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Publishiﬂgmechanistic interpretation of the resonant wave-particle interaction
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Chi Yung Chim and Thomas M. O'Neil*
University of California at San Diego, La Jolla, California 92093

(Dated: 15 March 2016)

This paper provides a simple mechanistic interpretation of 4 sonant wave-particle

interaction of Landau. For the simple case of a Langmu 'Qve in a Vlasov plasma,

the non-resonant electrons satisfy an oscillator equationtsghat™ig driven resonantly by

the bare electric field from the resonant electron

‘ rbi.%he case of wave damping,

this complex driver field is of a phase to rdiduce théwoscillation amplitude. The
*av)s governed by 2D E x B drift
@e, the bare electric field from the
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Publishihg INTRODUCTION

This paper provides a re-interpretation of the resonant wave-particle interaction of
Landau!. There are two halves to this interaction: first there is the influence of the wave on
the resonant particles and second the influence of the resonant particles back on the wave.

The mechanisms for the two halves of the interaction are usually des\c&%d differently. For

the first half, the mechanism is obvious; the wave electric field asts én the resonant particles

The mechanism for

and produces a perturbation in the resonant particle charge densit
the second half of the interaction is usually described th ;-qusson’s equation, or equiv-
alently, a dispersion relation that follows from Poiﬁeg tion; the perturbed charge
density from the resonant particles makes a small’ eorrection’to the dispersion relation, and
this correction yields a small imaginary freque cylhift,ﬂ)'hich is the damping decrement for
the wave. In contrast, here we provide a m "1%5i?1'ferpretation of the second half of the
interaction that is similar to the interp et:'g\okt.he first half.

Consider the simple case of a La muirmhat is excited in a collisionless, Maxwellian

plasma, with the wave phase velogity }ouﬂ on the tail of the velocity distribution. We will
see that the wave induced dis la&t\
in the main part of the Maxw \al,\satisﬁes an oscillator equation that is driven by the

- the non-resonant electrons, that is, the electrons

bare electric field from the-perturbed charge density of the resonant electrons. This field
drives the oscillator 1tly:>since the resonant electrons travel at the phase velocity of
the wave. From thi

driver field fromi*thewesonant electrons back on the oscillator.

applies equally well to the cases of linear Landau damping and growth

and td tle ca; of/ a large amplitude wave with nonlinear, trapped particle orbits. In general,

t?\e@;o'on (} the drive field that is 90° out of phase with the oscillator produces damping
TOW

0 ts and the portion that is in phase produces a frequency shift.

SO&? usually thinks of Landau resonances in connection with waves in a collisionless

sma, that is, waves that are described by Vlasov dynamics’?, but such resonances also
occur for waves that are described by 2D E x B drift dynamics. A simple example is
a diocotron wave that is excited on a nonneutral plasma column in a Penning-Malmberg

trap® . The analysis is simplest for the case where the plasma column consists of a high-
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Publi shinﬂtg] sity core surrounded by a relatively low-density halo. The diocotron wave can be thought
of as a surface wave that propagates azimuthally around the core. At some critical radius
in the halo, the azimuthal E x B drift rotation velocity of the halo fluid elements matches

the phase velocity of the wave potential, and the resonant interaction of the wave potential

Mx B drift flow is

combined with Poisson’s equation to obtain a dispersion rela%‘hen the resonant region

and fluid elements gives rise to Landau damping.

