
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Transferring Test Scenarios Between Autonomous Driving Systems

Permalink
https://escholarship.org/uc/item/13x7b7v3

Author
Hong, Changnam

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13x7b7v3
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Transferring Test Scenarios Between Autonomous Driving Systems

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Changnam Hong

Thesis Committee:
Assistant Professor Joshua Garcia, Chair

Professor Sam Malek
Assistant Professor Qi Alfred Chen

2024

© 2024 Changnam Hong

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES vi

LIST OF ALGORITHMS vii

ACKNOWLEDGMENTS viii

ABSTRACT OF THE THESIS ix

1 Introduction 1

2 Background and Related Work 4
2.1 Background . 4

2.1.1 Autonomous Driving Software . 4
2.1.2 Autonomous Driving Software and Simulator 5

2.2 Related work . 7
2.2.1 Scenario Generation Approaches . 7

3 Approach 10
3.1 Architecture Overview . 10
3.2 Coordinate Conversion . 12

3.2.1 Lane Finding Algorithm . 13
3.3 Transformation . 16

3.3.1 Transformation Source in Apollo Scenario 16
3.3.2 Movement Patterns of Obstacles . 17
3.3.3 Status Changes of Traffic Signals . 21

3.4 Embedding Routing Trajectory of the Ego Car 23

4 Implementation 25

5 Evaluation 26
5.1 Experiment Setup . 27
5.2 RQ1: Fidelity of Transformed Scenarios . 27
5.3 RQ2: Ego Car Behaviors in Original and Transformed Scenarios 30

ii

6 Future Work 34

7 Conclusion 36

Bibliography 37

iii

LIST OF FIGURES

Page

3.1 ADS Scenario Transformer Architecture . 11
3.2 ADS Scenario Transformer Coordinate Conversion Process 12
3.3 Lane Determination Based on Routing Trajectory Points and Routing Graph.

The object begins its movement on lane 12 and ends on lane 144. By utilizing
a routing graph, we can construct a path from lane 12 to 144 that necessarily
includes lane 210 along its route, as the object should pass through it. Con-
versely, the route from lane 12 to 144 will not include lane 298, as it is not
part of this path. Therefore, we can conclude that the target point belongs
to lane 210. 15

3.4 Example of calculating velocity conversion for each obstacle 19
3.5 Input space and Output Models of Traffic Signal Transformation 21

5.1 Comparison of results shown by the transformed scenario and the original
scenario on the simulator. The upper image shows the original Apollo scenario;
the bottom image shows the transformed Autoware scenario. 28

5.2 A case where incomplete vehicle speed control alters the behavior of the ego
car. In the original scenario, the obstacle stops at the routing path of the ego
car, but it stops after passing the routing path in the transformed scenario. . 29

5.3 Comparison of obstacle movement predictions by ego cars: In the Apollo
scenario (left), the ego car predicts obstacles that are expected to enter its
driving path and yields to those obstacles to move safely, as indicated by the
purple fence. In contrast, in the Autoware scenario (right), the ego car does
not yield to or stop for an obstacle unless that obstacle is exactly in its driving
path. 31

5.4 A case where the result of the scenario changes due to differences in ADS
speed control. In the Apollo scenario, the ego car successfully overtakes a
stationary vehicle. Conversely, in the Autoware scenario, the ego car changes
lanes slowly, allowing the vehicle on the road to go first, thereby preventing
the ego car from completing the overtaking maneuver. 32

iv

5.5 Comparison between Apollo and Autoware ego car’s movement in exiting
junction if a pedestrian is on the crosswalk. In the Apollo scenario, the ego
car does not stop if pedestrians are not in danger due to the car’s movement
in green light. However, in the Autoware scenario, the ego car always stops in
front of the crosswalk if a pedestrian is present, regardless of their movement
and traffic light states. 33

v

LIST OF TABLES

Page

2.1 Scenario and Map Format Specification for ADS-Simulator Environments . . 5
2.2 ADS-Simulator environments used by each approach to demonstrate their work 8

vi

LIST OF ALGORITHMS

Page
1 Target Lane Finding Algorithm . 14
2 Obstacle Routing Trajectory Transformation 18
3 Obstacle Speed Transformation . 20
4 Traffic Signal Transformation . 22
5 Embedding Routing Trajectory . 24

vii

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Professor Joshua Garcia, for his invalu-
able guidance and support, and to Professor Qi Alfred Chen, whose assistance was essential
throughout this journey. Their expertise and insights have been instrumental in the com-
pletion of this work.

I am also profoundly thankful to all my research lab members, Yuqi Huai, Yuntianyi Chen,
and Shilong Li, for their collaboration and support. Their feedback and assistance have been
invaluable, and their friendship has made this experience truly rewarding.

