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1. INTRODUCTION

Since its first presentation in the early 1950's, the
finite element method has emerged as one of the most powerful and
versatile tools in the field of structural mechanics. The method,
which was original developed for linear elastic systems, has
proven also to provide one of the most effective numerical
formulations for the analysis of nonlinear structures.

Two different types of nonlinearity may occur in
structures, namely geometric nonlinearity, resulting from large
displacements, and material nonlinearity, resulting from yield of
the material or other nonlinearities in the stress-strain
relationship. The application of the finite element method to
nonlinear problems has been extensively studied during the past
decade, and substantial advances have been made. Nevertheless,

a great deal more work remains to be carried out before analysis
of nonlinear structures can be carried out on a routine basis.
The need for progress in the solution of problems with material
nonlinearity is particularily important because of the many
problems of this type which occur in engineering practice. The
research described here is concerned only with the effects of
material nonlinearity. The aim of the research has been to
explore computational procedures, to determine which procedures
are likely to be most efficient and most accurate, and to provide
detailed documentation of the computational sequence. No new
theoretical principles are established.

Recent investigations of elasto-plastic behavior in

finite element analysis are numerous (26-53), and a variety of
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solution procedures to account for plasticity have been proposed.
These procedures are reviewed in Chapter 2, and a composite

precedure suitable for general purpose use is then presented.

Chapters 3 and 4 consider what is identified as the
"Tinearization" problem. The flow theory of plasticity is reviewed
in Chapter 3, and incremental stress-strain relationships are
derived. Applications are considered for elastic perfectly plastic
material, general isotropic hardening, linear kinematic hardening,
and a "parallel material” procedure which is equivalent to a
particular type of nonlinear kinematic hardening. The application
of the incremental stress-strain relationships in the formulation
of the tangent stiffness matrix for an axisymmetric solid is
considered in Chapter 4. A quadrilateral isoparametric element is
considered, including a formulation in which additional
incompatible modes of deformation are introduced to improve the
bending characteristics.

Chapter 5 considers the "state determination" problem,
in which, for a given displacement increment, the state of stress
and strain at all points in the structure is determined. In
addition, the unbalanced load on the structure, which is a
measure of the accuracy of the solution, is determined. The logic
of a computer program to apply the proposed solution procedure is
described in Chapter 6. The results of analyses of an extensive
series of example structures are presented in Chapter 7, and
conclusions on the relative efficiency of several alternative

computational procedures are drawn.

2.



2. REVIEW OF SOLUTION PROCEDURES

2.1 SCOPE OF INVESTIGATION

2.1.1 Type of Nonlinearity

Figure 2.1 shows, in diagrammatic form, the type of
nonlinear load-displacement relationship considered. It is
important to recognize that this figure portrays the relationship
correctly only for a structure with a single degree of freedom.
For a structure with many degrees of freedom, the relationship is
a complex one in a multidimensional space. Nevertheiess, this
type of diagram is convenient for illustrating concepts, provided
its lTimitations are kept in mind. In this chapter, some general
concepts are discussed, with reference to this type of diagram.
The actual computational procedures for multidimensional systems
are considered in subsequent chapters.

Nonlinearity of the type indicated in Fig. 2.1 could
result from large displacement effects as wei] as material non-
linearity, and much of the discussion in this chapter applies
regardiess of the source of the nonlinearity. However, only
material nonlinearity effects are considered for the remainder of
this study. The procedures considered are applicable to arbitrary
loading paths, including unloading and load reversal. However,
unstable configurations are not considered, and the tangent

stiffness relationship is assumed always to be positive definite.



2.1.2 Solution Procedure

The only method of structural analysis considered here
is the direct stiffness method. The nonlinear problem is solved
in a series of linear steps, by either step-by-step or iteration
techniques. The equilibrium equations within any linear step are
solved by Gauss elimination.

Alternative procedures might be used to solve the
nonlinear analysis problem, particularly procedures involving a
search in displacement space for the configuration having minimum
potential energy (56, 57). However, such procedures have not been

considered in this study.

2.2 STEP BY STEP METHODS

2.2.1 Simple Step by Step Procedure

Step by step methods are based on the assumption that if
the loading is subdivided into several small increments, then the
behavior is linear within any increment. That is, the nonlinear
load-displacement relationship is approximated by a piecewise
linear relationship. For analysis, a constant structure stiffness
is assumed within any increment, and the stiffness will generally
change between increments.

In the simplest procedure, the structure stiffness used
within any increment is the tangent stiffness, & at the beginning

of the increment, defined by

dR = K dr [2.1]



in which dR, &r = infinitesimal increments of load and displacement,

respectively. The solution algorithm is then as follows

Al = (Kn) " 4R, [2.2]

r = lhy +A4l ;=0 [2.3]

in which 4/, and a4/, are the load and displacement increments,
respectively, for the nth increment, and in which (k,)”" implies,
for a multidimensional probliem, solution of the equilibrium
equations by Gauss elimination, not actual inversion of the
stiffness matrix. The equations in this chapter will be written
for a one-dimensional problem, as illustrated in Fig. 2.1, but in
principle are applicable also to multidimensional problems.

This procedure has been widely used in elasto-plastic
analysis (31,37,42,51). Mathematically it is equivalent to a
crude Euler-Cauchy method. Its truncation error is proportional
to the size of the load increment, and errors are likely to be
accumulated over several steps, so that the solution diverges
from the true load-displacement relationship, as indicated in
Fig. 2.2.

The tangent étiffness, Kn , at the beginning of the nth
load increment depends on the current state of stress and strain.
The problem of determining the tangent stiffness for any given

state will be termed the linearization problem. The computational

procedures for the solution of this problem are considered in

detail in Chapters 3 and 4. After the displacement incrememt, &/ ,



has been found, it is necessary to compute the changes in stress
and strain, and hence obtain the new state. This will be termed

the state determination problem. A simplified discussion of the

solution procedure for this problem is presented in the following
section. Details of the computational technique for multi-

dimensional problems are considered in Chapter 5.

2.2.2 State Determination Problem

The state determination problem is solved in two stages,
as illustrated diagrammatically in Figs. 2.3a and 2.3b, with an
optional third stage, as illustrated in Fig. 2.3c.

The first stage is based on the kinematic relationship
between increments of displacement and strain. Given the displace-
ment increment, 4/, the strain increment, 4¢ , 1is found, as
indicated in Fig. 2.3a. The geometrical relationship between ar
and 4€ will be typically, although not necessarily,linear.

The second stage is based on the stress-strain relation-
ship for the materjal. Given the strain increment, a€, the
stress increment, A¢», 1is found, as indicated in Fig. 2.3b. The
relationship between 4€ and 40 will generally be nonlinear.

A new state of stress and strain has therefore been
found, and the step by step proceduce illustrated in Fig. 2.2 can
therefore continue. As indicated in this figure, however, there
will generally be an error at the end of any load increment,
resulting from the fact that true behavior within an increment is
not linear. A convenient measure of this error is the extent to
which equilibrium is violated. The third stage of the state

determination procedure serves to calculate magnitude of the error.
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For any state of stress, ¢, there will be a unique
value of the external load required to satisfy the equations of
he "internal resistin

qQ
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equilibrium. This Toad will be termed
Toad", RT, to distinguish it from the external applied load, R .
The magnitude of AR™ can be found by considering the equilibrium
relationship between stresses and loads, as illustrated in

Fig. 2.3c. This relationship will typically, although not
necessarily, be linear. At the end of any load increment the

magnitude of the error in equilibrium is given by

RI=R-R* [2.4]
in which R“ = unbalanced load.

2.2.3 Step by Step Procedure with Equilibrium Correction

The accuracy of the simple step by step procedure can
easily be improved by calculating the unbalanced load at the end
of each linear step and adding this load to the following load

increment as illustrated in Fig. 2.4. The algorithm is

Afn = (Kol carn+ RY, ) ; RI=o [2.5]

th =tnr +415 ; le=0 [2.6]

2.2.4 Step by Step Procedures with Adaptable Step Size
A disadvantage of step by step procedures with
predetermined load increments is that the error criginating within

any increment varies with the degree of nonlinearity of the



behavior, as indicated in Fig. 2.4. Improved accuracy can be
obtained by automatically subdividing any load increment into
smaller parts if the departure from the true behavior during the
increment exceeds a specified amount.

Ideally, the permissible departure might be specified
in terms of a maximum permissible unbalanced load. The com-
putational procedure would then involve computation of the
unbalanced Toad assuming application of the full load increment,
followed by scaling down of the computed displacement increment
if the equilibrium unbalance is excessive. A new state and new
tangent stiffness would then be defined, and the procedure
repeated until the entire Toad increment had been appiied. A
typical Toading path might be as indicated in Fig. 2.5.

In practice, direct limitation of the unbalanced lcads
may be difficult. This is because the relationship between
displacement increment and unbalanced load is generally nonlinear,
and hence there may be a difficulty in selecting appropriate scaling
factors for reduction of the computed displacements. 1In the
analysis of elasto-plastic structures, this is most Tikely to
occur when materials have well defined yield stresses with sudden
changes of elastic modulus, as in elastic perfectly plastic
behavior. A similar result can be achieved in such cases by
specifying Timits on the amount by which the stress computed
assuming linear behavior may exceed the actual yield stress. This
is il1lustrated for a simple yielding material in Fig. 2.6.
Computational procedures for the more general case are described

in Chapter 6.



2.2.5 Higher Order Step by Step Procedures

The accuracy of step by step procedures can also be
improved by estimating the chord stiffness within each load
increment, rather than by using the tangent stiffness -+ the
beginning of the increment (30,34,39), A variety of procedures is
possible, some having a formal mathematical basis and others
based more on intuitive reasoning. Techniques of this type are
not included within the general computational procedure proposed
in this report, and hence will not be considered further. Never-
theless, they comprise an important and powerful class of

procedures which should not be ignored.

2.3 ITERATION METHODS

2.3.1 General

In many cases it may not be necessary or desirable to
determine the load-displacement relationship by step by step methods.
Rather, the analyst may wish to apply the load in a single
increment, and obtain only a single point in the load-displacenc. ..
space. In such cases, the nonlinear problem may be solved by
iteration. Iteration procedures may also be of value in
combination with step by step techniques, to obtain a more accurate
result by eliminating the equilibrium unbalance at the end of cach
step.

Iteration procedures are reviewed in the following
sections for loads applied in single increments. Combirations of

iteration and step by step techniques are also considered.



2.3.2 Constant Stiffness Iteration

A commonly used iteration procedure is illustrated
diagrammatically in Fig. 2.7. This is commonly referred to as the
"initial stress" procedure (50), but will be termed here "constant
stiffness" iteration.

The procedure involves an initial formulation of the
stiffness, 4, , for the unstressed structure, and its triangulariza-
tion by an appropriate reduction technique. The iteration sequence
then consists of the successive solution of a series of equilibrium

equations according to the algorithm

Al7 = (k) " (R=-Ro.;) [2.7]

(n =/laag+41 ; L =0 [2.8]

in which 4r7 1is the dispiacement increment computed in step n,
R is the total applied external load, and /?: is the internal
resisting lcad at the end of step n.

As before, the quantity

Rn =R-Rn [2.9]
is the unbalanced 1oad on the structure at the end of step n,
which is a measure of the extent to which equilibrium is violated.
and hence of the convergence of the iteration procedure. The
applied external load, £ , is always either known explicitly or

easily determined. For the cases considered in this report, this
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Toad is assumed to be constant, but in the general case it could
be variable. For example, variable loading occurs in the case of
fluid pressures acting on structures which undergo significant
changes of shape.

For a linear elastic structure, the stress, ¢, , and
hence the internal resisting Toad, Rf , are uniguely defined for
any given displacement, /5 . For inelastic structures, however,
the stresses are not uniquely defined in terms of displacement,
because the behavior is generally path dependent. This problem is
considered in detail later, and for the time being it will be
assumed that the stresses can be uniquely determined in all cases.

It may be noted that the internal resisting load in the
initial undisplaced configuraticn, F?; , need not necessarily be
zero, because temperature change and similar effects may induce

initial stresses.

