using the Welch method (4 

sec Hanning windows with 50 % overlap). For RR time-series, the power spectral estimation 

was performed by the autoregressive model and the model order was set at 16.

C. Phase-amplitude analysis

For a given frequency pair in each stage, the RR time-series (slow or phase-providing signal) 

and the EEG signal (fast signal or amplitude-providing frequency) were filtered (zero-phase 

infinite-impulse-response bandpass filters). Phase-providing frequencies ranged from 0.04-.4 

Hz (0.01 Hz increments, 0.02 Hz filter bandwidth) and amplitude-providing frequencies 

ranged from 0.25-16 Hz (0.5 Hz increments, 1 Hz filter bandwidth). The Hilbert transform 

was applied to the 3-min binned data. EEG amplitude and RR phase were then extracted and 

concatenated across the bins to construct the amplitude and phase time series, respectively. 

The phase time-series were binned into 36 10° bins (nbins=36) and the mean of the EEG 

amplitude over each bin was calculated and then normalized by dividing it by the sum over 
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the bins. Given the normalized amplitude distribution, P, the modulation index (MI) was 

calculated by dividing the Kullback–Leibler distance (Tort, Komorowski , Eichenbaum , & 

Kopell, 2010) of distribution P from the uniform distribution (U) by log (nbins). We then 

computed for each frequency pair the normalized modulation index (nMI) by generating 

surrogate Mis based on the method provided in supplement of (Canolty, et al., 2006).

For statistical analysis, the nMIs were recalculated in 8 frequency pairs: LF (0.04–0.15 Hz)–

delta (0.05–4 Hz), LF–theta (4–8 Hz), LF–alpha (8–13 Hz), LF–sigma (12–15 Hz), HF 

(0.15–0.4 Hz)–delta, HF–theta, HF–alpha, and HF–sigma.

The preferred phase for LF–delta modulation was calculated as angle of the average 

composite signal of ADelta(t) exp(i ϕLF(t)) (Canolty, et al., 2006).

D. Event-based analysis

- Slow oscillation—The EEG signals of frontal and central channels were filtered (zero-

phase bandpass, .1–4 Hz). Then, the SO were detected based on down to up-state amplitude 

(>140 μV), down-state amplitude (<−80 μV), and duration of down-state (between 0.3 and 

1.5 sec) and up-states (<1 sec) (Dang-Vu, et al., 2008).

- Spindles—Sleep spindles were detected by applying the wavelet transform, using an 8-

parameter complex Morlet wavelet with center frequency 13.5 Hz and calculating the 

moving average in 100 ms sliding windows. A spindle event was identified whenever the 

rectified signal exceeded threshold (Wamsley, et al., 2012).

- SO-spindle coupling—The SO-spindle coupling was measured by calculation of 

modulation index (Tort, Komorowski , Eichenbaum , & Kopell, 2010) between spindle 

activity (Morlet wavelet-filtered sigma activity (Wamsley, et al., 2012)) and filtered (0.1–4 

Hz) SO phase (within 2.5-sec windows centered at the SO negative peak).

- Time-locked analysis—In order to calculate changes in delta and sigma power around 

the Heart rate burst, the Hilbert transform was applied on filtered EEG signals in bands of 

interest (0.5–4 Hz for SWA and 12–15 Hz for sigma band). To assess the HF amplitude 

change around the Heart rate burst, the Hilbert transform was applied on RRHF.

- Event-locked averaging—The analyses were subject-based. We first performed a 

within-subject average and then averaged those averages across subjects.

- Change scores—The density of SOs (number of SOs per minute; SO negative peak 

was considered for counting) and spindles (spindle maximum amplitude point was 

considered for counting), as well as average delta and sigma amplitudes were calculated in 

both the 5-sec window prior the heart rate bursts, as modulated values, and in periods with 

no Heart rate burst, as reference (baseline) values. That is, the baseline activities were 

calculated by excluding the 20-sec periods (the segments around the heart rate bursts) from 

the entire stage data. For example, if we found 6 heart rate bursts during 9 minutes of Stage 

2, the baseline Stage 2 SWA would be calculated over 7 minute of nonbursting periods 

(9-6*20s/60s). For HF change score, the modulated values were calculated in the 5-sec 
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window after the heart rate bursts. The subtraction between modulated and reference values 

divided by summation of those values were calculated as the changes scores.