Thank you all for being integral parts of this journey.

viii

ABSTRACT OF THE THESIS

Transferring Test Scenarios Between Autonomous Driving Systems

By

Changnam Hong

Master of Science in Software Engineering

University of California, Irvine, 2024

Assistant Professor Joshua Garcia, Chair

Autonomous vehicles (AVs) are rapidly becoming a part of our everyday lives, and the num-

ber of AVs running on the road is growing faster. With the increased presence of AVs, there

has been a rise in accidents, which underscores the critical need for enhanced safety and

reliability in Autonomous Driving Software (ADS). Recent studies have proposed scenario-

generation approaches to facilitate testing autonomous vehicles in broader scenarios. How-

ever, many of these approaches create scenarios that only run within a single ADS-Simulator

environment, affecting the generalizability of the resulting approaches. One primary reason

scenario generation approaches are limited to specific ADS-simulator environments is that

each system uses distinct scenario and map formats. This format incompatibility limits the

utility of scenarios that expose critical bugs, which is essential for improving ADS safety. To

that end, we propose an ADS Scenario Transformer that enables transfer scenarios running

on one ADS-Simulator to others. The transformation process targets two critical elements

of a driving scenario: (1) the movement patterns of obstacles within the simulation, and (2)

status changes of traffic signals. Our study investigates whether scenarios are transferred be-

tween different ADS-simulator environments while preserving original scenario information

and explores differences in ADS behavior between original and transformed scenarios.

ix

Chapter 1

Introduction

Autonomous vehicles (AVs) are rapidly becoming a part of our everyday lives, and the

number of AVs running on the road is growing faster. The California DMV indicates that

AVs have logged over 9 million miles of testing in the state within 12 months (December

1, 2022 - November 30, 2023). With the increased presence of AVs on the roads, there has

been a rise in accidents, totaling 705 collisions involving AVs as reported up to April 25,

2024 [6, 7]. The growing number of accidents underscores the critical need for enhanced

safety and reliability in Autonomous Driving Software (ADS). To address these concerns,

researchers and developers in the ADS industry test their ADS in Simulation Testing, Closed-

Course Testing, and Real-World Driving stages [22]. Among these, simulation testing offers

notable benefits in terms of time efficiency and cost-effectiveness. Specifically, it enables

testing ADS functions without deploying them in software on physical vehicles. Moreover,

simulation testing allows for the repeated reconstruction of real-world events that are difficult

to reproduce, such as vehicle collisions and traffic rule violations [13].

Given these advantages, recent studies have proposed scenario-generation approaches to fa-

cilitate testing AVs in broader scenarios [10, 11, 12, 23]. However, many of these approaches

1

create scenarios that only run within specific ADS-Simulator environments, affecting the

generalizability of the resulting approaches. If researchers want to reproduce scenarios in

diverse ADS-Simulator environments, they still need to manually modify scenarios, often

leading to numerous errors during conversion. One of the main reasons for this irrepro-

ducibility is that ADS simulators use distinct scenarios and map formats. Different ADS

have evolved to meet unique requirements, leading to the selection of particular formats for

scenarios and maps. For instance, the format of the Apollo scenario is Cyber Record, which

allows Apollo/SimControl to replay it directly without any modifications [4]. Conversely,

Autoware adopts the modified OpenScenario format to enhance compatibility with existing

open-source tools when executing scenarios through Scenario Simulator v2 [17, 19].

Additionally, this format incompatibility limits the utility of scenarios that expose critical

bugs, essential for improving ADS safety. Not all testing scenarios carry the same weight;

some merely verify the functionality of the AVs, while others reveal critical bugs that provide

valuable insights for enhancing safety [16]. For example, some scenarios might show the AV

causing a collision or speeding violation under certain circumstances. However, although

studies have identified critical violation-revealing scenarios, the scenarios’ non-reproducibility

limits test them across different ADSs to confirm if they consistently reveal violations.

To that end, we propose an ADS Scenario Transformer that enables transfer scenarios run-

ning on one ADS-Simulator to the others. In particular, ADS Scenario Transformer transfers

scenarios running on Apollo and SimControl environments to scenarios running on Autoware

and TIER IV Scenario Simulator v2 environments. The transformation process targets two

critical elements of a driving scenario: (1) the movement patterns of obstacles within the

simulation, and (2) the status changes of traffic signals.

Our research reproduces the same scenario in different ADS-Simulator environments. This

approach allows a single scenario to be executed across different ADS-simulator environ-

ments, enabling researchers to address the following research question accordingly.

2

• RQ1: How well does the transformed scenario preserve information from the original

scenario?

• RQ2: How do the ego car behaviors compare in the original and transformed scenarios?

We evaluated the ADS Scenario Transformer by manually transforming and analyzing 13

scenarios to address these research questions. Additionally, during this investigation, we

identified cases where Apollo and Autoware’s ego cars behave differently in similar environ-

ments, and we examined these differences. Contributions of this paper are as follows:

• A well-structured approach to automatically transfer Apollo scenarios to Autoware

Scenarios while conserving their original context and core information.

• Protocol Buffer models based on the OpenScenario v1.2 specification are fully reusable

in future projects.

3

Chapter 2

Background and Related Work

2.1 Background

2.1.1 Autonomous Driving Software

Autonomous Driving Software(ADS) consists of highly sophisticated and complex modules

that interact to achieve autonomous driving. Among the various ADSes, Baidu’s Apollo [4]

and the Autoware Foundation’s Autoware [17] are leading open-source ADSes. Due to their

complexity, these software systems operate through multiple modules, each with a specific

role. Although Apollo and Autoware have slightly different naming conventions, they share

modules, each performing the following functions:

• Perception detects and tracks the movement of objects and traffic status. The Per-

ception module uses information collected from LiDAR, cameras, and various sensors

to understand the surrounding environment.