2.3.3 Constant Strain and Constant Stress Procedures

The state determination procedure shown in Fig. 2.3
may be identified as a "constant strain” procedure (29). The
significance of this term is illustrated in Fié. 2.8a. By contrast
an alternative "constant stress" procedure is illustrated in
Fig. 2.8b. These terms lead, in turn, to concepts of "initial
stress" and "initial strain".

In the solution of the state determination problem
according to the sequence shown in Fig. 2.3, the strain increment
is considered to be defined in terms of the computed displacement
increment, and the corresponding stress increment is then found.

The internal resisting load, R' , and the unbalanced load, R“,

-11-



can then be determined, and the iteration can proceed. However, an
alternative procedure may be used to calculate RY, which has
given rise to the term "initial stress".

If large displacement effects are ignored, the only
source of nonlinearity is the nonlinear material stress-strain
relationship. In the constant stiffness iteration procedure, the
stiffness K, is obtained assuming the elastic modulus £, shown
in Fig. 2.8a. It follows, in any iteration step, that if the stress

increment were equal to
AU‘,,L:: E, A€, [2.10]

in which A«ﬂf = "Tinear" stress increment, then the unbalanced
lToad would be zero. This is simply because the conditions of
linearity assumed in the linearization phase would actually be
satisfied, and hence the linear solution would be exact. In fact,
however, the stress increment is 4@, , as defined previously. An

"unbalanced stress", Uﬁ' , may therefore be identified, where

Fo = (Gy+ 40, )= (0 t20)
= ACy - 40,
= E A6~ Al [2.11]

The stress mﬁ may be identified as an "initial" stress, leading
to an equilibrium unbaiance which must be eliminated by iteration.
Such a stress can be regarded as similar to a stress produced by

restraint of thermal expansion. The unbalanced load, R, , can

-12-



then be obtained as the reverse of the loading which would be in
equilibrium with &y

The magnitude of R, obtained in this way will be
identical to that obtained by Eq. 2.4. However, the procedure
based on unbalanced stress is less direct than that based on
Eq. 2.4, and is conceptually more complex. The procedure described
previously for obtaining ,Qg is therefore to be preferred.

A slightly different approach is to treat the equilibrium

unbalance as originating with an initial strain, 6;1 , such that
Y o
0o = £, € [2.12]

Again there is a similarity with thermal stress analysis, the
initial strain being numerically equal to the unrestrained
temperature strain. In the solution of inelastic problems by

iteration, €}

is as shown in Fig. 2.8a.

Intuitively, the constant stiffness iteration process
might be expected to converge slowly. Some means of over-
relaxation might therefore be sought to speed convergence. The
"constant stress" procedure illustrated in Fig. 2.8b is essentially
an oyer—re]axation procedure, in which the initial strain is
assumed to be €, rather than €, . The reasoning behind the
use of this initial strain is that for a simple one-dimensional
system in which the load-displacement and stress-strain relation-
ships have identical form, convergence is obtained in the second

iteration step. The iterative sequence for such a case is

illustrated in Fig. 2.9.

-13-



In certain cases, this procedure has led to improved
convergence (45). In many cases, however, the procedure fails to
converge. An obvious example of such a situation occurs for an
elastic perfectly plastic material. Clearly, if a linear stress,

mf, is computed which exceeds the yield stress of the material,
then the initial strain, &, , is infinite, and the procedure
will not converge.

Because it is applicable only in certain cases, the
constant stress procedure has not been considered further in the
studies reported here, and the constant strain procedure has been
used exclusively. Also, no attempts have been made to explore
other over-relaxation schemes, although it is recognized that
such schemes might greatly improve the convergence of the constant

stiffness iteration process.

2.3.4 Newton-Raphson Iteration

The constant stiffness iteration procedure retains the
triangularized form of the stiffness matrix in the initial con-
figuration, and uses this to solve each new set of equations. More
rapid convergence would be expected if a new stiffness were
computed at the end of each step, and used in the following step,

as indicated in Fig. 2.10. The iteration sequence is then

Al = (/(n-/)-l- (R~ er—/) [2.13]

ln = lhy +4A7, ; [2.14]

o)
I
o
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in which K, is the tangent stiffness matrix for the configuration
defined by (7 . This is Newton-Raphson iteration.

This procedure can be expected to converge more rapidly
than constant stiffness iteration, but at the cost of additional
computational effort for each iteration, because a new stiffness
matrix must be reformed and re-triangularized. A major purpose of
the research described in this report has been to assess the
relative computational efficiency of the constant stiffness and

Newton-Raphson procedures.

2.3.5 Mixed Iteration Procedures

Newton-Raphson iteration is Tikely to require fewer
jteration cycles to converge, whereas constant stiffness iteration
requires less computational effort for each cycle. The most
efficient computational procedure might therefore be one in which
the stiffness is reformed for some steps of the iteration, but
kept constant for others. Two possible schemes are illustrated
in Fig. 2.11.

In Fig. 2.11a, the stiffness is kept constant for a
predetermined number of iteration cycles (in this case three), and
is then changed. In Fig. 2.11b the stiffness is reformed at each
step until the unbalanced load is reduced below a predetermined
value, and is then kept constant for the remaining steps. This
second procedure would appear to be preferable, because the stiff-
ness is automatically reformed when the degree of nonlinearity is

large, at which time recalculation of the stiffness is desirable,



yet the stiffness is maintained constant if the degree of non-
linearity is small, at which time Tittie is to be gained by
recalculating the stiffness.

A variety of other mixed procedures are possible.
Procedures of the type illustrated in Fig. 2.11b are incorporated

into the general purpose solution procedure proposed here.

2.3.6 Combined Step by Step and Iteration Methods

Iteration can easily be applied within any load increment
of a step by step procedure in order to reduce the unbalanced load
tc an acceptable value before applying the next increment.
Combinations of step by step and iteration procedures can therefore

be applied, and may be desirable in many cases.

2.4 OVERSHOOT AND REVERSAL TOLERANCES

2.4.1 Overshoot Tolerance

The use of an overshoot tolerance to prevent the
solution in any linear step from departing too far from the true
solution was considered for step by step methods in Section 2.2.4.
A similar procedure is applicable to iterative methods, and could
be used to help speed convergence. The technique is simple to
apply, involving merely scaling the computed displacement
increments by an appropriate factor, and calculating the strain
and stress increments for these reduced displacements. The
iteration algorithm then proceeds as before, with no change. The
way in which a Newton-Raphson iteration procedure might be

modified by the use of an overshoot tolerance is indicated in

-16-



Fig. 2.12. For simple one-dimensional behavior of the type
illustrated, the convergence is not improved. However, the
situation in a multi-dimensional case is more complex.

The use of overshoot tolerances have the further
advantage that the strain path followed during loading is con-
strained to follow the "true" path more closely than if unlimited
overshoot were permitted. Because the behavior of inelastic
structures is path dependent, more accurate results might there-

fore be obtained.

2.4.2 Reversal Tolerance

A major difficulty with load reversal on inelastic
structures is that the tangent modulus of a yielded material
will generally have two values, namely that corresponding to
continued yielding and that corresponding to unloading. For a
step by step solution, the structure tangent stiffness obtained
assuming continued yielding may therefore be a poor approximation
to the actual tangent stiffness if unloading occurs, and hence the
computed behavior within a load increment may depart substantially
from the true behavior. For an iterative solution, the unbalanced
load obtained through the use of an inaccurate tangent stiffness
may be so large that convergence may be difficult to obtain.

The technique proposed here to avoid problems during
reversal of stress or Toad is in two parts. Firstly, for each
new loading case the analyst is required to specify whether the
entire structure is expected to continue loading or to unload back
into the elastic range. In most cases the expected behavior will

be simple to determine. Secondly, in order to account for
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(a) those cases where reversal of strain occurs even when the joad
is increasing and (b) those cases with complex loading paths in
which it may not be clear whether or not the entire structure will
unToad, the analyst is also required to specify a stress reversal
tolerance. This tolerance is similar in concept to the overshoot
tolerance, and is used to prevent the linearized solution from
departing too far from the true Toad-displacement relationship.

Use of the reversal tolerance is illustrated in Fig. 2.13.
For this case, let the structure tangent stiffness be calculated
on the assumption of continued loading. If strain reversal occurs
the stress increment, A€ , must be computed by following the
unloading part of the stress-strain relationship. Hence, if the
strain increment is large, the "linear" stress increment, Ao“‘
which would be based on the yielded tangent modulus for this case,
may be grossly different from the true increment, A¢ , which is
based on the unloading modulus. The unbalanced stress, ¢° , may
therefore be excessive.

The magnitude of ¥ can be controlled by requiring that
if unloading occurs, 4 may not exceed a specified magnitude,
defined in terms of a predetermined unioading tolerance. If aAf¢
exceeds the permissible value, then the computed displacements
and strains are simply reduced by an appropriate scaling factor, « ,
as indicated in Fig. 2.13. The computation then continues as for
cases in which an overshoot tolerance is imposed. The technique

is applicable both to iterative and step by step procedures.
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2.5 MEASURE OF CONVERGENCE

The unbalanced load, R“ s 15 a convenient measure of
the error at any stage of an analysis. For structures with more
than one degree of freedom, however, this unbalanced load is a
vector, and not a single quantity. In this case, several different
measure of the magnitude of the vector might be selected. The
measure used here is the magnitude of the numerically largest
term { the maximum norm), which is the largest unbalanced load for
any degree of freedom of the structure. Other possible measures
include the root mean square value of the terms of the vector
(Euclidean norm) and the sum of the absolute values of the terms

(absolute norm).

2.6 PROPOSED SOLUTION STRATEGY

Within a single computer program, it is possible to
permit the user to select any one of a wide variety of solution
strategies simply by specifying the magnitudes of three convergence

tolerances. These tolerances are as follows:

(1) Final convergence tolerance, ¢, . If the largest
unbalanced load is less than this value, the solution for the
current loading has converged with sufficient accuracy, and the

next loading is considered.

(2) Constant stiffness tolerance, f, . If the largest
unbalanced load is less than this tolerance, the stiffness matrix
is not reformed for the next iteration step, but the solution
iterates with the same stiffness as in the current step. If this
tolerance is equal to or less than ¢, , a new stiffness will be

formed at each step, corresponding to Newtori-Raphson iteration.
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If this tolerance is moderately small, the solution will jterate
with a varying stiffness until this initial tolerance is reached,
and will then iterate with constant stiffness. This is the mixed
iteration procedure described in Section 2.3.5. If this tolerance
is very large, the iteration will be with constant stiffness

throughout.

(3) Step by step convergence tolerance, # . This
tolerance is used when a loading is applied in a number of equal
increments. At the end of any increment, if (a) the largest
unbalanced load is less than this tolerance and (b) this is not
the last increment, then the next increment is added. If this
tolerance is equal to or less than fb , the solution will iterate
to final convergence within each increment. If this tolerance is
moderately large, the solution will not iterate if the largest
unbalanced load is less than the tolerance, but will iterate if
the unbalanced load exceeds the tolerance. The iteration will not
proceed to final convergence, but only until the largest unbalanced
1oad is reduced below f, . However, the solution will automaticaltly
iterate to final convergence within the Tast load increment. If
this tolerance is very large the solution will proceed immediately
to the next load increment, as in a step by step solution with
equilibrium correction, and will iterate to final convergence only
within the last increment.

If the magnitude of these three tolerances are classified
as "small", "moderate" and "large", a total of 13 different
solution procedures can be identified. These procedures are

summarized in Table 2.1 and are illustrated in Fig. 2.14.
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A1l of these procedures can be further modified by use
of an overshoot tolerance, as indicated for Newton-Raphson
iteration in Fig. 2.12.

With this range of solution strategies, it should be
possible for an experienced user to select an efficient procedure
for virtually any type of problem. An example of the relative
efficiencies obtained by different procedures is presented in

Chapter 7.
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3. ELASTO-PLASTIC STRESS-STRAIN RELATIONSHIP

A1l solution procedures of the type considered herein
involve successive solutions of a number of linearization and
state determination problems. 1In order to deal with these two
problems in elasto-plastic analysis, it is necessary to derive an
Incremental elasto-plastic stress-strain relationship. A number
of assumptions and principles which are needed to formulate this
relationship are reviewed in this chapter. More complete details
and discussions may be found in the classical works of Hill (3),
Nadai (5), Prager (8), Naghdi (19), etc.