E. Statistics summary

Statistical analyses were conducted using MATLAB 2015b (MathWorks). p<.05 was 

considered significant.

- Controlling the false discovery rate—In order to control for multiple comparisons, 

we implemented the Benjamini-Hochberg procedure of false discovery rate (FDR) 

correction, which compares each individual P value to its critical value,(i/m)Q, where m is 

the total number of comparisons, i is the P value rank, and Q = 0.05 is the FDR (Benjamini 

& Hochberg, 1995). We reported the raw P-values, not the adjusted p-values, in the entire 

paper. In addition, we reported “marginally significant” when the rounded values (P values 

and their critical values) to two decimal places were equal.

- Comodulogram analysis—For wake and sleep stage, the normalized modulation 

index (nMI) was calculated in 8 frequency pairs: LF–SWA, LF-theta, LF–alpha, LF–sigma, 

HF–SWA, HF–theta, HF–alpha, and HF–sigma. Within each sleep stage, the nMI pairs were 

compared using one-way ANOVA. The Kruskal-Wallis test was used to compare a specific 

nMI across sleep stages. Two-tailed unpaired-samples t-test was used to compare nMI of a 

specific frequency pair across two sleep stage.

- Event-locked analysis—For wake and sleep stages, repeated measures ANOVAs 

followed by post hoc paired-samples t-tests were used to compare SWA as well as sigma 

activity across nonbursting periods and four 5-sec bins around the heart rate bursts.

- Test of periodicity of heart rate bursts—We calculated the inter-heart rate burst 

(HRB) intervals (IHBI). For a periodic system, the Poincaré map (i.e., return map) of 

IHBIn+1 versus IHBIn contains one point. In a corresponding biological system with noise, 

this single point becomes a normally distributed single-point cluster. The Poincaré map data 

was considered to be a normally distributed single-point cluster if the data points along the 

Poincaré map axes passed a test for normality (Del Negro , Wilson, Butera, Rigatto, & 

Smith, 2002).

F. Memory performance tests

- Face-Name association (FNA) task—Face stimuli were chosen from a UC 

Riverside IRB-approved database of photographs of highly diverse UC Riverside 

undergraduate students. All students whose photographs were included in the database 

provided informed consent for their picture to be used to create experimental stimuli. All 

faces were forward-facing, shown from the shoulders up against a plain gray background, 

and edited to be gray scale. First and last names were selected from the 2010 United States 

Census data. The five most frequent male names, female names, and last names (e.g., Smith) 

were eliminated. Unisex names that are commonly used for both men and women were also 

eliminated, as were last names that are commonly used as first names (e.g., Thomas) or 

contain a common first name base (e.g., Richardson). Individual face-name pairings were 
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randomly generated for each participant so that no two participants saw the same face-name 

pairs. During session 1, 44 faces (22 men and 22 women) were presented in the center of the 

screen with a first and last name shown below the face. The first two and last two face-name 

pairs were discarded after encoding (i.e., not tested) due to primacy and recency effects. 

Each face/name pair was presented four times for duration of 4000 ms, with an inter-

stimulus-interval of 500 ms. Subjects were instructed to view each face-name pair and to do 

their best to remember each person’s name for a later test. Immediately following encoding, 

as well as after an 8-hr retention interval, subjects completed a recall memory test. During 

recall, 10 faces were presented and subjects were asked to recall the first and last names 

associated with each face. That is, they had the opportunity to recall 20 names (first and last 

names) total in each session. The ten faces tested in session 2 were different than those 

tested in session 1, the remaining 20 faces were used for a recognition task, and those results 

are reported elsewhere (Sattari, et al., 2017). Total recall was calculated as the sum of first 

and last names recalled correctly. The difference in total recall between sessions (PM-AM) 

was calculated as a measure of declarative memory consolidation.