In the standard analysis, the linearized continuity equatio

is in the low density halo, the perturbed charge density gf<the Tegonant electrons makes a
small correction to the dispersion relation, yielding a smallNgiaginary frequency shift, which
ﬁ

is the wave damping decrement. To understand mayre clea;ly how the resonant particles

act back on the wave, we focus on the equatiﬁ)f motien for the surface ripple on the

plasma core. As we will see, the bare electric freld roinl)he perturbed charge density of the

resonant electrons acts back on the core, Ca&%w B drifts that reduce the amplitude of
in

the surface ripple, that is, damp the wave. Again,“we find a simple mechanistic description
g
ec

of the manner in which the resonan% s act back on the wave.
\ b

II. LANGMUIR WAVE\\
First, we consider thet f a Langmuir wave that propagates in the z-direction, writing
the perturbed electri %e form
£
oF

lec
/\ / (x,t) = dEy(t) exp(ikz) + c.c., (1)

where c.c. gta Dfor the complex conjugate. It is convenient to write the field as the sum

£
( i OB(t) = OB (1) + 0E(1), (2)
A8
non-res _ 471.65”2011—1‘68 (t)
w \ FEL(r) =~ (3)
dmedn;*(t
and §EI(t) — T (t) (4)
1k
are the fields produced by the perturbed charge densities of the non-resonant and resonant

electrons, —ednjo""(t) and —edn;>(t), following Guass’s Law. The non-resonant electrons

3
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Publishi:mlg those in the bulk of the velocity distribution, and the resonant electrons are assumed to
be well out on the tail of the distribution.

For the non-resonant electrons, it is convenient to introduce a displacement dx(xz,t) de-

fined through the relation ddx(z,t)/0t = dv, where dv(x,t) is the velocity perturbation.

The spatial Fourier transform of this relation is the equation ddxy /f? = v (1), which allows

the continuity equation to be written in the form 3
0 8n2°n‘res L ikns 0 [(5 non-res - 5 (5)
= ——— 4 thkndvy, = —|on nox
ot TR

where n is the unperturbed density of the nonresonant%s\ The last form yields the

(
solutions 3
5nI,;0n—I'eS (t) :Q

kn&ajﬁ?(t) <6>
. (7)

The linearized Euler equation for t en\o:\re ant electrons governed by fluid theory

)

and SEMMTS (1) =qedday (t)

takes the form

8(5Uk

nm Kﬁe&@ — ikyTon ", (8)

where m is the electron mas electron temperature and v has the value 3 for a

Mt
one-dimensional adiabatic com%? By using the definition ddx)/0t = dvp and Eqgs.
(1), (6) and (7), Eq. (8 cahe)rewritten as the driven oscillator equation

J

N 2 22 _ _3 res
/< w, + 3k"v )5%(1&) = m(;Ek (1), (9)

o

where wz = WZSN the square of the plasma frequency, ©> = T/m is the square of
the therm ty, and the quantity k%v? /wg = k?)\% is assumed to be small. Here \p is

the Debye JenGth. Rhysically, Eq. (9) states that the non-resonant electrons moving in the
wave field may<be thought as an oscillator that is driven by the bare electric field from the
T ou(mg&le()rons. Of course, Eq. (9) also can be obtained from the coupled Vlasov and
Poisson %uation.

wfg\ understand the effect of the driver field on the amplitude of the oscillations, we look

. a solution to Eq. (9) of the form dx(t) = 074(t) exp(—iwgt), where wg = w? + 3k*0?
is the original Langmuir wave frequency squared and 0Zx(t) is a slowly varying complex
amplitude. This solution yields the expected form for a Langmuir wave traveling in the

positive x-direction. Since the resonant particles travel at the wave phase velocity wy/k, the

4
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Publishifigving field due to these particles can be written as 61 (t) = §E[(t) exp(—iwot), where
5@,?5(15) again is a slowly varying complex amplitude. Substituting these forms into Eq. (9)

and neglecting |02,/0%;| compared to w?, yields the reduced equation

67 )
2y LTk —%mjm). (10)

dt
r%\mg or growth, and

when the ratio is real the driver produces a frequency shift.
N

As noted in the introduction, this paper focuses on on

Thus, when the ratio 6E};es /0% is imaginary, the driver produ

e wave-particle interac-
tion, namely, the influence of the resonant particles baglf\ the*wave, and Eq. (10) solves
that problem for the case of a Langmuir wave. The\other isal of the problem determines
the influence of the wave on the resonant particlds, that is;determines the perturbed charge

density of the resonant particles. As a simple a licat@ of Eq. (10), we use the well-known

perturbed charge density for resonant parM -eakly damped, linear Langmuir wave?