4

• Localization determines the vehicle’s location, orientation, and speed. It combines

map data and sensor information to provide details on where the AV is, which direction

it is facing, and how fast it is moving.

• Planning constructs the vehicle’s driving path. Based on information from the Per-

ception and Localization modules, the Planning module creates the vehicle’s driving

route. In Apollo, a separate Prediction module anticipates the positions of surrounding

vehicles. In contrast, Autoware integrates such functions within its Mission Planning

and other Planning calculations.

• Control-CAN Bus translates planning into vehicle action. Known as the Control-

Vehicle Interface in Autoware, this module executes the plans generated by the Plan-

ning module by sending commands to the vehicle’s actuators to control speed, steering,

and braking.

2.1.2 Autonomous Driving Software and Simulator

State-of-the-art ADS use various testing approaches to ensure safety and reliability, one of

which is simulation testing. Simulation testing involves using simulators to evaluate an ADS

in different virtual scenarios. Table 2.1 presents two leading open-source ADS platforms,

Apollo and Autoware, along with their respective simulators.

Table 2.1: Scenario and Map Format Specification for ADS-Simulator Environments

ADS Simulator Scenario Description Format Map Description Format Ownership

Apollo
SimControl Cyber Record

Apollo HD Map
First-party

LGSVL VSE Scenario Third-party

Carla OpenScenario OpenDrive Third-party

Autoware

Scenario simulator v2 TIER IV Scenario Format
or OpenScenario Autoware Vector Map

First-party
AWSIM

LGSVL VSE Scenario Third-party

Carla OpenScenario OpenDrive Third-party

5

Apollo uses its native simulator, SimControl, while Autoware employs Scenario Simulator

v2 [19] and AWSIM [18]. Each of these first-party simulators requires unique scenario and

map formats. TIER IV, a member of the Autoware Foundation, is actively developing the

simulators for Autoware. One of their simulators, Scenario Simulator v2, is designed to

test Autoware’s Planning Module. It operates based on the TIER IV Scenario Format and

Autoware Vector Map. The TIER IV Scenario Format is an extended version of OpenSCE-

NARIO [3], allowing Scenario Simulator v2 to play scenarios in the OpenSCENARIO format.

AWSIM, also developed by TIER IV, is a Unity-based simulator visualizing 3D simulations.

AWSIM uses the scenario execution engine of Scenario Simulator v2, making scenarios and

maps compatible with the two simulators.

LGSVL [15] was widely used in the field but was deprecated in 2022, so it only supports older

versions of Apollo and Autoware. Alternatively, the Carla simulator [9] can run simulations

using the same format for scenarios (OpenSCENARIO) and maps (OpenDrive [2]). This

compatibility is a significant benefit as it allows an ADS to operate using a single format for

scenarios and maps. However, Carla requires a bridge package to communicate with each

ADS, and this bridge still needs to be mature enough to run scenarios reliably.

Scenario and Scenario-based Testing

Ulbrich et al. [21] provide a unified definition of a scenario for the field of ADS, describing

it as the temporal progression through a series of scenes over time, including the actions

and events of various objects as they work towards achieving defined goals. Scenario-based

testing treats each scenario as a test case, evaluating whether it successfully achieves its

goals throughout the series of scenes. This approach is widely employed in the ADS domain

due to the complicated nature of the environment and the system, highlighting AVs should

be tested with comprehensive scenarios [5]. Scenario-based testing is cost-effective because

it communicates solely through the control module that manages the hardware rather than

6

interacting directly with the ADS hardware. Additionally, it is time-efficient, as functionality

can be tested without the need for hardware deployment.

2.2 Related work

2.2.1 Scenario Generation Approaches

Recent studies have proposed integrating ADS domain knowledge with traditional software

testing techniques, employing test input generation techniques to facilitate the testing of

autonomous vehicles in a broader range of scenarios. Some significant recent studies are as

follows. AutoFuzz [23] mutates existing driving scenarios by altering initial scene configura-

tions, such as the ego car’s route and the movements of obstacles, generating semantically

valid scenarios that can reveal traffic violations. To achieve this, AutoFuzz uses a con-

strained neural network in its mutation strategy, which allows it to explore a more extensive

search space and produce a wider variety of output scenarios. scenoRITA [10] generates sce-

narios incorporating domain-specific constraints and diverse obstacles by leveraging genetic

algorithms. It allows the obstacles to be entirely mutable, creating a wide range of test-

ing conditions. In addition to generating new scenarios, scenoRITA includes an oracle that

replays scenarios to detect and eliminate duplicate violations. This duplicate scenario re-

moval ensures that the final output consists of unique scenarios where the ADS has detected

violations.

DriveFuzz [12] generates diverse and dynamic scenarios by mutating components such as the

mission, actors, puddles, and weather. It randomly changes the destination of the ego car to

alter the scenario’s goal. DriveFuzz also places vehicles or pedestrians at random locations

and configures the ego car with randomly chosen settings. Additionally, it creates puddles

or changes weather conditions to make the scenarios more realistic. DoppelTest [11] creates

7

scenarios that reveal bugs by ensuring that the ADS under test is responsible for keeping

all vehicles in the simulation following traffic rules and reacting appropriately to each other.