The application of the incremental stress-strain
relationship in the determination of the structure tangent stiff-
ness and the solution of the state deierminztion problem are

considered in Chapters 4 and 5, respectiveiy.

3.2 GENERAL FORM

It is assumed that there exists a scaler yield function,
or loading function, which defines the boundary between the
elastic and plastic ranges. The function is assumed to depend on

the state of stress and the strain history, and may be written as

fce € =0

1
[#8]
—
—

where & 1is the stress vector, .gf is the plastic strain vector,

and the presence of e’ implies dependence on the history of

strain as well as total strain. The function must define a closed



surface in stress space. For elastic states of stress f<p ;
for plastic states f:o ; and no meaning is asscciated with £>p.
The function £ must remain zero when going from one

piastic state to another. Hence

df = (T2 )c/(f‘ +(Zé,, =0 [3.2]

It is assumed that any increment, /<& , of total strain
may be decomposed into an elastic component, cﬁgﬁ’, and a

plastic component, CﬂEP . That is

de€ + e’ [3.3]

The increments of stress are assumed to be related to
the elastic strain increments by the original elastic stress-

strain relationship. That is

where (€ is the material elasticity matrix.

It also follows from Drucker's postulate (7) that the
normality rule will apply. This rule states that the incremental
plastic strain vector is always normal to the yield surface.

That is

P_ 4 2t [3.5]
'A(a_@)
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where A s an arbitrary constant and (’af/ﬁur) defines the
outward normal to the yield surface. Substitution of equations

[3.4] and [3.5] into equation [3.2] gives

0= (%T[gf(df—d€6/+ ({—_’_—,__f—,:«)’- Jef

2 etde - f2Eet- (2 )_/def’ [3.6]

:(2.0‘) cde [( zef‘).]’\(
or
2
A = (37 f e.de
[3.7]
[GF )c"( ()R]

The increment of elastic strain may now be expressed as

d_é_"=d_é_—d§”

20‘ - de [3.8]

dF T
[y ( (2525
If both sides of Eq. [3.8] are premu]t1p11ed by 5;* , then

.. ¢ (25 (2
¢ de =[§e >F - de
/Yzm) >v~) (;6P)( _/

or
— €p
dr = ¢ de [3.9]
in which
ce __?f. 277 e
er e _ - (3!‘)'(317‘ 4 [3.10]
= 7 2F 7 e, 3F PY AN B )
(G35 - (2L
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This is the incremental stress-strain relationship for elasto-

plastic materials.

3.3 ELASTIC PERFECTLY PLASTIC MATERIAL
For an elastic perfectly plastic material, the yield

function is a function of the stress, € , only and not of the

strain, €’ , so that :é,, =0 , and Eq. [3.10] becomes
PR e
-~ 2 =
¢ =c° - .~ = 5” [3.11]
= T f
; /3':;“%57“;}“)

Evaluation of g?" requires an explicit expression for
the yield function. The two most popular expressions for the
yield function are those based on the von Mises and Tresca yield

criteria. For the von Mises criterion

%
= [?/ [(G- §>i(§;—gﬁf@-o;)2+6(z;§+ g}z;j)]} ~g=0 [3.12]

and for the Tresca criterion

7= L = Gn] - & =0 L3.13)

in which ¢ s the yield stress in pure tension
When the von Mises criterion is used, the elasto-plastic
material matrix, S?QP , for an elastic perfectly plastic material

can be expressed in closed form as
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i 3
[ G'
=2y 35
v__ &6 .y &°
/-2y o /-2y F]
v &% Y__GE -y % 4
7-zv T -2y 3 r-ay ~ 3
c%. _E /
= = Trev o Gy 9 Ty Ehy 4 Ty [3.14]
"3 3 -TsT T AT .
_ 6B _ G 8T Tl G
“"‘3 3 3 o3 2 3
5T _B% _gh  mWm _mih G
L ) 3 3 3 s FTT5)
in which
V4 ’ ¢ ’
0’; = , Z;(y =0, efc
’ . /
Qf = stress deviators = ;- 33,0,
—3 ey v . I/
S = g.. " , and € = effective stress = (}3— A d") <

gy
This expression was first given by Yamada et al (43,48)

For the Tresca criterion, the yield surface is
discontinuous and is defined by six functions. Within a region
defined by any one of these functions (a "regular" point), Eq. [3.11]
still applies. However, at the junction of two surfaces (a
"singular" point), it is necessary to satisfy the normaiity rule
for both surfaces simultaneously. Koiter (9) has shown that if
the two adjacent surfaces described by .{4:0 and %}:=0 act
independently, the total plastic deformation can be written as

the sum of contributions from %} and f& , each obeying Eq. [3.6]
with -ﬂ or {3 replacing -f . That is

‘ 5
= A+ Ay (e (315
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Koiter has further shown that the constants A; and ij may be
determined from the surfaces ﬁ =0 , and 76 =zo 1n a manner

similar to that of A in Eq. [3.7]. It follows that

>4 -
A= (2 et de ]/ T35 ) [3.16]

[()’p e a’é]/[( e (>¢ vl [3.17]

and hence
)f v )f ke
& ()¢)(3¢}C“ fe( )[;,) c*
C%= ge__[ YT e 3f; + [3.18]

2 B (2 ey

3.4 STRAIN HARDENING THEORIES

3.4.17 Hardening Rules

It is known that during plastic deformation the yield
surface is continuously changing in size and shape. Several
procedures to account for this effect have been suggested. These
include the isotropic hardening theory of Taylor and Quinney (1),
the s1ip theory of Batdorf and Budiansky (10}, the piecewise
linear hardening theory of Hodge (13), the kinematic hardening
theory of Prager (11), and Ziegler's modification of this theory
(18).

Projections of a Tresca yield surface on the 7 -plane
(the plane @+ dy+0; =0 ) are shown, in Fig. 3.1.
Isotropic hardening, as illustrated in Fig. 3.1la, assumes a
uniform expansion of the yield surface during piastic deformation.

It does not account for Bauschinger's effect, which has been

-39~



observed in many experimental studies. Consequently, despite its
mathematical simplicity, the use of this theory is questionable
in all situations except those involving only monotonically
increasing stress.

The slip theory, as illustrated in Fig. 3.1b, predicts
the formation of a corner on the yield surface during plastic
flow. The stress-strain relationship becomes complex, which is
a serious obstacle in analytical procedures. Furthermore, the
Bauschinger effect is not taken into account.

The independent piecewise hardening theory, as
illustrated in Fig. 3.1c, assumes that only one facet of the
yield surface is caused to move by plastic deformation. An
extension of this concept, which takes Bauschinger's effect into
account, assumes interdependent piecewise linear hardening as
illustrated in Fig. 3.1d. This theory assumes that all facets of
the yield surface change in some inter-related manner during
plastic flow. These theories are limited to piecewise linear
yield surfaces, and their mathematical complexity is a handicap
in applications.

The kinematic hardening theory assumes that the yield
surface translates as a rigid body in stress space, maintaining
its size, shape and orientation during plastic deformation. The
primary aim of this theory is to provide a means of accounting
for the Bauschinger effect. It predicts a Bauschinger effect
for completely reversed loading conditions such that the range
of elastic stress remains unchanged. The theory proposed by

Prager, as illustrated in Fig. 3.le, predicts that the yield
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surface moves in a direction normal to itself at the instantaneous
stress state. However, it has been claimed that inconsistencies
arise when this theory is applied in various subspaces of stress
(14,16,18). In order to remove these inconsistencies, Ziegler
(16,18) suggested a modification, as illustrated in Fig. 3.1f.
This modification assumes that the yield surface translates in
the divection of the vector from the center of the surface to
the instantaneous stress state. Both theories are coincident
when the von Mises yield criterion is employed (19).
In the following sections, expressions for the matrix

éfef are derived for two simple cases, namely isotropic strain

hardening and linear kinematic strain hardening.

3.4.2 Isotropic Hardening
The form of the yield function for isotropic hardening

can be expressed as
feg by = feo)-xeeh =0 [3.19]

where .f* is a function of stress alone, and the parameter k
depends on the plastic strain history. There are two procedures
to express the parameter, 4 . In the first, K is given in
terms of the plastic work, w’ , as

K = k([dwP) [3.20]

=47



in which

dwf= ¢7def = 7. de°

[RRY

r effective stress = (2 ¢ ¢)

- , ST 5
def = effective plastic strain = (-32- det. del)

In the second, Kk is expressed in terms of the effective plastic

strain, as

k = kcfaér) [3.21]°

Bland (12) has shown that these two procedures are equivalent.
For the von Mises criterion, Eq. [3.19] may be written

as

T A _
fce €f) = (207 0)° - Feeh =0 [3.22]

From Equations [3.20], [3.21] and [3.22], the quantities required

to construct the elasto-plastic material property matrix, gje” R

can be found. Thus

>F 31,
= : : 3.23
> ¢ 2 * £ [3.23]
> 38 3% 28 oy
Y Y Y Y
=2, [3.24]
2P 7 -
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Substitution of Equations [3.23] and [3.24] into Equation [3.10]
gives
)()a*) Cw
gl = C
[ )c"’ }+H]

[3.25]

; axl
where o
H »€erf

can be determined provided the relationship
between ¢ and €7 is defined. Typically, the data from a
uniaxial tension test will be known. The incremental stress-strain

relationship may be written as

so that
A Y R A
dr  dé T oH T E E, [3.26]
deP JdEF

in which £ 1is the tangent modulus.

3.4.3 Kinematic Hardening
The yield function for kinematic hardening may be

expressed as
fco & = L) -k =0 [3.27]

where o is a stress vector defining the translation of the yield

surface. Shield and Ziegler (16) have defined ¥ by

dX =gce €. e’ [3.28]
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in which @ 1is a hardening parameter. This parameter is constant

if simple linear hardening is assumed, so that

dod = 9.def [3.29]
and
£ =g € | [3.30]

The constant G in this case is the slope of the relationship
between deviator stress and plastic strain. If the data from a
uniaxial tension test is used, it follows that

. de 50 -2 90 2
J def JeP ~ 3 Jdef 3

[3.31]

in which H’ is as defined for Eq. [3.26].

It may be noted that Kk in Eq. [3.27] is constant,
rather than variable as it is in Eq. [3.19] for isotropic
hardening. The information on plastic deformaticn history is
therefore contained within the vector «

If the von Mises criterion is adopted, the yield

function becomes

Pen el = [2eo-g)ep-a)]%- g =0 [3.32]

in which ¢ s the uniaxial yield stress.
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From Eqs. [3.30] and [3.32]

Y - 3.33
Y I R P [3.33]
> F 3 [3.34]

y
iy . 1 . B ’
)_E._:‘P - 2 a j (-g\_f.()

The elasto-plastic material property matrix is therefore given by

£
0% (25 (2L fedd
o . >0 z@) (3.35]

& ¢ P
/( ‘(fo’f} + j s 9.8 ) (0]

zj(”‘ AT(e-4)=H"  so that

It can be shown that j;--
Eq

Eq. 3.35 is identical to 3.25.

3.5 PARALLEL MATERIAL PROCEDURE FOR STRAIN HARDENING

3.5.1 Concept

The foregoing kinematic hardening theory assumes a
bilinear stress-strain relationship, and is theoretically con-
sistent for this type of relationship only. For more complex
stress-strain relationship, there exists no well established
procedure for the specification of the hardening parameter, g .
An approximate approach has been suggested by Isakson et al (36),
but it has been recognized that this approach may lead to
inaccurate representation of the hardening behavior under some
circumstances. A simple kinematic hardening model which is
applicable to a wide range of stress-strain relationships is
considered in this section. The concept is not original, having
been previously applied to elements under both uniaxial stress

(6,22,58) and biaxial stress (59).
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The material is assumed to be composed of several
component materials, acting in parallel and subjected to identical
total strains. The materials are all elastic perfectly plastic,

The concept is illustrated for a simpie one-dimensional
case in Fig. 3.2. As shown in Fig. 3.4, a Bauschinger effect
with a constant elastic stress range is automatically obtained
with this type of model. Fig. 3.3 shows how complex stress-strain
relationships can be obtained by combining several elastic
perfectly plastic relationships in paraliel.