ﬁ ( 0

IS (t) = fO
res U= wO
0
% dbﬁ—ﬂé(lsv — wo)dEj—— Jo
\w m ov
new k( ) dfo

/\\Tk%

where fy(v) is the unp tm@&)velocity distribution, and the Plemelj formula has been used

(11)

wo/k

in the second step®.

{ ~
Since dfy/ 6@%% rst/order in the small number of resonant particles, §Ej(t) need
t

order, and we can use Eq. (7) to obtain the relation

only be accur tﬁ) Z

p SEL(t) ~ §EM™™S (1) = dmnedd,(t). (12)

- £
Eq. (@Sy ds the equation
. wy dfo

- e : 8
wo
} (40) then implies the oscillator damping rate
 déEy/dt  m wydfa
= 0iR(t) 2w k2 Bu wo/
T Wy 1 2192

= 1+ 3k 14
B expl g (1 ) (1)
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Publishiwg( re the last form is the well-known form of the damping rate for a Maxwellian velocity

distribution?.

Of course, the use of Eq. (10) is not limited to the case where the resonant particle
density perturbation is determined by the linearized Vlasov equation, For a large amplitude
wave where trapping of resonant particles in wave troughs is i O%:w7 Eq. (10) can

k on

still be used to determine the influence of the resonant particleé b

N

T

-~
IIT. DIOCOTRON WAVE KB

To illustrate the wave-particle interaction%aﬁ))ccur in 2D E x B dynamics, we

e wave.

consider a diocotron wave that is excited om"c%z6 lgg:cron plasma column in a Malmberg-
Penning trap®%!. An analytic treatme tNSI for the case where the electron column
consists of a uniform density central,core \r\ou\nded by a relatively low-density halo. Such
a density profile often is said to be of b“t&p hat” form. We assume that the unperturbed
density has the constant value n(r N
to the much lower density n( C\—\m“ where the subscripts ¢ and h refer to the core and

halo, respectively. Con 'ses‘t\with the standard trap configuration, we assume that the

ut to the radius r = R, and there drops abruptly

electron column is imfnersed inja uniform, axial magnetic field B = Bz, where (1,0, 2) is a

flow is incompressible and since the unperturbed density profile

Since the 2
for the corg 1 u)ﬁ'orm with an abrupt fall off at the surface, the diocotron wave can be
characteé/z:(s cifying the ripple on the surface of the core. For a diocotron wave of
wa

cylindrical COOI"CZ(A %fste? with the z-axis coincident with the axis of the trap.
Nri

azimuthal
wpilien

umber m, the #- and t-dependent radial position of the core surface can be

S

)

S rs(0,t) = R. + D(t) expli(mb — w,t)] + c.c., (15)
N

where wy, is the still-to-be-determined wave frequency and D(t) is a complex wave amplitude.
The slow time dependence in the complex amplitude is due to the interaction with the

resonant particles.
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Publishinghe total time derivative of r, (0,t) is given by the equation

drs(0,1)
dt

[8+ E(R)a s(0.1)

ot ae}

= {D(t) + i[mwe(R.) — wn]D(t)} expli(mb — wnt)] + c.c.,

where wg(r) is the E x B drift rotation frequency at radius 7. 3\

(16)

Since the motion of the surface is due to E x B drifts cad&% he mode potential, we

also can write the time derivative as the drift velocity )

dry(0.t) ¢ 953 0.1)

a kb&}

where d¢ = d¢(r,0,t) is the mode potential.

e

(17)

The m-th Fourier components of the po onN&'ﬁhe density perturbation are related

by the Green’s function integral®

O (r,t) =4 \&Krdr’G (r,7")on, (r' 1),

m 7,,/2'm
p <R2m - 1) for r <1’
T

where

<

m T,Qm
—<W_1) for v < r
is the Green’s funct@i is the electron charge. Here, R,, is the radius of a conducting

(18)

(19)

wall that boundgthe ¢ wment region, and the Green’s function vanishes at r = R,, in

accord with t p V condition on the wave potential.