Additionally, DoppelTest uses genetic algorithms to create diverse scenarios by adding more

traffic participants, thereby increasing the complexity and variability of the scenarios.

Scenarios can also be generated by transferring them from the other source of scenarios.

SCTrans [8] transforms scenarios based on real-world records into simulation scenarios com-

patible with Apollo-LGSVL and Autoware-Carla environments leveraging a model transfor-

mation approach. Since the source of scenarios is based on real-world records, it outputs

diverse and realistic scenarios containing the natural behaviors of road traffic participants.

Also, SCTrans formalizes its transformation process using a model transformation approach

to ensure consistent and accurate application of its transformation rules.

Table 2.2: ADS-Simulator environments used by each approach to demonstrate their work

Approach ADS-Simulator

AutoFuzz
None-Carla

Apollo-LGSVL

DriveFuzz Autoware-Carla

scenoRITA
Apollo-SimControl

DoppelTest

SCTrans
Apollo-LGSVL
Autoware-Carla

The approaches discussed in each study create executable scenarios within specific ADS-

simulator environments. Table 2.2 highlights the ADS-simulator environments used by each

study to create these playable scenarios. AutoFuzz showcases its work using Carla and

performs initial testing in the Apollo-LGSVL environment. DriveFuzz evaluates its method

within the Autoware-Carla environment. Both scenoRITA and DoppelTest create scenarios

for Apollo-SimControl. SCTrans produces scenarios compatible with both Apollo-LGSVL

and Autoware-Carla. scenoRITA and DoppelTest work directly with their native simulators,

8

whereas the other methods rely on third-party simulators and require additional bridge

packages to run their scenarios.

9

Chapter 3

Approach

The ADS Scenario Transformer is a tool to transfer scenarios running on one ADS-Simulator

to others. Specifically, it converts scenarios created in the Apollo-SimControl environments,

which are in Cyber Record format, into scenarios compatible with the Autoware-Scenario

Simulator environments, formatted in TIER IV Scenario format. The transformation process

targets two critical elements of a driving scenario: (1) the movement patterns of obstacles

within the simulation and (2) the status changes of traffic signals.

3.1 Architecture Overview

Figure 3.1 illustrates the architecture of the ADS Scenario Transformer. ADS Scenario

Transformer converts Apollo scenarios in Cyber Record format into Autoware scenarios in

TIER IV Scenario format. The process begins with parsing the necessary channel data from

the Apollo scenarios. Apollo scenarios store data in multiple channels such as PerceptionOb-

stacles, and TrafficSignals.

10

Figure 3.1: ADS Scenario Transformer Architecture

ADS Scenario Transformer defines channel transformers specifically for the channels needed

to create Autoware scenarios, with each transformer responsible for generating parts of the

OpenSCENARIO message. We chose the OpenSCENARIO format because the TIER IV

scenario format is an extended version of OpenSCENARIO, and the scenario simulator

is run by internally interpreting the scenarios in OpenSCENARIO format. During this

transformation process, some channel transformers require coordinate values projected onto

the Autoware Vector map to position objects accurately. These coordinates are initially

obtained from the Apollo scenario and projected onto the Autoware Vector map.

Once all channel transformers generate outputs, all outputs are compiled into a single Open-

SCENARIO message. This message is not immediately runnable because it does not adhere

to the key-value naming rules defined by the TIER IV Scenario format. Therefore, the Open-

SCENARIO encoder processes the message to ensure it is ready to run on Autoware-Scenario

Simulator environments without any modifications.

11

3.2 Coordinate Conversion

Coordinate conversion is critical in transforming scenarios, as all routing trajectory points

of objects in simulation are represented in coordinate values. Figure 3.2 illustrates the

conversion of coordinate values, making them suitable for use in Autoware scenarios.

Figure 3.2: ADS Scenario Transformer Coordinate Conversion Process

ADS Scenario Transformer initially converts coordinates from the Apollo HD map into global

coordinates and subsequently adapts them into coordinate values based on the Autoware

Vector map. This conversion assumes that both the original scenario and the transformed one

are based on maps containing the same geographical area aligned with the global coordinate

system.

In Apollo scenarios, coordinates are initially in UTM (Universal Transverse Mercator) co-

ordinates or the Road Reference Line Coordinate Systems (RRLCS) [1]. Coordinates in

RRLCS format, which include lane identifier and s value (representing the distance between

the target point and the beginning of the lane), are initially converted into UTM coordinates.

This step is necessary because the specific lane information only pertains to the Apollo HD

map. The UTM coordinates are then projected onto the Autoware Vector Map. This pro-

jection forwards the global coordinates into a format usable within Autoware scenarios. The

projected coordinates are finally transformed into an RRLCS format suitable for use within

the Autoware and Scenario simulator environment.