For multi-dimensional stress the principle is exactly
the same. The elasto-plastic material property matrix for each
component material is as developed in Section 3.3. The matrix
for the resultant material is obtained by simple addition of the
matrices for the component materials, and it is not necessary to
postulate a strain hardening law. As shown in Chapter 7, the
resultant material appears to behave in the same way as Prager's
kinematic hardening model with the von Mises criterion, although
an investigation to explore this in detail has not been possible
within the current study.

This model has the advantage of mathematical and con-
ceptual simplicity. Computationally, it is necessary to keep
track of the status of each component material, and to ensure
that the strains in all component materials are identical. In
most cases no computational difficulties are introduced. How-
ever, a particular problem which may arise in the plane stress
problems should be recogized, as considered in the following

section.
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3.5.2 Relationships for Plane Stress

In a plane stress problem,

0, =0 £3.36]

where the z direction is normal to the stress plane. It is
important to note that this equation must be satisfied for the
resultant material, and not necessarily for each component
material. That is, the sum cf the ¢, stresses on all component
materials must be zero, but the stress on any individual com-
ponent may be nonzero. At the same time, the strain €, must be
the same in all components.

For simplicity, it is assumed here that the shear
stresses Ty, and 7z, are zero in each component material
although this assumption is not essential. It follows that, the

constitutive relationship for the ith component can be written as

( ~ : N N
0 C// C; Cis 0/4 ( déx
e, G Gy Coy Cog dey [3.37]
< C/T ;o= j »
“xy G G, Cy &9 d /;]
g,
~ vy \ Q/ C,Q Qj (’“ AL \déz Ji

Because the strains déx , d€, » o, and df, are identical

for all components, and

p - 3
ae ) 0y

JJO; | = 2 J d@ ) ;N = number of components
d‘rx‘y £=’ dey

\dlo;; J \dQ 7/ L
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the constitutive relationship for the resultant material is

simply
rd@ ] r 74 C:'Z Gﬁ ~ i ) r" —x
d @ p C} J C: 22 63 024 J déf/
< r =2 ’
dLy| =0 (G G, Qp G Ity
f@J S Gr G Cb/i\qéj
¢ Y o0
ZD// ZD/2 ‘D/ 2 'D/-" d éx
Dy Dy, Dy Dy, J‘dé?
- D 317 ])32 ~D33 -Dg4 d d;y
\.D.‘, Dz Ly Ly ) \d &,
or
d Tx D, D, D; dEy Dy
d@ - D‘?/ .Daz .ng déj + -Djd. . dEZ
G” Z;j .D_, ’ -/D.sz Dj’e d (’;(f .Dj.;
Hence

df; =0 =Dy dE + Dy, I+ Dy S iy + D,y ey
which yields

Ly

JE, = - D

Laz Dys
'0/6)( - 'j;;déf - Doy d&j
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Substitution of Eq. [3.41] into Eq. [3.37] yields the stress-strain

relationship for plane stress for the ith component material as

4 N 4 N
L) Cm G«t"jﬁ' C~Cly "5:: Cs—Clu ’5;"
DJ/ -DQ .D43
9 GG 2% Coa™ G Dy Co Leg de€,
1 F =
Jdz o o Lw c Dy Dy |- ‘Jdéﬂ [3.42]
x4 3 MO GG Dyg GGy Dgq o
Xy
Ped C'-(_”_..:?i/ C-C «f_‘_"’ - D
5 z)l \4/ “ Dye 42 44 Dy Cy3 Q,( D“’J[

Although Eq. [3.40] should strictly be used in plane
stress analyses, it is probably sufficiently accurate in most
cases to assume that c!@; is zero in each component material, and
hence to obtain the plane stress-strain relationship for the
resultant material by adding the component plane stress-strain
relationships. It may also be justifiable to evaluate finite
element stiffness matrix for each component material, and to
obtain a resultant stiffness by addition at the element level,
rather than at the material level. It might further be possible
to obtain different hardening behavior by combining in parallel
materials with simple isotropic or kinematic hardening rules,

rather than only elastic perfectly plastic materials.
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4. FINITE ELEMENT STIFFNESS

4.1 COMPATIBLE ISOPARAMETRIC QUADRILATERAL (Q4)

Quadrilateral plane and axisymmetric elements of
Zienkiewicz-Irons isoparametric type (40,49) have been used in
this study. These elements have been extensively applied for
elastic analyses, and some applications in inelastic analyses
have also been reported (51,52,53). The element stiffness
formulation is well known, but is repeated here for completeness.

For an axisymmetric solid element, the geometry and

displacement fields are defined in a polar coordinate system,

r, z, 8, by
4
r=zht
[4.1]
P
vAES- 4
4=/
and
b
Ur ::,’;'/71[/'}'
P [4.2]
in which the interpolation functions are defined by
/
h, = 7 CI-5)C-#)
by = & C(1#5)(I-T) 491
4.3
A3 =2/~(/+5)(/+z‘)
hy = ;i/—(/ 5)Cr+d)
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and in which s-t 1is a natural coordinate system (Fig. 4.1) such
that s and t vary from -1 to +1. The coordinates 77 , Z,

4
and displacements U% , LUz, are the coordinates and displacements
at the nodal points. The relationships derived in Chapter 3 for
Xy ¥, z coordinates apply directly in the polar coordinate
system.

fvaluation of the strains fromvthe displacements

reauires the inverse of the chain rule for differentiation, as

follows:

(2 [ 2z sz 1 [ 2 ]

ar X: " 25 25
A A )

2 i DY T B [4.4]
2z | | ot 25 | | »7 |

where the Jacobian, J, is defined by

2F 32 »r 2z

Jest = 55 37 »f 35 [4.5]

For axisymmetric deformation the strains are related to

the displacements by

; d B [N
) )

€z ° sz | | Y
¢ > = / [4'6]

ée " 0 U‘Z

[‘ 2 )

Z| 2Z 2F
~ /

Substitution of Egs. [4.1], [4.2] and [4.3] into Eq. [4.6] and use
of Eq. [4.4] yié]ds the relationship between strain and nodal

displacement as
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€ = Bcst) U [(4.7]

in which the strain-displacement transformation matrix, £ , is
a function of the natural coordinates s , t. For any given
numerical values of s and t, the matrix B can be evaluated.

The finite element stiffness matrix, __/__‘} , 15 given by
k =/ B8 cBd [4.8]
14

where ¢ 1is the material property matrix, equal to ¢€ at
unyielded material points and €%/ at yielded points. For the

axisymmetric element

* ::2rr]rL§’."_C.§rra’/~.c/z

+i ! - [4,9]
:277//_B(S_z‘)~§(5£)-_¢_3(q£)~rfs_{)](s,{)~c/5«a’{
g 4

For elasto-plastic analyses, matrix A 1is constant at any point,

whereas matrix € will change as the material yields.

4.2 INCOMPATIBLE ISOPARAMETRIC QUADRILATERAL (0Q414)

The compatible isoparametric element has been shown to
possess poor bending characteristics (54,55). In order to improve
the bending behavior, the addition of a number of extra deformation
modes was suggested by Wilson et al (54). The displacement

functions for the incompatible modes are of the form
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U, = ;{;//;[U,:, oo, + by dy
Uy = Zp ), +hsty + Fsle [4.10]
PEY G -

in which the additional functions ﬁg and hg are given by

hs = C1-5%)
[4.11]

hy = (1-1%)
The displacement amplitudes, o, through «, , constitute
additional degrees of displacement freedom. These degrees of
freedom are not constrained to be identical in adjacent elements,
but are permitted to take values which minimize the element strain
energy. As a result, displacement compatibility at the element
boundaries is not satisfied. However, the resulting element has
good bending characteristies and appears to provide accurate
results for a wide variety of problems.

With the additional degrees of freedom, the element

stiffness matrix is of size 12 x 12. This may be partitioned into
matrices associated with the eight nodal displacements and the

four internal degrees of freedom as

Ke boe.
- = :gic- é- ..éi:[.. __Lf_ [4.12]
Ki [fz‘c AL

or
.EC = écc'_g + fc['..‘.’.( [4.13a]
IQ/' == g‘;c'g -+ é!l _e/ [4.13b]



For minimum element strain energy, K;,=0 . Hence

s

-1
g = - _éi{ : £L‘C~' U [4.]4]
Substitution of Eq. [4.14] into Eq. {4.13a] yields
-7
EC = [_écc '”écz";_ézz ‘f&'c] ,é/
- LU

[4.15]

Computationally, this is the well known static condensation
prozedure (60). The element stiffness after static condensation
is of size 8 x 8.

To evaluate element strains, it is desirable to have the
strain-displacement transformation matrix B 1in terms of nodal
displacements only. A similar condensation procedure may be

applied to this transformation as follows

€=< B 8i> g [4.16]
L
or
€= B U+B ¥
-t
.-_-[é’c-_ _@1'_‘;[&'_'41'6]‘_4/ [4.17]

It should be noted that the condensed transformation matrix 15*
does not remain unchanged as the element yields, because the
submatrices ,ﬁij and .gn: may change. The influence of this is

considered subsequently.
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4.3 NUMERICAL INTEGRATION

The integration for Eq. [4.9] is conveniently performed

by Gaussian guadrature integration. The integral is reduced to the
form
b =21 55 HHB%s t)Ccs ¢ £)-res t;)-Jes 4, [4.18]
= &=/ 4=/ g /= 4 J)""( g /)"‘ (51’ /) i j)](S"J) )

/

in which 5, and ﬁj are the coordinates of the integration
points and A4 and ﬁ@‘ are the corresponding weight factors.

The matrix products ( H: /{/ ﬁfg»_@vr] ) are formed
at each integration point, and then summed to obtain the element
stiffness matrix

A Gaussian quadrature formula of order n itegrates a
polynomial f{x) of degree (2n - 1) exactly. Hence, a 2 x 2
Gaussian quadrature formula provides an exact integral for an
elastic Q4 element of rectangular shape, whereas a 3 x 3 formula
is required for the Q414 element.

It was shown by Willam (47) that the use of a 2 x 2
integration rule for an element similar to the Q414 element reduced
the time to form the element stiffness by 40%, and yielded
consistently more flexible results. Willam concluded that it is
desirable to form the element stiffness with a 2 x 2 integration
rule, in spite of the theoretical objections. This conclusion is
applicable, however, only for an elastic element. For an inelastic
element it is necessary not only to interpolate displacements and
strains within the element, but also the material properties. A
crude assumption might be that the material property matrix C , is

constant throughout an element, based, say, on the conditions at
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the centroid. It is preferable, however, to account more
accurately for the spread of plasticity through an element. A
convenient procedure is to monitor the conditions at each
integration point, and to use a different (' at each point, based
on the conditions at that point. This procedure has been used by
Zienkiewicz (53), Bergan (51) and Larsen (52). If an n xm
integration order is used, the spread of plasticity through the
alement can clearly be taken into account more accurately as n
and m are increased. Thus, a 2 x 2 integration order might be
suitabie for the analysis of bulky solids with fairly fine element
subdivisions. However, for the analysis of a shell with only a
single element layer through the shell thickness, the number of
integration points through the thickness should clearly be larger
than 2. In the computer program used for the analyses in this
report, provision has been made for the integration order, n x m,
to be varied, with any values of n and m provided the product

does not exceed 20.
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5. STATE DETERMINATION

5.1 COMPUTATIONAL STEPS
The solution of the state determination problem can be

expressed symbolically as

7

B
< - € - -—————-—»é g’ [5.1]

0

the solution is carried out in three steps as follows:

(1) Determine the incremental strain vector at each
integration point from the incremental displacement

vector.

(2) Evaluate the incremental stress vector corresponding
to the incremental strain vector at each integration

point, and hence determine the new stress condition.

(3) From the total stress determine the internal
resisting force for each element and the complete
structure. Hence, determine the unbalanced nodal

forces.

An shown subsequently, these three steps are not strictly
independent for elements such as the Q414 element, which have
incompatible modes. To simplify the discussion, the steps are
first described for the Q4 element. The complications introduced

for the Q414 element are then considered separately.
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5.2 STRAIN CALCULATION
For any displacement increment, 4/ , the strain
increment at a point (s.t) is determined by direct application

of the strain-displacement transformation. That is
AE (5t) = B(sty -ar [5.2]

5.3 STRESS CALCULATION

£.3.1 Cases to be Considered
Let the stress vector at any integration point at the
beginning of an iteration step be & , which is known, and at

the end of the step be (2 , which is to be found. Four cases

must be considered, as follows:

1) Elastic case: elastic at both & and & .
)

Transitional case: elastic at ¢ , plastic at @ .

