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Miloš Hašan, Yannick Hold-Geoffroy, and Zexiang Xu from Adobe Research. The project we

worked on laid a crucial foundation for this thesis, specifically in creating photorealistic content

(PhotoScene, detailed in Chapter 3). In addition, I had the honor of working with Ming-Yu

Liu, Ting-Chun Wang, Koki Nagano, Sameh Khamis, and Jan Kautz from NVIDIA Research

on a portrait relighting project (Lumos, detailed in Chapter 6). I gained significant insights

into the future of content generation while working with them. Furthermore, I was fortunate to

work on innovative generative frameworks for image-guided texturing (TextureDreamer, detailed

in Chapter 4) with Zhao Dong, Zhengqin Li, Jai-Bin Huang, Changil Kim, Lei Xiao, Thu

Nguyen-Phuoc, Numair Khan, Cheng Zhang, and Carl Marshall from Meta Reality Labs. I am

grateful for the opportunity to contribute to impactful projects in 3D generative AI.

I want to extend my special thank to Zhengqin Li for his unwavering support throughout

my Ph.D. studies at UC San Diego. He introduced me to the world of inverse rendering and

played a significant role in several projects within this thesis. His support was pivotal in achieving

numerous milestones. Additionally, I would like to thank my peers and friends–Tarun Kalluri, Rui

Zhu, Ishit Mehta, Kunal Gupta, Meng Song, Sarah Wang, Ting-Wei Yu, Kai-En Lin, Alexandr

xv



Kuznetsov, Sai Bi, Tiancheng Sun, Shilin Zhu, Lifan Wu, Zexiang Xu, Alex Trevithick, Bing

Xu, Shiyang Jia, Nithin Raghavan, Xuanda Yang, Ya-Chien Chang, Tz-Ying Wu, Chih-Hui Ho,

Chi-Hsin Huang, Hsuan Chang, and Yueh-Hua Wu–for their support and help. I am also grateful

to Google for providing a two-year Ph.D. fellowship that supported my studies.

Finally, I would like to thank my family and my partner, Yen-Cheng Liu, for their

steadfast support throughout my Ph.D. journey. Yen-Cheng’s encouragement always kept me

optimistic and helped me overcome challenges. I cherish the unforgettable moments we shared

while reaching milestones toward completing our Ph.D. degrees.

Chapter 3 is based on the material as it appears in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2022 (”PhotoScene: Photorealistic Material and Lighting

Transfer for Indoor Scenes”, Yu-Ying Yeh, Zhengqin Li, Yannick Hold-Geoffroy, Rui Zhu,
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Photorealistic Digital Content Creation for Extended Reality from Sparse In-the-wild Images

by
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Extended Reality (XR) encompasses immersive technologies such as virtual reality (VR),

augmented reality (AR), and mixed reality (MR), which blend the physical and digital worlds.

For XR experiences to captivate users and seamlessly integrate with reality, photorealistic content

is essential. Photorealism ensures that virtual elements convincingly interact with real-world

environments, enhancing immersion and fostering a sense of presence for users. This dissertation

explores various methods to facilitate the convenient and efficient creation of photorealistic

digital content from images for diverse subjects.

Creating photorealistic content from images involves estimating intrinsic components

from scenes, a highly challenging and ill-posed problem. To ensure photorealism, this disserta-
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tion focuses on synthesizing spatially-varying Bidirectional Reflectance Distribution Functions

(BRDFs) or textures, modeling complex light transport, and leveraging large-scale real-world

data. Firstly, we discuss how existing priors can be used for material and lighting transfer

from images to 3D scene geometry. Secondly, we explore the utilization of diffusion models

pre-trained on large-scale real-world images as priors for high-quality texture synthesis and

transfer to arbitrary 3D shapes with image inputs. Additionally, specialized objects like trans-

parent shapes or portraits are addressed through learning-based approaches with synthetic data

and synthetic-to-real adaptation for complex light transport and relighting to handle specific

appearances.

The key contribution of this dissertation is developing efficient methods to create high-

quality photorealistic content for XR with minimal human effort. Unlike prior works that depend

on elaborate capture systems or extensive image sets, this dissertation achieves photorealism

using just a few images easily captured from commercial mobile devices. We demonstrate

diverse, high-quality photorealistic content produced by our methods, suitable for various XR

applications.
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Chapter 1

Introduction

The recent development of mobile phones, smart glasses, and spatial computing headsets

enables various applications in augmented reality (AR), virtual reality (VR), and mixed reality

(MR) – The era of extended reality (XR) is coming. The most important and time-consuming

part of building XR applications is to generate photorealistic content.

In general, we consider a rendering pipeline to display content to the device. In this

scenario, material and textures will highly determine the appearance of the content. We aim to

synthesize high-quality and high-fidelity materials or textures for a given object or scene. We

can render photorealistic content with rendering pipelines by modeling surface reflectance with

physically-based rendering (PBR) materials. In this way, most of the surfaces can be modeled

by microfacet models. However, there are special kinds of subjects that microfacet models can

not describe. For example, both reflections and refractions are involved in transparent objects,

and there are subsurface scatterings under the skins. It is non-trivial to create such material and

texture to ensure the appearances are photorealistic. It usually requires laborious human efforts

even for an experienced artist. Therefore, we aim to propose various methods and frameworks to

synthesize photorealistic content from a few given images.

First, we consider the creation process as an inverse rendering problem – Estimating

the decomposition of geometry, material, and lighting from input images of input objects or

scenes. However, inverse rendering is a highly ill-posed problem, because there is more than
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one possible decomposition that can lead to the same appearance. We therefore need to leverage

priors to ensure the results are plausible. In particular, we take advantage of procedural graphs

to describe diverse types of spatially varying materials. In this way, we simplify the unknowns

from the number of pixels of textures to a few node parameters of graphs, yet ensure high-quality

materials given from the nature of the graphs. By using procedural graphs as material prior, we

can build a framework to alternately optimize for material and lighting given an indoor scene

geometry configuration and a single or a few input images. In the end, we create an automatic or

semi-automatic pipeline to generate digital assets from input images. However, the assumption

of using procedural graphs can limit the representation of generated materials. Therefore, we

look for other priors to improve the quality of the materials or textures.

Generative models learn to map a noise distribution to a complex image distribution,

enabling the synthesis of high-quality, photorealistic images after training on large-scale image

datasets. They can also serve as a prior to guide material and texture optimization, ensuring

photorealistic appearances. Thus, we can create a framework that first fine-tunes the generative

model on a few images of an object whose appearance interests us. Then, we distill the

appearance from this fine-tuned model to the target shape, creating high-quality, photorealistic,

and relightable textures using PBR materials within a differentiable rendering pipeline. In

this pipeline, we typically assume a microfacet model for PBR materials. However, many

subjects, such as transparent objects and portraits, are not well-described by the microfacet model.

Therefore, we propose leveraging synthetic data to capture light transport for photorealistic

appearances.

To create photorealistic content for transparent objects and human portraits, we must

address specific reflectance and light transport properties. Transparent objects involve light

reflecting and refracting on their surfaces, while human skin exhibits subsurface scattering.

Optimizing implicit parameters from a sparse set of images is non-trivial, as the appearance of

transparent objects depends on environmental illumination, and the surfaces of portraits consist

of micro-displacements. This complexity makes physically-based rendering time-consuming and
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prone to noise. For transparent objects, we leverage synthetic data to employ a learning-based

approach with a physically-motivated network for shape reconstruction. For human portraits, we

focus on target editing tasks, such as relighting, using synthetic datasets generated by a physically-

based rendering engine. This approach allows us to bypass the need for detailed micro-geometry

modeling and directly synthesize relighting results. However, real-world portrait images exhibit

diverse skin colors, hairstyles, clothing, and other features. Consequently, synthetic data alone

cannot ensure sufficient generalizability to real portraits. To address this, we implement synthetic-

to-real domain adaptation to mitigate domain gaps and enhance the realism and applicability of

our models.

1.1 Outline

The thesis is organized as follows. In Chapter 2, we first provide some background on

the relevant topics of photorealistic content creation. In the following Chapters, we introduce

different ways to generate photorealistic 3D content and handle photorealistic editing for special

types of subjects.

In Chapter 3, we introduce PhotoScene, a framework designed to generate a photorealistic

digital replica of a scene from the input image(s) with CAD geometry that is approximately

aligned, either automatically reconstructed or manually specified. Our approach utilizes procedu-

ral material graphs to model scene materials, ensuring photorealism and resolution independence.

By optimizing the parameters of these graphs, along with texture scale, rotation, and scene

lighting, we aim to closely match the input image using a differentiable rendering layer.

In Chapter 4, we introduce TextureDreamer, an innovative technique for image-guided

texture synthesis that facilitates the transfer of relightable textures from a limited set of input

images (ranging from 3 to 5) to diverse 3D shapes spanning various categories. TextureDreamer

enables the migration of intricate, highly detailed textures from real-world contexts to arbi-

trary objects, leveraging just a handful of casually captured images. This approach holds the
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potential to greatly democratize texture creation processes. Our methodology is inspired by

recent advancements in diffuse models, incorporating personalized modeling to extract texture

information, score distillation for nuanced appearance synthesis, and explicit geometry guidance

via ControlNet. Through integration and key modifications, we notably enhance texture quality.

In Chapter 5, we suggest a physics-driven network designed to reconstruct the 3D shape

of transparent objects using several images taken with a smartphone camera, under any known

environment map. Our unique contributions consist of a normal representation that allows the

network to handle intricate light transport through localized computations, a rendering layer

capable of simulating refractions and reflections, a specially crafted cost volume for refining

the normals of transparent shapes, and a feature mapping that relies on predicted normals to

reconstruct 3D point clouds. To train our model to understand refractive light transport from

various perspectives, we generate a synthetic dataset.

In Chapter 6, we discuss synthesizing photorealistic relighting effects on human portraits.

Traditionally, achieving high-quality results involves training deep neural networks with a dataset

of precise input-output pairs obtained using a costly light stage. However, the high expense and

effort restrict this method to well-equipped labs. To overcome this, we propose a new method

that matches state-of-the-art relighting techniques without needing a light stage. Our strategy

includes two key conditions for success: mimicking physical relighting behaviors and producing

photorealistic outputs. We simulate a virtual light stage as a synthetic dataset for network training,

which is created by physically-based rendering on diverse 3D synthetic humans across various

environment maps. Additionally, we introduce a novel synthetic-to-real technique to enhance the

network’s output photorealism. This approach not only meets top standards but also improves

on previous methods by allowing controllable effects like glares on glasses and providing more

consistent results in relighting videos.

Finally, we summarize our contributions in Chapter 7 and discuss potential future direc-

tions inspired by the content in this thesis for photorealistic content creation.
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Chapter 2

Background

In the traditional computer graphics pipeline, 3D meshes with photorealistic materi-

als are used to enable photorealistic rendering. With a physically accurate rendering engine,

photorealistic images can be produced under desired lighting conditions. However, creating

high-quality 3D content is time-consuming and requires significant effort, even for experienced

artists. Consequently, researchers have begun addressing the ill-posed problem of estimating 3D

intrinsic components from images to streamline this process.

It has been a long-lasting problem that people trying to reconstruct 3D objects and scenes

from photos or videos. Photometric stereo [242] recovers surface normals from images captured

in unknown lighting conditions. Stereo matching [12] estimates depth from multiple images

of the same object or scene. Structure-from-Motion (SfM) [132] reconstructs 3D point clouds

from a set of images of a scene by estimating camera poses and triangulation from matching

points. Recently, deep neural networks have been used to estimate 3D meshes of objects from

single view [244, 269, 61, 222] or multi-view images [35, 247, 228]. Some works [158, 261]

can even reconstruct the geometry of an entire indoor scene. While most of the methods only aim

to estimate geometry from images, some works [95, 189] propose to estimate textured meshes.

However, there is still a gap in achieving photorealistic appearances due to the lack of estimation

of spatially-varying bidirectional reflectance distribution function (SVBRDF) for materials

and complex lighting. Shape, material, and lighting can be optimized via a differentiable
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rasterization [153] or Monte Carlo rendering and denoising [71] pipeline with enough number

(usually over a hundred) of input images. To achieve a more practical setup – only using a sparse

number of images, we propose PhotoScene [254], which transfers SVBRDF and lighting from

sparse images to 3D meshes of an indoor scene with the aid of procedural material prior and

part-based differentiable rendering module in Chapter 3. Another drawback of the prior works

for modeling SVBRDFs is that usually the surfaces are assumed to be microfacet. Instead, we

propose a solution to reconstruct shapes of transparent objects from a sparse number of images by

a learning-based approach with a physically-motivated neural renderer, as detailed in Chapter 5.

Recent developments in neural networks enable more ways to represent 3D content for

photorealistic rendering. Implicit 3D representations [140, 248, 268, 230], have been proposed

to represent shapes via a multilayer perceptron (MLP) which encodes occupancy [140] or signed

distance field [248] for each location query. Neural radiance fields [144] (NeRF) have been

proposed for novel view synthesis with view-dependent rendering effects. Some variants [268]

can distill volumetric geometry, SVBRDF, and lighting from a NeRF representation, while

NeuS [230] learns neural implicit surfaces with volume rendering. The implicit 3D representation

can be rendered by sphere tracing [70, 129] or ray marching [138]. There are also various neural

rendering methods that enable photorealistic rendering with neural networks with different 3D

representations such as neural 3D point clouds [39, 249]. Recently, 3D Gaussian splatting [104]

has shown to be a more efficient way to represent the radiance field which enables real-time

rendering with high photorealism. The implicit 3D representations or 3D Gaussian splatting can

be used to perform photorealistic rendering for scenes reconstructed from a large number (usually

over a hundred) of images or can be integrated into an optimization or learnable framework.

Our focus is instead more on synthesizing photorealistic content from sparse image sets. We

demonstrate that the implicit representation can be used to represent relightable textures for an

arbitrary 3D mesh in an optimization pipeline in Chapter 4.

To solve an ill-posed problem such as inverse rendering or build up an editing (e.g.

relighting) system for photorealistic rendering from sparse views, we can take advantage of
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synthetic data to learn the intrinsic properties from input images. However, synthetic datasets

are usually created by physically-based rendering with pre-defined 3D assets including shapes,

materials, and lighting. Due to the complexity of the real-world environment, it is difficult to

build realistic scenes to produce photo-like renderings. There are a few datasets [126, 276, 255]

that are proposed for inverse rendering, however, we can still identify the domain gap between

rendered images and real-world photos. Researchers have proposed various methods to close this

domain gaps for a variety of tasks, including semantic segmentation [48, 79], 3D human pose

estimation [46], animal pose estimation [117], SVBRDF estimation [226], depth estimation [8,

271], vehicle re-Id [115], and multi-view portrait view synthesis and relighting [217]. In

Chapter 6, we proposed a framework for single-image or video portrait relighting by using

synthetic data and synthetic-to-real domain adaptation to produce high-quality relighting effects.

On the other hand, generative models (e.g. generative adversarial network [62], varia-

tional autoencoders [106], or diffusion models [77]) learn a mapping from noise distribution to

the real data distribution. This enables generations of highly photorealistic images from noises

or particular conditions. Recently, the success of latent diffusion models [187] inspired a wide

range of downstream tasks to synthesize unprecedented-quality images or 3D content. The

foundation models learned from a large-scale dataset (e.g. LAION-5B [192], a billion-level

dataset) serve as generative priors to guide the optimization to follow real-world data distribution.

In Chapter 4, we demonstrate that the latent diffusion models can serve as a distillation source to

optimize for high-quality textures for 3D assets given a sparse image set.

More detailed related work for Chapters 3, 4, 5 and 6 will be provided in Chap-

ters 3.2, 4.2, 5.2 and 6.2, respectively.
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Chapter 3

Photorealistic Material and Lighting trans-
fer for Indoor Scenes

3.1 Introduction

A core need in 3D content creation is to recreate indoor scenes from photographs with

a high degree of photorealism. Such photorealistic “digital twins” can be used in a variety of

applications including augmented reality, photographic editing and simulations for training in

synthetic yet realistic environments. In recent years, commodity RGBD sensors have become

common and remarkable progress has been made in reconstructing 3D scene geometry from both

single [52, 215] and multiple photographs [252], as well as in aligning 3D models to images to

build CAD-like scene reconstructions [89, 10, 85, 158]. But photorealistic applications require

going beyond the above geometry acquisition to capture material and lighting too — to not only

recreate appearances accurately but also visualize and edit them at arbitrary resolutions, under

novel views and illumination.

Prior works assign material to geometry under the simplifying assumptions of homoge-

neous material [89] or single objects [162]. In contrast, we deal with the challenge of ascribing

spatially-varying material to an indoor scene while reasoning about its complex and global

interactions with arbitrary unknown illumination. One approach to our problem would be to

rely on state-of-the-art inverse rendering methods [121, 126] to reconstruct per-pixel material

properties and lighting. However, these methods are limited to the viewpoint and resolution of

8
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Novel Lighting
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Coarsely-aligned 3D 
Geometry from Photo
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Result

Figure 3.1. Given an input photo and a coarsely aligned 3D scene model, PhotoScene auto-
matically infers high-quality spatially-varying procedural materials and scene illumination to
closely match scene appearance. The reconstructed materials are resolution-independent (see
zoom insets) and ascribed to the full 3D geometry, to create a high-quality photorealistic digital
twin that can be rendered under novel views and lighting.

the input photograph, and do not assign materials to regions that are not visible (either outside

the field of view or occluded by other objects). Instead, we posit that learned scene priors from

inverse rendering are a good initialization, whereafter a judicious combination of expressive

material priors and physically-based differentiable rendering can solve the extremely ill-posed

optimization of spatially-varying material and lighting.

In this chapter, we use procedural node graphs as compact yet expressive priors for

scene material properties. Such graphs are heavily used in the content and design industry

to represent high-quality, resolution-independent materials with a compact set of optimizable

parameters [1, 4]. This offers a significant advantage: if the parameters of a procedural graph

can be estimated from just the observed parts of the scene in an image, we can use the full

graph to ascribe materials to the entire scene. Prior work of Shi et al. [200] estimates procedural

materials, but is restricted to fully observed flat material samples imaged under known flash
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illumination. In contrast, we demonstrate that such procedural materials can be estimated from

partial observations of indoor scenes under arbitrary, unknown illumination.

We assume as input a coarse 3D model of the scene with possibly imperfect alignment to

the image, obtained through 3D reconstruction methods [10, 85, 158], or manually assembled by

an artist. We segment the image into distinct material regions, identify an appropriate procedural

graph (from a library) for each region, then use the 3D scene geometries and their corresponding

texture UV parameterizations to “unwarp” these pixels into (usually incomplete) 2D textures.

This establishes a fully differentiable pipeline from the parameters of the procedural material via

a physically-based rendering layer to an image of the scene, allowing us to backpropagate the

rendering error to optimize the material parameters. In addition, we also estimate rotation and

scale of the UV parameterization and optimize the parameters of the globally-consistent scene

illumination to best match the input photograph.

As shown in Fig. 3.1 our method can infer spatially-varying materials and lighting

even from a single image. Transferring these materials to the input geometry produces a

fully relightable 3D scene that can then be rendered under novel viewpoint or lighting. Since

procedural materials are resolution-invariant and tileable, we can render closeup views that

reveal fine material details, without having observed these in the input photograph. This goes

significantly beyond the capabilities of current scene-level inverse rendering methods and allows

for the creation of high-quality, photorealistic replicas of complex indoor scenes.

3.2 Related Works

3.2.1 Material acquisition and recognition

High-quality materials have been estimated in many prior works, using both single

[5, 43, 122, 75] or multiple [44, 55] input images. Most of the above methods estimate materials

for planar samples, as opposed our inputs that are unconstrained images of complex indoor

scenes. While material recognition methods have been proposed to classify image regions into
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material categories [16], they do not yield parametric materials that could be used for relighting

and view synthesis. In recent years, several methods have been proposed to use procedural

graphs as materials priors and estimate their parameters to match the appearance of captured

images [66, 83, 200]. In particular, we use MATch[200], a differentiable procedural material

model based on Substance node graphs, to constrain our materials to the SVBRDF manifold.

However, the above methods only consider flat material samples captured under known flash

illumination, while our goal is significantly more challenging – our inputs are photos of indoor

scenes with complex geometry, lit by unknown spatially-varying illumination, with scene layout

and occlusions leading to incomplete textures with arbitrary scales and rotation.

3.2.2 Inverse rendering of indoor scenes

Our problem may be seen as an instance of inverse rendering [136, 165], but we must

estimate materials that are amenable for rendering under novel views and lighting, as well as

editability. Several approaches have been proposed for inverse rendering for objects [128, 197,

206, 221, 123, 190], but our focus is on indoor scenes, which have been considered in both early

[13, 99, 100] and recent [121, 196] works. A convolutional neural network with a differentiable

rendering layer estimates depths, per-pixel SVBRDF and spatially-varying lighting in [121]

using a single input image. We use their material and lighting outputs as our initialization and

to aid our differentiable rendering losses in image space, but go further to assign procedural

materials that can be used for rendering novel views and estimate lighting that is consistent

across views. Recent work has applied differentiable rendering [119] to recover spatially-varying

reflectance and lighting given photos and 3D geometry [11, 159]. However, these methods

estimate per-vertex BRDFs and require high-quality geometry as input, while our procedural

models regularize scene materials, allowing us to infer them from only coarsely aligned 3D

models and to re-render novel viewpoints with material detail that was not observed in the input

photos.
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Figure 3.2. The PhotoScene framework. From the input photo(s) and 3D scene model, we
estimate scene normals and lighting via an inverse rendering method, and compute material parts
and align them to the model UVs and part segments. We model scene materials with procedural
graphs. For each material part, we identify an appropriate graph from a collection and use a
differentiable rendering module to optimize for the graph and UV transformation parameters.
We also refine the initial lighting. Assigning the optimized materials and lighting to the input 3D
model gives us our output PhotoScene—a renderable 3D scene that matches the appearance of
the input photos.

3.2.3 Material transfer from photographs

LIME [139] clones the homogeneous material from a single color image. Material Memex

[90] and Unsupervised Texture Transfer [232] exploit correlations between part geometries

and materials, or across patches for material transfer to objects. PhotoShape [162] assigns

photorealistic materials to 3D objects through material classifiers trained on a synthetic dataset.

In contrast, we seek material transfer in indoor scenes, which is significantly harder since image

appearances entwine material properties with complex light transport. The material suggestion

system of [29] textures synthetic indoor scenes with high-quality materials, but based on a set of

pre-defined rules for local material and global aesthetics, whereas we must solve challenging

inverse problems in a differentiable framework to match the appearances of real images.

3.2.4 Indoor scene 3D reconstruction

Many works reconstruct indoor 3D scene geometry (objects and room layout) from

single images [89, 85, 158] or RGBD scans [10], but either do not address material and lighting
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estimation, or use heuristics like median color to assign diffuse textures [89]. Our work focuses

on reconstructing high-quality material and lighting from input photos and is complementary

to geometric reconstruction methods; indeed, we can leverage these methods to build our input

coarse 3D model. Like us, Plan2Scene [227] also aims to reconstruct textured 3D scenes, but

is limited to diffuse textures and constrained by the quality of the texture synthesis model.

In contrast, by optimizing a procedural material model, we are able to recover high-quality

non-Lambertian materials; we also optimize for illumination and hence better match the input

image appearance.

3.3 Proposed Method

Our method starts from an input image (or multiple images) of an indoor scene and

a roughly matching scene reconstruction (automatic or manual). Our goal is to obtain high-

resolution tileable material textures for each object, as well as a globally consistent lighting for

the scene.

The method consists of four high-level stages, as shown in Fig. 3.2. We compute an initial

estimate of scene normals and lighting. We also find material parts, and align them between

the input and rendered image, so that each material part can be optimized separately. Next,

we choose a material prior for each material part, in the form of a procedural node graph that

produces the material’s textures (albedo, normal and roughness) given a small set of parameters.

Finally, we optimize the parameters of all materials as well as the lighting in the scene. Below

we describe this in detail.