- Texture discrimination task (TDT)—Subjects performed a texture discrimination 

task similar to that developed by Karni & Sagi (Karni & Sagi, 1991). Visual stimuli for the 

TDT were created using the Psychophysics Toolbox (Brainard, 1997). Each stimulus 

contained two targets: a central letter (‘T’ or ‘L’), and a peripheral line array (vertical or 

horizontal orientation) in one of four quadrants (lower left, lower right, upper left, or upper 

right) at 2.5°–5.9° eccentricity from the center of the screen. The quadrant was 

counterbalanced across subjects. The peripheral array consisted of three diagonal bars that 

were either arranged in a horizontal or vertical array against a background of horizontally 

oriented background distracters, which created a texture difference between the target and 

the background. An experimental trial consisted of the following sequence of four screens: 

central fixation cross, target screen for 33 ms, blank screen for a duration between 0 and 600 

ms (the inter-stimulus-interval, or ISI), mask for 17 ms, followed by the response time 

interval (2000 ms) and feedback (250 ms, red fixation cross with auditory beep for incorrect 

trials and green fixation cross for correct trials) before the next trial. Subjects discriminated 

two targets per trial by reporting both the letter at central fixation (‘T’ or ‘L’) and the 

orientation of the peripheral array of three diagonal lines (horizontal or vertical) by making 

two key presses. The central task controlled for eye movements.

Each block consisted of 25 trials, each with the same ISI. A threshold was determined from 

the performance across 13 blocks, with a progressively shorter ISI, starting with 600 ms and 

ending with 0 ms. The specific sequence of ISIs across an entire session was (600, 500, 400, 

300, 250, 200, 167, 150, 133, 100, 67, 33, 0). A psychometric function of percent correct for 

each block was fit with a Weibull function to determine the ISI at which performance 

yielded 80% accuracy. TDT performance was calculated as the difference in threshold 

between Session 1 and Session 2, such that a positive score indicates performance 

improvement (i.e., decreased threshold in Session 2), whereas a negative score indicates 

deterioration.

Subjects were given task instructions and practiced the task during an orientation 

appointment prior to starting the study. During this practice, the peripheral target was 
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located in a quadrant that was not used during the study. This practice ensured that subjects 

understood the task and accomplished the general task learning that typically occurs the first 

time a subject performs a task. Additionally, on the study day, subjects were allowed to 

practice an easy version of the task (ISI of 1000-600 ms) prior to starting the test session to 

make sure subjects were able to discriminate the peripheral target between 90% and 100% 

correct on an easy version of the task.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. We find temporal coupling between Autonomic and Central Events (ACEs) 

during sleep.

2. ACE sleep physiology is important for post-sleep memory improvement.

3. ACE/memory relationships were specific to the information encoded before 

sleep.
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Figure 1. 
Study timeline and characteristic properties of the EEG and RR time-series signals across 

wake and sleep stages (for one participant). A) Subjects completed two memory tasks: a 

declarative face-name association (FNA) task and a non-declarative texture discrimination 

task (TDT). The order of tasks was counterbalanced across subjects. Before and after the 

daytime nap, declarative and non-declarative memory performance was tested. B) RR time-

series power spectrum during wake and sleep stages. C) EEG power spectrum (0–35 Hz) 

during wake and sleep stages. D) Detected heart rate bursts within a 150-sec bin during 

Stage 2. E-H) Simultaneous presentation of ECG, RR time-series, and raw EEG within 60-

sec windows during wake, Stage 2, SWS, and REM, respectively. The boxes show the 

coincidence of heart rate bursts and EEG events during Stage 2 and SWS.
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Figure 2. 
Temporal analysis of the RR intervals. A) A simultaneous presentation of delta amplitude 

and filtered components of RR time-series (i.e., LF and HF) showing the coincidence of 

large troughs in the LF component and elevated delta amplitude. B) The distribution of delta 

amplitude in LF phase is non-uniform and peaks at a preferred phase (LF troughs are 

assigned phase 0). C) The density of heart rate bursts does not significantly affect the LF 

power. D-G) The average EEG/ECG comodulograms, constructed from RR phase and EEG 

amplitude, across participants during wake, Stage 2, SWS, and REM, respectively. Error 

bars show standard error of the mean.
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Figure 3. 
The event-related analysis of changes in ACE events. A) The Heart rate burst events within a 

20 s window for wake and different sleep stages. B) Grand average of the heart rate bursts. 