Plastic case: plastic at both & and @&

[F%)
P

(
(2
(
(4) Unloading case: plastic at & , but unloading.
These cases are considered in turn in the following sections.

5.3.2 Elastic Case

For a strain increment 4 € , the corresponding elastic
stress increment is easily obtained by using the elastic material

property matrix, C€ . That is

AT = C%4c€ [5.3]
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5.3.3 Transitional Case: von Mises Criterion

In this case, the material behaves elastically for a
part of the step and plastically for the remainder. Because the
behavior is path dependent, it is necessary to make an 2ssumption
about the loading path within the iteration step. The assumption
which is made is that the strains vary proportionately within the
step.

With this assumption, that part of the strain increment
for which the material remains elastic is determined, together
with the corresponding stress increase. That is, a ratio £ is

determined such that
A€ =pg.ac€ [5.4]

and the stress point given by

O = 6+8C%4€ = ¢+8.40"

[5.5]

Ties on the yield surface. The remaining strain is then con-
sidered as for the plastic case.
The equation of the yield surface for the von Mises

criterion can be written as

Ay A )
F=(3070)%- ¢ =0 [5.6]
in which p= - o
0 = vector of deviatoric stresses
£ = stress vector representing translation of the

yield surface during previous kinematic hardening.
0, = yield stress in uniaxial tension, modified to

account for previous isotropic hardening.
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The ratio B must satisfy the equation
3 A A4, 7 A Ay ’/2
[ZCO+842) (5 +p-a0)] " =g [5.7]

A
L
in which 4% s the deviatoric stress vector corresponding to

AQJ . Hence
JEN SR PR L 34T & 2

Ta0 AN ] +[30 740 pH[58 0. - 6] =0 [5.8]

Eq. [5.8] is quadratic in B . If
3 ALT 4L . - o

A= S40%40 which must always be positive,

5:3@,%_@21‘ which must be positive for this case,

C :.—_22_07_5\: - a;‘z which must be negative for this case,

then the roots are

~B82/B*-44cC (5.9]

2A

A=
Because 3 must be positive, it follows that the required root is

"B‘f‘,/ 82*4/16 ' [5']0]

5.3.4 Transitional Case: Tresca Criterion

In six dimensional stress space, the Tresca yield
surface is defined by six functions, or facets, which are quadratic
functions of stress. In three dimensional principal stress space
these facets are planar. In order to determine that proportion of
the strain increment required to reach the yield surface, it is

again necessary to solve a quadratic equation. In general, however,
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one value of B must be found for each of the facets. The
smallest positive value is then the one required, and the facet
giving this value is the facet with which contact is first made.

Because the Tresca criterion is difficult to consider
in computations, and because it appears to represent the behavior
of actual materials less accurately than the von Mises criterion,
its use has not been explored in detail in the current study. In
particular, only an approximate solution of the state determination
problem has been devised for this criterion.

For the transitional case, it is assumed that the Toading
path within any iteration step is such that (a) the strains (and
hence the elastic stresses in six dimensional space) vary
proportionately, as before, and in addition (b) that the principal
stresses also vary proportionately. In fact, these two assumptions
are inconsistent, because the relationship between the principal
stresses and the stresses in six dimensional space is not a linear
one. However, these assumptions permit substantial computational
simplifications for both the transitional and plastic cases.

In principal stress space, the facets of the yield
surface are defined by a set of linear functions

fo=fr-6 =0

or

#*
7[,)(;1:) =0 j nN=/23456 [5.11]

in which # = vector of principal stresses. Alternatively, the

functions may be expressed as
&+
Fa(2)
a0
-65-
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The function ¢% for any facet therefore equals 1 on the facet,
less than 1 inside, and more than 1 outside. For yielding on the

mth facet, the ratio Bm can be determined as

/- &f

Bm = ¢,,,a‘“¢,:

[5.13]

in which ¢” and ¢% are the function values at points P and Q,

respectively in Fig. 5.1. The smaliest positive value of B is

the required value, B . It is then also assumed that
A€ = 3.4€ [5.14]
O =(0+C0%4€% [5.15]
and
4= (1-p) 4€ [5.16]

in which § 1is a scale factor, approximately equal to 1, applied
to place the new stress point exactly on the yield surface. The
remaining strain, 4€® , is considered as described for the

plastic case.

5.3.5 Plastic Case: von Mises Criterion

As with the transitional case, it is assumed that the
strains vary proportionately during any iteration step. During
straining of the yielded material the flow rule should be satijsfied

at all times. Hence

a/_g‘ = ge"’(£ éP)-dée’a [5.17]
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and

b€
A0 :"/ T Ce €ty ST [5.18]
(o]
in which AL = stress increment

gef = elasto-plastic material property matrix, as

derived in Chapter 3, which in general is a

function of both stress and plastic strain

zi§97= elasto-piastic strain increment.

Because % varies along the toading path, the integral of
Eq. [5.18] can generally not be evaluated explicitly, and numerical
methods must therefore be used. Euler's method and Runge-Kutta
methods have been considered in the current study, although other
procedures might also be applicable.

The integration problem is of the following form. Given

th

®

differential equation

017 .-:jzx,y)-o’x [5.19]

and the initial value 4, =9%¢X) , determine %, = Y(X%*4X)
for a given 4X

The equations for Euler's method and for Runge-Kutta
methods of second, third and fourth order are then as follows.

Details may be found in many texts (23,24)

(1) Euler's method

G, =G, + AX- (X% G [5.20]
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(2} Second Order Runge-Kutta method.

N / 7/
b= Jo +AX HCAA TN, G4 Fax §ex, 4,)) [5.21a]

or

J, =jo+2*':dx-/j(x‘,l S 4§ (K8 8 v axfix, 5, )] [5.21b]

(3) Third Order Runge-Kutta method

Y, = YyhF 2k # 3kt A

[5.22a]
k/ = 44X j (Xﬂ,jo)
Ky= ax pCxpzax, 4,+354)
. 3
Ky = Ax g{XtTax, 3;%5-'&)
or
/
G, = Yo+ T KL+ K [5.22b]
k/= AX‘J?(A%/jo)
A’z-‘-AX-j‘(Xof}LAX, Gr 5 k)
£ :Ax.d‘;(x,,,ux, G- k+24)
(4) Fourth Order Runge-Kutta method
b = jo+gf<k,+2k2+2k3+,<f4) [5.23]

k/’" AX'AS(X"”%)
. /
b= 4X Kt 3K, G 4T K,)
. / /
k_g’: AX'Z(XO-'L:?—AX/ ja-frkz)

Ky = Ax-$CKHAX, 4.4 K3)

A11 of these methods are simple to program for the
computer. The number of evaluations of X(X,ﬁ) increases from
one for Euler's method to four for the fourth order Runge-Kutta

method. For an elasto-plastic analysis, each evaluation requires
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the computation of g;ep according to the equations of Chapter 3,
The computational effort required is small. Hence, although a
low order method may give sufficiently accurate results for most
cases, it is recommended that the fourth order Runge-Kuita method

be used. Accuracy can also be improved by dividing 4€& into a
number of increments, and applying the numerical method sequentially
to each increment. In the analyses considered here, however, the

integration has

o

ra een carried out considering A€ as only a single

(Cj

increment.

A similar sclution procedure to that considered here has
been applied by other workers (38,50,51,52), although the nature
of the procedure and its approximations have not been clearly
explained. In all cases, the equivalent of Euler's method
appears to have been used.

For the fourth order Runge-Kutta method, the procedure
for the von Mises criterion is as follows. The procedures for the

other methods are similar

(1) At the beginning of the step, or, for a transitional

case, at the point of yield, evaluate

46 =C%3 ) a7 [5.24]

and
a€l =4 0 4g [5.25]
(2) Compute 44 = Cef( 4\+240\ élfzm_c,) 4 [5.26]

and
sl =26 clug [5.27]
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(3) Evaluate
/
afy = CHO+345 €f+3ael) 4 €[5 28]
A€y = A€~ % 40 [5.29]

(4) Calculate

€ e
A_Q} =C "’(_07+ ag; | §f+4§f) 4% [5.30]
(5) Evaluate the final stress increment and plastic
strain increment by
/
A_q‘rz-[ag:+z.4~q;+z.a_@+4~@] [5.31]

and

-1
4P 4%~ 0% 40 [5.32]

(6) The final stresses and plastic strains are then

d; =40, +AT [5.33]
€f=elvagl [5.34]

(7) For strain hardening materials, deate the hardening
parameter. For isotropic hardening, the best procedure is probably
to compute the effective stress corresponding to the stress state
0z , and to set the hardening parameter, b‘—(g’p) in Eq. [3.22],
equal to this effective stress. The new stress point therefore
lies exactly on the yield surface.

For linear kinematic hardening, the change in the

hardening parameter, 44 , can be obtained from Eq. [3.29], as

Ad = g.4¢F [5.35]
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|

However, the stress point may not lie exactly on the new yield
surface. Hence, it is recommended that the stress vector, & ,

10N

[

be scaled to place it on the yield surface. A similar modifica
will be needed for elastic perfectly plastic materials. In the
numerical examples considered during this investigation, the stress
points obtained by the fourth order Runge-Kutta procedure were
always very close to the yield surface, and the scaling of the
stresses required changes no larger than one percent.

It may be noted that is 1s not necessary to monitor the
plastic strains or to modify the yield surface if an elastic
perfectly plastic material (or the parallel material strain
hardening model) is used. This is because C* s independent

of €7, and € can always be found as

-7

ef= e-c® ¢ [5.36]

5.3.6 Plastic Case: Tresca Criterion

Within any facet of the Tresca yield surface, the state
determination procedure for the plastic case is similar in
principle to that for the von Mises criterion, the only difference
being in the equation of the yield surface. A problem arises,
however, if the stress point moves from one facet to an adjacent
facet, or to an "edge" between facets. Again, because the Tresca
criterion is not of primary interest, it has not been explored in
detajl during the current study. Nevertheless, some analyses using
the Tresca criterion have been carried out, and a simplified

approximate solution to the problem of movement between facets has
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been devised. This solution applies for elastic perfectly plastic
materials only.

The solution is based on the assumption that the state
determination problem can be solved in principal stress space.
As with the solution for the transitional case, this involves the
assumption that the strain variation within the step is such that
the princiral stresses vary proportionately. The procedure is as

follows at any integraticn point.

(1) Determine the strain and stress increments assuming
the material property matrix applying at the beginning of the
interation step {or, for a transitional case, at the point of

yield). The equations are

A4én =B-Af [5.37]
40 = Cr 46 [5.38]
O =0, + 40 [5.39]

(2) Calculate the principal stress vectors 2, and £,
for the stress states ¢, and (., respectively. The stress
state -, will lie on facet i , as indicated by point P in

Fig. 5.2.

(3) Evaluate the factors by which the stress increment,
4p, , must be scaled to move from facet 1 to each of the

adjacent facets:

/- & (Pn)
i = . J j= (£=1) or Ci+1) [5.40]
I Bep- a0



Only the positive value is required, and the facet which gives

this value is the facet toward which the stress point moves. 1If

fo1]
o
o)
o
-
jat)
=5
b
[y
o

s point remains on the current

1

8{_3; , the stre

o

solution is complete for this iteration step.

(4) If [%«il , the stress point moves to facet j ,

shown as point Q 1in Fig. 5.2. The stress state at point R is
Ur = Gor + B;400 [5.41]

For simplicity, it is again assumed that the remaining strain for
the iteration step can be obtained by scaling the strain using ;%.
That is, the remaining strain is (/-/%)'Aé . As noted
previously, this assumption is not strictly correct.

The procedure can now be repeated from step 1 with a
new material property matrix corresponding to the new facet. If
the stress point moves into the new facet, the procedure is exactly
as above. However, if the stress point moves back to the previous
facet, this indicates that the final stress state is on the edge
between facets. Hence g:ef is computed according to Eq. [3.18],

and the final stress increment is obtained accordingly.