12

3.2.1 Lane Finding Algorithm

One of the significant challenges in this conversion process occurs when the target coordinate

falls within areas where multiple lanes overlap, commonly at junctions. In such cases, it is not

straightforward to determine which lane the coordinate belongs to based on the coordinate

value itself. Figure 3.3 illustrates such a case where it is challenging to identify the correct

lane for a target point marked in red. We cannot decide where the red point belongs by just

knowing its coordinate value if it is on the map where multiple lanes overlap. The issue arises

because we assume that the Apollo HDmap and the Autoware Vector map represent the same

geographical region based on global coordinate values for transformation. However, we do not

assume that the components defined within the maps have different identifiers. Additionally,

in the Apollo scenario, each object is positioned using only coordinate values. However, in

the Autoware scenario, each object requires a specific lane identifier to be accurately placed

on the map. It is also necessary when objects are positioned where multiple lanes overlap,

necessitating the identification of the correct lane for each point.

To mitigate this issue, we utilize the routing trajectory of objects to map coordinates to

specific lanes. The Autoware Vector Map includes detailed direction information for each

lane and supports the construction of a routing graph that delineates reachable paths for

each lane [14]. Figure 3.3 illustrates this process. The figure shows that the object’s routing

trajectory starts at lane 12, passes through lane 210 in the middle, and ends at lane 144.

Using a routing graph, we can construct a route from lane 12 to lane 144 that necessarily

includes lane 210, as the object should pass through it. Conversely, the route from lane 12 to

lane 144 does not include lane 298, as it is not part of this path. Therefore, we can conclude

that the target point belongs to lane 210. The routing trajectory is commonly accessible in

our coordinate conversion, as all coordinates are used to transform objects’ trajectories.

13

Algorithm 1 Target Lane Finding Algorithm

Input: ptarget, pstart, pend ∈ Point, v ∈ AutowareV ectorMap, o ∈ Object
Output: lane where ptarget belongs to

1: RoutingGraph← v.graph(o)
2: lanesstart ← nearby lanes(v, pstart, e)
3: lanesend ← nearby lanes(v, pend, e)
4: lanestarget ← nearby lanes(v, ptarget, e)
5: lanesresult ← Set()
6: for lanestart in lanesstart do
7: for laneend in lanesend do
8: Route[s,e] ← RoutingGraph.route(lanestart, laneend)
9: lanesresult.add(lane in shortest path(Route[s,e]))
10: for lanetarget in lanestarget do
11: Route[s,t,e] ← RoutingGraph.route(lanestart, lanetarget, laneend)
12: lanesresult.add(lane in shortest path(Route[s,t,e]))
13: end for
14: end for
15: end for
16: for lane in lanestarget sorted by increasing distance do
17: if lane in lanesresult then
18: return lane
19: end if
20: end for

14

Figure 3.3: Lane Determination Based on Routing Trajectory Points and Routing Graph.
The object begins its movement on lane 12 and ends on lane 144. By utilizing a routing
graph, we can construct a path from lane 12 to 144 that necessarily includes lane 210 along
its route, as the object should pass through it. Conversely, the route from lane 12 to 144
will not include lane 298, as it is not part of this path. Therefore, we can conclude that the
target point belongs to lane 210.

Overall, the appropriate lane finding algorithm 1 is as follows: We first construct the map’s

routing graph, RoutingGraph. Then, we identify nearby lanes of the points pstart, pend,

and ptarget. Subsequently, we retrieve all paths from pstart to pend, from pstart to pend with

intermediate ptarget. It’s important to note that some routing trajectories may have the same

lane for pstart and pend. Therefore, we also consider paths from pstart to pend with intermediate

ptarget to obtain more precise results. We then obtain the shortest paths for each route and

use them as available lanes to which points can belong. Finally, we iterate over the list of

15

target lanes, lanestarget, and select the nearest lane, which exists in all available paths and

target lanes.

3.3 Transformation

The goal of the transformation process is to conserve the context of the scenario and the

behavior of objects. To achieve this, we aim to transform two critical elements of a driving

scenario: (1) the movement patterns of obstacles within the simulation, and (2) the status

changes of traffic signals.

3.3.1 Transformation Source in Apollo Scenario

The ADS Scenario Transformer reads and parses data from Apollo scenarios to extract criti-

cal elements. Apollo scenarios include different channels with data in binary protocol buffer

format. Among these channels, the ADS Scenario Transformer reads the PerceptionObstacles

and TrafficLight channels to construct output scenarios.

• PerceptionObstacles contains information about all perceived obstacles, including

their location, heading, and speed. The transformer uses this data to estimate obsta-

cles’ movement patterns.

• TrafficLight includes the color of each traffic signal at each timestamp existing on the

map. The transformer defines the status change of the traffic signal using this data.

16

3.3.2 Movement Patterns of Obstacles

In a simulation environment, obstacles are elements that either move around or remain sta-

tionary, existing independently of the ego car. ADS perceives and categorizes these obstacles

accurately while driving on the roads to anticipate their future actions and ensure the ve-

hicle’s safety. To align this purpose, the ADS Scenario Transformer translates the original

behavior of obstacles from the Apollo scenario to the Autoware one. In the Apollo scenario,

the behavior of obstacles is stored in the PerceptionObstacles channel. The ADS Scenario

Transformer reads this channel and generates corresponding obstacle behaviors compatible

with the Autoware scenario.

ADS Scenario Transformer adds entities to the scenario, considering their type and size.

The trajectory of each object is constructed using the location information of each times-

tamp. In addition, it reflects the obstacle’s speed information and accelerates or decelerates

appropriately to increase or decrease the speed.