It is ¢

resonant r

cau

ve 'Ant to write the perturbed density as the sum of a term from the non-

idh a?:l a term from the resonant region, onho""*(r, t) and dnle(r, t), and to write

ﬁ
the p%ﬁi asvthe sum of the corresponding terms ¢y, (r,t) = JPRTS(r, t) + P (r, t).
se

unperturbed core density is uniform out to the core surface and because the

hal den}lty is relatively low, the dominant contribution to dn"°"(r 6, t) comes from the

}pfage of the core and is given by the expression

In"MrS(r 0, t) = —D(t) expli(mb — wmt)]% + c.c.

= D(t) exp[i(mb — wy,t)](n. — np)o(r — R.) + c.c.,
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Publishiwficre 6(r — R.) is a delta function.

The Green’s function integral then implies the non-resonant potential
S¢S (R, 0,1) = 872 eRe(ne — 1np) G (Re, Re) D(t) expli(mf — wpt)] + c.c.

:7@3( nh)< Rm)D()exp[( 0 —wpt)] +cc.. (21)

m R2m
Combining Eqs. (16) and (17) and substituting Eq. (21) for, t —resonant potential
yields the relation
¢ 00¢*(R.,0,t) 2imec(n. — nh) R2m
_ 0 — wnt .C.
BR. 90 + B m w + c.c

= {D(t) 4 i[mwp(R.) — wn]D(t)} exp[i(m@ w t)j‘{— c.
3 (22)

It is instructive to examine Eq. (22) in th &f Wh re there is no resonance, and d¢™
and D(t) are zero. The equation then 1m® Sperswn relation for a diocotron wave

on a “top-hat” density profile
\M o
using that fact that wg(R,) @(&

t the surface of the core. This dispersion relation

is well-known in the limit ny, \By using this dispersion relation, Eq. (22) reduces to

the form
m = D(t) expli(mb — wpt)] + c.c.. (24)

Thus, we obtaij

’ate/of change of the complex wave amplitude

: Tdo ¢ 06¢"(R.,0,1) .
7)(75) —/ 9% BE. 50 exp|—i(mb — wy,t)]
_me 5¢reS(RC, t) expliwmt]. (25)
Physi a-l.l‘;/, ectrlc field from the resonant particles acts back on the core causing E x B
d f‘hno and this motion produces a slow rate of change of the complex wave amplitude.

mceSthe resonant particles travel at the wave phase speed, the perturbed density

Q‘Ec,t) can be written in the form 675 (R,,t) exp[—iw,,t], where 67 (R, t) is slowly

ring. Likewise, the perturbed potential d¢<%(R,., t) can be written in the form 5¢res(Rc, t)e wmt,
where 8" (R, t) is slowly varying. Eqs. (18) and (19) then imply the relationship

~ m 2m
5P (R., 1) = % / 2mr'dr’ fjfn (;ﬂ - 1) 0ty (', 1), (26)

8
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Publishimg! Eq. (25) reduces to the result

D) = 126 (Rest). 27)

To obtain Eq. (25), we projected out the m-th Fourier component of Eq. (24), but
one may worry about other Fourier components in the potential #¢™(r,0,t). When the
perturbed resonant particle density, dn™(r, 6, t), is obtained by ine%&gory, as is the case

in linear Landau damping, there is only the m-th Fourier compgnént, so there is no issue.