3.3.1 Initialization and Alignment

In the initialization step, we obtain estimates of normals and lighting from the input

image(s) that guide the subsequent optimization. Next, since the synthetic scene is composed of

elements that are not perfectly aligned with the input photograph(s), we warp the pixels rendered

from the geometry to best fit the scene structure in the input photograph per material part. If
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there are multiple input images per scene available, we perform consensus-aware view selection

(see Sec. 3.3.5 for details).

Pixel-level normals and lighting initialization

We use the pretrained inverse rendering network (InvRenderNet) from Li et al. [121] to

obtain spatially-varying incoming lighting estimates L inv and per-pixel normals N inv to guide

the material optimization in pixel space (Sec. 3.3.3). We do not use the estimated albedo and

roughness from InvRenderNet, except as baselines for comparison, as shown in Fig. 3.13.

Material part mask and mapping

For each material part, our method requires a mask Mphoto to indicate the region of

interest in the input image, and another mask Mgeo to indicate the same in the synthetic image.

The latter mask is trivially available by rendering the synthetic geometry. To obtain Mphoto

automatically, we make use of predictions from MaskFormer [34] as proposals, and find the

mapping by computing maximum intersection over union (IoU) with respect to Mgeo of all

material parts. Semantic and instance labels (when available) can be used to reduce the proposals.

To obtain more robust results, manually segmented masks can be taken as Mphoto instead. More

details can be found in Sec. 3.3.5.

Geometry/photo alignment and warping

To handle misalignment between material parts in the input image and the geometry, we

compute an affine pixel warp. We obtain pixel locations x∗s to sample values from Mgeo of the

geometry to warp to the material mask Mphoto at pixel xt as

x∗s =
xt−cp

lp
· lg + cg , (3.1)

where {cg, lg} and {cp, lp} are the centers and sizes of bounding boxes around the masks. As the

affine warp is imperfect, some pixels will not have a correspondence and will be dropped. Please
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Figure 3.3. An expressive material prior optimizable with a few parameters allows recreating
photorealistic appearances, in contrast to heuristics that may rely solely on pixel-space inverse
rendering.

see Sec. 3.3.5 for details.

At the end of this initialization and alignment step, we obtain per-material part UVs and

corresponding masks in the input and synthetic images, as well as an initial estimate of scene

lighting and normals.

3.3.2 Material Prior: Procedural Node Graphs

Modeling spatially-varying materials as 2D textures is difficult due to the ill-posed nature

of the problem: the textures may not be fully observed in the input image, and they are lit by

uncontrolled illumination. Therefore, a key step of our method is to constrain materials to lie

on a valid SVBRDF manifold, by specifying a material prior that is expressive, yet determined

by a small number of parameters. This material prior must be differentiable to allow parameter

optimization via backpropagation. This is in contrast to a bottom-up approach that might rely on

pixel space outputs from inverse rendering (see Fig. 3.3 and 3.13).

We use MATch [200], a material prior based on differentiable procedural node graphs.
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Figure 3.4. Graph selection with kNN versus material classifier.

Their implementation provides 88 differentiable procedural graphs that model high quality

spatially-varying materials, each with a unique set of parameters. For our purposes, these

graphs are simply differentiable functions from a parameter vector θ to albedo, normal and

roughness textures Auv, Nuv, Ruv. We add an additional offset parameter for the albedo output

from the graphs to more easily control the dominant albedo colors. We select 71 graphs that are

representative of indoor scenes as our graph collection {g1, ...,g71}. We augment this set with a

homogeneous material, used for untextured parts.

Material graph selection

For each material part in the image, we need to choose an appropriate procedural node

graph from the library. We address this by nearest neighbor search using a VGG feature distance.

Specifically, we sample 10 materials from each of the 71 graphs with random parameters,

resulting in 710 exemplar material maps {(A|N|R)1
uv, · · · ,(A|N|R)710

uv }. We render the part using

each exemplar with our differentiable renderer (Sec. 3.3.3), resulting in 710 render-graph pairs

{(Ĩ 1
rend,g

1),(Ĩ 2
rend,g

1), ...(Ĩ 710
rend,g

71)}, then select the k (= 21) most similar renderings to the

input using a masked VGG distance (Eq. 3.9), which vote for their corresponding graphs and we

pick the graph gkNN with the most votes.

We also experiment with predicting material super classes (e.g. wood, plastic, etc.) using

a pretrained classifier and then selecting a graph from the class, but find the kNN search less
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Figure 3.5. Given a material part mask, UV, scene normals and lighting (top), we construct a
fully differentiable pipeline from material graph (θ ) and UV transformation (φ ) parameters via a
texture-to-image mapping and differentiable rendering layer to a rendered image. We optimize
for these parameters by comparing this rendering to the input photo.

susceptible to errors (Fig. 3.4). For small parts where it is difficult to observe spatial variations,

we use homogeneous materials.

3.3.3 Material Part Differentiable Rendering

Our framework leverages a material part differentiable rendering module as a way to

predict the appearance of a part given its texture-space material maps (A|N|R)uv, pixel-space

geometry N inv, and local lighting L inv. The differentiable rendering module can be used

for optimization through back-propagation. We use it to optimize for material parameters in

Sec. 3.3.4.

During rendering, we use a spatially-varying grid of incoming light environment maps

[121] as our lighting representation, which allows the operation of the rendering module to

remain local; no additional rays need to be traced by the rendering process, which is crucial for

efficiency.

Our differentiable rendering module is shown in Fig. 3.5. Our material model is a

physically-based microfacet BRDF [96]. The rendering module takes per-pixel texture (UV)
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coordinates, to sample material textures Auv, Nuv, Ruv generated from the material prior using

parameters θ as gkNN(θ). The normals need to be rotated into the local shading frame of a given

point on the material part. The rendering module then uses per-pixel material parameters A, N, R

and spatially-varying local incoming lighting L to render the image pixels Ĩrend:

A,R = SampleUV (Auv(θ),Ruv(θ)), (3.2)

N = Rot(SampleUV (Nuv(θ))), (3.3)

Ĩrend = RenderLayer(A,N,R,L). (3.4)

As the originally assigned UV coordinates might not have the optimal scale and orientation to

apply the corresponding material, we apply texture transformation parameters φ (rotation, scale,

and translation) to map original coordinates UV 0 to more appropriate ones UV .

UV = UVTransform(UV 0,φ). (3.5)

Fig. 3.10 provides visual examples of the importance of considering rotation and scale in our

differentiable rendering.

3.3.4 Material and Lighting Optimization

Images conflate lighting, geometry, and materials into an intensity value. To better

disambiguate lighting from material, we adopt a two-step process. First, we use our initial

spatially-varying lighting prediction from InvRenderNet to optimize the materials for each object.

Next, we perform a globally consistent lighting optimization to refine our illumination. Finally,

we optimize the materials once more, this time using our refined lighting. This procedure reduces

the signal leakage between material and lighting.
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Material optimization

There is no exact correspondence between the rendered and reference pixels. Thus, we

compute the absolute difference Lstat of the statistics (mean µ and variance σ2) of the masked

pixels of the part of interest to optimize both material prior parameters θ and UV transformation

parameters φ :

Lmean = |µ(Iphoto ·Maln)−µ(Ĩrend ·Maln)|, (3.6)

Lvar = |σ2(Iphoto ·Maln)−σ
2(Ĩrend ·Maln)|, (3.7)

Lstat = Lmean +Lvar, (3.8)

where Maln is the resulting aligned mask from the alignment step.

Using this statistics loss encourages matching color distributions but not spatially-varying

patterns. To further match the patterns, we add a masked version of VGG loss Lvgg [208]. Let

C̃l and Cl be the normalized VGG feature maps of Ĩrend and Iphoto extracted from layer l1, we

apply mask Maln on the sum of upsampled L2 difference of normalized feature maps C̃l and Cl

and compute the mask-weighted average among the pixels x:

Lvgg =
1

∑
x

Maln
∑
x

Maln

(
∑

l
Up
(
C̃l −Cl

)2
)
. (3.9)

We also try a masked style loss based on the Gram matrices of VGG features [59], but find that it

does not provide significant improvement over Lstat and Lvgg. Therefore, we use the following

loss for material optimization:

Ltotal = αLstat +βLvgg. (3.10)

Rather than jointly optimizing for material and UV parameters, we find that convergence is more

1The layers used here are relu1 2, relu2 2, relu3 3, relu4 3, relu5 3.
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Figure 3.6. Example of lighting optimization result using N = 2 ceiling lights and one environ-
ment map lighting. The optimized lighting is close to original ScanNet images.

stable with alternately searching for UV parameters in a discretized space and optimizing for

material graph parameters. Spatially-varying roughness parameters are difficult to optimize in a

single view due to limited observations of highlights, so we replace the roughness output from

the graph with a single mean value during optimization (the final result can still use the full

roughness textures).

Globally consistent lighting optimization

To estimate globally consistent lighting, we represent indoor lighting as N area lights

and one environment light which may be observed through the windows. We optimize for RGB

intensities for each light source. For scenes without light source annotations, we uniformly place

area lights on the ceiling every 3 meters of distance. With the materials we previously optimized,

we render images with each single light source turned on. We compute the RGB intensities

by comparing these renderings with the input view using least squares. Specifically, with N
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Photo Pre-Material Refinement Post Material Refinement

Figure 3.7. Second-round material refinement successfully corrects the inaccurate reflectance
values estimated in the first round.

area lights (including ceiling lights and lamps) in a room with V input images, we solve for

3× (N + 1) RGB coefficients xr,xg,xb ∈ RN+1 (the +1 refers to an environment light visible

through windows). We use these coefficients to re-weight the intensities of each light source.

Fig. 3.6 demonstrates examples of rendering under selected views with each light source and the

final combined optimized lighting. We additionally optimize for relative exposure values under

different views, since they may vary over a video acquired using commodity cameras.

Material reoptimization

With the refined globally-consistent light sources, we re-optimize the materials to improve

our results. We render a new spatially-varying incoming lighting grid Lglobal from the synthetic

scene with the optimized light sources and use the same optimization loss as Sec. 3.3.3. We

only optimize for a homogeneous re-scaling of the albedo and roughness maps in this round,

as the spatially-varying patterns are already correctly optimized by the first iteration. Fig. 3.7

demonstrates that this refinement step can rectify inaccurate material parameters caused by

albedo-lighting ambiguities in the inverse rendering network.

3.3.5 More Details on Initialization and Alignment

Consensus-aware view selection

When a video sequence is available as input, we subsample views that are at least 30◦

or 1m apart, then choose the optimal view among them for optimizing each material part. We
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Figure 3.8. Example of part segmentation matching and UV warping between geometry and
input image.

choose the best view based on three criteria – coverage, field-of-view and consensus. We expect

good material transfer from those input images where a substantial number of pixels from the

material part are observed. To ensure they occupy a favorable field-of-view, we weigh the

number of pixels with a Gaussian, G, centered at the middle of the image and with variance

one-fourth of the image dimensions. Finally, the goodness of a material part in a given view is

also determined by the number of other views, ni, where material estimates are in consensus,

which is determined as the L2-norm of the mean and standard deviations of the per-pixel albedo

and roughness predictions from InvRenderNet. We choose the view with the highest value of

ni ·∑(G⊙Mphoto) as the one to use for material transfer.

Material part mask and mapping

We regard material part segmentation as non-trivial, since material parts are ambiguous,

e.g. table legs can be treated as separated parts or same part as the entire table. We found that the

instance-based segmentation from MaskFormer already provides robust candidates which can

later be refined by the mapping and alignment with geometry mask Mgeo. Again, we can always

provide better segmentation from manually labeling or existing dataset.

When MaskFormer does not detect a valid mask or 3D shapes have too small parts or

highly different geometries from the image, we cannot find a large enough mask. We determine

these failure situations by setting a threshold on the number of valid pixels inside a mask which

can be used for optimization, and simply compute median values on the valid pixels, or on

geometry mask Mgeo if no valid pixels at all. To be specific, we first compute a per-pixel weight
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map Waln by the dot product between aligned normal from InvRenderNet Ninv and normal from

geometry Ngeo and then define the valid pixels by computing the number of pixels with the

above dot product larger than 0.95 as J and only run our optimization if J ≥ 500, otherwise, we

compute median for small masks where J < 500. If there is no mask candidate being matched

by IoU, we simply use Mgeo to compute median.

The weight map Waln is also multiplied with Maln to obtain a weighted mask when

computing mask-based losses during optimization.

Alignment and warping

Let Mgeo be the 2D material part mask rendered from geometry under corresponding

views and Mphoto be the mask for the reference photo. We first decompose Mgeo and Mphoto

into sub-masks {Mi
geo} and {M j

photo} which represents a single instance (if there are multiple

instances), and search for matching instance pairs by the highest mIoU values on soft instance

submasks. If semantic labels for both photo and geometry are available, we can use it to reduce

the sub-masks by selecting corresponding semantics. Here soft means we apply a Gaussian

filter on the instance submask with mean set as the center of mask bounding box and standard

deviation set as half of width and height of bounding box, respectively.

After finding the matching pairs of part instances, we need to find the warping relationship

between Mgeo and Mphoto so that we can warp UVgeo to ÛV geo ≈UVphoto, which is used to sample

material parameters from UV space to image space in our material part-based differentiable

rendering module. We formulate the warping as scaling and translation from bounding box Bgeo

of Mgeo to bounding box Bphoto of Mphoto to avoid unnecessary rotations. Let cg and lg be the

center and size of Bgeo and cp and lp be the center and size of Bphoto. While cg, cp and lg, lp

can be computed by minimum and maximum pixel locations in x and y directions of Mgeo and

Mphoto, we can further find optimal c∗g and l∗g by optimizing intersection-over-union:

max
cg,lg

Mphoto ∩ M̂geo

Mphoto ∪ M̂geo
, (3.11)
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to ensure higher percentage of overlap between M̂geo (the warped Mgeo) and Mphoto.

We warp the UV map ÛV geo by

x∗s = (xt − cp)/lp ∗ l∗g + c∗g, (3.12)

ÛV geo(xt) =UVgeo(x∗s )≈UVphoto(xt). (3.13)

Finally, we derive the warped material part mask Mopt
g→p and UV map UV opt

g→p for optimization by

overlapping regions after warping:

Mopt
g→p = M̂geo ∗Mphoto, M̂geo(xt) = Mgeo(x∗s ), (3.14)

UV opt
g→p = ÛV geo ∗Mopt

g→p. (3.15)

Please see Fig. 3.8 for an illustration. In the material optimization stage, Maln refers to Mopt
g→p.

With the improved view-consistent representation of light sources, we re-optimize the

materials to achieve more accurate appearance in the material reoptimization stage. However,

the per-pixel lighting bakes-in the geometry in certain views, which necessitates all inputs to be

aligned with the geometry. So, we warp the reference photo Iphoto and the material part mask

Mphoto to match the geometry. We again define bounding box parameters lp and cp to compute

the warped M̂photo from Mphoto to match Mgeo:

x∗s = (xt − cg)/lg ∗ lp + cp, (3.16)

M̂photo(xt) = Mphoto(x∗s )≈ Mgeo(xt), (3.17)

Mopt
p→g = M̂photo ∗Mgeo, Iopt

p→g = Îphoto ∗Mopt
p→g. (3.18)

Therefore, Maln refers to Mopt
p→g in the material reoptimization stage.
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3.4 Experiments

3.4.1 Datasets

We demonstrate our method on photos and corresponding scene data from several sources

and demonstrate its robustness on images and scene geometry of varying quality.

ScanNet-to-OpenRooms

We use geometry and 3D part segmentations from OpenRooms [126], corresponding to

multi-view input images from ScanNet [38] videos, with instance segmentation labels as mask

proposals for Mphoto.

Photos-to-Manual

For several high-quality real-world photos, we also manually construct matching scenes

using Blender [2] from a single view and manually segment the material part masks for demon-

stration purposes.

SUN-RGBD-to-Total3D

Our method can also be used for fully automatic material and lighting transfer using a

single-image mesh reconstruction from Total3D [158] applied to SUN-RGBD [210] inputs. The

reconstruction in this case is coarser than CAD retrieval and with a single material per object.

We use MaskFormer [34] to obtain segmentation labels as mask proposals and use object classes

for mapping.

We assume all meshes have texture coordinates. If not, we use Blender’s [2] Smart UV

feature to generate them.

3.4.2 Material and Lighting Transfer

We demonstrate our material and lighting transfer results in Fig. 3.9, 3.10 and 3.11, where

our material prior allows interesting relighting effects such as specular highlights, shadows and
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Novel View Novel LightingTransfer ResultPhoto (Geometry inset)

Figure 3.9. Example of material transfer results for different scenes with ScanNet-to-
OpenRooms.
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Novel viewPhoto (Geometry inset) Transfer result Novel lighting

Figure 3.10. Our material and lighting transfer results for two scenes in Photos-to-Manual
dataset. Note how our method is able to accurately reconstruct the appearance and orientation of
the spatially-varying materials in these scenes.

global illumination under novel views and lighting.

Multiview inputs with CAD geometry

We demonstrate the multi-view setup in Fig. 3.9 with ScanNet-to-OpenRooms dataset. We

select an optimal view for every single material to get the best observation as well as to estimate

the global lighting for the entire room. Even though the CAD models are neither perfectly

aligned nor perfect replicas of real objects, our method can closely match input appearances.

More results are in Sec. 3.4.5.

Single-image inputs

Our method can even be applied to single image inputs, as shown in Fig. 3.1 and 3.10 with

our own Photos-to-Manual dataset. Our framework allows material transfer for unseen portions of

coarsely aligned CAD models from the photo, as shown in the novel view rendering. This makes
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Novel View Novel LightingTransfer Result
Photo (Geometry + 

Panoptic Pred. inset)

Figure 3.11. Examples of material transfer results with SUN-RGBD-to-Total3D. Note that
these are fully automatic results by using Total3D to reconstruct 3D meshes and panoptic
label predictions from MaskFormer. Our method is robust to imperfect geometry and panoptic
prediction labels as shown in the inset.

Perturb Graph Parameter Original Result Adjust UV Rotation Adjust UV Scale 

Figure 3.12. Example of editable variations from originally optimized procedural graph materials
for ceiling. We can perturb graph parameters or adjust UV parameters from optimized results to
generate various appearances.
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the framework more practical than recent works [159] that require perfectly aligned geometry

and multiview images to optimize for observed geometry. In the second row of Fig. 3.10, both

material and orientation of the carpets with grid patterns are successfully estimated. Lastly, the

estimated materials are high-resolution and photorealistic as shown in the zoom-in views and

relighting results.

Automatic 3D reconstruction and masks

Our method can be fully automatic by using off-the-shelf single image 3D reconstruction

and panoptic (or instance) prediction for initialization. We illustrate this in Fig. 3.11 with the

SUN-RGBD-to-Total3D dataset. This shows that our method is robust even when both masks

and meshes are imperfect and not aligned well, which also cannot be achieved in recent works

[159] that need high-quality aligned geometry.

Variations from optimized material

Another advantage of procedural graph material representation is that it allows further

edits from the current parameters. We can adjust material and UV parameters starting from the

current estimation and generate edited results as shown in Fig. 3.12. Note that the image becomes

brighter by perturbing graph parameters under the same lighting which explains materials can

also change the brightness of an image. This demonstrates the benefit of globally consistent

lighting optimization with material refinement stages, which ensures materials for each part are

consistent under global lighting representation.

3.4.3 Baseline Comparisons

Material classifier

The most relevant work to ours is PhotoShape [162], which learns a material classifier

from a dataset of shapes with material assignments. The input to the network is an image with

an aligned material part mask. Although PhotoShape does not consider lighting or complex

29



Table 3.1. User study asking which method produces results more similar to the reference with
ScanNet-to-OpenRooms dataset.

Classifier InvRender Med. Pixel Med.
Ours preferred over 68.19% 65.06% 69.70%

Table 3.2. Similarity evaluation between baselines rendering results and reference photo with
ScanNet-to-OpenRooms dataset.

Classifier InvRend. Med. Pixel Med. Ours
RMSE 0.452 0.349 0.337 0.259
SSIM 0.401 0.479 0.497 0.493
LPIPS 0.546 0.510 0.501 0.489

indoor scenes, we compare by mimicking their approach in our setting. We borrow the material

classification model from [162] and re-train it in a whole scene setting, with classification of

material parts over 886 materials and material category classification over 9 super-classes. For

each input image associated with a material part mask, we predict one of 886 material labels.

Implementation details can be found in Sec. 3.4.6.

Median of per-pixel material predictions

For this baseline, we can construct a homogeneous material from per-pixel predictions

of the inverse rendering network [121] by computing median values of per-pixel albedo and

roughness under selected view for each material in the masked region and setting the normal to

flat.

Median of pixel values

We follow IM2CAD [89] to assign a homogeneous albedo as the median values of the 3

color channels independently within the masked region in the selected view for each material,

set a fixed roughness value at 0.7 and use a flat normal.
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Comparisons and user study

The comparisons of our results with baselines are shown in Fig. 3.13 with various

datasets.2 The material classifier can only predict material from a predefined dataset, which is

not guaranteed to match the actual appearance in the photo. The median of the inverse rendering

method can generate appearances close to the photo, but the albedo color sometimes goes off due

to the issue of albedo-lighting ambiguities. The median of photo pixels robustly computes the

albedo color similar to the photo, but both the spatially-varying patterns and the roughness are

not estimated. In contrast, our method can estimate accurate spatially-varying materials which is

similar to the photo as well as the global lighting.

For quantitative evaluations, Table 3.2 reports similarity metrics (RMSE, SSIM, LPIPS)

between photos and renderings of various methods with 70 randomly sampled scenes, consisting

of 669 material parts, using ScanNet-to-OpenRooms dataset under uniformly sampled views

in Table 3.2. We compute RMSE on the optimized region for each material, while SSIM

and LPIPS are on the entire image. Note that these similarity metrics are not designed to

evaluate similarity between misaligned images or to evaluate spatial variations, so tend to favor

homogeneous outputs of the median-based methods. Nevertheless, PhotoScene outperforms all

baselines on these metrics, except pixel median in SSIM. Note that the homogeneous albedo

from pixel median may match a photo well on an average, but without spatial variations or

accurate relighting in new views.

To evaluate methods with human perception, we provide a user study to evaluate the

similarity in Table 3.1 using the same dataset. We choose 20 random scenes with uniformly

sampled 4 to 12 views and render a set of images under selected views with our result. We

ask users on Amazon Mechanical Turk to determine which set of images is more similar to the

corresponding photo set. More details can be found in the Sec. 3.4.6. About 65 to 70% users

think PhotoScene generates results more similar to the inputs. Thus, our method outperforms the

2As none of the baselines can estimate global lighting well, we use our predicted lighting to render baseline
images to ensure fair comparison.
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Table 3.3. Similarity evaluation between rendering results and reference photo on 18 selected
scenes of the ScanNet-to-OpenRooms dataset, for baseline methods, various ablations and the
full version of the proposed PhotoScene approach.

Baseline Methods Ablative Variants of PhotoScene PhotoScene
Classifier InvRend. Med. Pixel Med. (a) (b) (c) (d) (e) (f) (g) Full

RMSE 0.448 0.381 0.314 0.250 0.255 0.251 0.249 0.326 0.243 0.272 0.244

baselines both qualitatively and quantitatively.

3.4.4 Ablation Study

We provide ablation study on our entire framework, by removing each component one

at a time. We visualize the final results and compute RMSE on the optimized region for

each material part with one scene from Photo-to-Manual dataset as shown in Fig. 3.14 and

with 18 randomly selected scenes over 171 materials from ScanNet-to-OpenRooms dataset in

Table 3.3. We demonstrate the results a) without warping, b) with random graph selection, c) with

material classifier graph selection, d) with stat loss only, e) with VGG loss only, f) without UV

transformation parameters, and g) without material reoptimization, as well as our full framework

and the baselines.