Routing Trajectory Transformation

Converting the routing trajectory of obstacles involves two main tasks: (1) Finding the

routing trajectory of each obstacle involves determining the path each obstacle will take. It

is similar to what we did for the ego car, but obstacles may begin moving slowly when the

simulation starts. Thus, it is necessary to identify each obstacle’s movement’s start and end

time and initiate and stop its motion accordingly. (2) We need to downsample data in the

PerceptionObstacles channel since the frequency of data is very high, often around 40 to

50 milliseconds. This generates many routing points, which can be unwieldy, especially for

more extended scenarios. To address this, we downsample the data to reduce the number

of routing waypoints for each obstacle, typically aiming for selecting a waypoint every 5

17

seconds. This filtering makes the scenario file more manageable and runnable and improves

its readability. Algorithm 2 shows the overall process.

Algorithm 2 Obstacle Routing Trajectory Transformation

Input: obstaclesall, where obstacles is of type PerceptionObstacles
v ∈ AutowareV ectorMap, o ∈ Object, ref = RoutingTrajectory[start,end]
Output: RoutingEvents

1: for obstaclestarget in obstaclesall do
2: pstart ←findStartLanePosition(obstaclestarget, v, o, ref)
3: tstart ← First timestamp of obstaclestarget
4: events← [locateObstacle(pstart, tstart, e)]
5: if isMovingObstacle(obstacles) then
6: ts ← start moving time(obstacles)
7: prouting ← []
8: for i in selectIndices(obstacle, 5) do
9: pi ←findLanePosition(obstacle[i].position, v, o, ref)
10: prouting.append(pi)
11: end for
12: events.append(routingObstacle(prouting, ts))
13: end if
14: end for
15: return events

We determine the initial location of each obstacle and position it on the map using Algorithm

1. Upon the obstacle’s initial appearance, we place it on the map based on its timestamp.

Subsequently, if the obstacle is identified as a moving obstacle, we determine the timestamp

at which it begins moving and initiate its routing accordingly. To establish the routing

path, we select the obstacle’s position every 5 seconds and designate these points as routing

waypoints.

Speed Transformation

Obstacles on the road can dynamically adjust their speeds. The obstacle’s movement trans-

formation process needs to ensure that the converted scenario accurately preserves the in-

formation from the original scenario. Implementing a naive approach involves updating the

speed of each obstacle for every timestamp, which can lead to system overload and unnec-

18

essary, redundant actions. To minimize the number of speed updates while retaining the

original speed states of obstacles, we propose a method to calculate the acceleration and

deceleration sections of obstacles by analyzing their speeds at each timestamp.

Figure 3.4 shows an example of the change in obstacle speed over time during a simulation.

The obstacle repeatedly stops, speeds up, and slows down. By analyzing the slope of the

obstacle’s speed changes, we can identify acceleration, deceleration, and constant speed

sections. We then apply this speed change information for each time interval to adjust

the obstacle’s speed accordingly. Algorithm 3 illustrates this approach, demonstrating how

we can effectively manage obstacle speeds by identifying and handling acceleration and

deceleration phases.

Figure 3.4: Example of calculating velocity conversion for each obstacle

The PerceptionObstacles channel contains the linear velocity of each obstacle across times-

tamps. We traverse these velocities with two pointers, speedprev and speedcurrent, detecting

changes surpassing a predefined threshold. For each such change, it discerns whether the ob-

stacle accelerates, decelerates, or stays at the same speed, marking these transitions as state

change points. These points are stored with range from the last changed index, boundprev,

to the current index, i. With this state change information, the algorithm aims to create

19

Algorithm 3 Obstacle Speed Transformation

Input: List of linear velocities where velocities is sorted in timestamp
Output: Speed States for each range, states

1: threshold← 0.01; speedprev ← 0; speedcurrent ← 0
2: states← []
3: boundprev ← 0
4: Statecurrent ← Constant
5: for i, v in enumerate(velocities) do
6: if i = 0 then
7: speedprev = v
8: continue
9: end if
10: speedcurrent = v
11: speeddiff = speedcurrent − speedprev
12: if |speeddiff| > threshold then
13: if speeddiff > threshold & Statecurrent ̸= Increasing then
14: states.append((range(boundprev, i), Statecurrent))
15: boundprev ← i
16: else
17: if Statecurrent ̸= Decreasing then
18: states.append((range(boundprev, i), Statecurrent))
19: boundprev ← i
20: end if
21: end if
22: end if
23: speedprev = speedcurrent
24: end for
25: states.append((range(boundprev, len(velocities)), Statecurrent))
26: return states

20

a minimum number of speed change actions in the output scenario while conserving their

dynamic speed change.

Limitation of Pedestrian Movement

In version 1.0 of Scenario Simulator v2, the simulator does not support pedestrians moving

along a routing trajectory. The simulator only supports pedestrians moving in a straight line

or adjusting their speed based on their initial direction. Consequently, the ADS Scenario

Transformer does not support converting scenarios where pedestrians change direction and

move in various ways, unlike vehicles such as cars and bicycles. The ADS Scenario Trans-

former identifies the initial direction of a pedestrian and checks if this direction changes

by more than 10 degrees during the scenario. If the pedestrian’s direction changes within

10 degrees, it is considered a straight-line movement. The pedestrian will then move in a

straight line at a predefined speed or stop accordingly.