However, when the resonant particle dynamics is nonlinear ien particle trapping

is involved, higher harmonics typically are present in om*(@+6,1) and correspondingly in

3™ (r,0,t). Why are these harmonic terms not bala ced by s
Side of Eq. (24)? The reason is that we neglectecgsmall

h terms on the Right Hand
arnionic terms in the surface ripple
of Eq. (15). These higher harmonic ripples aregn s;ﬁill because the higher harmonics in
3™ (r,6,t) do not drive the core surface resepant 6-56 can easily show that the harmonic
ripple amplitudes are smaller than D(¢ b%&stor np/ne < 1.

7), Mte 00' (R, t) for the case of a diocotron

a%@n\amce in the low-density halo®!2. We work only

As a simple application of Eq. (

mode that experiences a linear Land

to first order in the small quantity™y, /m. < 1. The resonant radius then need only be

\‘Fq\this order, the E x B-drift rotation frequency in the

halo region (r > R.) is ;,{*S: wr(R.)R?/r?. Substituting this expression and dispersion
2}

relation (23) into the gesomancejcondition w,, = mwg(rw.s) and dropping first order terms in

calculated to zero order in ny

ssfon for* the resonant radius

R? 1 R2m
- :1—m< R2m>' (28)

for th pertusbed density at the resonance

kS G721, 1) = O e )il — ()], (2)

r-g&bnon‘re“ r,t) is the potential due to the perturbed charge density on the surface of
the, core. Here we ignore 5(}5;‘?(7’, t) set up by the fewer resonant particles, similar to the case
in the previous section. For r > R,., this latter potential can be written as

Tnon-res Tnon-res Gm ) RC
(5¢ (7”7 t) = 5¢m (Rc,t)ﬁ,

m

(30)



! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

Publishinggre (5(522“‘”5(136, t) is easily extracted from Eq. (21). Substituting Eqgs. (29) and (30) into
Eq. (26) and evaluating the Green’s function with Eq. (19) yields the result

- ome)? cR, R2™ 2m \ 2 (7 s
6¢2S<Rc,t) _ ( 7T€> cR Rc <1 T'res ) n (T ) ZWD(t)nc (31)
m

B r2n \" R2" ) m|wl(rres)|

Substituting into Eq. (27) then yields the well-known damping ra{é’m
D / - 2m—3 5 ,N
DRSS RT ARV 3y )

D(t) = wp(R) Ne om
y cléar illustration of this

res

TI’ES

The case of an m = 1 diocotron wave provides a partic

'j‘net.e that the m = 1 wave is

mechanical approach to the wave-particle interaction®®.
ﬁ

special in that an analytic description of the wave isinot limitéd ot the case of a “top-hat”
density profile, but also is possible for any mongétonica ecreasing density profile, n(r),
that vanishes at the conducting wall. For ma ljg%rs‘ibwas thought that there can be no
resonant wave-particle resonance for the m m}:{&e the resonant radius is at the wall,

and the unperturbed density is zero at the w ever, recent experiments have observed

a novel algebraic damping of the m = 1 mﬁen transport sweeps a low density halo of
particles out from a central core to t waﬂy The damping begins when the halo reaches
the wall and is thought to be dueNl nlinear wave particle interaction in the region of
the wall. -

0

In the absence of a WQUCIG interaction, the self-consistent density perturbation and

wave potential for the' m =1 wave are given by the expressions
£

/ non?és(r’ 0,t) = —a—Z[D expli(f — wit)] + c.c.]

5\ = —?A cos(f — wit — ) (33)

r
and y. B
i~ ,/(Sgbnon-res(,,,’ 6, t) — _%[—wl —+ wE(T)]A COS(9 —wyt — Oé)- (34)

1R, ha)e set D = (A/2)exp(—ia), where A and « are real. By using the Green’s

ctionsntegral in Eq. (18) one can easily show that the density perturbation and potential
Eﬂs 5L -consistent, that is, substituting the density perturbation into the Green’s function
integral yields potential. The wave frequency is given by w; = wg(R, ), so the wave potential
vanishes at the conducting wall.