C) Average amplitude of HF component of the heart rate bursts in 5-s bins show a significant 

increase in the 5-s bin after the peak of the heart rate bursts. D) Event-locked EEG trials 

(Sorted based on the time difference between the Heart rate burst at t=0 and the largest 

minimum of the EEG trials) show concentration of SOs prior the peak of heart rate bursts in 

NREM stages. E-F) average delta and sigma amplitude in 5-s bins (with the grand average 

of Delta amplitude on top of them) around the heart rate bursts, respectively. Asterisks in €, 

(E), and (F) show the significant differences after FDR correction (*p<05 and **p<001) 

between an amplitude in a bin and the average amplitude in periods with no Heart rate burst 

(baseline). Error bars show standard error of the mean.
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Figure 4. 
Impact of ACE on memory consolidation. A-F) Scatter plots for relationships between the 

recall improvement in the declarative memory (face-name task) and ACE difference scores 

of SO density, delta power, and sigma power during Stage 2 (n=42) and SWS (n=36). Note, 

that performance (i.e., less forgetting) was positively correlated with increase in ACE 

difference scores. G-L) Scatter plots for relationships between improvement in the 

perceptual learning (texture discrimination task) and ACE difference scores of SO, delta 

power and sigma power during Stage 2 and SWS. Note, negative correlation in all cases. M-

N) Scatter plots for relationships between minutes in REM sleep and texture discrimination 

task learning and ACE difference scores of delta power in SWS, respectively.
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Table 1:

Regression models from Stage 2 variables to predict FNA total recall difference

Model 1 Model 2

Variables B SE t β B SE t β

Heart rate burst density 0.39 1.84 0.21 0.04 −1.69 1.66 −1.02 −0.15

SO density −0.13 0.40 −0.31 −0.06 −0.12 0.35 −0.35 −0.05

Spindle density −0.16 0.90 −0.22 0.61 0.81 0.76 0.11

Baseline HF amplitude −5.79 26.32 −0.22 −0.04 19.98 23.53 0.85 0.13

SO density change score 6.27 2.26 2.77 0.44**

Spindle density change score 2.17 0.81 1.09 0.17

HF amplitude change score 8.56 3.46 2.47 0.38*

(Constant) −2.83 3.32 −0.85 −8.94 3.22 −2.77

 F 0.08 2.77*

 R2 0.01 0.36

 Adjusted R2 −0.10 0.23

 Change in Adjusted R2 0.33***

*
p < .05,

**
p<.01,

***
p<.001
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Table 2:

Regression models from SWS variables to predict FNA total recall difference

Model 1 Model 2

Variables B SE t β B SE t β

Heart rate burst density −0.43 0.55 −0.78 −0.15 −0.83 1.69 −0.49 −0.08

SO density −0.01 0.02 −0.53 −0.10 0.03 0.08 0.42 0.07

Spindle density −0.13 0.21 −0.62 −0.11 −0.04 0.64 −0.06 −0.01

Baseline HF amplitude 2.02 8.49 0.24 0.04 21.97 27.09 0.81 0.14

SO density change score 11.85 4.27 2.77 0.48**

Spindle density change score 0.09 1.37 0.07 0.01

HF amplitude change score −9.11 7.38 −1.23 −0.21

(Constant) −2.83 3.32 −0.85 −8.94 3.22 −2.77

 F 0.36 1.53

 R2 0.05 0.28

 Adjusted R2 −0.08 0.10

 Change in Adjusted R2 0.18***

*
p < .05,

**
p<.01,

***
p<.001
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