Without warping, the mask and UV map cannot correctly fetch accurate material re-

gions for optimization. This might lead to wrong material portions being considered due to

misalignment so that the overall color and the pattern are not accurate. If we choose procedural

graphs randomly from the entire collection or conditioned on a material super-class, the results

do not have similar patterns as each procedural graph represents a distinct type of material (e.g.

wood, homogeneous, ... etc.). With only statistics loss, the spatially-varying patterns become

unconstrained and only match color statistics without considering spatial structures. The UV

parameters cannot be estimated correctly and the statistics loss does not contain structure infor-

mation. With only VGG loss, the results have similar spatial structures but are not guaranteed

to have similar color to the reference photo without statistics loss. Without optimization of UV
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Figure 3.13. Qualitative comparison2 with baselines on various datasets, where our method
generates high-quality materials with spatially-varying patterns that better match the input
photograph.
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Figure 3.14. Ablation study on our entire framework with one selected scene from Photos-to-
Manual. We compare the results by removing different modules from our full framework: a)
without warping, b) with random graph selection, c) with material classifier graph selection,
d) with stat loss only, e) with vgg loss only, f) without UV transformation parameters, and g)
without material reoptimization, as well as our full framework and the baselines.

transformation, the orientation and scale of the textures are not guaranteed to be consistent to

the reference photo. Note that even though our full method has slightly higher RMSE than (f),

its qualitative superiority is not reflected in the metric since our optimization objectives are to

align the pixel statistics and masked VGG features rather than per-pixel appearances. Without

material re-optimization, sometimes the initial albedo colors have lighting baked-in, resulting in

mismatched color under globally-consistent lighting. It is possible to get lower RMSE values

with worse UV parameters. In sum, our full framework generates more similar appearances to

the photo by considering all the components.

3.4.5 More Results

We demonstrate more results on ScanNet-to-OpenRooms, Photos-to-Manual, SUN-

RGBD-to-Total3D material and lighting transfer results with novel view and relighting results in

Fig. 3.15, 3.16, 3.17, 3.18 and supplementary videos3.

We also provide results with panoptic labels predicted by MaskFormer [34] instead of

ground truth labels for ScanNet-to-Openrooms, and compute the results with baselines with

randomly selected 62 scenes and over more than 521 materials, as shown in Table 3.4. The

RMSE errors are slightly higher when using panoptic predictions, but still lower than baseline

3Videos can be found on project page: https://yuyingyeh.github.io/projects/photoscene.html
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Figure 3.15. More results of material and lighting transfer with ScanNet-to-OpenRooms dataset.

methods with panoptic ground truths. This demonstrate that our method is robust to imperfect

input mask and outperform baseline methods regardless the input masks.
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Figure 3.16. More results of material and lighting transfer with ScanNet-to-OpenRooms dataset.

3.4.6 Additional Details for Experiments

Material classifier implementation

The material classification model is based on ResNet-18 [73] backbone. We represent

2D convolution by Conv2D(C, K, S, P) where C is the output channels, K is the kernel size, S is

stride and P is padding. Other operations in the model include BN for 2D batch normalization,
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Figure 3.17. More results of material and lighting transfer with ScanNet-to-OpenRooms dataset.

Figure 3.18. More results of material and lighting transfer with SUN-RGBD-to-Total3D dataset.

ReLU, and Maxpool(K, S) for 2D max-pooling of kernel size K and stride S. The model takes

the concatenation of the image and a binary mask of size 240×320×4 as input, followed by

Conv2D(64, 7, 2, 3), BN, ReLU, Maxpool(3, 2), and modules conv2.x, conv3.x, conv4.x, conv5.x
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Table 3.4. Similarity evaluation between baselines rendering results and reference photo with
ScanNet-to-OpenRooms dataset using ground truth panoptic labels versus predictions from
MaskFormer [34].

Classifier InvRend. Med. Pixel Med. Ours
RMSE (GT Mask) 0.453 0.337 0.342 0.259

RMSE (Pred. Mask) 0.467 0.373 0.354 0.285

from ResNet-18, and 2D average-pooling, resulting by a feature vector of dimension 512. With

the feature vector as input, a fully-connected (FC) layer classifies over 886 bins of materials and

another FC layer classifies over 9 super-classes. A standard cross-entropy loss is used for the

classification heads.

User study details

There are 60 random AMT users; each is asked to make a different binary comparison

for each of 20 scenes without pre-training on our task. In each comparison, we ask users to

choose the better set of multi-view renderings of transfer results between ours and one randomly

sampled baseline from {cls, inv med, pix med}. Two options are randomly placed while the input

photo is in the middle. Each comparison is evaluated by 20 different users.

3.4.7 Discussion and limitations.

Our algorithm assumes a part segmentation already exists in the reconstructed geometry,

and our results depend on its quality and granularity. A finer part segmentation could be achieved

by retrieving objects from a higher quality CAD model collection. Our graph collection is

limited to the set provided by the existing implementation of MATch [200], though more general

procedural graphs could be added with some effort, possibly using automatic techniques [84].

Our approach cannot handle specific patterns such as paintings, which could be addressed

by training a generative model for such materials [67]. Lastly, we rely on a neural inverse

rendering initialization, where the current state-of-the-art is restricted to small resolutions, so
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some high-frequency information from photos might be lost. This will likely be improved by

future architectures handling higher resolutions.

Our approach can synthesize high-quality digital counterparts of real scenes which may

be rendered to create photorealistic images. Using a physically-based material prior also allows

the ability to edit properties of these images by generating plausible new materials for specific

regions or objects, which may be used for potentially harmful purposes. An avenue to overcome

this negative impact might be further research in digital watermarks such as [220] for materials

generated through our material priors, embedded in a manner that allows them to persist in an

identifiable way through the rendering process.

3.5 Conclusion

We have presented a novel approach to transfer materials and lighting to indoor scene

geometries, such that their rendered appearance matches one or more input images. Unlike

previous work on material transfer for objects, we must handle the complex inter-dependence

of material with spatially-varying lighting that encodes distant interactions. We achieve this

through an optimization that constrains the material to lie on an SVBRDF manifold represented

by procedural graphs, while solving for the material parameters and globally-consistent lighting

with a differentiable renderer that best approximates the image appearances. We demonstrate

high-quality material transfer on several real scenes from the ScanNet, SUN-RGBD dataset

and unconstrained photographs of indoor scenes. Since we estimate tileable materials that

can be procedurally generated, the scenes with transferred material can be viewed from novel

vantage points, or under different illumination conditions, while maintaining a high degree of

photorealism. We believe our work may have significant benefits for 3D content generation

in artistic editing and mixed reality applications. Further, our approach can be used to create

datasets for inverse rendering, where geometry is easier to acquire but ground truth material and

lighting are hard to obtain.

Chapter 3 is based on the material as it appears in IEEE Conference on Computer Vision
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and Pattern Recognition (CVPR), 2022 (”PhotoScene: Photorealistic Material and Lighting

Transfer for Indoor Scenes”, Yu-Ying Yeh, Zhengqin Li, Yannick Hold-Geoffroy, Rui Zhu,

Zexiang Xu, Miloš Hašan, Kalyan Sunkavalli, Manmohan Chandraker). The dissertation author

was the primary investigator and author of this paper.
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Chapter 4

Image-guided Texture Synthesis through
Geometry-aware Diffusion

Generated textures

Input Images

Target 3D shape Generated textures

Input Images Input Images

Generated textures

Figure 4.1. Texture transfer from sparse images. Given a small number of images and a target
mesh, our method synthesizes geometry-aware texture that looks similar to the input appearances
for diverse objects.

4.1 Introduction

High-quality 3D content is indispensable for a wide range of critical applications, includ-

ing AR/VR, robotics, film, and gaming. In recent years, remarkable progress has been made in

democratizing 3D content creation pipelines, facilitated by advancements in 3D reconstruction

[145, 152] and generative models [62, 209]. While substantial attention has been devoted to

exploring the geometry component [245, 35, 24] and neural implicit representations [161], such

as NeRF [145], creation of high-quality textures is relatively under-explored. Textures are pivotal
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in creating realistic, highly detailed appearances and are integral to various graphics pipelines,

where industry has traditionally relied on professional, experienced artists to craft textures. This

process usually involves manually authoring procedural graphs [4] and UV maps, making it

expensive and inefficient. Automatically transferring the diverse visual appearance of objects

around us to the texture of any target geometry would thus be highly beneficial.

We present TextureDreamer, a novel framework to create high-quality relightable textures

from sparse images. Given 3 to 5 randomly sampled views of an object, we can transfer its

texture to an target geometry that may come from a different category. This is an extremely

challenging problem, as previous texture creation methods usually either require densely sampled

views with aligned geometry [19, 273, 116], or can only work for category-specific shapes

[207, 20, 166, 74]. Our framework draws inspiration from recent advancements in diffusion-

based generative models [209, 211, 77]. Trained on billions of text-image pairs, these diffusion

models enable text-guided image generation with extraordinary visual quality and diversity [181].

Pioneering works have applied these pre-trained 2D diffusion models to text-guided 3D content

creation [171, 127, 233]. However, a common limitation among those methods is that text-only

input may not be sufficiently expressive to describe complex, detailed patterns, as demonstrated

in Figure 4.2. In contrast to text-guided methods, we effectively extract texture information from

a small set of input images by fine-tuning the pre-trained diffusion model with a unique text

token [54, 188]. Our framework, therefore, addresses the challenge of accurately describing

complex textures.

The Score Distillation Sampling (SDS) [171, 229] is one core element that bridges pre-

trained 2D diffusion models with 3D content creation. It is widely used to generate and edit

3D contents by minimizing the discrepancy between the distribution of rendered images and

the distribution defined by the pre-trained diffusion models [127, 141]. Despite its popularity,

two well-known limitations impede its ability to generate high-quality textures. First, it tends

to create over-smoothed and saturated appearances due to the unusually high classifier-free

guidance necessary for the method to converge. Second, it lacks the knowledge to generate
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there is a green chair with a leaf print on it
Input image

Image Captioning via BLIP

Target 3D shape Text-guided texturing [TEXTure] Image-guided texturing [Ours]

Figure 4.2. Limitation of text-guided texturing. Compared to text-guided texturing method which
requires a captioning method to generate a text prompt which might not express all the details
of the image, image-based guided texturing can be more effective and more expressive. Image
captioning is predicted by BLIP [118], text-guided texturing is generated via TEXTure [183],
and image-guided result is from our method.

a 3D-consistent appearance, often resulting in multi-face artifacts and mismatches between

textures and geometry.

We propose two key design choices to tackle these challenges. Instead of using SDS, we

build upon Variational Score Distillation (VSD) in our optimization approach, which can generate

much more photorealistic and diverse textures. Initially introduced in ProlificDreamer [233],

VSD treats the whole 3D representation as a random variable and aligns its distribution with the

pre-trained diffusion model. It does not need a large classifier-free guidance weight to converge,

which is essential to create a realistic and diverse appearance. However, naı̈vely applying VSD

update does not suffice for generating high-quality textures in our application. We identify a

simple modification that can improve texture quality while slightly reducing the computational

cost. Additionally, VSD alone cannot fully solve the 3D consistency issue. Fine-tuning on

sparse inputs makes converging harder, as observed by previous work [179]. We, therefore,

explicitly condition our texture generation process on geometry information extracted from the

given mesh by injecting rendered normal maps into the fine-tuned diffusion model through the
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ControlNet [264] architecture. Our framework, designated as personalized geometry aware score

distillation (PGSD), can effectively transfer highly detailed textures to diverse geometry in a

semantically meaningful and visually appealing manner. Extensive qualitative and quantitative

experiments demonstrate that our framework substantially outperforms state-of-the-art texture-

transfer methods.

4.2 Related Works

4.2.1 Texture Synthesis and Reconstruction

Classical texture creation methods involve sampling from a distribution derived from the

neighborhood [49, 108], tiling repetitive patterns [112, 186], or with generative approaches [149,

274]. These methods fall short in creating semantic meaningful textures. Texture reconstruction

by fusing multi-view images onto the object surfaces [19, 273, 116] requires highly accurate

geometry reconstruction. Numerous learning-based methods were proposed to learn texture

creation from large-scale 3D datasets [33, 20, 207, 74, 166] but are confined to specific categories

within the dataset. Recent works also use CLIP model [178] for text-guided texture generation

of arbitrary objects [143, 32, 148, 134], but their texture qualities are usually low. In contrast,

TextureDreamer can create semantically meaningful, high-quality textures for arbitrary objects

using uncorrelated sparse images. Traditionally, textures are represented as a 2D image and

projected to object surfaces through UV mapping. Leveraging the recent progress in neural

implicit representation, our method, along with recent developments in inverse rendering [57, 23,

21, 214] and 3D generation [57, 23], represents texture as a neural implicit texture field.

4.2.2 Diffusion Models

Diffusion models [209] have emerged as the state-of-the-art generative models [77, 211],

demonstrating exceptional visual quality [181]. Its training and inference involve iteratively

adding noise with different variances and denoise the data. Trained on internet-scale image-text
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pair datasets [181], these pre-trained models exhibit unprecedented capability in text-guided

image synthesis and have proven successful in various image editing tasks. Recent works also

manage to fine-tune pre-trained diffusion models on much smaller datasets or even a few images

to facilitate customized/personalized image synthesis [188] and image generation conditioned

on multi-modal data [264], such as normal and semantic maps. Building upon this progress,

TextureDreamer can effectively extract texture information from sparse views and transfer it to a

novel target object in a geometry-aware manner.

4.2.3 3D Generation with 2D Diffusion Priors

Diffusion-based 3D content creation has very recently gained substantial interest. Several

methods directly train 3D diffusion models to generate 3D content in various representations,

including point cloud [133], neural radiance filed [97], hyper-network [50] and texture [260].

Others utilize pre-trained 2D diffusion models by either progressively fusing generated images

from different views [183, 22, 27, 6] or optimizing the 3D representation through score distil-

lation sampling [127, 141, 171] and its improved variations [101, 233]. While many methods

concentrate on text-guided 3D generation, fewer attempt to leverage diffusion models to generate

3D content from images. A number of concurrent works fine-tune 2D diffusion models on

large-scale 3D datasets for sparse view reconstruction [173, 202], primarily focusing on whole

3D object reconstruction. In contrast, TextureDreamer targets transferring textures from a small

number of images to a target 3D shape with unmatched geometry. Dreambooth3D [179] and

TEXTure [183] extract information from sparse views into a new text token and fine-tuned

diffusion model weights, which can be used to generate personalized 3D object or texture unseen

objects. TextureDreamer employs a similar method to extract information from sparse images.

However, it differs from prior works on utilizing the extracted information for texture generation,

leading to improvements in consistency and photorealism.
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Figure 4.3. Overview of TextureDreamer, a framework which synthesizes texture for a given
mesh with appearance similar to 3-5 input images of an object. We first obtain personalized
diffusion model ψ with Dreambooth [188] finetuning on input images. The spatially-varying
bidirectional reflectance distribution (BRDF) field fθ for the 3D mesh M is then optimized
through personalized geometric-aware score distillation (PGSD) (detailed in Section 4.3.2).
After optimization finished, high-resolution texture maps corresponding to albedo, metallic, and
roughness can be extracted from the optimized BRDF field.

4.3 Method

We propose TextureDreamer, a framework which synthesizes geometry-aware texture for

a given mesh with appearance similar to 3-5 input images of an object. In Section 4.3.1, we first

introduce preliminaries on Dreambooth [188], ControlNet [264] and score distillation sampling

[171, 229, 233]. In Section 4.3.2, we propose personalized geometry-aware score distillation

(PGSD), which is our core technical contribution that enables high-quality image-guided texture

transfer from sparse images to arbitrary geometries.

4.3.1 Preliminaries

Dreambooth [188] is a simple yet effective method to fine-tune pre-trained text-to-

image diffusion models on a small number of input images for personalized text-guided image

generation. It stores the subject’s appearance into the diffusion model weights with a specific text-
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token “[V]”. Dreambooth is fine-tuned with two loss functions. Reconstruction loss is standard

diffusion denoising supervision on the input images. Class-specific prior preservation loss is

proposed to avoid language drift and loss of diversity caused by fine-tuning. It further supervises

the pre-trained model with a large number of its own generated examples. TextureDreamer uses

DreamBooth to distill texture information from input images. Instead of image synthesis, we

apply the distilled information to a 3D object with different geometry.

ControlNet [264] proposes a novel architecture that adds spatial conditioning control to

pre-trained diffusion models. The key insight is to reuse the large number of diffusion model

parameters trained on billions of images and insert small convolution networks into the model

with window size 1 and zero-initialized weights. It enables robust fine-tuning performance on

small datasets with different types of 2D conditions, such as depth, normal, and edge maps. We

utilize ControlNet models to ensure that our created textures are aligned with the given geometry.

Score Distillation Sampling [171, 229] is the core component of numerous methods

that use pre-trained 2D diffusion models for 3D content creation [171, 127, 30]. It optimizes

the 3D representation by pushing its rendered images to a high-dimensional manifold modeled

by the pre-trained diffusion model. Let θ be the 3D representation and εψ be the pre-trained

diffusion model. The gradient back-propagated to the parameter θ is

∇θLSDS(θ)≜ Et,ε

[
w(t)(εψ (xt ,yc, t)− ε)

∂g(θ ,c)
∂θ

]
,

where ω(t) is the weight coefficient, y is the text input, yc denotes view-dependent conditioning,

t is the time step, c is the camera pose, g(·) is a differentiable renderer, xt is the noisy image

computed by adding noise to the rendered image x = g(θ ,c) with variance dependent on time

t. Despite its wide usage, SDS requires a much higher weight than normal classifier-free

guidance [78] to converge, oversmoothed and oversaturated appearance. To overcome this issue,

Wang et al. [233] propose an improved version, called variational score distillation (VSD), which

can converge with standard classifier-free guidance. VSD treats the whole 3D representation θ
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as a random variable and minimizes the KL divergence between θ and the distribution defined by

the pre-trained diffusion model. It involves fine-tuning a LoRA [82] network εφ (and a camera

encoder ρ which embeds camera pose c as an condition input to εφ ) to denoise the noisy images

generated from 3D representation θ

min
φ

Et,ε,c
[
||εφ (xt ,y, t,c)− ε||22

]
(4.1)

The gradient to the 3D representation θ is then computed as

Et,ε,c

[
w(t)(εψ

(
xt ,yc, t)− εφ (xt ,y, t,c)

) ∂g(θ ,c)
∂θ

]
. (4.2)

While VSD significantly improves both visual quality and diversity of generated 3D contents, it

cannot address the 3D consistency issue due to the inherent lack of 3D knowledge, leading to

multi-face errors and mismatches between geometry and textures. We address this challenge by

explicitly injecting geometry information to make our diffusion model geometry aware.

4.3.2 Personalized Geometry-aware Score Distillation (PGSD)

Problem setup

We illustrate our method in Figure 4.3. The inputs to our framework include a small

set of images (3 to 5) casually captured from different views {I}K
k=1 and a target 3D mesh M .

The outputs of our framework are relightable textures transferred from image set {I}K
k=1 to

M in a semantically meaningful and visually pleasing manner. Our relightable textures are

parameterized as standard microfacet bidirectional reflectance distribution (BRDF) model [96],

which consists of 3 parameters, diffuse albedo a, roughness r, and metallic m. We deliberately

do not optimize normal maps as it encourages the pipeline to fake details that are inconsistent

with mesh M . Following the recent trend of neural implicit representation [152, 154, 72], during

optimization, we represent our texture as a neural BRDF field fθ (v) : v ∈ R3 →,a,r,m ∈ R5,
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where v is an arbitrary point sampled on the surface of M and fθ consists of a multi-scale hash

encoding and a small MLP. We find such an implicit representation can better regularize the

optimization process, leading to smoother textures. However, given the UV mapping of M ,

our representation can also be converted to standard 2D texture maps that are compatible with

standard graphics pipelines, by querying every 3D point corresponding to each texel, as shown

on the right-hand side of Figure 4.3.

Personalized texture information extraction

We follow Dreambooth [188] to extract texture information from sparse images. To be

specific, we fine-tune a personalized diffusion model on input images with a text prompt y, “A

photo of [V] object”, where “[V]” is a unique identifier to describe the input object. Compared

to the alternative textual inversion method [54], we observe that Dreambooth converges faster

and can better preserve intricate texture patterns, possibly due to its larger capacity. We first mask

out the background of the target object with a white color. For the reconstruction loss, we resize

the shorter edge of input images to 512 and randomly crop 512x512 patches for training. We do

not apply class-specific prior preservation loss, as we hope our Dreambooth finetuning model

can generalize to other categories. We also experiment with different variations, including jointly

fine-tuning the text encoder and replacing the diffusion denoising network with a pre-trained

ControlNet, but do not observe any improvements.

Geometry-aware score distillation

Once we finish extracting texture information with Dreambooth, we transfer the infor-

mation to mesh M by adopting the fine-tuned Dreambooth model as the denoising network

εψ for score distillation sampling. Specifically, we choose VSD instead of the original SDS

because of its superior ability to generate highly realistic and diverse appearances. To render

images x for VSD gradient computation, we follow Fantasia3D [30] to pre-select a fixed HDR

environment map E as illumination and use Nvdiffrast [114] as our differentiable renderer. We
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set the object background to be a constant white color to match the input images for Dreambooth

training. We observe this can help achieve better color fidelity compared to random color or

neutral background.

However, simply replacing SDS with VSD cannot address the limitation of lacking 3D

knowledge in 2D diffusion models. We thus propose geometry-aware score distillation, where

we inject geometry information extracted from mesh M into our personalized diffusion model

εψ through a pre-trained ControlNet conditioned on normal maps k rendered from M . This

augmentation significantly boosts 3D consistency of generated textures (see Figure 4.7). With

the ControlNet conditioning, the pillow texture from the input images can be accurately matched

to the target shape, despite the shape mismatch. We experiment with different ControlNet

conditions and show that normal conditions can best prevent texture-geometry mismatch.

Let x = g(θ ,c) be the rendered image under a fixed environment map from camera pose

c with the extracted BRDF maps aθ ,rθ ,mθ . The gradient of proposed Personalized Geometry-

aware Score Distillation (PGSD) to optimize the MLP parameter θ of BRDF field is:

∇θLPGSD(θ)

≜ Et,ε,c[w(t)(εψ(xt ;yc,k, t)− εφ (xt ;y,k, t,cρ))
∂x
∂θ

],

where xt = αtx+σtε is the rendered image x perturbed by noise ε ∼ N (0,I) at time t, cρ is

the embedding of the camera extrinsic c encoded by a learnable camera encoder ρ , εψ and εφ

are the fine-tuned personalized diffusion model and the generic diffusion model pretrained on a

large-scale dataset, respectively. Both models are augmented with ControlNet conditioned on

normal map k, as shown in the yellow part underneath the diffusion model in Figure 4.3.

We found that our method does not benefit from classifier-free guidance (CFG) [78],

probably because the personalized model εψ has been fine-tuned on a small number of images.

Since our goal is to faithfully transfer input appearance to target shape, it is not necessary to have

CFG to increase the diversity. Similar observation can be found in recent literature [199].
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We additionally identify several important design choices through extensive experiments.

First, it is important to initialize the εφ in Eq. 4.1 with original pre-trained diffusion model

weights while the Dreambooth weight will remove texture details. This is probably because the

Dreambooth fine-tuning process makes the diffusion model overfit to a small training set, as

pointed out by previous work [179]. Moreover, we find that removing the LoRA weights can

substantially improve texture fidelity. Similar difficulties in training LoRA were also reported in

[201]. We therefore implement our personalized geometry-aware score distillation loss LPGSD

by removing the LoRA structure in εφ and only keeping the camera embedding, achieving the

best quality. We show more comparisons in Figure 4.7.