3.3.3 Status Changes of Traffic Signals

Figure 3.5: Input space and Output Models of Traffic Signal Transformation

21

In certain sections of lanes, traffic signals regulate the behavior of objects on the road. Failure

to incorporate changes in traffic signal status from the original scenario into the transformed

scenario can lead to significantly different outcomes. In Apollo scenarios, information about

traffic signal status is stored in the TrafficLight channel. ADS Scenario Transformer reads

this channel and transfers changes in traffic signal status from the original scenario during

simulation. Figure 3.5 illustrates the input and output of traffic signal data models. In

Apollo scenarios, the TrafficLight channel contains the status of each traffic signal at each

timestamp. Conversely, in Autoware scenarios, each traffic light is defined within multiple

Phase models, each specifying the color and duration of the traffic lights.

Algorithm 4 Traffic Signal Transformation

Input: Traffic signal identifier map[Tapollo,Tautoware], List of signal state, Statessignal
Output: List of Phase, representing transformed traffic signals

1: Phases← []
2: colorprev ← None; tprev ← None
3: for i, (scurrent, tcurrent) in Statessignal do
4: if ¬colorprev then
5: colorprev ← scurrent.color; tprev ← tcurrent
6: continue
7: end if
8: if colorprev ̸= s.color or i is last index then
9: Phases.append(
10: Phase(id = map[Tapollo,Tautoware][s.id],
11: color = colorprev,
12: duration = tcurrent − tprev)
13:)
14: colorprev ← scurrent.color; tprev ← tcurrent
15: end if
16: end for
17: return Phases

To transform traffic signals, we need to establish correspondence between traffic signals in the

Apollo and Autoware scenarios. This association is achieved by comparing the coordinate

values of each signal in both maps: the Apollo HD map and the Autoware Vector map.

ADS Scenario Transformer converts the coordinates of traffic signals in the Apollo map and

identifies the nearest traffic signals in the Autoware Vector map. Once the mapping of

22

identifiers for each traffic signal is completed, we set the changes in traffic lights throughout

the original scenario by reading the TrafficLight channel. Subsequently, the state of each

traffic light is set in each timestamp of the simulation using the Phases model. Algorithm 4

illustrates this process.

3.4 Embedding Routing Trajectory of the Ego Car

Nevertheless, since both the Apollo and Autoware scenarios aim to test the behavior of the

ego car and the ego car’s driving plays a crucial role in scenario playback, we need to define

the ego car’s routing trajectory within the scenario to run it and verify whether it meets its

goals. Therefore, the ADS Scenario Transformer uses the routing trajectory of the ego car in

the Apollo scenario to define the start and end of the scenario. In other words, the scenario

begins by placing the ego car at the starting point of the routing trajectory, and the scenario

ends once the ego car reaches the endpoint of this trajectory.

To achieve this, the ADS Scenario Transformer reads the routing trajectory of the ego car

in the Apollo scenario and constructs a routing trajectory in the Autoware scenario. In

the Apollo scenario, RoutingRequest channel stores the routing trajectory of the ego car,

containing waypoints that the ego car should visit. Thus, we need to read the data from the

RoutingRequest channel and reflect it into a format that works in the Autoware scenario.

Algorithm 5 demonstrates how this process is performed. Most of the work to identify the

position of each waypoint is handled by Algorithm 1.

Moreover, we leverage the Localization channel in the Apollo scenario to supplement the

routing trajectory of the ego car in cases where the RoutingRequest fails to accurately

represent the trajectory in the scenario or when the RoutingRequest specifies an unreachable

route within the Autoware Vector map. For instance, specific scenarios finish prematurely

23

Algorithm 5 Embedding Routing Trajectory

Input: r ∈ RoutingRequest v ∈ AutowareV ectorMap o ∈ Object
ref = RoutingTrajectory[start,end]
Output: List of pl, where pl ∈ LanePosition

1: positions← []
2: for waypoint in r.waypoints do
3: positions.append(findLanePosition(waypoint.point, v, o, ref))
4: end for
5: return positions

before reaching the final waypoint of the routing trajectory. In such cases, setting the success

condition of the scenario to reach the last point of the routing trajectory would invariably

result in scenario failure. To address this issue, our transformer supports generating a

routing trajectory based on the positional data available in the Localization channel. The

Localization channel contains precise information about the ego car’s location at each time

stamp, enabling us to determine the location of the final waypoint in the scenarios and

ensuring that the final point in the Localization channel is reachable.

24

Chapter 4

Implementation

ADS Scenario Transformer is built on Python 3 and is designed to work independently of

Apollo and Autoware. Upon receiving input, the top-level ScenarioTransformer manages

all transformation processes, executes channel transformers based on user arguments, and

retrieves all results to output Autoware scenarios. The output scenario format is TIER IV

Scenario Format v2, an extended version of OpenSCENARIO v1.2. We define OpenSCE-

NARIO messages using protocol buffers and generate them as outputs for each transformer.