5.3.7 Unloading Case

For any given strain increment, 4€& , applied to a
yielding material, a test for unloading can be obtained by considerimng
what would happen if the material were elastic. Clearly, continued

loading is indicated if the value of the yield function increases,
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and unloading is indicated if this value decreases. That is,

for unloading

227},_\ v £ r
(7)) ag' <o [5.42]
in which
0 =% ac [5.43]

is the elastic stress increment which would correspond to the given
strain increment. The derivative with respect to €% is not
considered in Eq. [5.42], because &% is constant for an elastic

material. Hence, for unloading,

() ceae <o [5.44]

This criterion is simple to apply.

If unloading is indicated, the situation corresponds to
either an elastic or a transitional case, and is treated
accordingly. As noted in Section 2.4, however, it is jnadvisable
to permit large stress changes on unloading because the elasto-
plastic material property and stiffness matrices used to compute
the strain increment may be greatly different from the elastic
matrices required during unloading. Changes such that the yield
function is exceeded at some other point on the yield surface
should particularly be avoided. To avoid this problem, a reversal
tolerance should be specified. The procedure for applying this

tolerance is considered in Section 6.2.
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5.3.8 Path Independent Procedure

A major source of uncertainty in the application of

!\l

iterative solution techniques to the analy

..... $ita

wy

i of inelastic

structures is that the strain path followed during the znzlysis
may differ substantially from that followed in the actual structure.
Because the behavior of inelastic structures is path dependent,

ne

[¥e}

tete of stress and strain chbtained by iteration may differ

fs

becentially from the "trus®

tate,

7

S

¢
IS

With the solution strategy proposed, the effects of path
dependence can best be minimized by applying the Toading in a
series of smell increments, so that the "true" loading path is
followed closeiy. In many cases, however, it may be desirable ta
apply the 1oad in a singie larce increment, or in a small number
of increments of moderate size. In such cases the problem of path
dependence arises.

For the state determination problem as described in the
preceeding sections, the stress and strain increments for any load
increment are obtained by sumiing the increments from each

iteration step. That is, for the nth iteration step

—
U
Nl
o

[

5€n =B 50

in which 5 indicates the increment within the iteration step, and

30n = ha (8 €n) [5.46]

in which the functional relationship, /A, , between the stress and
strain increments is that implied by the state determination

procedures just considered. Then
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A§n =A§ﬂ—l+5§” ; Afo

]
io

[5.47]

4 0,

i}

405, + &0 ; 4Ad, =0 [5.48]

in which 4 indicates the accumiiated increments since the
beginning ¢f the iteration segquence for the load increment.

Because the Toading path defined by the sequence of
increments € and 30 may differ substantially from the "true"
loading path, errors may result. The procedure defined by
Egs. [5.45) through [5.48] w11 be termed a "path dependent”
procedure.

The problem of path dependence might be overcome, at
least partiaily, by adopting a state determination procedure which
is path independent within any load increment. A procedure of
this type is contrasted with the path dependent procedure for the
transitional case in Figs. 5.3 and 5.4. The equations of the path

independent procedure are as follows.

3€n =B.30 [5.49]
A€n = A€p1 + 3 En [5.50]
405 = hn(4En) [5.51]

That is, instead of 4 being determined by summing a nvmber of
increments, ¥ & , it is calculated at each iteration step from

the total accumulated strain for the load increment. Assuming

-76-



that the procedure converges, it would be expected that the final
strain increment, and hence the final stress increment, would be
independent of the displacement path defined by the displiacements
sr. That is, within the Toad increment, the effects of path
dependence should be eliminated,

This procedure has been investigated, and compared with
the path deuendent procedure. The results of some analyses are
presented in Chapter 7. An alternative means to reduce the
influence of path dependence is through the use of an overshoot

tolerance, as described in Sections 2.4 and 6.2.

5.4 RESISTING LOAD
After the new stresses, 0 , have been obtained, the

internal resisting force for each element is determined by direct

application of the relationship,
R'=[ 870 o [5.52]
v

The resisting force for the complete structure can therefore be
assembled, the unbalanced load can be determined, and a convergence

check can be carried out.

5.5 COMPLICATIONS FOR ELEMENTS WITH INCOMPATIBLE MODES

For fully compatible elements, the three steps indicated
in Eq. [5.1] for the state determination problem can be carried
out independently. For elements with incompatible modes, however,
the strain-displacement transformation matrix, B , is conveniently

condensed to the matrix 15* , given by Eq. [4.17]. Because the

-77-



condensation operation depends on the element stiffness, and
because the stiffness of an elasto-plastic element depends on the

o PR | -~ am o o
material stresses,

4

5
!

£ 4 ) 3 5
t follows that A7 generally will not remain

constant.
A numerically consistent solution can be obtained by
recovering the amplitudes of the incompatible mcdes for each

iteration siep, and using the uncondersed strain-displacement
transformation as defined by Eq. [4.16]. The interna
Toads, é?li , would then also include terms corresponding to the
incompatibie modes, which would have to be considered in the
unbalanced lozd computation. While this procedure would be
consistent, it has the disadvantage of being more complex
computationaily. Hence, in the computer program developed for this

study, it has bzen assumed that the strain increments in any

iteration step can be obtained from the equation
4€ =B, AL [5.53]

in which 4/ includes only the nodal displacements and not the
amplitudes of the incompatible modes, and _§f is the condensed
transformation matrix for the state at the beginning of the
iteration step. Once 4€& has been obtained, the stress calculation
proceeds exactly as before. It then remains to calculate the
internal resisting force, [fr .

Strictly, the resisting force should be computed using
the uncondensed strain-displacement transformation matrix. If
this were done, the forces corresponding to the incompatible modes

would not generaily be zero, because of the incorrect assumption
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that the condensed transformation matrix is constant throughout
the iteration step. For simplicity, it has been decided to use a
condensed transformation matrix, and hence to ignore any loads
associated with the incompatibie modes. It is believed that these
Toads will be small, and that they would not imply excessive con-
straints on the freedom of the element to adopt a minimum energy
state of s7-ess and strain. The element resisting forces have

theraefore Leen determined from
e _.T
/& ::/jj-a*»a'v [5.54]

in which g?‘ may be the condensed transformation matrix for any
one of (a) the state at the beginning of the iteration step, (b)
the state at the end of the step, or {c) a fully elastic state.
The most rational choice might appear to be the transformation
corresponding to the state at the end of the step, which is the
state for which the internal resisting load is required. However,
it can be argued that the resisting force might most consistentiy
be determined by first unloading the structure an infinitesimal
amount, to return it to an elastic condition without changing the
stresses, and then determining the resisting force using the
condensed transformation matrix for an elastic element. This
procedure has the advantage that the condensed elastic transformatiom
remains unchanged, whereas the elasto-plastic transformation
changes progressively.

Examples showing the use of these different transfor-

mations are presented in Chapter 7.

-79-



B O

.
\\
e NG
/ ™~
\\.
~
\\
]
|
pt
. s
{
1‘/(
/ //
// e
& .
~
/

FIG 5-/ THANSITIONAL CASE TRESCA
0y
\
/\ Facet X3
////// S
R
P
\1Face{ ;
/ P \
i \/< o
! Facet ";-1°
FiG 5-2 PLAST/IC CASE THRESCA

FOR g <o

-80-



9

FiG 5-3 PATH DEPENDENT PRCOCEDURE

. % \
. pd A

S
/

FIG 5-4 PATH TNODEPENDENT PROCEDURE

-81~

55
5:—53 =
P—:S; -

N "
%y ey
D i




6. COMPUTER PROGRAM LOGIC

6.1 GENERAL

The procedures described in previous chapters have been
incorporated into a computer program for the analyses of plane and
axisymmetric preblems. Because the program is experimental, it
has Timited capabilities. In particular, only the "parallel
material" strain hardening procedure has been considered. Never-
theless, the program is believed to be fairly efficient, and can
be apolied to & wide range of problems.

A simplified fiow chart showing the computational
moduies is given in Fig. 6.1. Overall control of the execution is
maintained by a main program, which calls the various computational
modules in sequence. Most of these modules follow well known
procedures, and need not be described in detail. However, the
modules SCLDWN, ELOPLA, and CONVRG involve specialized logic.
Hence, details of these modules are presented in the following

sections.

6.2 COMPUTATIONAL MODULE "SCLDWN"

In many cases, the results obtained within any linear
step may deviate substantially from the "exact™ results. Excessive
deviations could affect the accuracy of the final results or lead
to convergence difficulties. By means of the module SCLDWN,
provision has been made to control the magnitudes of these
deviations.

Depending on the load increment and the nature of the

problem, a stress point may lie outside the yield surface at the
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end of any iteration step. For example, the stress state at the
beginning of a step might be at point A in Figs. 6.2 and 6.3, and

at the end of the step at point C. The distance of point C beyond

the yield surface gives a measure of the departure of ti: linearized
solution from the true solution, and may be excessive. 1In order to
ensure that the solution stays close to the true path, the user may
wish te 1imit the amount of overshoot by specifying an overshoot
tolerance

LR R LS

The yield function may be expressed as

feo)
) = 6.1]
P 7 [
s » 4 m 53 Ir E }'é h L . s
in which ,f(,)-:(«é—_g»_@) for the von Mises criterion

and -f’(!):(dg-'t";) ; ‘-,J-:/';,\;r ; 54:]' for the Tresca criterion
The value of ¢ is equal to unity for stress states exactly on
the yield surface. If the vaiues of ¢ at stress states B and
C are % and ¢ respectively, and if state B is at the
permissible overshoot 1imit, as shown in Figs. 6.2 and 6.3, then
the value of ¢§B is equal to the specified overshoot tolerance,

t,. That is

¢B :::zl'o >/ [6.2]

If ¢SC> ¢5 , it implies that the amount of overshoot is
excessive, and the increment must be scaled down. The scale

factor, o , for the von Mises criterion, is determined by

o -8B+ /B y44cC [6.3]

2A
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/423244@-4_ which is always positive

B=3¢6 40 which is positive in this case

C,:g‘_é,',f-q\,' ._(fn.o:)z which is negative in this case
in which AJT/ is the deviatoric stress vector associated with the
computed stress increment 40 , and gY is the deviatoric stress
vector corresponding to the stress state at the beginning of the
step.

For the Tresca criterion, the following equation is

applied to all six facets to get six scale factors.

A
of . = __!.f._;?i‘___.. =S 6 [6.4]

{ géfi_ ¢2: ;

in which &, is defined by Eq. [5.12], and ¢° and 45;‘ are the
values at states € and A, respectively. The smallest positive
factor is the one required.

The reversal tolerance, fr , 1s similar to the over-
shoot tolerance ,t,, except that it is applied in unloading
situations, as shown in Fig. 6.4. The scale factor, « , is
controlled by the reversal tolerance.

For the von Mises criterion, the scale factor & is

determined from

"'B"\/ 82"‘4AC [6.5]

2A

o =
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with

A= 540" 80 which is always positive

3 0/ 40 which is negative in this case

8
__\3 /T L4 2 - . . - . .
cC=350.9 -Ct ) which is positive in this case

For the Tresca criterion, Eq. [6.4] is applicable, except
that the overshoot tolerance is replaced by the reversal tolerance.

That is

tr- &
Off-‘"-‘;-:—:—g—&—;‘ iood=h o, 6 [6.6]
3 i

An algorithm to determine the scale factor is shown in

Fig. 6.5. The steps are as foliows for a typical integration point.

(1) The stress existing at the start of the jteration
step, & , and the displacement increment 4/ are known. The
overshoot and reversal tolerances, 7, and t- , are specified,

The scale factor, FACTOR, is initialized to unity.

(2) Evaluate the strain increment from 4€=8-4r , and
the stress increment from Af =C, A€ where (4 =C at the

beginning of the iteration step.

(3) Check the status at the beginning of the iteration
step. If elastic go to step 8. Otherwise continue to the next

step.

>F r
‘ : : e
(4) Check for unloading using ZF(DJT )Agj.AE{/ as
noted in Section 5.3.8. If the material unloads go to next step.

Otherwise go to step 8
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(5) For the unloading case, form the elastic material
property matrix g:e , and recalculate the stress increment from

Af:gedg

(6) For the specified reversal tolerance, 7, .,

evaluate the scale factor & , as described previously.