4.4 Experiment

4.4.1 Experimental Setup

Dataset

We conduct our experiments on 4 categories of objects: sofa, bed, mug/bowl, and plush

toy. For each category, we select 8 instances of objects and create a small image set by casually

sampling 3 to 5 views surrounding the object, resulting in 32 image sets in total. For every image

in the 32 image sets, we apply U2-Net [177] to obtain the foreground mask automatically or

use a semi-auto background removal application1 to obtain more accurate masks. We perform

texture transfer for each image set to diverse meshes including but not limited to same category

shapes, different category shapes, or even geometry with different genus numbers. To test our

texture-transferring framework, we select 3 meshes for each of the 4 categories that are dissimilar

to the captured image sets. We acquire these 3D meshes from 3D-FUTURE [53] and online

repositories.23. We run intra-class texture transfer for all 4 categories of objects and also run

inter-class texture transfer between bed and chair, to test our method’s generalization ability.

1https://www.remove.bg/upload
2https://www.cgtrader.com/
3https://sketchfab.com/
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Figure 4.4. Image-guided transfer results from four categories (beds, sofas, plush toys, and
mugs) of image sets to diverse objects. Our method can be applied to various object types and
transfer the textures to diverse object shapes.
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Figure 4.5. Example of cross-category texture synthesis results. Input images (top row) can
guide the texture synthesis (bottom row) for shapes which are not in the same category.

Implementation details

We implement our framework based on PyTorch [164] and Threestudio [68]. We use la-

tent diffusion and ControlNet v1.1 as our pre-trained diffusion model and ControlNet respectively.

In all our experiments, we set the classifier-free guidance weight of LPGSD as 1.0 (equivalent to

setting ω = 0 in the original CFG formulation). Following DreamFusion [171], we also apply

view-dependent conditioning to the input text prompt. The BRDF field is parameterized with an

MLP using hash-grid positional encoding [152], following prior works [30, 233]. Our camera

encoder consists of two linear layers that project the camera extrinsic to a latent vector of 1,280

dimensions to be fused with time and text embedding in U-Net. We empirically set the learning

rate to 0.01 for encoding, 0.001 for MLP, and 0.0001 for camera encoder for all experiments.

4.4.2 Baseline Methods

Latent-paint [141] and TEXTure [183] are two recent text-guided texturing methods with

2D diffusion prior. They also demonstrate the capability of texturing meshes from images. Latent-

paint leverages the Texture Inversion [54] to extract image information into text embedding

and distills the texture with SDS. TEXTure first finetunes the pre-trained diffusion model by

combining Texture Inversion and Dreambooth [188] and use this fine-tuned model to synthesize

texture with an iterative mesh painting algorithm. Following TEXTure, we augment the input

images with a random color background. We closely follow the original implementation of

baseline methods to run the experiments.
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TEXTure OursLatent-PaintInput Images

Figure 4.6. Comparison between baseline methods. Compared with Latent-Paint [141] and
TEXTure [183], our method can synthesize seamless and geometry-aware textures that are
compatible with the target mesh geometry.

Table 4.1. User study on image-guided texture transfer.

Ours preferred over
Latent-Paint TEXTure

Image Fidelity 71.82% 69.43%
Texture Photorealism 77.03% 85.52%
Shape-Texture Consistency 78.49% 85.16%

4.4.3 Image-guided Texture Transfer

Qualitative evaluation

Our method can synthesize geometry-aware and seamless textures that has similar patterns

and styles as the input for diverse object geometry. In Figure 4.4, textures can be synthesized

for the same category. It can be diverse under different seeds as shown in Figure 4.8. We also

demonstrate that our method can synthesize textures across different categories. In Figure 4.1,

we show texture synthesis results from images of sofa to bed shapes, and vice versa. Our method

is also capable of performing texture synthesis across a broader range of different categories. In

Figure 4.5, high-quality and realistic textures can be synthesized across chair, mug, plush toy,
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Table 4.2. Quantitative evaluation on image-guided texturing.

CLIP similarity ↑
Latent-Paint [141] 0.7969
TEXTure [183] 0.7988
Ours 0.8296

w/ ControlNet 
(Depth)w/o ControlNetMesh

Geometry w/o LoRA removedSDS OursInput Images

Figure 4.7. Ablation study. With ControlNet conditioned on normal maps, the result has the
best texture-geometry consistency. Without ControlNet or with depth-based ControlNet, the
results suffer from texture-geometry misalignment. Using SDS loss leads to blurry textures.
Without the LoRA module removed, the results tend to remove the existing texture from the
personalized diffusion model. Our full method can synthesize accurate texture which is similar
to input appearances.

or even non-rigid objects such as bags or clothes. It can also be used to synthesize texture for

shapes captured from a commercial 3D scanner [125], as shown in Figure 4.9.

In Figure 4.6, we qualitatively compare our method with baselines. Two views are shown

in each example. Latent-Paint tends to generate textures with colors and patterns that are different

from input images. TEXTure can preserve the color and texture better than Latent-Paint, but the

texture contains visible seams (possibly due to the iterative painting). Our method can reason the

semantics of the geometry (e.g. the positions of eyes) and demonstrate higher quality, seamless,

and geometry-aware texturing results with higher fidelity from the input images.
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Quantitative evaluation

It is non-trivial to perform quantitative comparisons for texture transfer due to the shape

difference between geometry and photos. We perform a user study to evaluate transfer fidelity,

texture photorealism, and texture-geometry compatibility across baselines by asking users the

following questions: 1) Which one has the texture that looks more similar to input images? 2)

Which one has a texture which looks more like a real object? 3) Which one has the texture which

is more compatible with the meshes? (Which texture painted more fitted to the geometry?) We

conduct a user study with Amazon Turk with three separate tasks. For each task, we ask each

user 24 questions. Each question is a forced single-choice selection with two options among

our and one baseline result with the rendered images from the same 4 sampled views and is

evaluated by 20 different users. We only show input photos for the first similarity question, and

hide the input photos for the other two questions to make the user focus on texture quality. We

summarize the results in Table 4.1. Our results show significant preference by the users in terms

of image fidelity, texture photorealism, and shape-texture consistency.

We also evaluate the similarity via image-based CLIP feature [148] between reference

and the rendered images of synthesized textures. The CLIP similarity has been applied to

material matching [251] and stylization [142]. A good transfer should transfer only the texture

from images and should take into account the target shape geometry and transfer the texture

semantically. For example, the transfer should be painted with respect to each part of the shape.

We use our evaluation set to compute the comparison. For each image set and target 3D mesh

pair, we compute the average of the metric among each reference image and each of rendered

image from 4 sampled views (i.e. left front, right front, left back, and right back). We average the

CLIP similarity across all (image set, mesh) pairs. Table 4.2 shows our method has the highest

CLIP similarity.
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Input Images Trials with Different Seeds

Figure 4.8. Diversity of synthesized textures.

Ablation study

We qualitatively perform an ablation study in Figure 4.7. The results suffer from

geometry-texture misalignment without ControlNet or the depth-based ControlNet. Only normal-

based ControlNet can accurately control the synthesized texture to be consistent with the input

mesh geometry. We validate the importance of score distillation sampling. Only using SDS in

our framework cannot achieve enough fidelity and the result tends to be blurry. Without LoRA

removed (which is usually optimized with vanilla VSD), the optimization tends to make the

distribution diverge from the personalized diffusion model. It makes the output contain less

original texture but more irrelevant patterns from the input. We hypothesize that optimizing

LoRA weights with a text condition containing a rare identifier tends to drive the distribution of

rendered images to have a rare appearance.

We analyze the effectiveness of ControlNet and the design of score distillation in Sec-

tion 4.4.3. We perform an additional ablation study in Figure 4.10. If we replace generic diffusion

model εφ with the personalized diffusion model εψ or apply classifier free guidance weight 7.5,

the result tends to introduce random patterns which does not exist in the input images. If we

choose to freeze the camera encoder weights ρ , the result becomes worse or more noisy than our

full method.

We also quantitatively evaluate the importance of each component in our system, as
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Figure 4.9. Captured shapes. Input images are from Figure 4.6.

Table 4.3. Ablation study on image-based texturing w.r.t. CLIP image-based feature similarity.
Although w/o ControlNet and w/ ControlNet (Depth) achieve higher similarity score, the transfer
results tend to ignore target shape and directly paint the texture without reasoning the geometry.
Among the remaining ablative methods, our full method achieves the highest CLIP similarity
w.r.t. reference images.

CLIP similarity ↑
w/o ControlNet 0.8394
w/ ControlNet (Depth) 0.8320
SDS, w/o CFG 0.8101
SDS, CFG 100 0.7983
w/o LoRA removed 0.8110
Personalized model as φ 0.8218
CFG weight as 7.5 0.8218
w/o camera encoder ρ updated 0.8267
Ours 0.8296

shown in Table 4.3. We use image-based CLIP feature to measure the similarity between

reference images and the rendered images. To ensure fair evaluation, the background of both

reference and rendered images are masked with white color. Our full method achieves the highest

similarity score among the ablative baselines except w/o ControlNet and w/ ControlNet (Depth).

As shown in Figure 4.7, these two methods tend to ignore the target shape and directly paint

the texture without adapting to geometry. Thus, they could reach higher score by painting the

original texture regardless of the shape. We also observe that SDS results tend to be saturated or

blurry and cannot recover the texture from the inputs. Keeping LoRA in the generic diffusion
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Figure 4.10. Additional Ablation study. If replacing generic diffusion model φ with personalized
model or applying classifier guidance scale 7.5, some random patterns might appear in the
synthesized texture. If we freeze the camera encoder ρ , the result might be worse or more noisy
than our full method.
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Figure 4.11. Number of images. Input images are from Figure 4.6.

model εφ will introduce random patterns to the synthesized texture.

Number of images

We evaluate various number of input images. In Figure 4.11, a single image cannot

provide sufficient information for texturing, while using 11 images doesn’t show advantages in

terms of texture quality.
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Figure 4.12. Limitations. Our method may bake-in lighting into texture, have Janus problems
when lacking enough input viewpoints, and ignore special and non-repeated patterns from the
input.

4.5 Discussions

We proposed a framework to transfer high-quality texture from input images to an

arbitrary shape. There are still some limitations, as shown in Figure 4.12. Our method may

not be able to transfer special and non-repeated texture to the target shapes. Our method tends

to bake in lighting to texture when there are strong specular highlights in the input images.

Janus problem might appear when the viewpoints of input images do not cover the entire object.

Nevertheless, we believe that our method can be the first step to tackling this challenging problem

and will make an impact on the 3D content creation community.

Chapter 4 is based on the material as it appears in arXiv preprint arXiv:2401.09416.

(”TextureDreamer: Image-guided Texture Synthesis through Geometry-aware Diffusion”, Yu-

Ying Yeh, Jia-Bin Huang, Changil Kim, Lei Xiao, Thu Nguyen-Phuoc, Numair Khan, Cheng

Zhang, Manmohan Chandraker, Carl S Marshall, Zhao Dong, Zhengqin Li). The dissertation

author was the primary investigator and author of this paper.
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Chapter 5

Neural 3D Reconstruction of Transparent
Shapes

5.1 Introduction

Transparent objects abound in real-world environments, thus, their reconstruction from

images has several applications such as 3D modeling and augmented reality. However, their

visual appearance is far more complex than that of opaque objects, due to complex light paths

with both refractions and reflections. This makes image-based reconstruction of transparent

objects extremely ill-posed, since only highly convoluted intensities of an environment map

are observed. In this chapter, we propose that data-driven priors learned by a deep network

that models the physical basis of image formation can solve the problem of transparent shape

reconstruction using a few natural images acquired with a commodity mobile phone camera.

While physically-based networks have been proposed to solve inverse problems for

opaque objects [124], the complexity of light paths is higher for transparent shapes and small

changes in shape can manifest as severely non-local changes in appearance. However, the

physical basis of image formation for transparent objects is well-known – refraction at the

interface is governed by Snell’s law, the relative fraction of reflection is determined by Fresnel’s

equations and total internal reflection occurs when the angle of incidence at the interface to a

medium with lower refractive index is below critical angle. These properties have been used to

delineate theoretical conditions on reconstruction of transparent shapes [111], as well as acquire
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(a) (b)

(c) (d)

Figure 5.1. We present a novel physically-based deep network for image-based reconstruction of
transparent objects with a small number of views. (a) An input photograph of a real transparent
object captured under unconstrained conditions (1 of 10 images). (b) and (c): The reconstructed
shape rendered under the same view with transparent and white diffuse material. (d) The
reconstructed shape rendered under a novel view and environment map.

Input View 1 View 2 View 3

Figure 5.2. Reconstruction using 10 images of synthetic kitten model. The left image is rendered
with the reconstructed shape while the right image is rendered with the ground-truth shape.

high-quality shapes under controlled settings [243, 258]. In contrast, we propose to leverage this

knowledge of image formation within a deep network to reconstruct transparent shapes using

relatively unconstrained images under arbitrary environment maps.

Specifically, we use a small number of views of a glass object with known refractive

index, observed under a known but arbitrary environment map, using a mobile phone camera.

Note that this is a significantly less restricted setting compared to most prior works that require

dark room environments, projector-camera setups or controlled acquisition of a large number of

images. Starting with a visual hull construction, we propose a novel in-network differentiable

rendering layer that models refractive light paths up to two bounces to refine surface normals

corresponding to a backprojected ray at both the front and back of the object, along with a mask

to identify regions where total internal reflection occurs. Next, we propose a novel cost volume
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to further leverage correspondence between the input image and environment map, but with

special considerations since the two sets of normal maps span a four-dimensional space, which

makes conventional cost volumes from multiview stereo intractable. Using our differentiable

rendering layer, we perform a novel optimization in latent space to regularize our reconstructed

normals to be consistent with the manifold of natural shapes. To reconstruct the full 3D shape,

we use PointNet++ [172] with novel mechanisms to map normal features to a consistent 3D

space, new loss functions for training and architectural changes that exploit surface normals for

better recovery of 3D shape.

Since acquisition of transparent shapes is a laborious process, it is extremely difficult to

obtain large-scale training data with ground truth [213]. Thus, we render a synthetic dataset,

using a custom GPU-accelerated ray tracer. To avoid category-specific priors, we render images

of random shapes under a wide variety of natural environment maps. On both synthetic and

real data, the benefits of our physically-based network design are clearly observed. Indeed, we

posit that such physical modeling eases the learning for a challenging problem and improves

generalization to real images. Figures 5.1 and 5.2 show example outputs on real and synthetic

data. All code and data will be publicly released.

To summarize, we propose the following contributions that solve the problem of transpar-

ent shape reconstruction with a limited number of unconstrained views:

• A physically-based network for surface normal reconstruction with a novel differentiable

rendering layer and cost volume that imbibe insights from image formation.

• A physically-based 3D point cloud reconstruction that leverages the above surface normals

and rendering layer.

• Strong experimental demonstration using a photorealistically rendered large-scale dataset

for training and a small number of mobile phone photographs for evaluation.
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5.2 Related Work
Multiview stereo

Traditional approaches [193] and deep networks [253] for multiview stereo have achieved

impressive results. A full review is out of our scope, but we note that they assume photoconsis-

tency for opaque objects and cannot handle complex light paths of transparent shapes.

Theoretical studies

In seminal work, Kutulakos and Steger [111] characterize the extent to which shape may

be recovered given the number of bounces in refractive (and specular) light paths. Chari and

Sturm [25] further constrain the system of equations using radiometric cues. Other works study

motion cues [17, 150] or parametric priors [225]. We derive inspiration from such works to

incorporate physical properties of image formation, by accounting for refractions, reflections

and total internal reflections in our network design.

Controlled acquisition

Special setups have been used in prior work, such as light field probes [237], polarime-

try [37, 86, 147], transmission imaging [105], scatter-trace photography [151], time-of-flight

imaging [219] or tomography [224]. An external liquid medium [69] or moving spotlights in

video [256] have been used too. Wu et al. [243] also start from a visual hull like us, to estimate

normals and depths from multiple views acquired using a turntable-based setup with two cameras

that image projected stripe patterns in a controlled environment. A projector-camera setup is

also used by [176]. In contrast to all of the above works, we only require unconstrained natural

images, even obtainable with a mobile phone camera, to reconstruct transparent shapes.

Environment matting

Environment matting uses a projector-camera setup to capture a composable map [277,

36]. Subsequent works have extended to mutliple cameras [137], natural images [238], frequency

[275] or wavelet domains [167], with user-assistance [258], compressive sensing to reduce the

number of images [47, 174] or deep network to predict the refractive flow from a single image

[28]. In contrast, we use a small number of unconstrained images acquired with a mobile phone
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in arbitrary scenes, to produce full 3D shape.

Reconstruction from natural images

Stets et al. [212] propose a black-box network to reconstruct depth and normals from

a single image. Shan et al. [198] recover height fields in controlled settings, while Yeung et

al. [257] have user inputs to recover normals. In contrast, we recover high-quality full 3D shapes

and normals using only a few images of transparent objects, by modeling the physical basis of

image formation in a deep network.

Refractive materials besides glass

Polarization [31], differentiable rendering [26] and neural volumes [131] have been used

for translucent objects, while specular objects have been considered under similar frameworks as

transparent ones [87, 278]. Gas flows [9, 92], flames [88, 246] and fluids [64, 175, 265] have

been recovered, often in controlled setups. Our experiments are focused on glass, but similar

ideas might be applicable for other refractive media too.

5.3 Method
Setup and assumptions

Our inputs are V images {Iv}V
v=1 of a transparent object with known refractive index (IoR),

along with segmentation masks {Mv}V
v=1. We assume a known and distant, but otherwise arbitrary,

environment map E. The output is a point cloud reconstruction P of the transparent shape. Note

that our model is different from (3-2-2) triangulation [109] that requires two reference points

on each ray for reconstruction, leading to a significant relaxation over prior works [243, 258]

that need active lighting, carefully calibrated devices and controlled environments. We tackle

this severely ill-posed problem through a novel physically-based network that models the image

formation in transparent objects over three sub-tasks: shape initialization, cost volume for normal

estimation and shape reconstruction.

To simplify the problem and due to GPU memory limits, we consider light paths with

only up to two bounces, that is, either the light ray gets reflected by the object once before hitting
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Figure 5.3. Our framework for transparent shape reconstruction.

the environment map or it gets refracted by it twice before hitting the environment map. This is

not a severe limitation – more complex regions stemming from total internal reflection or light

paths with more than two bounces are masked out in one view, but potentially estimated in other

views. The overall framework is summarized in Figure 5.3.

Shape initialization

We initialize the transparent shape with a visual hull [110]. While a visual hull method

cannot reconstruct some concave or self-occluded regions, it suffices as initialization for our

network. We build a 3D volume of size 1283 and project segmentation masks from V views to it.

Then we use marching cubes to reconstruct the hull and loop L3 subdivision to obtain smooth

surfaces.

5.3.1 Normal Reconstruction

A visual hull reconstruction from limited views might be inaccurate, besides missed

concavities. We propose to reconstruct high quality normals by estimating correspondences

between the input image and the environment map. This is a very difficult problem, since

different configurations of transparent shapes may lead to the same appearance. Moreover, small

perturbations of normal directions can cause pixel intensities to be completely different. Thus,
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Figure 5.4. The network architecture for normal reconstruction. Yellow blocks represent NNet
and blue blocks represent FNet. IX1-OX2-WX3-SX4 represents a convolutional layer with input
channel X1, output channel X2, kernel size X3 and stride X4. UX5 represents bilinear upsampling
layer with scale factor X5.

strong shape priors are necessary for a high quality reconstruction, which we propose to learn

with a physically-inspired deep network.

Basic network

Our basic network architecture for normal estimation is shown in Figure 5.4. The basic

network structure consists of one encoder and one decoder. The outputs of our network are two

normal maps N1 and N2, which are the normals at the first and second hit points P1 and P2 for a

ray backprojected from camera passing through the transparent shape, as illustrated in Figure

5.5(a). The benefit of modeling the estimation through N1 and N2 is that we can easily use a

network to represent complex light transport effects without resorting to ray-tracing, which is

time-consuming and difficult to treat differentiably. In other words, given N1 and N2, we can

directly compute outgoing ray directions after passage through the transparent object. The inputs

to our network are the image I, the image with background masked out I ⊙M and the Ñ1 and

Ñ2 of the visual hull (computed off-line by ray tracing). We also compute N̂1 and N̂2 of the

ground-truth shape for supervision. The definition of Ñ1, Ñ2 and N̂1, N̂2 are visualized in Figure

5.5(b). The basic network estimates:

N1,N2 = NNet(I, I ⊙M, Ñ1, Ñ2) (5.1)
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The loss function is simply the L2 loss for N1 and N2.

LN = ||N1 − N̂1||22 + ||N2 − N̂2||22 (5.2)

Rendering layer

Given the environment map E, we can easily compute the incoming radiance through

direction l using bilinear sampling. This allows us to build a differentiable rendering layer to

model the image formation process of refraction and reflection through simple local computation.

As illustrated in Figure 5.5(a), for every pixel in the image, the incident ray direction li through

that pixel can be obtained by camera calibration. The reflected and refracted rays lr and lt can

be computed using N1 and N2, following Snell’s law. Our rendering layer implements the full

physics of an intersection, including the intensity changes caused by the Fresnel term F of the

refractive material. More formally, with some abuse of notation, let Li, Lr and Lt be the radiance

of incoming, reflected and refracted rays. We have

F =
1
2

(
li ·N −η lt ·N
li ·N +η lt ·N

)2

+
1
2

(
η li ·N − lt ·N
η li ·N + lt ·N

)2

.

Lr = F ·Li, Lt = (1−F ) ·Li

Due to total internal reflection, some rays entering the object may not be able to hit the

environment map after one more bounce, for which our rendering layer returns a binary mask,

Mtr. With Ir and It representing radiance along the directions lr and lt , the rendering layer

models the image formation process for transparent shapes through reflection, refraction and

total internal reflection:

Ir, It ,Mtr = RenderLayer(E,N1,N2). (5.3)

Our in-network rendering layer is differentiable and end-to-end trainable. But instead of just

using the rendering loss as an extra supervision, we compute an error map based on rendering
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Figure 5.5. (a) Illustration of the first and second normal (N1 and N2), the first and second
hit points (P1 and P2), and the reflection and refraction modeled by our deep network. (b)
Illustration of visual hull (Ñ1, Ñ2) and ground-truth normals (N̂1, N̂2).
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Figure 5.6. We build an efficient cost volume by sampling directions around visual hull normals
according to their error distributions.

with the visual hull normals:

Ĩr, Ĩt ,M̃tr = RenderLayer(E, Ñ1, Ñ2), (5.4)

Ĩer = |I − (Ĩr + Ĩt)|⊙M. (5.5)

This error map is used as an additional input to our normal reconstruction network, to help it

better learn regions where the visual hull normals Ñ1 and Ñ2 may not be accurate:

N1,N2 = NNet(I, I ⊙M, Ñ1, Ñ2, Ĩer,M̃tr) (5.6)
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Cost volume

We now propose a cost volume to leverage the correspondence between the environment

map and the input image. While cost volumes in deep networks have led to great success for mul-

tiview depth reconstruction of opaque objects, extension to normal reconstruction for transparent

objects is non-trivial. The brute-force approach would be to uniformly sample the 4-dimensional

hemisphere of N1 ×N2, then compute the error map for each sampled normal. However, this

will lead to much higher GPU memory consumption compared to depth reconstruction due to

higher dimensionality of the sampled space. To limit memory consumption, we sample N1 and

N2 in smaller regions around the initial visual hull normals Ñ1 and Ñ2, as shown in Figure 5.6.

Formally, let U be the up vector in bottom-to-top direction of the image plane. We first build a

local coordinate system with respect to Ñ1 and Ñ2:

Z = Ñi, Y =U − (UT · Ñi)Ñi, X = cross(Y,Z), (5.7)

where Y is normalized and i = 1,2. Let {θk}K
k=1, {φk}K

k=1 be the sampled angles. Then, the

sampled normals are:

Ñi
k = X cosφk sinθk +Y sinφk sinθk +Z cosθk. (5.8)

We sample the angles {θk}K
k=1, {φk}K

k=1 according to the error distribution of visual hull normals.

The angles and distributions are shown in the supplementary material. Since we reconstruct N1

and N2 simultaneously, the total number of configurations of sampled normals is K×K. Directly

using the K2 sampled normals to build a cost volume is too expensive, so we use a learnable

pooling layer to aggregate the features from each sampled normal configuration in an early stage.