Physically, such a density perturbation results when the plasma column is displaced off

the trap axis by the amount A in the instantaneous direction # = wyt + a. The displaced

10



! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

PUbliShi'nfgl mn produces an image in the conducting wall, and for small displacement (i.e. A < R,,)
the image is well outside the wall, producing an image electric field that is nearly uniform in
the region of the column. The uniform field produces a uniform E x B drift velocity of the

column transverse to the instantaneous displacement off axis, and in turn this produces a

rotation of the column around the trap axis at the mode frequency / In the wave potential,
the term proportional to w; is the potential due to the uniform Ql\eﬁgqﬁc field, and the
ace

term proportional to wg(r) is the correction to the radial 1arge potential due the
shift of the column off axis. )
We postulate that the non-resonant density perturbatidn still can be described as a

-

en thSp tential due to the resonant

displacement of the column off the trap axis even
electrons acts back on the column. The reason fgr this simplification is easy to understand.

The resonant particles are near the wall, so thé@n;r&;bthese particles in the non-resonant
region is a vacuum field, and the dipole component of such a field is uniform, as will be
explained shortly. Thus, the field due t the&rﬁ particles simply produces an increment
to the uniform E x B drift motion produced by the non-resonant potential, and we will see
that the increment can be accomedat ﬁrn'ply by allowing a slow time dependence in A(t)
and «(t).

Formally, the condition that Mtulate be satisfied is that continuity equation in the

non-resonant region, \
0 1 non-res _ ZC non-res res 6”
[67 Zw»l (T7 t) - Br [5¢1 (Ta t) + 5¢1 (Tu tﬂ or s (35>

be satisfied when twmer components 0p1" " (r t) and Jnjo""*(r, t) are evaluated using

/é

forms for the potential and density perturbation in Eqs. (33) and (34),

, or equivalently A and «, are time-dependent. Substituting the Fourier

comp@ Cﬁ the equation
) R "
- A(t) — A a(t) = 2D(H)e® = —ZC5res (. p)eirtriald) (36)

K’ - B

\b‘hy:e\the Left Hand Side of the equation is independent of r it is necessary that the Right

d Side be independent of 7, or equivalently that d¢'*(r,t) be proportional to r, and the
Green’s function solution,

12m

2’ dr’ (1 — W)énﬁes(r, t), (37)

w

0o = (r t) = —er/

res

11
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PubliShi1ﬂ(g§ 3 imply the required proportionality. In choosing the correct form of the Green’s function
from Eq. (18), we used the fact that » < 7’ in the non-resonant region. Proper choice of
the time-dependence in A(t) and a(t) then allows both the real and imaginary parts of the
equation to be satisfied.

Since 0¢"(r, 0,t) is a vacuum potential in the non-resonant repik{n, the dipole portion of

the potential can be written in the form

5¢res(r’ 9, t) — _§E;es(t),r COS(@ —wit — Oé) — SEYes

3

where a rotating (x,y) coordinate system has been intro ced;~with the z-axis directed

along the instantaneous displacement of the plasma c(w§The Fourier component of this

expression is simply C

S (1, 1) — [_Mgs(t)r 2% expl—i(wit + a)], (39)

\ @\k..t%the form

so the real and imaginary parts of Eq.

oty = 280, (40

é@@ 1A(t) = CéLBe%t) (41)
= Aw

1 asa frequency shift. Physically, the uniform field that is

Here, we have identified ¢

transverse to the instan

’m}displacement of the column (i.e., §E;*°) produces an E x B

drift motion of the, plasnfa coltmn parallel to the displacement, that is a damping or growth
of the wave am w the component that is parallel to the displacement (i.e. dEI)
produces an 'nc@nent the rotation velocity of the column around the trap-axis, that is,
hift.

a wave frefjuenc

ﬁ /
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