(7) Check if o is less than "FACTOR". If so, set
FACTOR equai to o . By this procedure, the smallest scale factor

is retained.

(8) With the specified overshoot tolerance, ¢,

evaluate the scale factor, o , as described previously.

(9) Check if of 1is Tess than FACTOR. If so, set
FACTOR equal to o . Again this serves to retain the smallest

scale factor.

(10) Repeat steps (2) through (9) for all integration
points in all elements, and hence get the final smaliest value of

FACTOR.

6.3 COMPUTATIONAL MODULE "ELOPLA"

The computational module "ELOPLA" {s a subroutine for
evaluation of the stress increment when the strain increment is
given. The elastic,transitional and plastic cases are considered,
The unloading case has already been converted to either én elastic
or a transitional case in SCLDWN. The computational algorithms
for the von Mises and Tresca criteria are outlined in Figs. 6.6
and 6.7. Details of the procedure have been described in

Chapter 5, and need not repeated here.
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6.4 COMPUTATIONAL MODULE "CONVRG"

The computational module "CONVRG" exercises control over

H

the solution pracedure. The procedure for any step is based on

[

the values of the three convergence tolerances at the end of the

previous step. The three tolerances are as follows:

(1) Final convergence tolerance, fs . If the largest
unbalances load is less than this value the solution for the
current load increment has converged with sufficient accuracy, and

the rext loag increment is considered.

(2) Constant stiffrness tolerance, £, . If the largest
unbalanced load is less than this tolerance the stiffness matrix
is not reformed for the next iteration step, but the solution

jterates with the same stiffness as in the current step.

(3) Step by step convergence tolerarce, ¢, . The
tolerance is used where a lcad increment is applied stepwise, in
a number of equal subincrements. At the end of any subincrement,
if (a) the largest unbalanced load is less than this tolerance and
(b) this is not the Tast subincrement, then the next subincrement
is added.

The sequence in which the tolerances are checked is

shown as a flow diagram in Fig. 6.8.
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7. NUMERICAL EXAMPLES

In order to check the accuracy and efficiency of the
method developed here, several elasto-plastic structures have been

analyzed, as follows:

{1) A thick cylinder under internal pressure with its

ends restrained in the axial direction.

(2) A perforated tension strip loaded by uniform tension

at both ends.

(3) A torispherical pressure vessel subjected to

internal pressure.

(4) A thin cylinder subjected to both axial load and

internal pressure.

The first problem, for which a closed-form solution is known,
and the second and third problems, for which experimental results
are available, were selected to provide a check on the finite
element results. The fourth problem was selected to investigate

the behavior of the parallel material model for strain-hardening.

7.2 THICK CYLINDER

A thick cylinder under internal pressure and with its
ends restrained in the axial direction has been studied. The
cylinder has been analyzed in several different ways and the
results have been compared with a closed-form solution derived by

Hodge and White (4).
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The cross section of the cylinder and the finite element
idealization are shown in Fig. 7.1. The material was assumed to

be elastic, perfectly plastic, with properties as follows:

Internal radius of the thick cylinder a = 1.0
External radius of the thick cylinder b = 2.0
Shearing modulus of elasticity ¢ = 3.333 x 10°
Poisson's ratio v=0.3
Yield stress in pure shear < = 10,

The following sequence of loading increments was applied:

(a) Internal pressure ﬁé; = 1.0 in one step.

(b} Increments -7§L = 0.05 continued until the plastic
region penetrated through the complete thickness of
the cylinder. The most accurate solution proczdure
was used, namely step by step with Newton-Raphson
iteration within each load increment. Two different

yield criteria were considered, namely the von Mises

and Tresca criteria.

The variation of radial displacement with internal
pressure is shown in Fig. 7.2. Fig. 7.3 shows the radial,
circunferential and axial stress distributions at an internal
pressure of —E? = 1.25, when the plastic region had progressed
through half of the thickness of the cylinder.

There is good agreement between the finite element and
closed-form solutions. It is of interest to note that the finite

element results using the two different yield criteria are almost

identical, except for some stress discrepancies along the
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elasto-plastic boundary, with the results from the von Mises
criterion being closer to the closed-form solution. The closed-
form solution was based on the von Mises criterion, but it has
been shown by Hodge and White (4), Hi1l et al (2) and Mz ~cal (30)
that there should be little difference between the two yield
criteria for this probiem. The results obtained herein provide
additiona’ -upport for this observation.

Figures 7.4 and 7.5 show comparisons between the rosults
obtaired with the Q414 and Q4 elemenis, respectively. The Q4
etement, which is fully compatible, but has an incomplete quadratic
displacement function, is seen to provide & good displacement value,
but to provide poor stress resuits at the integration points. The
Q414 element exhibits stress errors of a similar type at the
integration points, but to a less marked extent. Both elements
provide accurate stress results at the element centers,

A comparison of Figs. 7.3 and 7.5 shows that better stress
resuits are obtained by loading in several steps than by lcading
in a single step.

To demonstrate the application of the program for cases
with reversed loading, a cyclic sequence of load increments was
applied to the cylinder. This sequence is as follows:

7£L =0.0-10~-»1.25-0.0~+-1.0- -1.25~+ 0.0
Fig. 7.6 shows the radial displacements at each stage of the
Toading sequence, and Fig. 7.7 shows the corresponding stress

distributions. The stresses are plotted for the element centers
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only. t is of interest to note that the stress distributions
associated with the first and second residual states are symmetric

wa Fh v
Wi L 1

"

. s
espect to the initial state.

L

i

7.3 PERFORATED TENSION STRIP
7.3.1 Dimensions and Properties

Results of a test on a rectangular plate with a central
hole have been reported by Theocaris and Marketos (20). This
structure has also been studied with the finite element method by
Marcal and King (38), and Zienkiewicz et al (50). Because this
example has been studied both experimentally and theoretically, it
is of value for assessing the effectiveness and accuracy of the
present method.

The test material was aluminum. The following properties

have been assumed for analysis:

Yield stress in pure tension 9, = 24.3 kg/mm2
Young's modulus E = 7000 kg/mm2
Strain hardening modulus H = 225 kg/mm2
Poisson's ratio v o= 0.2

The dimensions of the strip are shown in Fig. 7.8. Two different
finite element meshes have been considered, namely a coarse mesh
with 31 elements and a fine mesh with 92 elements, as shown in
Figs. 7.9 and 7.10.

For a stepwise loading with Newton-Raphson iteration
within each step, the variation of maximum strain with load is
shown in Fig. 7.11. The strain from the finite element analyses

are for the integration point which yielded first in each case.
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The progression of the elastic-plastic boundary is illustrated in
Figs. 7.12 and 7.13. The finite element results are generally in
A

+ 4+ g
reement with the

goo xperimental results. The strains

obtained here are somewhat larger than those computed by Marcal and
King (38) and by Zienkiewicz et al (50). The progressive elastic-
plastic boundaries from the analysis and experiment are in good
agreement, 2van for the coarse finite element mesh. However, the
results for the fine mesh agree more cicsely with the experimental
results. 1t is of interest to note, in Fig. 7.13g, that the
experimentsi results show yielding at the top of the hole, and

that this yieiding is also predicted by the analysis using the fine
mesn., This yielding was not observed with the coarse mesh, and

was not reported by Marcal and King or by Zienkiewicz et al.

7.3.2 Comparison of Soluticn Procedures

In order tc compare the performance of different sclution
procedures, and to aid in the selection of the best method for
practical analysis, analyses of the perforated strip have been
carried out by the thirteen different procedures listed in
Table 2.7, using the coarse mesh. The strain values, Er?//@
at the first yielded integration point for all procedures are
summarized in Table 7.1 and Fig. 7.14. The number of times the
stiffness was reformed and the number of iteration cycles for each
procedure and each incremental load step are shown in Table 7.2.
Central processor times on the CDC 6600 are slso shown. The

)
elastic-plastic boundaries for the loading if = 1.0 for each
o

procedure are shown in Fig. 7.15.



The following conclusions may be drawn from this study:

(1) A1l procedures provide good final results, except

Method

™3

At vaet G* et L
s, UIiTEeCT 1L ti ffrness

93]

ant

(%)

ioCon
step by stepmethod with equilibrium correction. One rei:on why
Method 2 did not provide a good final result is that it was

terminated after 35 iteration cycles, prior to complete convergence.

(2 The final results are insensitive to the size of
the Toad increment. Because of the influence of the load path,
the elastic-plastic boundary computed by Methods 1, 2 and 3
(Fig. 7.75a) is slightly different from that computed by Methods 8,
9 and 10 (Fig. 7.75d). 1In general, however, the single step
soiutions give results which are very close from those obtained

with several iocad increments.

(3) The methods making use of iteration with constant
stiffness, namely Methods 2, 6, 9 and 12, are considerably more
time comsuming for this example than those using iteration with
varying stiffness. The methods using varying stiffness require
the solution of both linearization and state determination problems
in each step of the iteration, whereas those using constant
stiffness require only that the state determination problem be
solved. However, because the computer time required for solution
of the iinearization and state determination problems are similar
for this example, and because the methods using varying stiffness
require fewer cycles to converge, these methods prove to be more
efficient. In other problems, particularly those with larger
aumbers of elements, the time for each linearization may sub-

stantially exceed the time for each state determination, and hence

the relative efficiencies may change.
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7.3.3 Convergence Rate

The convergence rate for maximum strain and maximum
unbalanced nodal Toad are shown in Fig. 7.16 for Methods 1, 2 and
3. It can be seen that the rate of convergence is slow when a

constant stiffness is used.

7.3.4 Use of Q4 and Q414 Elements

To investigate the differences beiween results obtained
with the Q4i4 and Q4 elements, the anaiyvses for the coarse and
fine meshes have been repeated by Method 1 using the Q4 element.
The convergence rates and final results are shown in Table 7.3
and the elastic-plastic boundaries are shown in Fig. 7.17. The
results obtained with the Q4 element are inferior to those for the
0414 element in the case of the coarse mesh, but there is close
agreement for the fine mesh. The Q414 element appears to be a

superior element on the basis of this example.

7.3.5 Unbalanced Load Computation and Path Independent Approach
In all of the methods considered, the unbalanced ioad

has been computed using the equation

R*=[8 0 v
Y

in which 55? is the strain-displacement transformaticn matrix at
the beginning of the current step. As noted in Chapter 5, the

. . \ x
internal resisting force, R~ , may also he computed by

R*= [ 80 o
1
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in which Bj is the transformation matrix corresponding to the

elastic state.

The procedure used to compute the strains and stresses

in these examples has also been the "path dependent" approach

based on the equations,

B
o
1
B
'
4
™
'$

, the stresses and strains may also be

Gy
O

As noted in Section 5.
determined by a "path independent” approach within any load
increment.

To investigate these alternative methods of computation,
the perforated strip has been analyzed, for the coarse mesh, using
several variations of Method 1, in which the state determination
problem was solved in several different ways. The alternative
procedures are shown in Table 7.4.

The most rapid convergence was obtained with procedure
type 2. In this case, the strain increments were determined using
a transformation matrix '§7 which is consistent with that used
for the linearization, and a constant transformation matrix 55: ,
was used for the calculation of the internal resisting force.
Procedure type 3 also converged rapidly. However, it was noted
that unloading at previously yielded integration points occured

with this procedure, leading to small oscillating values of the
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unbalanced Toad. If the unbalanced load tolerance were set very
small, convergence might not be obtained with this procedure. To
avoid this, a provision was included in the program to prevent
unloading at previously yielded points at all iteration c.cles
except the first one in any load increment. The convergence rate
shown in Table 7.5 was obtained with this provision. No such
urloading was observed with procedure type 2, and for practical
computation this procedure is recommended,

It may be noted that procedures tvpes 1 and 6 do not
converge. The reason why type 1 diverges is that the constant
transformation matrix, Qf , which is used to evaluate the strain
increments is inconsistent with that used to form the stiffness
and obtain the displacement increment. In both the type 5 and type
6 analyses, the use of the matrix _@f to determine the total
strains would appear to be inconsistent, because this transformation
changes progressively. However, procedure type 5 converged whereas
type 6 did not. The reason for this is not clear. It can be seen,
nevertheiess, that even where convergence is obtained by any path
independent procedure, this convergence is likely to be slow.
Hence, it may be concluded that path independent procedures should
not be used for practical computation.