For each pair of Ñ1
k and Ñ2

k′ , we compute their total reflection mask M̃tr
k,k′ and error map Ĩer

k,k′
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using (5.4) and (5.5), then perform a feature extraction:

F(k,k′) = FNet(Ñ1
k , Ñ

2
k′, Ĩ

er
k,k′ ,M̃

tr
k,k′). (5.9)

We then compute the weighted sum of feature vectors F(k,k′) and concatenate them with the

feature extracted from the encoder of NNet for normal reconstruction:

F =
K

∑
k

K

∑
k′

ω(k,k′)F(k,k′), (5.10)

where ω(k,k′) are positive coefficients with sum equal to 1, that are also learned during the

training process. The detailed network structure is shown in Figure 5.4.

Post processing

The network above already yields reasonable normal reconstruction. It can be further

improved by optimizing the latent vector from the encoder to minimize the rendering error using

the predicted normal N1 and N2:

L Opt
N = ||(I − (Ir + It))⊙Mtr||22, (5.11)

where It , It ,Mtr are obtained from the rendering layer (5.3). For this optimization, we keep the

network parameters unchanged and only update the latent vector. Note that directly optimizing the

predicted normal N1 and N2 without the deep network does not yield comparable improvements.

This is due to our decoder acting as a regularization that prevents the reconstructed normal from

deviating from the manifold of natural shapes during the optimization. Similar ideas have been

used for BRDF reconstruction [56].

5.3.2 Point Cloud Reconstruction

We now reconstruct the transparent shape based on the predictions of NNet, that is, the

normals, total reflection mask and rendering error. Our idea is to map the predictions from
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Figure 5.7. Our method for point cloud reconstruction. AX1-SX2-L(X3,X4)-RX5 represents a set
abstraction layer with X1 anchor points, X2 sampled points, 2 fully connected layers with X3, X4
feature channels and sampling radius X5. IY1-L(Y2,Y3) represents a unit PointNet with Y1 input
channels and 2 fully connected layers with Y2, Y3 feature channels.

different views to the visual hull geometry. These predictions are used as input features for a

point cloud reconstruction to obtain a full 3D shape. Our point cloud reconstruction pipeline is

illustrated in Figure 5.7.

Feature mapping

We propose three options to map predictions from different views to the visual hull

geometry. Let {p̃} be the point cloud uniformly sampled from visual hull surfaces and Sv(p̃,h)

be a function that projects the 3D point p̃ to the 2D image plane of view v and then fetches the

value of a function h defined on image coordinates using bilinear sampling. Let Vv(p̃) be a binary

function that verifies if point p̃ can be observed from view v and Tv(p̃) be a transformation that

maps a 3D point or normal direction in view v to world coordinates. Let Cv(p̃) be the cosine of

the angle between the ray passing through p̃ and camera center.

The first option is a feature f that averages observations from different views. For every

view v that can see the point p̃, we project its features to the point and compute a mean:

p̃N1 =
∑v Tv(Sv(p̃,N1

v ))Vv(p̃)

∑v Vv(p̃)
, p̃Ier =

∑v Sv(p̃,Ier
v )Vv(p̃)

∑v Vv(p̃)
,

p̃Mtr =
∑v Sv(p̃,Mtr

v )Vv(p̃)

∑v Vv(p̃)
, p̃c =

∑v Cv(p̃)Vv(p̃)

∑v Vv(p̃)
.

We concatenate to get: f = [p̃N1, p̃Ier , p̃Mtr , p̃c].
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Another option is to select a view v∗ with potentially the most accurate predictions and

compute f using the features from only that view. We consider two view-selection strategies.

The first is nearest view selection, in which we simply select v∗ with the largest Cv(p̃). The other

is to choose the view with the lowest rendering error and no total reflection, with the algorithm

detailed in supplementary material. Note that although we do not directly map N2 to the visual

hull geometry, it is necessary for computing the rendering error and thus, needed for our shape

reconstruction.

Point cloud refinement

We build a network following PointNet++ [172] to reconstruct the point cloud of the

transparent object. The input to the network is the visual hull point cloud {p̃} and the feature

vectors { f}. The outputs are the normals {N} and the offset of visual hull points {δ p̃}, with the

final vertex position is computed as p = p̃+δ p̃:

{δ p̃},{N}= PNet({p̃},{ f}). (5.12)

We tried three loss functions to train our PointNet++. The first loss function is the nearest L2 loss

L nearest
P . Let p̂ be the nearest point to p̃ on the surface of ground-truth geometry and N̂ be its

normal. We compute the weighted sum of L2 distance between our predictions p, N and ground

truth:

L nearest
P = ∑

{p},{N}
λ1||p− p̂||22 +λ2||N − N̂||22. (5.13)

The second loss function is a view-dependent L2 loss L view
P . Instead of choosing the nearest

point from ground-truth geometry for supervision, we choose the point from the best view v∗ by

projecting its geometry into world coordinates:

p̂v∗, N̂v∗ =


Tv∗(Sv∗(p̃,P̂1

v∗)),Tv∗(Sv∗(p̃,N̂1
v∗)), v∗ ̸= 0

p̂, N̂, v∗ = 0.
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Figure 5.8. A visualization of the loss functions for point cloud reconstruction. From left to
the right are nearest L2 loss L nearest

P , view-dependent L2 loss L view
P and chamfer distance loss

L CD
P .

Then we have

L view
P = ∑

{p},{N}
λ1||p− p̂v∗||22 +λ2||N − N̂v∗||22. (5.14)

The intuition is that since both the feature and ground-truth geometry are selected from the same

view, the network can potentially learn their correlation more easily. The last loss function,

L CD
P , is based on the Chamfer distance. Let {q} be the set of points uniformly sampled from

the ground-truth geometry, with normals Nq. Let G (p,{q}) be a function which finds the nearest

point of p in the point set {q} and function Gn(p,{q}) return the normal of the nearest point.

The Chamfer distance loss is defined as

L CD
P = ∑

{p},{N}

λ1

2
||p−G (p,{q})||+λ2

2
||N−Gn(p,{q})||+

∑
{q},{Nq}

λ1

2
||q−G (q,{p})||+λ2

2
||Nq−Gn(q,{p})||. (5.15)

Figure 5.8 is a demonstration of the three loss functions. In all our experiments, we set λ1 = 200

and λ2 = 5.

Our network, shown in Figure 5.7, makes several improvements over standard PointNet++.

First, we replace max-pooling with average-pooling to favor smooth results. Second, we

concatenate normals {N} to all skip connections to learn details. Third, we augment the input

feature of set abstraction layer with the difference of normal directions between the current and
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center points. Section 5.4 and supplementary material show the impact of our design choices.

5.4 Experiments
Dataset

We procedurally generate random scenes following [124, 250] rather than use shape

repositories [24], to let the model be category-independent. To remove inner structures caused

by shape intersections and prevent false refractions, we render 75 depth maps and use PSR [102]

to fuse them into a mesh, with L3 loop subdivision to smooth the surface. We implement a

physically-based GPU renderer using NVIDIA OptiX [3]. With 1499 HDR environment maps

of [58] for training and 424 for testing, we render 3000 random scenes for training and 600 for

testing. The IoR of all shapes is set to 1.4723, to match our real objects. Our experiments also

include sensitivity analysis to characterize the behavior of the network when the test-time IoR

differs from this value.

Implementation Details

When building the cost volume for normal reconstruction, we set the number of sampled

angles K to be 4. Increasing the number of sampled angles will drastically increase the memory

consumption and does not improve the normal accuracy. We sample φ uniformly from 0 to

2π and sample θ according to the visual hull normal error. To build the cost volume (cv) for

normal prediction, we sample φ uniformly from 0 to 2π and sample θ according to the visual

hull normal error. In particular, we first randomly sample 100 scenes from our synthetic dataset

and compute the angles between visual hull normals and ground truth normals. We set one θ

value to be 0 and the other to larger than 85% of angles between the visual hull normal Ñ1 and

ground truth normal N̂1. The distribution of visual hull normal Ñ1 error for 5, 10 and 20 views

are presented in Figure 5.9. Table 5.1 summarizes the configurations of {θ} and {φ} angles for

different number of views.

We use Adam optimizer to train all our networks. The initial learning rate is set to be

10−4 and we halve the learning rate every 2 epochs. All networks are trained over 10 epochs.
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Table 5.1. The sampled angles for building cost volume. We set the sampled angles according to
the normal error of visual hull reconstructed by different number of views.

{θk}4
k=1 {φk}4

k=1
5 views 0◦,25◦,25◦,25◦ 0◦,0◦,120◦,240◦

10 views 0◦,15◦,15◦,15◦ 0◦,0◦,120◦,240◦

20 views 0◦,10◦,10◦,10◦ 0◦,0◦,120◦,240◦

(°) (°) (°)

5 views VH 10 views VH 20 views VH

Figure 5.9. The error distribution of visual hull normals Ñ1 from different number of views.

5.4.1 Ablation Studies on Synthetic Data
Normal reconstruction

The quantitative comparisons of 10 views normal reconstruction are summarized in Table

5.2. We report 5 metrics: the median and mean angles of the first and the second normals (N1,

N2), and the mean rendering error (Ier). We first compare the normal reconstruction of the basic

encoder-decoder structure with (wr) and without rendering error and total reflection mask as

input (basic). While both networks greatly improve the normal accuracy compared to visual

hull normals (vh10), adding rendering error and total reflection mask as inputs can help achieve

overall slightly better performances. Next we test the effectiveness of the cost volume (wr+cv).

Quantitative numbers show that adding cost volume achieves better results, which coincides with

our intuition that finding the correspondences between input image and the environment map can

help our normal prediction. Finally we optimize the latent vector from the encoder by minimizing

the rendering error (wr+cv+op). It significantly reduces the rendering error and also improves

the normal accuracy. Such improvements cannot be achieved by directly optimizing the normal

predictions N1 and N2 in the pixel space. Figure 5.10 presents normal reconstruction results

from our synthetic dataset. Our normal reconstruction pipeline obtains results of much higher

quality compared with visual hull method. Ablation studies of 5 views and 20 views normal

reconstruction and the optimization of latent vector are included in Section 5.4.4 and 5.4.4.
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Input VH rendered Rec rendered VH normal1 Rec normal1 GT normal1 VH normal2 Rec normal2 GT normal2

Figure 5.10. An example of 10 views normal reconstruction from our synthetic dataset. The
region of total reflection has been masked out in the rendered images.

5 views VH. 5 views Rec. 10 views VH. 10 views Rec. 20 views VH. 20 views Rec. Groundtruth

Figure 5.11. Our transparent shape reconstruction results from 5 views, 10 views and 20 views
from our synthetic dataset. The images rendered with our reconstructed shapes are much closer to
the ground-truth compared with images rendered with the visual hull shapes. The inset normals
are rendered from the reconstructed shapes.

Point cloud reconstruction

Quantitative comparisons of the 10-view point cloud reconstruction network are summa-

rized in Table 5.3. After obtaining the point and normal predictions {p} and {N}, we reconstruct

3D meshes as described above. We compute the Chamfer distance (CD), Chamfer normal median

angle (CDN-med), Chamfer normal mean angle (CDN-mean) and Metro distance by uniformly

sampling 20000 points on the ground-truth and reconstructed meshes. We first compare the

effectiveness of different loss functions. We observe that while all the three loss functions

can greatly improve the reconstruction accuracy compared with the initial 10-view visual hull,

the Chamfer distance loss (RE-L CD
P ) performs significantly better than view-dependent loss

(RE-L view
P ) and nearest L2 loss (RE-L nearest

P ). Next, we test different feature mapping strategies,

where the rendering error-based view selection method (RE-L CD
P ) performs consistently better

than the other two methods. This is because our rendering error can be used as a meaningful

metric to predict normal reconstruction accuracy, which leads to better point cloud reconstruction.

Ablation studies for the modified PointNet++ are included in Section 5.4.4.

The last row of Table 5.3 shows that an optimization-based method like PSR [102] to

refine shape from predicted normals does not lead to much improvement, possibly since visual
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Table 5.2. Quantitative comparisons of normal estimation from 10 views. vh10 represents the
initial normals reconstructed from 10 views visual hull. wr and basic are our basic encoder-
decoder network with and without rendering error map (Ier) and total reflection mask (Mtr) as
inputs. wr+cv represents our network with cost volume. wr+cv+op represents the predictions
after optimizing the latent vector to minimize the rendering error. wr+cv var. IoR represents
sensitivity analysis for IoR, explained in text.

vh10 basic wr wr+cv
wr+cv wr+cv

+op var. IoR

N1 median (◦) 5.5 3.5 3.5 3.4 3.4 3.6
N1 mean (◦) 7.5 4.9 5.0 4.8 4.7 5.0
N2 median (◦) 9.2 6.9 6.8 6.6 6.2 7.3
N2 mean (◦) 11.6 8.8 8.7 8.4 8.1 9.1
Render Err.(10−2) 6.0 4.7 4.6 4.4 2.9 5.5

Table 5.3. Quantitative comparisons of point cloud reconstruction from 10 views. RE, NE and AV

represent feature mapping methods: rendering error based view selection, nearest view selection
and average fusion, respectively. L nearest

P , L view
P and L CD

P are the loss functions defined in
Sec. 5.3. RE-L CD

P , var. IoR represents sensitivity analysis for IoR, as described in text. PSR
represents optimization [102] to refine the point cloud based on predicted normals.

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
vh10 5.14 7.19 4.90 15.2
RE-L nearest

P 2.17 6.23 4.50 7.07
RE-L view

P 2.15 6.51 4.76 6.79
RE-L CD

P 2.00 6.02 4.38 5.98

NE-L CD
P 2.04 6.10 4.46 6.02

AV-L CD
P 2.03 6.08 4.46 6.09

RE-L CD
P , var. IoR 2.13 6.24 4.56 6.11

PSR 5.13 6.94 4.75 14.7

hull shapes are still significantly far from ground truth. In contrast, our network allows large

improvements.

Different number of views

We also test the entire reconstruction pipeline for 5 and 20 views, with results summarized

in Table 5.4. We use the setting that leads to the best performance for 10 views, that is,

wr+cv+op for normal reconstruction and RE-L CD
P for point cloud reconstruction, achieving

significantly lower errors than the visual hull method. Figure 5.11 shows an example from

the synthetic test set for reconstructions with different number of views. Further results and
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Table 5.4. Quantitative comparisons of point cloud reconstruction from 5 views and 20 views.
In both cases, our pipeline significantly improves the transparent shape reconstruction accuracy
compared with classical visual hull method.

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
vh5 31.7 13.1 10.3 66.6
Rec5 6.30 11.0 8.7 15.2

vh20 2.23 4.59 2.71 6.83
Rec20 1.20 4.04 2.73 4.18

Input (Real) VH rendered Rec rendered VH normal1 VH normal2Rec normal1 Rec normal2

Figure 5.12. Normal reconstruction of real transparent objects and the rendered images. The
initial visual hull normals are built from 10 views. The region of total reflection has been masked
out in the rendered images.

comparisons are in Section 5.4.4.

Sensitivity analysis for IoR

We also evaluate the model on another test set with the same geometries, but unknown

IoRs sampled uniformly from the range [1.3,1.7]. As shown in Tables 5.2 and 5.3, errors increase

slightly but stay reasonable, showing that our model can tolerate inaccurate IoRs to some extent.

More details are provided in Section 5.4.5.

5.4.2 Results on Real Transparent Objects

We acquire RGB images using a mobile phone. To capture the environment map, we

take several images of a mirror sphere at the same location as the transparent shape. We use

COLMAP [191] to obtain the camera poses and manually create the segmentation masks.

Normal reconstruction

We first demonstrate the normal reconstruction results on real transparent objects in

Figure 5.12. Our model significantly improves visual hull normal quality. The images rendered
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Figure 5.13. 3D shape reconstruction on real data. Columns 1-6 show reconstruction results
from 2 known view directions. For each view, we show the input image and the reconstructed
shape rendered from the same view under different lighting and materials. Columns 7-8 render
the reconstructed shape from a novel view direction that has not been used to build the visual
hull. The first shape is reconstructed using only 5 views (top row) while the second uses 10
views (bottom row). Also, see comparisons to ground truth scans in Section 5.4.3.

Input (Real) 12 views visual hull Our reconstruction

Input (Real) 10 views visual hull Our reconstruction

Figure 5.14. Comparison between visual hull initialization and our shape reconstruction on real
objects. Our method recovers more details, especially for concave regions.
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from our predicted normals are much more similar to the input RGB images compared to those

rendered from visual hull normals.

3D shape reconstruction

In Figure 5.13, we demonstrate our 3D shape reconstruction results on real world trans-

parent objects under natural environment map. The dog shape in the first row only takes 5 views

and the mouse shape in the second row takes 10 views. We first demonstrate the reconstructed

shape from the same view as the input images by rendering them under different lighting and

materials. Even with very limited inputs, our reconstructed shapes are still of high quality. To

test the generalizability of our predicted shapes, we render them from novel views that have not

been used as inputs and the results are still reasonable. Figure 5.14 compares our reconstruction

results with the visual hull initialization. We observe that our method performs much better,

especially for concave regions. Comparisons with scanned ground truth are demonstrated in

Section 5.4.3.

Runtime

Our method requires around 46s to reconstruct a transparent shape from 10 views on a

2080 Ti, compared to 5-6 hours for previous optimization-based methods [243].

5.4.3 Real Data Evaluation with Ground Truth

We first present quantitative comparisons and then more qualitative ones on real data.

We use four objects (mouse, dog, pig and monkey). All objects are reconstructed from 10 views

under natural environment maps, except monkey, which needs 12 views since the shape is much

more complex. To obtain the ground truth geometry, we paint each object with diffuse white

paint and scan using a high-quality 3D scanner. All code and data will be publicly released.

Quantitative results

We manually align ground-truth shapes with the predicted shapes using ICP method [18]

and then uniformly sample 20000 points on the both shapes to compute the four error metrics

(CD, CDN-mean, CDN-med, Metro). The quantitative numbers are summarized in Table 5.5.
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Table 5.5. Quantitative comparisons of transparent shape reconstruction on real data. We
observe that our reconstruction achieves lower average errors than the visual hull method on all
the metrics.

Views CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
vh Rec vh Rec vh Rec vh Rec

monkey 12 3.99 3.94 21.2 16.4 14.8 11.9 20.7 13.9
mouse 10 8.04 5.35 19.0 16.3 11.4 12.0 16.6 13.0
pig 10 5.58 4.87 19.0 18.3 14.0 14.6 13.0 7.4
dog 10 2.25 1.86 14.5 12.4 11.4 10.3 4.1 4.0
mean 10.5 4.97 4.00 18.4 15.9 12.9 12.2 13.6 9.6

For all the 4 objects, our method consistently outperforms the visual hull baseline, which again

demonstrates the effectiveness of our transparent shape reconstruction framework.

Qualitative results and videos

Figure 5.15 shows both the ground-truth transparent shapes and our reconstructed shapes

rendered under different lighting and materials. Even though the shapes are complex and we use

very limited inputs, our reconstructions still closely match the ground truth appearance. This

demonstrates the efficacy of our physically-motivated network that models complex light paths

induced by refractions and reflections. To better visualize the quality of our 3D reconstruction

outputs, we create a video by rotating both the ground-truth shapes and the reconstructed shapes

under different natural environment maps. The video is included in the supplementary material.

A higher resolution video is available at this link.

5.4.4 Additional Ablation Studies

Different number of views

Table 5.6 summarizes the normal predictions from 5 and 20 views. Similar to the 10-view

case, our entire method wr+cv+op outperforms all other baselines on all the five metrics. In

particular, we find the cost volume (cv) and the optimization of the latent vector (op) bring the

largest improvements on normal reconstruction accuracy. This justifies our intuition that utilizing

the correspondence between the input image and the captured environment map by modeling
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Figure 5.15. Results on 3D reconstruction for four real transparent objects. All shapes are
reconstructed from 10 views, except the monkey in the last row that uses 12 views. We first
present reconstruction results from two input views (columns 1-6). From left to right, the odd
rows show the input image and the reconstructed shapes under different lighting and materials.
The corresponding outputs using the ground-truth shapes rendered from the same view are shown
in the even rows. We also render the reconstructed shapes and ground-truth shapes from a novel
view direction that has not been used to build the visual hull (columns 7-8).
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Figure 5.16. Normal predictions on our synthetic dataset with different number of input views.
Regions with total reflection have been masked out in the rendered images. Our predicted
normals are much closer to the ground truth compared to the visual hull normals.

5 views VH. 5 views Rec. 10 views VH. 10 views Rec. 20 views VH. 20 views Rec. Groundtruth

Figure 5.17. Transparent shape reconstruction in our synthetic dataset using 5, 10 and 20 views.
Images rendered with our reconstructed shapes are much closer to the those rendered with ground
truth shape, as compared to images rendered with the visual hull shapes. The inset normals are
rendered from the reconstructed shapes and demonstrate the same conclusion.
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Table 5.6. Quantitative comparisons of normal estimation from 5 and 20 views. Following the
notation in this chapter, vh5 and vh20 represent the initial normals reconstructed from visual
hulls corresponding to 5 and 20 views, respectively. Here, wr and basic are our basic encoder-
decoder network with and without rendering error map (Ier) and total reflection mask (Mtr) as
inputs. Further, wr+cv represents our network with cost volume and wr+cv + opt represents
the predictions after optimizing the latent vector to minimize the rendering error. Similar to
the 10-view case, wr+cv + opt performs better than all other baselines for transparent shape
reconstruction using both 5 and 20 views.

5 views normal
vh5 basic wr wr+cv

wr+cv
reconstruction +op
N1 median (◦) 12.7 6.1 6.0 6.0 5.9
N1 mean (◦) 15.3 7.8 7.9 7.8 7.7
N2 median (◦) 18.3 10.7 10.7 10.5 10.0
N2 mean (◦) 20.9 12.5 12.5 12.3 11.9
Render Err.(10−2) 9.7 5.9 5.8 5.9 4.1

20 views normal
vh20 basic wr wr+cv

wr+cv
reconstruction +op
N1 median (◦) 2.5 2.2 2.2 2.2 2.2
N1 mean (◦) 4.6 3.4 3.4 3.3 3.3
N2 median (◦) 5.2 4.7 4.6 4.6 4.3
N2 mean (◦) 7.6 6.5 6.4 6.3 6.1
Render Err.(10−2) 4.0 3.7 3.8 3.8 2.7

the image formation process within the network can lead to better normal reconstruction results.

Figure 5.16 shows two normal reconstruction results on our synthetic dataset. For both examples,

our physically-based network performs significantly better than the classical visual hull method

for 5, 10 and 20 views.

Modification of standard PointNet++ [172]

We examine our modifications of the standard PointNet++ architecture for point cloud

reconstruction to better incorporate normal information. The quantiative numbers are sum-

marized in Table 5.7. We first remove single modifications from standard PointNet++ to our

novel version (– maxPooling, – normal Diff. and – normal Skip.) and then remove all the

modifications to use standard PointNet++ to reconstruct the point cloud of our transparent shapes

(standard). Experiments show that each of our modifications brings consistent improvements
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Table 5.7. Comparisons of point cloud reconstruction with different PointNet++ architectures on
our synthetic dataset. Following the notation in this chapter, RE represents rendering error based
view selection. L CD

P represents the Chamfer distance loss.

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
RE-L CD

P 2.00 6.02 4.38 5.98

– maxPooling 2.09 6.26 4.59 6.09
– normal Diff. 2.09 6.31 4.62 6.48
– normal Skip. 2.07 6.14 4.51 6.20
standard 2.12 6.34 4.72 6.49

Figure 5.18. Comparisons of point cloud reconstruction with different loss functions on a real
example. Our modified PointNet++ trained with Chamfer distance loss achieves better quality
compared with the other two losses.

in reconstruction accuracy and removing all of them leads to a much poorer performance. This

shows our modifications ease the difficulty for the network to reason about point cloud distri-

bution based on normal predictions. Figure 5.18 demonstrates a real example reconstructed by

our modified PointNet++ trained using different loss functions. It is clearly observed that our

modified PointNet++ trained with Chamfer distance loss leads to a more complete and less noisy

3D reconstruction, especially for thin structures and concave regions.

Optimization of latent vector

We adopt an alternating minimization strategy to optimize the latent vector. We first keep

N1 unchanged and only change N2 by adding a large identity loss on N1. After 500 iterations,

we remove the constraint and optimize both N1 and N2 simultaneously. This is because the our

N1 prediction is usually more accurate and optimizing N2 first can lead to better results. In Table

5.8, we compare the normal reconstruction results of optimizing the latent vector and directly
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Table 5.8. Quantitative comparisons of different optimization strategies for normal estimation
from 10 views. op represents the optimization of the latent vector. opPixel represents the
optimization in the pixel space.

10 views normal
vh10

wr+cv wr+cv
reconstruction +op +opPixel
N1 median (◦) 5.5 3.4 3.8
N1 mean (◦) 7.5 4.8 4.9
N2 median (◦) 9.2 6.6 7.4
N2 mean (◦) 11.6 8.4 8.5
Render Err.(10−2) 6.0 2.9 2.6

Index of Refraction1.3 1.7      

Figure 5.19. Appearance changes for same shape geometry under various index of refraction
(IoRs). IoRs range from 1.3 to 1.7.

optimizing the per-pixel normals. The quantitative comparison shows that while optimizing

per-pixel normal can also decrease the rendering error, only by optimizing the latent vector can

we observe improvements in normal reconstruction accuracy. The inherent ill-posed nature of

normal prediction of transparent shapes makes it necessary to have a strong regularization to

obtain meaningful outputs. In this case, the regularization is provided by the trained decoder

which constrains the predicted normals to be on the natural shape manifold.

5.4.5 Sensitivity Analysis for Index of Refraction

As mentioned in Section 5.4.1, we perform a sensitivity analysis on the influence of

a different test-time IoR on the shape reconstruction accuracy. We re-render our synthetic

transparent testing set with the same shapes and environment maps. However, instead of

rendering with a fixed IoR value of 1.4723, we randomly sample 5 different IoRs ranging from

1.3 to 1.7 for each shape. Figure 5.19 shows an example of the same shape rendered under

different IoRs. We then test our network trained with a fixed IoR value of 1.4723 on the new test
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Figure 5.20. The mean normal estimation errors across varying IoRs in the test set, using the
fixed training set IoR value for prediction.

set with variable IoR. During testing, the IoR used by the rendering layer is kept fixed at 1.4723.

The quantitative comparisons have been summarized in Table 5.2 and 5.3.

Figure 5.20 and 5.21 show trends in the normal and shape reconstruction errors across

varying IoRs in the test set. As expected, the errors are relatively smaller for IoRs close to

the training set value of 1.4723. In particular, this trend is more explicitly visible in normal

estimation, since the model leverages the features from the rendering layer and cost volume

which require known IoRs. However, the overall variation in error is small across this range of

IoRs.

The above plots further support the analysis in Table 5.2 and 5.3. Even though the

predicted normals and the final reconstructed mesh are expectedly more accurate in the known

IoR case, the quantitative errors increase gracefully and not too much across a range even with

unknown IoR. This suggests that our network is relatively robust to the IoR value. Our future

work will consider simultaneously reconstructing the transparent shape and predicting its IoR.

5.5 Discussion

We present the first physically-based deep network to reconstruct transparent shapes

from a small number of views captured under arbitrary environment maps. Our network models

the properties of refractions and reflections through a physically-based rendering layer and cost
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Figure 5.21. The mean shape reconstruction errors across varying IoRs in the test set, using the
fixed training set IoR value for prediction.

volume, to estimate surface normals at both the front and back of the object, which are used to

guide a point cloud reconstruction. Extensive experiments on real and synthetic data demonstrate

that our method can recover high-quality 3D shapes.

Limitations and future work

Our limitations suggest interesting future avenues of research. A learnable multiview

fusion might replace the visual hull initialization. We believe more complex light paths of length

greater than 3 may be handled by differentiable path tracing along the lines of differentiable

rendering [120, 262]. While we assume a known refractive index, it may be jointly regressed.

Finally, since we reconstruct N2, future works may also estimate the back surface to achieve

single-view 3D reconstruction.

Chapter 5 is based on the material as it appears in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2020 (”Through the Looking Glass: Neural 3D Reconstruction

of Transparent Shapes”, Zhengqin Li∗, Yu-Ying Yeh∗, Manmohan Chandraker). The dissertation

author was one of the primary investigators and authors of this paper. Zhengqin Li is a co-first

author who contributed equally to the paper.
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Chapter 6

Learning to Relight Portrait Images via a
Virtual Light Stage and Synthetic-to-Real
Adaptation

6.1 Introduction

Given a photograph of a person, portrait relighting aims to re-illuminate the person as

if they appeared in a new lighting environment. While this has been long used in professional

settings, the growing interests in smartphone photography and video conferencing tools create a

need for casually enhancing [156, 270] and re-illuminating a person from an in-the-wild image

or video [160]. Relighting a person as if they really belong to the scene requires knowledge

of the 3D scene geometry and materials to simulate complex lighting interactions, including

global illumination. Therefore, portrait relighting from a 2D in-the-wild portrait without any

prior knowledge is extremely challenging. Due to the under-constrained nature of the problem,

previous work relied on 3D face priors [205, 45], intrinsic images and shape from shading [14,

197, 93, 80], or style transfer [203]. However, these models often fail to handle complex skin

surfaces and subsurface reflectance, wide varieties of clothes or hairstyles, or complex inter-

reflections between eyeglasses and other accessories. Capture-based data-driven techniques [41,

236, 239] have been proposed to achieve realistic relighting of human faces, but every subject

needs to be recorded by a complex capture rig, limiting their applicability. Recently, the most
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Figure 6.1. Top: Given an input portrait image and a target high dynamic range environment
map (rendered as a diffuse ball and a mirror ball in the inset), our relighting method generates
relit results under different illuminations with high photorealism. This is achieved by learning
relighting physics from a synthetic dataset rendered using a virtual light stage, as well as adapting
the learned model with a real-world dataset to close the domain gap. Bottom: our framework
also enables new features, such as controlling the glares on glasses (diffuse and mirror balls
shown in the inset), as well as synthesizing more temporally-consistent relit videos.

successful methods for in-the-wild portrait relighting are based on deep learning. They train

deep neural networks via a supervised framework using high-quality ground truth data captured

by a light stage.

A light stage [41, 40, 65] is a spherical lighting rig equipped with hundreds or thousands

of programmable inward-pointing light sources evenly distributed on the sphere. As each light

source provides a unique lighting direction, it is useful to capture an object illuminated by

one-light-at-a-time (OLAT). The OLAT images can be used as point-based lighting bases to

realistically relight faces under novel environments via image-based relighting [41, 236]. Several

prior portrait relighting methods [216, 160, 263] have used this technique to create the dataset

necessary for training their portrait relighting networks. Each sample in the dataset consists of

pairs of relit portrait images and their corresponding target environment maps. The network is

91



Physical Light Stage
[Guo et al. 2019] Virtual Light Stage

Figure 6.2. Illustration of a virtual light stage versus a physical light stage. Our virtual light
stage setup renders high dynamic range images from a virtual camera. We use HDR environment
maps as skydome lighting and randomly select one subject from our 3D scan collections paired
with randomly selected hairstyles, clothes, and accessories.

then trained to predict a relit image given an input portrait and a target environment map. While

valuable for ground truth computation, constructing a light stage is an expensive task. Moreover,

building a light stage is only the first step. One still needs to find many subjects to sit still inside

the light stage for data collection. Capturing and processing the resulting OLAT scans also

requires time-consuming and labor-intensive efforts.

To challenge the conventional wisdom of the light stage data being the necessity of

achieving high-quality portrait relighting, we develop a new approach that can achieve compa-

rable results with the state-of-the-art methods without relying on a physical light stage. Our

approach is based on the key observation that we can decouple the relighting problem into two:

1) learning to approximate the physically-based lighting behaviors from synthetic data produced

by a path tracer and 2) learning to synthesize photorealistic portrait images.

We tackle the first part by leveraging advancement in physically-based rendering [168].

Specifically, we build a virtual light stage to re-illuminate pre-captured photogrammetry face

scans to construct the training dataset using a physically-based renderer, as shown in Figure 6.2.

Using the virtual light stage provides several key advantages over the physical one. First, we
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only need workstations to render a ground truth training dataset, saving the cost and hassle of

building a physical one. Second, since photogrammetry-based face scans are much easier to

acquire than OLAT scans, we are able to create a more diverse dataset with a higher diversity

of ages, genders, and ethnicity. Finally, rendering a synthetic dataset also provides the ground

truth for several other useful attributes. We show that this can enable new capabilities, such

as controlling glares in eyeglasses in Section 6.5. We will release our synthetic dataset upon

publication to support other researchers in conducting portrait relighting research.

Although the virtual light stage provides a way to learn the physically-accurate relighting

behaviors from synthetic data, the realism of the deep network output is often limited when

trained with only synthetic data. After all, the photogrammetry face scan comes with only basic

reflectance information such as diffuse albedo and does not provide all the necessary informa-

tion for realistic portrait relighting, such as surface [63, 155] and subsurface [91] reflectance

properties. As a result, the generated synthetic training data exhibits a domain gap from their

real counterparts. To close this gap, we propose a synthetic-to-real adaptation approach. We

use in-the-wild portrait images to adapt the intermediate representations learned in our portrait

relighting network for achieving photorealistic outputs. A specific challenge for the adaptation is

how to improve photorealism while still maintaining the ability to relight an image coherently

with the provided lighting condition. To this end, we propose self-supervised lighting consistency

losses that promote the network to maintain consistent relighting during domain adaptation. We

show that our approach leads to competitive portrait relighting performance to the state-of-the-art.

We further extend our relighting framework to video portrait relighting. Instead of

applying relighting in a frame-by-frame manner, which often leads to flickering artifacts, we

model the extension from image to video as a domain adaptation problem, following the same

spirit of our synthetic-to-real approach. We use in-the-wild videos to adapt the intermediate

representations learned in our portrait relighting network to improve temporal consistency. This

results in a video portrait relighting network that is useful for various video applications.

In summary, our contributions include the following:
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• We propose a learning-based portrait relighting method that can achieve state-of-the-art

results for challenging in-the-wild photos without requiring training data from a light

stage.

• Our approach learns to approximate the physics for portrait relighting from a synthetic

dataset, carefully constructed using a physically-based rendering engine. We further

propose a novel synthetic-to-real adaption approach that leverages in-the-wild photos and

a set of self-supervised lighting consistency losses to achieve photorealistic outputs.

• We extend our approach to portrait video relighting. We show that videos relit by our

framework contain much less flickering and look temporally smoother than existing video

relighting approaches.

The chapter is organized as follows. We review related works in Section 6.2. Section 6.3

presents our training data generation via a virtual light stage. Section 6.4 gives details of our

relighting network design and its adaptation from synthetic to real and from images to videos.

Experiment results are included in Section 6.5. Finally, Section 6.6 concludes the chapter.

6.2 Related work

6.2.1 Portrait Relighting

Debevec et al. [41] show portrait relighting can be achieved by projecting the environ-

ment map to the reflectance field constructed by the OLAT images captured with a light stage

setup. Wenger et al. [236] further extend the framework to allow moderate subject motions

during the OLAT image acquisition. These OLAT-based approaches can produce high-quality

relighting results for the subject whose OLAT capture is available but cannot be applied to unseen

subjects. Despite the limitation, these methods are valuable for building the ground truth dataset

for learning-based portrait relighting methods discussed below.

Various deep neural network architectures exist for portrait relighting based on directional
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lighting [157], and HDR environment map lighting [216, 160, 135, 263]. SIPR-S [216] uses an

encoder-decoder architecture. Total Relighting (TR) [160] combines a set of UNets to generate

the final output and achieves state-of-the-art results. Zhang et al. [263] propose a network

architecture for video portrait relighting. NLT [267] learns a 6-DoF light transport function of

UV locations, lighting directions, and viewing directions to enable novel view synthesis and

relighting from OLAT images. Our architecture is based on the TR framework, but we have

made several improvements. First, we modify it to leverage supervision from our own custom

synthetic data. We also add novel modules to bridge the synthetic-to-real domain gap and achieve

temporally consistent video portrait relighting results.

Similar to ours, SIPR-W [234] uses captured face scans to create synthetic data to train

portrait relighting networks. However, their synthetic humans have fixed looking. They do not

pair them with different hair, clothes, and accessories. As a result, the diversity of the training

data is limited, which throttles the relighting network performance. Moreover, they do not

handle the synthetic-to-real domain gap and fall short in achieving photorealistic outputs. More

recently, Sengupta et al. [195] propose a lightweight capture system to record facial appearance

using only an LED monitor at the desk, circumventing the need for a light stage. However,

their monitor-based capture setup constrains their method to limited brightness controls and

head motions, and near and frontal light sources. Other deep learning-based portrait relighting

methods exist that do not require high-quality ground truth data. Still, they assume spherical

harmonics (SH) lighting [197, 272, 81] that limit their method to low-frequency Lambertian

surfaces. Our method adapts HDR image-based relighting representation that can handle arbitrary

natural environments, including specular highlights and cast shadows.

6.2.2 Learning with Synthetic Datasets

Synthetic data provide valuable supervision for tasks where acquiring ground truth

real data is challenging. They have been shown powerful for various tasks, including pose

estimation [204], face analysis [240], pedestrian detection [51], segmentation [185], inverse
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rendering [121, 126], 3D reconstruction [125, 241], single-image full-body relighting [94, 113]

and scene relighting [169, 170]. Our work is along this line. We show synthetic data are useful

in producing state-of-the-art relighting results.

One drawback of using synthetic data to train a learning-based approach is the exposure

to the synthetic-to-real domain gap problem. After all, synthetic data and real data follow two

different distributions. To bridge the gap, many prior works develop methods that leverage

domain knowledge in their applications. Representative approaches include synthetic-to-real for

semantic segmentation [48, 79], 3D human pose estimation [46], animal pose estimation [117],

GTA-to-real [184], SVBRDF estimation [226], depth estimation [8, 271], vehicle re-Id [115],

and multi-view portrait view synthesis and relighting [217]. We follow the same spirit and

devise a synthetic-to-real approach dedicated to the single-view portrait relighting task. In a

closely related work, Tajima et al. [218] propose a two-stage method for single-image full-body

relighting with synthetic-to-real domain adaptation. In the first stage, they train a neural network

for diffuse-only relighting using a spherical harmonic-based lighting representation. In the

second stage, they train a network for enhancing non-diffuse reflection by learning residuals

between real photos and images reconstructed by the previous-trained diffuse-only network. Our

method differs from theirs in several aspects. First, we focus on portrait images that contain high-

resolution facial details where errors are less forgiving. Second, our method takes environment

maps as the lighting representation for image-based relighting, which is more expressive. Third

but not least, we develop a novel self-supervised lighting consistency loss to achieve high-quality

results.

6.3 Synthetic Dataset Generation

For training a portrait relighting network, paired data are required for supervision. In

the dataset, each sample consists of a pair of images of the same person at the same pose and

expression but under two different lighting conditions. We generate the paired training dataset
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Image with Light 1 Image with Light 2 Mask Albedo Normal w/o LensesNormal w/ Lenses

Figure 6.3. Examples of our dataset rendering. Our rendering consists of paired images
under different lighting using HDR maps (as shown in the bottom right insets), along with the
corresponding foreground mask, albedo, and normal maps. In addition, we render normal maps
with lenses and without lenses to better model the reflections on glasses. Additional rendered
attributes such as diffuse, specular, and shadow maps can be found in Figure 6.5.

Table 6.1. Dataset comparisons for different portrait relighting methods. SIPR-S [216], TR [160]
and NVPR [263] use a light stage to capture OLAT sequences and generate relit ground truth
images. SIPR-W [234] and Ours acquire a large number of 3D face scans and render synthetic
datasets by applying HDR maps as the environment lighting.

Data acquisition Subjects Add-ons per subject HDR maps
Quantity Genders Hairstyles Clothes Accessories Real Synthetic

SIPR-S light stage 22 17M, 5F single single single 3094 ×
TR light stage 70 - single multiple multiple 200 ×

NVPR light stage 36 18M, 18F single single single 2810 ×
SIPR-W simulation 108 - none none none 391 ×

Ours simulation 515 247M, 265F multiple multiple multiple 1606 ✓

with a virtual light stage and a synthetic human generation pipeline described below.

Our synthetic human generation pipeline leverages pre-captured face scans that contain

various identities in different facial expressions. Note that these face scans come with neither

hair nor accessories. We thus randomly pair them with strand hair models of different styles and

with various accessories and clothes. Finally, we put the synthetic humans in a virtual light stage

where we illuminate them using HDR environment maps. The virtual light stage rendering is

performed using a physically-based path-tracing renderer to simulate the light transport faithfully.
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Hairstyles ExpressionsIdentities Clothes types Accessories HDR mapsCamera posesClothes roughness

Figure 6.4. Examples of the variations in our dataset rendering. For each column, we change
one variable which is specified at the bottom.

6.3.1 3D Face Scans

We use high-quality 3D photogrammetry-based face scans with high-resolution texture

maps for our synthetic humans. We note that these assets can be captured through a relatively

low-cost system [15] based on a passive camera array, which is much cheaper than a light

stage. Moreover, there are already commercially available high-quality 3D face scans. The

acquisition cost is lower than building a physical light stage. We acquired a commercial 3D

face scan collection from the Triplegangers website1. Each face scan is associated with a high-

quality 4k diffuse texture and a high-resolution face geometry to represent mesoscopic facial

details. Since the output mesh from a multi-view stereo process is unstructured, we fit our

template model of common topology with 12325 vertices to the scan with non-rigid ICP and

represent the remaining facial geometry details using a 4K displacement map. This common

template registration is necessary to automate the synthetic data generation processes, such as

fitting various hairstyles, applying common rigid transformations, and apply common UV-space

1https://triplegangers.com/
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material maps. We use the Arnold aiStandardSurface2 shader to describe the face material,

which includes path-traced subsurface scattering and specular highlights. We set the diffuse

texture as the subsurface scattering color. We also apply different materials to different eye

regions to render the specularity of eyes. Details of face materials can be found in Section 6.3.5.

The Triplegangers dataset consists of 248 males and 267 females of unique identities.

Each identity has up to 20 facial expression variations, leading to over 10k face scans in total. It

also features a diverse range of ages and ethnicity, including ages ranging from 18 to 76-year-old

and six ethnic groups. The detailed statistics can be found on the Triplegangers website.

6.3.2 Hair

Since our face scans do not contain hair, we use XGen [223] in Maya3 to model our own

custom hair strand templates. Each hairstyle is created by an experienced artist and is composed

of several XGen descriptors for different hair portions, such as eyelashes, eyebrows, and beards.

The Arnold aiStandardHair4, a physically-based hair shader, is applied to these XGen descriptors.

In total, we have 24 hairstyles, and each of them can be branched into many variations. To further

increase the diversity, we uniformly sample the melanin (within (0, 1)) and melanin redness

(within (0, 1)) to change hair colors. In our dataset, each hairstyle is fitted to various head scalps

of 3D face scans.

6.3.3 Clothing and Accessories

We acquire seven 3D garment models from the Turbosquid website5 to add clothing

variations to our synthetic humans. These seven garments have different styles, ranging from

business shirts to T-Shirts. In addition, we randomize the color and the roughness of clothes

(from 0.1 to 1.5) to cover a wider range of clothing.

2https://docs.arnoldrenderer.com/display/A5AFMUG/Standard+Surface
3https://www.autodesk.com/products/maya/
4https://docs.arnoldrenderer.com/display/A5AFMUG/Standard+Hair
5https://www.turbosquid.com
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We also acquire three different types of eyeglasses and one headphone from the Tur-

bosquid website. These accessories are randomly added to our synthetic humans during rendering.

These assets are added since they are most common for video conferencing, which is one of

the major applications for single-image portrait relighting. In the future, we plan to add other

accessories such as earring, necklace, scarf, and mask.

6.3.4 Rendering

We use Arnold [60] in Maya, a physically-based path tracer, to render our training dataset.

The renderer simulates the light transport based on physics and can create realistic outputs.

The training dataset consists of paired samples. Each sample consists of a synthetic

human with the same pose and expression rendered under two different lighting. We create

a synthetic human by sampling a face scan, a hairstyle, a garment, a pair of eyeglasses (at a

probability of 0.2), and a headset (at a probability of 0.05). The synthetic human is positioned

near the world center with some randomness in the precise location. We sample the camera pose

from a sphere centered at the world center with a fixed radius. The viewing angle is restricted to

within a range of (−45◦,45◦) horizontally and (−22.5◦,22.5◦) vertically in front of the faces.

The camera pose variations result in variations in head poses in the rendered images of the

synthetic humans.

Once a synthetic human is created, and a camera pose is sampled, we use two different

environment maps to illuminate it to create the paired sample. We use latitude-longitude format

HDR images as our lighting. We acquire 1536 HDR images for training and 70 images for

evaluation from a variety of sources, including Poly Haven6. The HDR images are captured from

various environments, including indoors and outdoors. To add more lighting variations, we apply

random rotations and horizontal flips to the HDR images.

In addition to color images, we also render other attributes such as albedo and normal

maps, which can be easily computed using our synthetic data generation pipeline. Moreover,

6https://polyhaven.com
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Diffuse Specular Subsurface Scattering Coat Sheen Shadow Object IDRendering

Figure 6.5. Example of additional rendering for implicit components. Diffuse, specular,
subsurface scattering, coat and sheen are used in Arnold aiStandardSurface for face materials.
We also explicitly rendered shadow maps and object ID maps which might be useful for future
research.

Specular Albedo Micro Specular Albedo Micro Normal MapDiffuse Albedo Face Displacement Map Eyes Displacement Map Face Region Mask

Figure 6.6. Example of spatially-varying maps used in Arnold aiStandardSurface shader.

we render two versions of surface normals, one with lenses in eyeglasses and one without. The

double normal map treatment helps us synthesize glares in the eyeglasses. Examples of rendered

results can be found in Figure 6.3. We demonstrate variations of hair, identities, expressions,

clothes, and accessories available to a face scan in our dataset in Figure 6.4. Overall, we rendered

about 300k paired samples, where each sample contains a pair of RGB images and the attributes

mentioned above. Each image has a resolution of 512×512 and is stored in the HDR format.

6.3.5 Additional Details on the Synthetic Dataset

In addition to the rendering example shown in Figure 6.3, our synthetic data generation

pipeline can generate other intrinsic components rendered but unused in our framework. As

shown in Figure 6.5, we can also render diffuse, specular, subsurface scattering, coat, and sheen

components which all rendered from the Arnold aiStandardSurface shader. We will release our

synthetic dataset.

As shown in Figure 6.6, we use a mask in the texture space to control different parameters
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Figure 6.7. Example of light maps. We compute prefiltered environment maps by diffuse and
specular convolution. We then compute diffuse light map Ld and specular light maps L1

s , L16
s ,

L32
s , L64

s by indexing the prefiltered maps using normal without glasses N and using normal with
glasses Nl to compute L1024

s,l .

for face and eye regions. For face regions, we apply 0.95 weight to subsurface scattering (SSS)

and set the RGB texture (diffuse albedo) as SSS color, (1, 0.35, 0.2) as RGB Radius, 0.225 as

scale, randomwalk v2 as type, and 0 as anisotropy. We apply a specular albedo map to specular

weight. Then, we set 0.82 to specular color and 0.4 to specular roughness, respectively. We set

0.1 to coat weight, a micro-specular albedo map (UV repeated 160 times) to coat color, 0.25 to

coat roughness, and 1.5 as coat IOR. We set 0.1 as sheen weight, 1.0 as sheen color, and 0.3 as

sheen roughness. We apply a micro-normal map (UV repeated 160 times) as a bump map. We

apply a displacement map (computed from a raw 3D face model) to skin regions.