Procedure type 7 demonstrates that the basic Q4 element,
which has a constant transformation matrix in all cases, exhibits
convergence with a path independent procedure. However, more
rapid convergence was previously obtained using a path dependent

procedure.
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MAXIMUM UNBALANCED LOADS FOR DIFFERENT STATE

TABLE 7.5

DETERMINATION PROCEDURES

Single step N-R

Strain = £€ /;

iteration in all cases,

T

0

= 1.0.
See Table 7.4 for definition of procedures

|
Tterative | 1upe 1 [ Type 2 | Type 3 |Type 4 |Type 5 | Type 6 | Type 7
Cycle
] 8.7567 | 8.7567 | 8.7567 | 8.7567 |8.7567 | 8.7567 |9.2167
2 7.0914 | 7.0483 17.0399 |7.1945 |7.1476 | 7.1436 |5.0430
3 1.6313 1 1.5926 |1.5284 | 2.2022 |2.1091 4.5879 {1.5213
4 0.8383 10.0126 {0.2794 |1.9278 |1.7049 | 5.1731 | 0.3874
5 1.4779 1 0.0000 | 0.02471 |1.7390 | 1.4435 | 5.1949 {0.2712
6 1.9565 0.0708 | 1.5360 !1.1990 | 12.2007 |0.1826
7 3.5273 0.0008 |1.4085 | 1.0036 | 15.2330 |0.1377
8 3.6003 1.2538 10.8385 | 33.6724 | 0.1016
9 5.7980 1.1502 {0.7006 | 24.8541 |0.0746
10 3.8461 | 1.0305 10.5857 | 47.1228 |0.0543
1 4.7889 0.9444 1 0.4895 | 63.7916 :0.0393
12 3.7194 0.8496 | 0.4092 | 61.2234 o.oza3f
13 5.2855 | 0.7777 {0.3421 | 77.1607 o.ozoﬂ
14 3.9027 0.7015 10.2859 | 70.6628 | 0.0145,
15 5.0203 0.6414 |0.2390 |105.0266 |0.0104]
16 3.7899 0.5795 10.1997 [113.1733 |0.0074
17 5.1257 . 0.5294 | 0.1670 | 113.3245
18 3.8825 0.4790 ;0.1396 |107.8133
19 5.1144 0.4372 {0.1167 |108.8824 |
20 3.8178 0.3959 50.0975 | 106.8°61 ;
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TABLE 7.6

STRAINS AT POINT OF FIRST YIELD FOR DIFFERENT
STATE DETERMINATION PROCEDURES

¥

Single step N-R iteration in all cases, = 1.0.

Strain = £€ /g, . See Table 7.4 for definition of procedures

o

i

Type 1 Type 2 | Type 2 | Type 4 | Type 5 | Type 6 | Type 7 ]

B 4.41198 | 4.56134 | 4.089€68 | 4.16316 —— 3.89451

i
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7.4 TORISPHERICAL PRESSURE VESSEL

A torispherical pressure vessel head subjected to
internal pressure has been tested by Stoddart and Owen (21), and
analyzed by Marcal (35, 46) using axisymmetric curved sheil
elements. The relevant dimensions of the vessc! head are as

follows:

Moun ciameter of cylindrical bervel of vessel D = 24"

Mean radius of sphere R = 24"
Mean radius of torus ro= 2"
Thickness of the shell t = 1/4"

The vessel tested by Stoddart and Owen was made of mild steel with
the following properties:

Young's modulus E = 30.4 x 10° ksi

Uniaxial yield stress 057 40.197 ksi

Poisson's ratio v 7 0.3

Elastic perfectly plastic behavior was assumed by both Stoddart
and Owen and Marcal, with yield according to the von Mises
criterion.

The structure has been idealized with thirty-eight
elements of 0414 type, as shown in Fig. 7.18. The element
stiffnesses were obtained using a 2x8 integration order, with 8
integration points through the thickness of the sheill.

The elastic stress distributions on the internal and
external surfaces of the vessel for a pressure of 0.1 ksi are
shown on Fig. 7.19. The experimental resuits of Stoddart and

Owen and the finite element results are seen to be in excellent
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agreement. This demonstrates the applicability of the Q414
element to the analyses of thin shells of this type. A similar
demonstration has been given by Wilson et al (54).

The maximum equivalent strass occurs at an aaic'e 5 = 45°,
on the internal surface of the torus. In the finite ejement
analysis, yielding is predicted to occur first at this point at
a prescure of 0.22 ksi. This compares well with the experimental
pressure of 0.20 ksi at first yieid reported by Stoddart and Owen.
For the elasto-plastic analysis, a pressure of 0.215 ksi was first
applied, followed by increments of G.043 ksi until the pressure
reached 0.473 ksi (2.15 times first yield).

The computed surface strains at an angle ¢ = 44 44¢
are shown for increasing pressure in Table 7.7 and Figs. 7.20 and
7.21. These results are at a slightly different location from
those reported by Stoddart and Owen and Marcal, which corresponded
to 6 = 45° |, but the difference is believed to be negligible.

The agreement with Marcal’s results are seen to be
close, and the agreement with the experimental results to be
reasonable. The main discrepancies are between the numerical
results and the experimental results on the external surface of
the vessel, especially the circumferential strains. It may be
noted that Marcal (35) has questioned the accuracy of the
experimental results.

The computed progression of the elastic-plastic
boundary is shown in Figs. 7.22 and 7.23. VYielding occcurs first
on the internal surface near the point ¢ = 45°. As the pressure

is increased the yielded region spreads through the thickness and
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along the shell. At higher pressure, yielding begins at the
external surface of the torus. At a pressure of 0.387 ksi, the
full thickness becomes plastic. Yielding then spreads intc the
sphere and cylinder.

For the purpose of design, it is important to determine
an ultimate pressure. In the test, the values of strain showed
a sudder dincrease at a pressure of 0.375 ksi, and it was concluded
that a pressure of 0.375 ksi was the expsrimental ultimate
pressure. The upper and lower bounds calcuylated by 1imit analysis
methods (15, 17) were 0.456 ksi and 0.375 ksi, respectively. If
deflection were used as the criterion for defining the ultimate
load, than a pressure of 0.450 ksi might be taken as the ultimate
pressure from the present analysis, because the slope of the
deflection curve beyond this pressure became very flat. The
maximum strain at < = 457 also increased rapidly from G.65 at
0.430 ksi pressure to 1.7% at 0.473 ksi. On the other hand, if
the ultimate load were defined more conservatively, then a
pressure of 0.387 ksi might be selected, because the plastic
region had spread through the whole thickness at this pressure.
These calculated ultimate pressures are consistent with the limit
anelysis and experimental results.

The analysis required 313 seconds of effective time
(178 seconds of C.P. time) on the CDC 6600, with a field length

of 64000 octal.
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7.5 THIN CYLINDER

A thin cylinder subjected to both axial Toad and
internal pressure has been selected to investigate the behavior
of the parallei material procedure for consideration 61 strain
hardening. The dimensions and material properties of the cylinder
are shown in Fig. 7.24. For the purposes of demonstration, a
material with a high strain hardening modulus, H = 0.1 E, has
been used.

Figure 7.25 shows the manner in wnich the projectioen of
the yield surface on the 77 - plane transiates with increasing axial
stress. An axial load was applied beyond the initial yield iimit,
to 42/33 = 1.25, 1.50, and 1.75, respectively, and in each case
the load was removed. The positive and negative internal pressures
required to cause yield were then found. Hence, three points
were found on each loading surface, and the surfaces were
constructed. As expected, the surface translates parallel to the
6, axis.

Figure 7.26 shows the movement of the yield surface
in the 7 - plane when an axial stress of 1.5 ¢ is first
imposed, foilowed by unloading and addition of internal pressure
up to a hoop stress of 1.4 &z . Under axial load the surface
translates parallel to the d; axis, as before. Under internal
pressure, producing yielding in the f direction, the center of
the surface migrates towards the {0 axis. Fig. 7.27 shows
successive locations of the yield surface and its center. From
the path of the center of the surface, it appears that the strain

hardening in this case corresponds closely to Prager's kinematic
g y
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hardening model (11). Further studies are needed, however, to
investigate in greater detail the characteristics of this strain

hardening model.
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F1G 7-/0 FINE MESH
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0
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— ——— Theocaris ¢ Markelos' Experiment @ %;{ = 0665

°© Yielded ﬁ{egra/mn Pt @ %4 =07

FIG 726> SPREAD OF PLASTIC ZONE . COAHSE Mrssy
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FIG 7-72<<>  SPREAD OF PLASTIC ZONE, COARSE MESH
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FIG 7-/3<a>  SPREAD OF PLASTIC SONE | FINE MESH
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— ——— Theocaris ¢ Markelos FELiperiment @ q“\@ =Cogs
° Yielded Jﬂf@oérd{/'on Foinf @ % =70

FIG 7m15<@> SPREAD OF PLASTIC ZONE , METHODS 12,3
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FIG 7-15<6>  SPREAD OF PLASTIC ZONE, METHOD 4
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FIG 7~7/5<<>  SPREFAD OF PLASTIC ZONE, METHODS 567
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FIG 7-15<d-  SPREAD OF PLASTIC ZONE, METHODS 89 /0

-145-



— ——— Theocaris ¢ Markelos' Fuperment @ @/p = ¢ 45
° Yielded ]nz{ejra{/'on Pt @ %%

L]

10

FIG T-75<es  SPREAD OF PLASTIC ZONE, METHODS 1] 1217
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o Vielded Ttejration Pont @ %f = fo

FIG 7-17<6, SPREAD OF PLASTIC ZONE, 4714 FLEMENT
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8. CONCLUSION

8.1 SUMMARY

A general solution strategy has been presented which is
applicable to a wide variety of nonlinear structural analysis
problems. By simply specifying the magnitudes of three convergence
tolerances, the user of a computer program may select any one of a
variety of solution procedures. It is believed that with this
general solution strategy, it should be possible for an experienced
user to select an efficient procedure for any type of nonlinear
problem, provided structural instability is not present.

A general computational procedure for inelastic finite
element analysis has also been presented. This procedure appears
to be quite general and to be applicable to many different types
of inelastic structure. The solution strategy permits analysis
by step by step methods, by iteration, and by combination of step
by step and iteration procedures. Details of the computational
procedure Have been presented for the associated flow theory of
plasticity, considering both the von Mises and Tresca yield
criteria. Formulations have been presented for general isotropic
strain hardening, Tinear kinematic hardening and a “"paraliel
material” procedure which corresponds to a form of nonlinear kine-
matic hardening. Applications to both fully compatible and
partially incompatible finite elements have been considered.

In the description of the procedure, the importance of
the computational sequence for the solution of the "state

determination” problem has been particularly emphasized. This
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part of the analysis is extremely important, yet has received
Tittle attention in previous work.

A computer program for the analysis of plane and
axisymmetric solids has been developed to demonstrate the validity
of the computational procedure. Results for several numerical
examples have shown good agreement with experimental results and
with theoretical results obtained by other workers. Results for
both solids and a thin shell have been presented. A comparison of
alternative solution procedures for a typical case has indicated
that the greatest efficiency can be expected with a Newtcn-Raphscn
type of iteratiun procedure. Significantly better results were
obtaired with partially incompatible elements than with fully

compatible elements.

8.2 FURTHER STUDIES

[t is believed that the procedure nropesed is generclly
applicable to inelastic structures of essentially any type, and
that by following this procedure the development of computer
programs to carry out inelastic analysis can be reduced to a
fairly routine task. Nevertheless, considerable additional
development and testing of the procedure remain to be carried out,

Required work includes:

(1) Development of techniques to include thermal

loadings.

(2) More detailed investigation of strain hardening

models and the corresponding computational procedures.



(3) Extension to large displacement problems. The
general solution procedure should still be applicable, but that
part of the state determination problem dealing with the relation-
ship between displacement and strain is made more complex. Any
attempt to extend the procedure to materials undergoing large
strain will also require assumptions regarding the stress-strain

relfationship. The solution strategy would also need to be

extended to take account of structures which become unstable,

(4) Development of more efficient data handling
procedures within the computer program. The current program is
fairly efficient, but is not intended to be a production tool.

Major improvements in efficiency and capacity can be made.
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