The eye and inner mouth regions of our models are represented by a billboard mesh that

connects upper and lower eyelids or lips vertices with a projected texture similar to [130].

For eye regions, we set the RGB texture (diffuse albedo) as the base color. We apply a

gradient map (0.2 at the center, 1.0 at the boundary, computed from 1−0.8· eye displacement

below) to two eyeball regions of the diffuse texture to compensate for the unwanted refection

baked from the data capture. Specular weight and color are the same as the face, but we set 0.1

for specular roughness. We set 0.5 to coat weight, the same micro-specular albedo map for coat

color, 0.1 for coat roughness, and 1.376 for coat IOR. The same micro-normal map is applied
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as a bump map. We also set a gradient map as the displacement map to simulate the eyeball

geometry which is otherwise flat in the original face model. There are no SSS and sheen applied

to eye regions. In addition to the components from the shader, we also render shadow maps and

object ID maps, which might be useful for future research.

We also demonstrate the light maps computed from the input HDR environment map and

normal in Figure 6.7.

6.4 Method

The full framework of our portrait relighting method is shown in Figures 6.8 and 6.9.

We first obtain the foreground image I using an off-the-shelf matting network [103] given an

input portrait image. This image and an environment map are inputs to our relighting network to

predict a relit image R.

Our relighting network is based on the TR framework [160]. However, instead of adopting

it directly, we made several modifications to adapt it to our scenario. Below we first briefly review

the TR framework (Section 6.4.1). We then explain how we modify it to train on our synthetic

dataset (Section 6.4.2). Next, we finetune the model on real images to bridge the synthetic-to-real

domain gap (Section 6.4.3). Finally, we show how we can further finetune the model on real

videos to increase temporal stability when relighting portrait videos (Section 6.4.4).

6.4.1 Total Relighting [160]

At a high level, the TR framework works as follows: Given an image, it first predicts the

normal and albedo maps. It then predicts the diffuse and specular light maps with respect to the

target environment map illumination using the predicted normals. Finally, these components are

concatenated as input to another network to produce the final relit image. The framework consists

of 4 networks: a geometry network f T R
N , an albedo network f T R

A , a specular network f T R
S , and a

rendering network f T R
R . These networks are all implemented using a UNet architecture.

The geometry network f T R
N first takes the foreground image I as input, and generates a
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Figure 6.8. Our portrait relighting method when trained on the synthetic dataset. (a) The baseline
Total Relighting network [160]. (b) Compared with (a), we make two modifications. First, we
predict an additional normal map Nl which contains glasses lenses, so it can be used to create a
new highly specular light map Ls,l for glares on glasses. Second, instead of using fR as a black
box to generate the final output, we first obtain a coarse output R0 using the estimated albedo
and light maps. We then only estimate the fine details δR to be added to this coarse output to
obtain the final output. Note that the components similar to (a) are grayed out.
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Figure 6.9. Our syn2real adaptation and temporal refinement networks. Note that we only
modify the intrinsics estimator block in Figure 6.8. (a) To bridge the domain gap between
synthetic and real domains, we observe that the gap mainly comes from the estimated albedo
map. We thus train a domain adaptation network to refine the albedo map by predicting an albedo
residual, using only unpaired real data. (b) Finally, to increase temporal stability when relighting
videos, we can (optionally) train two more residual networks to refine the normal and albedo
maps using real videos. For each subfigure, the part similar to the previous subfigure is grayed
out.
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Table 6.2. Notations used in this chapter.

Baseline Syn2real Temporal

I Input foreground image
N Normal Nl Normal with lenses Ñt Temporally-refined normal

δ Ñt Temporally-refined normal residual
A Albedo Ā Refined albedo Ãt Temporally-refined albedo

δ Ā Refined albedo residual δ Ãt Temporally-refined albedo residual
Ld Diffuse light map
Ls Specular light map Ls,l Specular light map w/ lenses
Ws Weight for specular light map Ws,l Weight for specular light map w/ lenses
R Relit output image R̄ Refined relit output R̃t Temporally-refined relit output
R0 Initial Rendering
δR Relit image residual

fN Normal net fÑ Temporally-refining normal net
fA Albedo net fĀ Albedo refining net fÃ Temporally-refining albedo net
fS Specular net
fR Render net

surface normal map N,

N = f T R
N (I). (6.1)

Next, the foreground image I is concatenated with the surface normal map N as input and sent to

the albedo network f T R
A . The output is an albedo map A,

A = f T R
A (I,N). (6.2)

For environment maps, a diffuse irradiance map and a set of prefiltered environment

maps according to specular Phong exponents (n = 1,16,32,64) are precomputed [146]. The

prefiltering of environment maps makes the integration computation offline and thus enables the

real-time rendering of diffuse and specular materials. Here the light maps Ld,L1
s ,L

16
s ,L32

s ,L64
s can

be computed by simply indexing the prefiltered maps using the normal or reflection directions

depending on predicted surface normals N. The diffuse and specular light maps are more efficient

representations of lighting than the original environment map as they now embed the diffuse and

specular components of illumination in the pixel space.

The specular network f T R
S takes foreground image I, albedo map A, and four specu-

lar light maps L1
s ,L

16
s ,L32

s ,L64
s as input, and predicts the four-channel per-pixel weight map
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W 1
s ,W

16
s ,W 32

s ,W 64
s ,

W 1
s ,W

16
s ,W 32

s ,W 64
s = f T R

S (I,A,L1
s ,L

16
s ,L32

s ,L64
s ). (6.3)

The weighted specular light map Ls can be computed by Ls = ∑iW i
s ⊙Li

s, where i = 1,16,32,64

and ⊙ indicates pixel-wise multiplication.

Finally, the rendering network f T R
R takes albedo map A, diffuse light map Ld , and specular

light map Ls as input and predicts the relit image R,

R = f T R
R (A,Ld,Ls). (6.4)

Pandey et al. [160] train the networks using L1 losses, perceptual losses, and GAN

losses on the normal, albedo, and specular maps, as well as the final output. Please refer to their

paper for more details.

6.4.2 Learning with Synthetic Data

We make two major modifications to the TR framework when training it on our dataset.

The first one is that we improve the rendering network through a decomposition scheme. Unlike

previous work that employs the rendering decomposition (e.g., [267, 156], we decompose the

output to two learnable components: coarse rendering by predicting a set of parameters for a

fixed rendering function and fine-scale residuals. The second modification is that we predict the

normal for the lenses of the glasses prediction.

Improved rendering network

Different from the TR framework, which treats the rendering network fR as a black box to

get the final relit image, we first compute an initial rendering from the predicted albedo, diffuse,

and specular light maps. We then refine the result by only estimating the details which cannot

be modeled by this coarse rendering. Specifically, the final rendering is decomposed into two
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Figure 6.10. An example showing using a blackbox for final rendering vs. using an initial
rendering plus adding fine details (e.g., teeth) as in our framework.

steps. We first predict coefficients to linearly combine the diffuse and specular light maps and

then multiply the combined map by the albedo map to obtain an initial result,

R0 = A⊙ (Cd ·Ld +Cs ·Ls), (6.5)

where ⊙ stands for element-wise multiplication, and Cd , Cs are the predicted 3-channel coeffi-

cients. We then estimate a residual map δR to account for the details not modeled by this initial

rendering. The final relit image can then be computed by R = R0 + δR. An example of our

decomposition of initial coarse rendering R0, residual image δR, and the final relit image R is

shown in Figure 6.10. The facial details cannot be retained well if the final rendering is predicted

by a blackbox without decomposition.

In our framework, the coefficients and the residual map are predicted by fR, which takes

the foreground image I, the albedo map A, the diffuse light map Ld , and the specular light map

Ls as input,

Cd,Cs,δR = fR(I,A,Ld,Ls). (6.6)

Similar to the TR framework, we employ losses on the normal, albedo, and specular

maps, as well as the final output. In addition, to avoid the residual map δR becoming too large

and completely dominating the coarse rendering output R0, we add an L1 regularization on δR,

i.e., LδR = ||δR||1.
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Example results by applying this modification are shown in Figure 6.21. Although

this does not lead to large-quality improvement when trained on the synthetic dataset, it has

significant effects when applying the synthetic-to-real adaptation to real data, as introduced in

Section 6.4.3.

Normal prediction for glasses

Since our synthetic dataset contains normal maps both with lenses and without lenses for

glasses, we train our network to predict both of them. In particular, our geometry network fN

generates two normals,

N,Nl = fN(I), (6.7)

where N is the normal map without lenses and Nl is the normal map with lenses. If input has no

eyeglasses, we predict the same normal maps for N and Nl . Then, when generating the specular

light maps, in addition to the four original specular exponents (L1
s ,L

16
s ,L32

s ,L64
s ) using N, we

generate an additional highly specular one L1024
s,l using Nl to account for the glares. Our specular

network fS then predicts an additional weight W 1024
s,l compared to Equation. 6.3,

W 1
s ,W

16
s ,W 32

s ,W 64
s ,W 1024

s,l = fS(I,A,L1
s ,L

16
s ,L32

s ,L64
s ,L1024

s,l ). (6.8)

The weighted specular light map then becomes Ls = ∑iW i
s ⊙ Li

s +W 1024
s,l ⊙ L1024

s,l where i =

1,16,32,64. This allows us to enable the eyeglasses glare controlling feature, as demonstrated in

Figure 6.1, Figure 6.22, and the supplementary video7.

6.4.3 Synthetic-to-Real Adaptation on Real Data

Although the model trained in Section 6.4.2 using our synthetic dataset can generate

reasonable relit results, the outputs often lack photorealism when tested on real images. This is

because there is a domain gap between rendered and real-world portrait photos. To bridge this

gap, we propose a novel synthetic-to-real (syn2real) mechanism for portrait relighting.
7https://research.nvidia.com/labs/dir/lumos/
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Refined relit ത𝑅Original albedo 𝐴 Refined albedo ҧ𝐴 Original relit 𝑅

Figure 6.11. An example showing the initial vs. refined albedo and their corresponding relit
outputs. Note how the refined albedo and relit output generate much better clothing.

In particular, instead of naively applying an existing syn2real network on the final relit

image, we observed that the domain gap between synthetic and real data mainly comes from the

diversity of the subject albedo, which strongly determines the final appearance in the relit image.

People have more diverse hairstyles, face colors, minor facial marks, wearings, and accessories

in the real world, which are missing in the synthetic data. This causes the albedo network trained

with only synthetic data to fail when modeling real-world appearances. We tried a few variants

of the adaptations including the adaptation of surface normals, but found empirically that the

proposed albedo adaptation framework works better with our synthetic dataset.

To handle the domain gap between the albedo maps, we add an additional albedo residual

network fĀ to refine the initially estimated albedo. The network fĀ takes the portrait image I, the

normal map N, and the estimated albedo A as input and outputs an albedo residual δ Ā,

δ Ā = fĀ(I,N,A). (6.9)

The refined albedo, Ā = A+δ Ā, then replaces the original albedo A as the input to the rest of the

model ( fS and fδR) to predict a new relit output R̄. As shown in Figure 6.11, the refined albedo

after adaptation can recover input details (cloth color in this case) that are not seen in synthetic

data.

When finetuning on real data, we only train fĀ while keeping the rest of the model fixed.

The loss functions include a similarity loss, an identity loss, a GAN loss, and two lighting
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Figure 6.12. OLAT consistency loss. We relight the input using two randomly picked OLAT
maps and compute the difference between the sum of them and the result when we relight using
the sum of the two OLAT maps.

consistency losses. For all losses, the superscript refers to the loss type, while the subscript refers

to the output where the loss is computed on.

Lighting consistency loss L Colat
R̄ , L Crela

R̄

To keep the relighting effect consistent before and after the syn2real adaptation, we apply

the following consistency losses between the relit image R̄ and the input foreground image I as

regularization terms.

First, we use the OLAT lighting consistency loss. This loss assumes that the illumina-

tions and relit outputs have the distributive property, i.e., summing two environment maps and

relighting with the sum leads to the same result as summing the two relit outputs, as shown in

Figure 6.12. In particular, we first generate a set of OLAT environment maps, where only one

pixel is lightened in each of them to simulate the light stage scenario. We demonstrate the OLAT

images we used to train and evaluate our network in Figure 6.13. In total, we uniformly sample

168 locations on a sphere. We put a high-intensity light source at each location and project them

to latitude-longitude format to create 168 OLAT HDR environment maps in total. Each light

source in our OLAT HDR environment is created such that the light source preserves the same

intensity when it is mapped onto the sphere from the latitude-longitude representation.

During each training iteration, we randomly sample two of them (OLAT1 and OLAT2) to

simulate two different light source locations and get the combined environment map OLAT1+2,

which simulates two light sources turned on at the same time. Let the output images relit by
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Figure 6.13. We created OLAT-like HDR environment maps at uniformly sampled locations on
a sphere. In the middle we show all the sampled locations (all lights on). In the top and bottom
row, we show different OLAT environment maps (one light on) at 6 locations.

maps OLAT1, OLAT2, and OLAT1+2 be R̄o1, R̄o2, and R̄o1+o2, respectively. The loss is then

L Colat
R̄ = ||(R̄o1 + R̄o2)− R̄o1+o2||1. (6.10)

Using two OLAT images, instead of two environment maps, ensures that the relighting can

react to high-frequency point lighting conditions such as the OLAT lighting as shown in the

accompanying video.

Second, we use the relative lighting consistency loss. This loss assumes that the adapta-

tion should only change the photorealism and acts as a form of regularization to preserve the
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Figure 6.14. Relative consistency loss. We relight the input using two randomly picked
environment maps and compute the difference between the two relit outputs. This is done
for both before and after the syn2real adaptation, and we compute the loss between the two
differences.

relighting behaviors that our network has learned from a physically-based renderer. As we do

not have ground truth lighting, we enforce this idea through a pair of relighting outputs. Let

Ei and E j be an arbitrary pair of two environment maps randomly picked every time the loss is

evaluated. We denote the relit results using Ei and E j as Ri, R j before adaptation and R̄i, R̄ j after

adaptation. We then apply an L1 loss between the two differences,

L Crela
R̄ = ||(Ri −R j)− (R̄i − R̄ j)||1. (6.11)

This way, the network has a stronger incentive to preserve the lighting produced before the

syn2real adaptation, as the deviations from the original outputs will be discouraged. Mathe-

matically, ||(Ri −R j)− (R̄i − R̄ j)||1 = ||(Ri − R̄i)− (R j − R̄ j)||1 = ||di −d j||1. This encourages

the improvements d to be invariant to lighting conditions. It means that our loss will keep the

overall lighting consistent before and after the adaptation but only change the photorealism.

We visualize the effect of the relative lighting consistency loss in Figure 6.14 and Figure 6.15.

We note that the relative consistency loss plays an important role in our adaptation framework.

Figure 6.15 compares three variants: without the adaptation (w/o adaptation), without relative

lighting consistency loss (w/o relative consistency loss), and our full model. As can be seen, w/o

adaptation (first row) leads to washed out albedo details and textures (e.g., on clothing). With

adaptation, but without the relative lighting consistency (second row), the method fails to recover
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Figure 6.15. Comparisons on the effectiveness of the albedo adaptation and relative lighting
consistency loss for the output layers. Without adaptation, the model cannot keep facial details
such as hair colors and beards, and most notably the textures on the clothing. Without the relative
lighting consistency loss, the input image lighting is baked into the predicted albedo and leads
to inaccurate relighting results. Our full model can recover correct albedo colors and details
better, since the proposed relative lighting consistency loss aims to improve the photorealism in
isolation under arbitrary target lightings.

the correct albedo. For example, the cast sunlight in the input is baked into the predicted albedo

and the model is unable to disentangle the lighting and the albedo in the input. With our full

model (third row), both the details and correct albedo colors can be recovered after adaptation.

Similarity loss L sim
Ā

To prevent the refined albedo from deviating too much from the original albedo, we

extract VGG features from the original and refined albedo and put an L1 loss between them.

Identity loss L Id
R̄

To ensure the identity does not get changed after relighting, we apply a face recognition

network [163] on the input I and relit images R̄, extract high-level features from them, and

compute the L1 distance between these two features.
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GAN loss L G
R̄

To make the relit images look realistic, we also put a GAN loss on the relit images R̄.

The overall loss is then

L adap =λ
Colat L Colat

R̄ +λ
CrelaL Crela

R̄

+λ
simL sim

Ā +λ
IdL Id

R̄ +λ
GL G

R̄ (6.12)

where λ ’s are the weights and are set to 10, 10, 10, 1, 1 respectively in our framework.

Example results before and after the domain adaptation can be found in Figure 6.21.

We also show comparisons with directly applying syn2real on the output relit image as well as

without adopting our improvement in Section 6.4.2. The losses are the same as the full model,

while the similarity loss is computed on the relit image instead of the albedo. We found that

both alternative approaches give the network too much “freedom” to change the relit output. As

a result, the correct lighting information is not preserved after adaptation. In particular, when

directly applying syn2real to the output, it creates a “shortcut” that the network just mimics the

real image since the real image is both the input to the network and the target. On the other hand,

when we do not adopt the modification in Section 6.4.2 and directly estimate the output using a

black box fR, the network tends to use the albedo map in an unpredictable way to generate the

relit image. In our approach, the generation is fully controllable by the albedo map since a linear

combination is used.

6.4.4 Relighting Portrait Videos

In many applications, portrait video relighting is required. A straightforward way to

achieve this capability is to simply apply the relighting model in a frame-by-frame manner.

However, this usually results in flickering artifacts in the relit video. In particular, we observe

that the flickering is due to the intermediate outputs in our framework changing too frequently

between frames. These intermediate outputs include the estimated normal and albedo maps.
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To resolve the issue, we learn two temporal residual networks fÑ and fÃ to make the normal

and albedo maps temporally consistent, respectively. Note that these temporal networks are

only required for video portrait relighting and are learned while keeping the other parts of the

framework fixed.

The temporal residual networks take outputs from the past frame and the predictions

from the image-only relighting part of the framework at the current frame as inputs. In particular,

fÑ takes the original normal prediction Nt at time t and the refined normal from the previous

frame Ñt−1 at time t −1 as input for predicting a temporal normal residual δ Ñt . This residual is

added to the original normal prediction Nt to obtain the refined normal Ñt .

δ Ñt = fÑ(Ñt−1,Nt), Ñt = Nt +δ Ñt . (6.13)

Similarly, fÃ takes temporally refined normal Ñt−1, Ñt , temporally refined albedo Ãt−1, and the

albedo Āt (after syn2real adaptation) as input, and predicts a temporal albedo residual δ Ãt . This

residual is added to the syn2real albedo Āt to obtain the temporally refined albedo Ãt .

δ Ãt = fÃ(Ñt−1, Ñt , Ãt−1, Āt), Ãt = Āt +δ Ãt . (6.14)

After we obtain the refined normal and albedo maps, they are fed into the rest of the

framework to obtain the final relit output R̃t . To train the two networks, we again adopted the

similarity loss and identity loss used in Section 6.4.3. To ensure temporal consistency, we also

add a warping loss between neighboring frames.

Similarity loss L sim
Ñ

, L sim
Ã

Similar to our syn2real treatment in Section 6.4.3, we add a perceptual loss between the

original (Nt and Āt) and temporally-refined attributes (Ñt and Ãt) to prevent the refined attributes

from deviating too much from the original ones.
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Identity loss L Id
R̃

To ensure the identity does not get changed after refinement, we extract identity features

from input It and refined output R̃t using a face recognition network [163] and put an L1 loss

between them.

Warping loss L W
R̃

We first compute the optical flow [182] on neighboring input frames It−1 and It . We then

apply the flow to warp the previous relit frame R̃t−1 and compute its difference to the current

relit frame R̃t ,

L W
R̃

= ∥W (R̃t−1)− R̃t∥1, (6.15)

where W is the warping function based on the estimated optical flow. The final loss is then

L tem = λ
sim(L sim

Ñ
+L sim

Ã

)
+λ

IdL Id
R̃

+λ
W L W

R̃
, (6.16)

where λ ’s are loss weights and are set to 0.2,0.1,5 in our framework. In Figure 6.23, we show

that our temporal refinement can improve temporal consistency significantly.

6.4.5 Datasets and Implementation Details

For supervised learning of our portrait relighting network (Section 6.4.2), we use our

synthetic dataset created from Section 6.3 for training. For syn2real finetuning on real data

(Section 6.4.3), we crop the original FFHQ [98] data with a similar field of view to our synthetic

data and resize the images to 512x512 resolution. The FFHQ dataset contains 70k images,

which are split into 60k/10k for training/validation. We use the training set in our adaptation

and leave the validation set for evaluation. For temporal refinement (Section 6.4.4), we use the

TalkingHead-1kH dataset [231], which consists of about 500k face video clips. We randomly

sample 4 consecutive frames from a clip during each iteration to train the temporal network.

For both our syn2real and temporal networks ( fĀ, fÃ, fÑ), we use a ResNet with 2
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downsample layers, 9 residual blocks, and 2 upsampling layers. The channel size for the first

layer is 32 and is doubled after each downsampling. We train our networks using a learning

rate of 0.0001. For each of the three stages (synthetic, syn2real, and temporal), we train for 50k

iterations using a batch size of 64 on 8 NVIDIA V100 GPUs. All of our networks are trained to

produce an image of 512 resolution. Our end-to-end process runs in 65ms on an NVIDIA A6000

GPU.

6.5 Experiments

We compare our method with SIPR-W [234], TR [160], and NVPR [263]. Since none of

these methods releases their code or models, we requested the authors to apply their models to

our inputs and provide the results to us. Note that for NVPR, the authors did not return the results

for the synthetic test set, so we only compare with NVPR on the real dataset. In the following,

we first show comparisons on our synthetic test set (Section 6.5.1). We then show comparisons

on a real in-the-wild face dataset using FFHQ (Section 6.5.2). Next, we perform ablation studies

on our network design choices (Section 6.5.3). Finally, we show additional features available in

our framework, including controlling glasses glares and relighting portrait videos with temporal

consistency (Section 6.5.4).

6.5.1 Comparisons on the Synthetic Dataset

Our synthetic test set consists of 25 identities that are never seen during training. We

use all the available expressions for each identity and randomly pair each of them with two

environment maps to form a ground-truth pair. This results in 477 pairs of images in total.

Quantitative results

We compare the mean absolute error (MAE), the mean squared error (MSE), the structural

similarity index measure (SSIM) [235], and the Learned Perceptual Image Patch Similarity

(LPIPS) [266] between the relit images and the ground truths for each method. The comparison
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Input SIPR-W
[Wang et al. 2020]

TR
[Pandey et al. 2021]

Ours Ground Truth w/ Light

Figure 6.16. Comparisons with state-of-the-art methods on our synthetic dataset. SIPR-W [234]
and TR [160] tends to change skin tone and hair color. Ours can predict the relit results closer to
the ground truth and preserve the identities, skin tone, hair color, and the facial details.
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Table 6.3. Quantitative evaluations on the test set of our synthetic dataset.

MAE ↓ MSE ↓ SSIM ↑ LPIPS ↓

SIPR-W [234] 0.2506 0.1159 0.4406 0.3633
TR [160] 0.2328 0.1083 0.4851 0.3465
Ours 0.1967 0.0975 0.5272 0.2891

is shown in Table 6.3. Note that all the baselines and our method suffer from the similar domain

gap, i.e., trained on real data but evaluated on synthetic data. Our method achieves the best

results on all metrics, outperforming all other baselines by a large margin.

Qualitative results

The qualitative comparisons are shown in Figure 6.16. Compared with other methods, the

results generated by our approach are more similar to the ground truth in terms of both lighting

accuracy and color tones. The results by SIPR-W have multiple artifacts, especially on the hair

and clothes. The results by TR have fewer artifacts but sometimes change the person’s identity

or skin colors. This may be expected since TR is never trained on synthetic data. Hence, we

compare the performance of the challenging in-the-wild images next.

6.5.2 Comparisons on the Real Dataset

We compare the performance of the competing methods on real images in the FFHQ

dataset. We pick 116 images from the FFHQ test set and randomly pair each of them with 4

different environment maps, resulting in 464 images in total. The images are chosen with gender,

age, and ethnic diversities in mind.

Qualitative results

In Figure 6.17, we provide qualitative comparisons in a tighter crop, accommodating the

preferred setting in SIPR-W and NVPR. SIPR-W has trouble handling the real-world data since

the model is only trained with synthetic data. NVPR tends to predict unnatural illumination on the

face regions and incorrect appearances on clothes regions. TR is able to generate photorealistic
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Input OursTR
[Pandey et al. 2021]

NVPR
[Zhang et al. 2021]

LightSIPR-W
[Wang et al. 2020]

Figure 6.17. Comparisons with state-of-the-art methods on FFHQ evaluation dataset for real
portraits. SIPR-W [234] cannot handle in-the-wild images due to the models purely trained
with synthetic data. NVPR [263] generates unnatural appearance and artifacts on cloth regions.
TR [160] can generate plausible relit images, but exhibits artifacts on hair (second and fourth
rows), inconsistent lighting directions with the reference diffuse sphere (third row), and lack of
facial details (sixth row). Our results can synthesize plausible glares on eyeglasses (first row),
keep facial and hair details, and generate relit portraits consistent with the target illumination.
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Figure 6.18. Comparisons with state-of-the-art methods on FFHQ evaluation dataset for larger
(including shoulder) real portraits. TR [160] tends to generate blurred details for hair regions
and shows artifacts on clothes. TR also exhibits the relit face that is inconsistent with the given
lighting, compared to the diffuse sphere reference (third column). Ours can remove unwanted
cast shadows from eyeglasses (first column), keep details and colors on clothes and hair, and
overall consistent lighting with the diffuse sphere reference.

results but exhibits artifacts on hair regions (second and fourth rows) and loses facial details

(sixth row). In addition, the illumination by TR is sometimes not aligned with the target. In

the third row, the ground snow is supposed to illuminate the face from the bottom as shown in

the diffuse sphere reference, while the TR output illuminates the face from the right side. Our

method generates a natural appearance and consistent lighting conditions with the reference

sphere and additionally adds glares on eyeglasses (first row). In Figure 6.18, we compare our

results with the TR method in larger crops. While TR can overall generate photorealistic results,

it shows unnatural appearance and artifacts in the hair regions and an inconsistent lighting output

(third column). It also shows blurry results in the hair region (fourth column). Our method can

robustly handle the wide variety of hair colors and clothes types thanks to the variations in our

synthetic data and in-the-wild data used in the synthetic-to-real adaptation.
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Table 6.4. Quantitative evaluations on the test set of FFHQ.

Lighting ↓ FID ↓ Identity ↑
SIPR-W [234] - 73.31 0.6522
NVPR [263] - 52.25 0.7461
TR [160] 0.0699 43.50 0.6226
Ours 0.0645 36.13 0.7413

Quantitative results

Since we do not have ground truths for quantitative comparisons, we adopt the following

metrics. We measure the resulting quality of each method in three different aspects: lighting

accuracy, photorealism, and identity preservation.

Lighting recovery

To evaluate how accurately the relit results translate the lighting information from the

input lighting environment, we estimate the lighting from relit images and compare it with the

target lighting. In particular, we use the relit portrait, along with the estimated albedo and normal

maps, to compute the second-order spherical harmonic (SH) coefficients [180] by solving a least

square problem on visible skin pixels. We use face skin and nose masks predicted from a PyTorch

implementation of a face parsing network8 based on BiSeNet [259] to determine skin pixels. This

is done only for TR [160] and our method since both methods generate albedo and normal maps

as side products. We reconstruct a sphere rendering from estimated SH coefficients and apply a

global intensity multiplier to compensate for a global exposure difference between the estimated

and target illumination. To be specific, we compute the average intensity of the sphere rendering

from the estimated SH coefficients to derive the global scalar for matching the average intensity of

the sphere rendering from the target SH coefficients. We compute the L1 pixel difference between

the reconstructed and target sphere renderings to measure the accuracy. We computed this error

in the pixel space instead of the coefficient space since the coefficient space has ambiguity (i.e.,

multiple coefficient combinations can give rise to the same reconstruction). The comparisons

8https://github.com/zllrunning/face-parsing.PyTorch
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Figure 6.19. Comparison of lighting recovery from relit images on the FFHQ dataset. We com-
pare TR (second row) and our method (third row) on the consistency of the lighting information
recovered from the relit portrait via the second-order spherical harmonic (SH) lighting [180]
compared to the ground truth environment (bottom row). Given the relit image (top of the row),
albedo (bottom left of the row), and normal map (bottom right of the row) generated from the
input image (top row), we estimate the second-order SH coefficients by solving a linear system
using foreground pixels. We visualize the recovered SH lighting condition on the diffuse ball
rendering in the inset highlighted in yellow. The inset diffuse ball renderings show our method
has more consistent lighting than TR compared to the ground truth diffuse ball rendering (bottom
row).
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are shown in Figure 6.19 and Table 6.4. Our results demonstrate better numerical accuracy and

are closer to the ground truth sphere rendering. Although the intermediate normal predictions

from TR might contain more high-frequency details than ours, it sometimes predicts incorrect

geometry, such as the eyeglasses shadow in the cheek region (first column in Figure 6.19). When

the entire framework is trained end-to-end, the final rendering network is able to compensate for

small differences or errors from the normal prediction.

Synthesis quality

To compare the photorealism of the resulting quality, we compute Fréchet Inception

Distance (FID) [76, 194] scores between the input FFHQ test set and the relit results from each

method. For fair comparisons, we mask out the background of each image and only consider

the foreground region. From Table 6.4, it can be seen that our method has the lowest FID score,

which demonstrates its ability to synthesize realistic portrait images.

Identity similarity

We evaluate the identity consistency before and after relighting, as shown in Table 6.4.

To do so, we use a face recognition network [7] (different from the one that we use in our

training loss) to extract face embeddings before and after relighting of foreground images for

each method and compute the similarity score between these two embeddings. We found that

NVPR achieves a slightly higher identity similarity score, but our score is very close to theirs,

and our FID score is much better. Moreover, from Figure 6.17 it can be seen that their method

shows unnatural facial appearance that is not consistent with the target illumination (fourth and

sixth rows).

User study

Finally, we perform a user study by asking Amazon Mechanical Turk workers to answer

three binary questions: given an input image and an environment map, which relit image 1) has

more consistent lighting with the environment map? 2) maintains better facial details? 3) keeps

the original identity better? between our relighting result and one of the baselines. The orders
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Table 6.5. User study on the FFHQ test set. For each comparison, we ask the workers to choose
the better image according to the criterion on the left. The preference rates where workers prefer
our image than the other baselines are summarized below. For all metrics, the preference rates
are greater than 0.5, meaning the workers prefer our results more.

Ours vs. SIPR-W Ours vs. NVPR Ours vs. TR

Consistent Lighting 0.5453 0.5934 0.5474
Facial Details 0.8527 0.7601 0.5409
Similar Identity 0.8886 0.8218 0.5230

Maintains better facial details?Has more consistent lighting? Keeps the original identity better?

Figure 6.20. Examples of user study questions interface for the three questions: 1) has more
consistent lighting? 2) maintains better facial details? 3) keeps the original identity better? For
the first question, we present a diffuse ball lit by the target environment map and ask users to
select an option from two relit images, which is lit in a more similar way to the ball. For the last
two questions, we present an input portrait image and ask users to select an option on relit results
from two methods.

of the methods are randomized for fair comparisons. To make the workers better understand

the concept of consistent lighting, we also show the relit balls similar to the ones shown in

Figure 6.17. We split the 464 images into 4 partitions and ask each worker to evaluate a partition

on a single question. Each comparison is evaluated by 3 different workers, resulting in 1392

comparisons for each question. In total, 4 (partitions) x 3 (questions) x 3 (comparisons) = 36

workers participated who have never seen the questions. The evaluation results are shown in

Table 6.5. It can be seen that workers prefer our results more compared to all baselines using all

different metrics.

We demonstrate our user study interface for the questions: given an input image and an

environment map, which relit image 1) keeps the original identity better? 2) maintains better

facial details? 3) has more consistent lighting with the environment map? between our relighting

result and one of the baselines in Figure 6.20. For the first two questions, we present an input

portrait image and ask users to select an option on relit results from two methods. For the last
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Table 6.6. Ablation study on baseline adaptation methods with real FFHQ test set. All the
results are computed on foreground images. There are trade-offs between identity consistency,
synthesis quality (FID) and OLAT consistency. The model can report a slightly higher FID score
or the identity similarity when it is trained without relative or OLAT consistency loss at the cost
of the much worse lighting consistency, which is less suitable for portrait relighting. Our full
model achieves the best performance in OLAT consistency while maintaining the similar scores
(second best) in the other metrics, which leads to the best lighting control while preserving the
portrait identities with high photorealism.

OLAT Cons. ↓ FID ↓ Identity ↑
w/o improved render net 0.0970 54.08 0.7237

w/o adaptation 0.0417 58.61 0.6402
Finetune only 0.2284 69.24 0.6932
Direct syn2real 0.0267 43.14 0.7206

w/o Relative consistency loss 0.0746 36.90 0.7612
w/o OLAT consistency loss 0.0205 35.87 0.7405

Our full model 0.0166 36.13 0.7413

question, we present a diffuse ball that is lit by the target environment map and ask users to

select an option from two relit images which is lit in a more similar way to the ball.

6.5.3 Ablation Studies

We compare different baselines for our relighting model design choices described in

Section 6.4.2 and Section 6.4.3. We compute the same metrics as used in Section 6.5.1 for

synthetic test set and in Section 6.5.2 for the real test set in Table 6.6. In addition, we also compute

the OLAT consistency error to evaluate the lighting control of our relighting performance. The

computing procedure is similar to our OLAT lighting consistency loss (Equation 6.10). The

qualitative results of each ablative baseline are shown in Figure 6.21 on the FFHQ real test set.

We describe each ablative baseline as follows:

w/o improved render network

Instead of using the proposed rendering decomposition and delta relit image prediction,

we directly use a blackbox rendering network in TR [160] to predict the relit images.
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Input w/o Adapt w/o Relative Cons. w/o OLAT Cons. Full Modelw/o Improved Render Net Finetune Only Direct Syn2Real Target

Relighting Method Variants Adaptation Method Variants Consistency Losses

Figure 6.21. Ablation comparisons on our adaptation choices. For w/o adaptation, the model
cannot perform well on real data and cannot keep the facial details such as hair color and beards.
For w/o Improved Render Net, Finetune Only, and Direct Syn2Real, they give too much freedom
to the network which also leads to degenerated results due to overfitting, including out-of-control
relighting results and losing facial or clothing details. With our proposed adaptation method, w/o
Relative consistency loss cannot synthesize minor facial highlights and might change hair or face
colors. For w/o OLAT consistency loss, the overall results are similar to our full model, but the
lighting control is slightly worse and the output exhibits artifacts on the hairlines (first, second
and fourth rows).

w/o adaptation

We only use the proposed improved rendering network (Section 6.4.2) without applying

the syn2real adaptation (Section 6.4.3).

Finetune only

We apply all the syn2real adaptation losses mentioned in Section 6.4.3 to finetune all the

networks of our base model (Section 6.4.2) after training with synthetic data.

Direct syn2real on relit image

Instead of learning an albedo residual δ Ã as mentioned in Section 6.4.3, we learn a

module to predict the residual for the output relit image while keeping the weights for the other

modules in the base model fixed.
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w/o relative consistency loss

We keep the weights of our base model unchanged and only optimize the weights for the

albedo residual network with all losses for adaptation except the relative consistency loss.

w/o OLAT consistency loss

Similar to above, we only optimize for the albedo residual network with all adaptation

losses except the OLAT consistency loss.

Full adaptation

Our full adaptation method optimizes the albedo residual network with all the adaptation

losses.

As shown in Figure 6.21, w/o adaptation cannot generalize to real portrait images well.

It predicts incorrect appearances on hair and clothing regions. For w/o improved render net,

Finetune only, and Direct syn2real, they give too much freedom to the adaption network during

training, which leads to incorrect relighting results due to overfitting. In particular, the overall

appearances do not reflect the input environment maps for Finetune only. The facial and clothing

details are not preserved well in w/o improved render net. For Direct syn2real, although the

relighting results look plausible, it loses the details of clothing regions. On the other hand, w/o

relative consistency loss loses minor relighting details such as the specular highlights on the skin

(third row) and might also change hair or face colors. For w/o OLAT consistency loss, the relit

image exhibits artifacts around the hairline (first, second and fourth columns).

We also would like to note there are trade-offs between identity similarity, synthesis

quality (FID), and lighting control. One possible way for the model to optimize for the identity

similarity and the FID score is to try not to change image content as much as possible at the

cost of violating lighting consistency. As seen in Table 6.6, w/o OLAT consistency loss and

w/o relative consistency loss achieve the slightly better FID and identity scores but also show

much worse lighting consistency. This is reinforced in Figure 6.21 that without the lighting

consistency losses, the outputs exhibit unnatural results and artifacts less suitable for relighting.
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Input w/o Glasses Glares w/ Glasses Glares
Figure 6.22. Example comparisons showing results without vs. with adding glares using our
method. The diffuse and mirror balls are shown in the set. Please click each row to view the
video.

We choose our full model with the best performance on OLAT consistency while keeping the

identity similarity and FID scores as the second best. This leads to the best lighting control on

the relit images with the least artifacts while largely preserving the input identities with high

photorealism.

6.5.4 Video Relighting

Finally, we show results using our video relighting framework.
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Table 6.7. Quantitative comparisons for temporal consistency on relit videos. For each relit
video, we use optical flows to warp neighboring frames and compute the differences.

MAE ↓ MSE ↓
Ours (w/o temporal) 0.0511 0.0024
NVPR 0.0488 0.0031
Ours (w/ temporal) 0.0477 0.0020

Controllable glasses glares

Thanks to our synthetic dataset and our new network architecture (Section 6.4.2), we are

able to control the glares on glasses in the relighting results. This is achieved by three of our

design choices. First, we have both normals with and without lenses in our synthetic dataset, so

we are able to supervise our model on both normals. Second, we modify our geometry network

and specular network to consider normals with lenses, including an additional light map with a

very high Phong exponent. Finally, we directly use the light maps to first generate a coarse relit

image and predict the residual for the output (Equation 6.5) instead of using a neural network as

a black box. Therefore, differences in light maps are directly transferable to the final output.

Example results are shown in Figure 6.22 in the embedded videos. Note that the glares

are caused by the reflections from the rotated environment map.

Temporally-consistent video relighting

We are able to generate temporally-consistent outputs by refining the intermediate normal

and albedo maps based on previous frames (Section 6.4.4). An example comparison is shown in

Figure 6.23 in the embedded video. Without the temporal refining components, the results exhibit

flickering artifacts when the subject is making large motions like rotating the head abruptly.

When utilizing our temporal refining networks, the results become much smoother and more

realistic.

We also compare our video relighting results with NVPR [263] in Figure 6.24 and

Table 6.7. We evaluate temporal consistency on 9 different subjects with 6 selected environment

maps (resulting in 54 videos). We compute optical flows [182] on neighboring frames and
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Input w/o Temporal w/ Temporal
Figure 6.23. Comparisons between with and without applying our temporal refinement. Please
click each row to view the video.

warp the frame from t to t + 1 and compute the MAE and MSE between the warped frames

and estimated frames. A lower error means the video contains fewer flickering artifacts. Ours

performs better than NVPR in terms of temporal consistency and relighting quality.

6.5.5 Limitations

We demonstrate a few failure cases in Figure 6.25. Our method cannot predict the correct

albedo for the overly exposed highlights on hair under a strong light source. It also cannot

remove the reflection on the eyeglasses and the shadows cast by a direct light on the clothes.

The inaccurate albedo predictions lead to incorrect relighting results. We could ameliorate this

effect by first using an off-the-shelf method to remove these unwanted highlights or shadows

and then applying our relighting model. For future work, we could explicitly model these strong

shadows [270] or reflections to learn better albedo and relighting predictions.

6.6 Conclusion

We proposed a new synthetic dataset for single image portrait relighting, which contains

over 500 subjects of diverse ages, genders, and races with randomly assigned hairstyles, clothes,

and accessories, rendered using a physically-based renderer. We showed that the single image and

video portrait relighting tasks can be tackled without light stage data by training a base relighting

model on the diverse synthetic dataset and later applying a synthetic-to-real domain adaptation
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Input NVPR [263] Ours
Figure 6.24. Comparisons with the state-of-the-art method on video relighting. Note our results
exhibit fewer flickering artifacts and are more temporally consistent. Please click each row to
view the video.
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Figure 6.25. Examples of some failure cases. Our albedo estimation cannot remove strong
highlights on eyeglasses and hair. The strong shadow cast on the clothes from the back of the
subject is difficult to remove. The inaccurate albedo estimations lead to incorrect relit outputs.

using real in-the-wild portrait images and video. Self-supervised lighting consistency losses

are used to ensure lighting consistency during the adaptation learning. Extensive experimental

validations suggested that our relighting method outperforms the latest state-of-the-art single

image or video portrait relighting methods in terms of lighting recovery, synthesis quality, and

identity preservation. We believe our synthetic dataset for relighting and our method that does

not require high-quality captured data fosters the portrait relighting research.

Chapter 6 is based on the material as it appears in ACM Transactions on Graphics,

2022 (”Learning to Relight Portrait Images via a Virtual Light Stage and Synthetic-to-Real

Adaptation”, Yu-Ying Yeh, Koki Nagano, Sameh Khamis, Jan Kautz, Ming-Yu Liu, Ting-Chun

Wang ). The dissertation author was the primary investigator and author of this paper.
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Chapter 7

Conclusion and Future Work

This dissertation explores various approaches to creating photorealistic content for

diverse subjects, including microfacet surfaces, transparent objects, and portraits, utilizing

both optimization-based and learning-based methods. Different priors are integrated into the

ill-posed creation pipeline from sparse in-the-wild images. These include learning light transport

via synthetic datasets, incorporating a procedural graph database for high-quality material

optimization, and distilling knowledge from a generative model trained on large-scale real-world

images and fine-tuned on a small, customized image set to generate specific high-quality textures.

As a result, we have developed frameworks capable of generating explicit, relightable 3D

assets or scene configurations with editability for XR applications. Additionally, we propose a

relighting network designed to enhance immersive XR experiences through portrait relighting

techniques. For future work, we aim to improve the speed, intrinsic decomposition, and 3D

consistency and coherency of the photorealistic 3D content creation pipeline, as detailed in

the Section 7.1. We believe this dissertation lays a solid foundation for advancing practical

photorealistic content creation pipelines from sparse in-the-wild image sets.

7.1 Future Work

In the optimization approach, a differentiable renderer is implemented in the pipeline.

For the sake of rendering speed, it is typically assumed that the lighting is an infinitely distant
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environment illumination, allowing for rendering with a differentiable rasterizer. However, this

assumption fails in scenarios where the light sources are closer, such as lamps, which are usually

not infinitely far away. In these cases, differentiable Monte Carlo path tracing and denoising

approaches are necessary but require more resources and time to compute. A practical direction

for improving speed is to explore learning-based solutions for content creation. The key challenge

lies in finding a balance between speed and quality. By leveraging machine learning techniques,

we can potentially achieve faster rendering times while maintaining high-quality results.

Inverse rendering or intrinsic image decomposition problems are ill-posed, especially

when dealing with a sparse set of input images. Addressing lighting baked into materials or

textures remains an ongoing research challenge. However, the emergence of diffusion models

has been shown to significantly improve intrinsic decomposition by providing better guidance

after fine-tuning a foundation model with synthetic data [107]. Conversely, for image synthesis,

foundation models trained on large-scale datasets can accurately replicate physical properties,

such as reflections on water or floors and transparency, resulting in photorealistic outputs. Thus,

diffusion models could be utilized as simulation machines, offering training guidance for an

inverse rendering pipeline. This approach can mitigate the quality loss caused by using less

photorealistic synthetic data as supervision for inverse rendering tasks.

While 2D data contains billions of training examples (e.g., LAION-5B [192]), the well-

known Janus problem or 3-face problem is inevitable when applying 2D diffusion models to 3D

tasks. Currently, the largest 3D dataset, Objaverse-XL [42], contains only 10 million examples,

which is much smaller in scale compared to 2D datasets. Recently, OpenAI released a text-

to-video generation model that demonstrates unprecedented video generation quality. Video

data is easier to acquire compared to 3D data, and the 3D consistency learned implicitly from

video data can be beneficial for 3D tasks. Combining real-world image data with video data can

enhance the generalization of models trained solely on 3D datasets. The potential next step is to

leverage the strengths of video diffusion models to improve 3D generation by incorporating the

3D consistency learned implicitly from video data.
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[51] Matteo Fabbri, Guillem Brasó, Gianluca Maugeri, Orcun Cetintas, Riccardo Gasparini,
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[119] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable monte
carlo ray tracing through edge sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
37(6):222:1–222:11, 2018.

[120] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable Monte
Carlo ray tracing through edge sampling. ACM ToG (SIGGRAPH Asia), 37(6):222:1 –
222:11, 2018.

[121] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan
Chandraker. Inverse rendering for complex indoor scenes: Shape, spatially-varying
lighting and svbrdf from a single image. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2475–2484, 2020.

[122] Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chandraker. Materials for masses:
Svbrdf acquisition with a single mobile phone image. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 72–87, 2018.

[123] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chan-
draker. Learning to reconstruct shape and spatially-varying reflectance from a single
image. ACM Transactions on Graphics (TOG), 37(6):1–11, 2018.

146



[124] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chan-
draker. Learning to reconstruct shape and spatially-varying reflectance from a single
image. ACM ToG (SIGGRAPH Asia), 37(6):269:1 – 269:11, 2018.

[125] Zhengqin Li, Yu-Ying Yeh, and Manmohan Chandraker. Through the looking glass: Neu-
ral 3d reconstruction of transparent shapes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1262–1271, 2020.

[126] Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng Song, Yuhan Liu, Yu-Ying
Yeh, Rui Zhu, Nitesh Gundavarapu, Jia Shi, Sai Bi, Zexiang Xu, Hong-Xing Yu, Kalyan
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Cashman, and Julien Valentin. 3d face reconstruction with dense landmarks. arXiv
preprint arXiv:2204.02776, 2022.

[242] Robert J Woodham. Photometric method for determining surface orientation from multiple
images. Optical engineering, 19(1):139–144, 1980.

[243] Bojian Wu, Yang Zhou, Yiming Qian, Minglun Cong, and Hui Huang. Full 3d reconstruc-
tion of transparent objects. ACM ToG, 37(4):103:1–103:11, July 2018.

[244] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, and Josh Tenenbaum.
Marrnet: 3d shape reconstruction via 2.5 d sketches. Advances in neural information
processing systems, 30, 2017.

[245] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning
a probabilistic latent space of object shapes via 3d generative-adversarial modeling.
Advances in neural information processing systems, 29, 2016.

[246] Zhaohui Wu, Zhong Zhou, Delei Tian, and Wei Wu. Reconstruction of three-dimensional
flame with color temperature. Vis. Comput., 31(5):613–625, May 2015.

[247] Haozhe Xie, Hongxun Yao, Shengping Zhang, Shangchen Zhou, and Wenxiu Sun.
Pix2vox++: multi-scale context-aware 3d object reconstruction from single and mul-
tiple images. International Journal of Computer Vision, 128(12):2919–2935, 2020.

[248] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. Disn:
Deep implicit surface network for high-quality single-view 3d reconstruction. Advances
in Neural Information Processing Systems, 32, 2019.

[249] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli,
and Ulrich Neumann. Point-nerf: Point-based neural radiance fields. arXiv preprint
arXiv:2201.08845, 2022.

[250] Zexiang Xu, Kalyan Sunkavalli, Sunil Hadap, and Ravi Ramamoorthi. Deep image-based
relighting from optimal sparse samples. ACM Transactions on Graphics (TOG), 37(4):126,
2018.
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