Also, the OpenSCENARIO specification outlines the conditions for creating OpenSCE-

NARIO messages, so we define builders to ensure compliance during their creation. However,

the output of the top-level scenario object is not directly runnable, even if they are converted

to a .xosc format file. This is because the naming convention for defining OpenSCENARIO

protocol buffers differs from the OpenSCENARIO XML schema. To address this, we encode

the scenario object after creation, changing the key and value of compatible fields, resulting

in a scenario file that is runnable in the Autoware-Scenario Simulator environment.

25

Chapter 5

Evaluation

We explore the following research questions to empirically evaluate the ADS Scenario Trans-

former:

• RQ1: How well does the transformed scenario preserve information from the original

scenario?

• RQ2: How do the ego car behaviors compare in the original and transformed scenarios?

We evaluated the ADS Scenario Transformer by manually transforming and analyzing 13

scenarios to address this research question. Additionally, during this investigation, we iden-

tified cases where Apollo and Autoware’s ego cars behave differently in similar environments,

and we examined these differences.

26

5.1 Experiment Setup

Our evaluation includes the process of converting Apollo scenarios to Autoware scenarios.

We selected Apollo scenarios that can be executed in the Apollo 9.0.0 and SimControl

simulator environments. The transformed Autoware scenarios are created to be executable

in Autoware 1.0 and Scenario Simulator v2 1.0. We randomly selected 13 Apollo scenarios

for transformation from the scenarios generated by DoppelTest [11] and scenoRITA [10].

They are state-of-the-art tools designed to create Apollo scenarios that enhance the safety of

an ADS, offering diversity in scenarios, detecting various violations, and providing dynamic

behavior of obstacles within the scenarios.

Additionally, the scenarios are based on Borregas Avenue, a road located in Sunnyvale City,

using the Apollo HD Map and the Autoware Vector Map. The Apollo HD Map of Borregas

Avenue is based on a publicly available map. However, for the Autoware Vector Map, only

a lanelet2 format map was available. Therefore, we converted this lanelet2 format map to

the Autoware Vector Map format using the Vector Map Builder tool [20]. We manually

added information not existing in the original lanelet2 map, such as the lane’s speed limits,

to match the values from the Apollo HD Map of Borregas Avenue.

5.2 RQ1: Fidelity of Transformed Scenarios

We investigated how well the ADS Scenario Transformer converts an input Apollo Scenario

to an Autoware Scenario by focusing on two main aspects: (1) whether the movements of

obstacles are similar in the transferred scenario to the original obstacles and (2) whether the

traffic light information is similar in the transferred scenario compared to the original. We

did not verify the ego car’s behavior similarity when comparing the original and transformed

scenarios as the ADSes running the ego car, i.e., Apollo or Autoware, are the systems under

27

test after test scenarios have been transferred. To evaluate this, we transformed 13 scenarios

and manually compared each in a simulator to ensure that the ADS Scenario Transformer

effectively preserves the information during the transformation process.

Figure 5.1: Comparison of results shown by the transformed scenario and the original sce-
nario on the simulator. The upper image shows the original Apollo scenario; the bottom
image shows the transformed Autoware scenario.

In Figure 5.1, you can observe the overall output of the transformed scenario. We found

that most transformed objects are positioned similarly to where the objects were placed in

the original scenario. The results of investigating the transformation in obstacle movement

and traffic signal changes are detailed in the folowing paragraphs.

28

Vehicle Behavior: The driving paths of vehicles and the speeds of obstacles in the trans-

ferred scenarios closely resemble those in the original scenarios. However, we observed minor

variations in vehicle speeds that influenced the outcomes of the scenarios. For example, in

the original scenario shown in Figure 5.2, a vehicle turning left at a junction stops and blocks

the ego car’s path. In the corresponding transformed scenario, the vehicle moves in the same

direction but does not entirely block the ego car’s path, allowing it to reach its destination.

This difference arises because the vehicle does not stop at the same place in the junction,

and this issue is caused by the difference in the vehicle’s speeds between the original and

transformed scenarios.

(a) Original Scenario (b) Transformed Scenario

Figure 5.2: A case where incomplete vehicle speed control alters the behavior of the ego car.
In the original scenario, the obstacle stops at the routing path of the ego car, but it stops
after passing the routing path in the transformed scenario.

Pedestrian Behavior: In the context of pedestrian behavior, we identified cases where

pedestrians moved in the original scenario but remained stationary in the transformed sce-

nario. This inconsistency arises for two reasons. First, we filter out scenarios where pedes-

trians change their direction while moving, but some still have them. To determine if a

pedestrian changes direction, we check if the heading changes by more than 10 degrees from

the initial heading. However, this method still allows for cases where pedestrian movement

29

is not straight, and the Autoware-Scenario Simulator environment does not support these

non-linear movements. Second, pedestrians cannot move beyond the lane they start in,

causing them to stop at the edge of the lane even if they have a non-zero speed and a valid

heading. One potential solution to both issues is to respawn pedestrians when they change

direction and attempt to move beyond their original lane. This approach requires more

accurate estimates of pedestrian movements, and it is necessary to determine whether the

scenario simulator is powerful enough to apply this approach.

Traffic Signals: All 13 transferred scenarios are investigated to retain the traffic signal

change information from the original scenarios. Not all original scenarios contain traffic signal

information. Therefore, the ADS Scenario Transformer has been observed to appropriately

apply traffic signal information when it exists in the scenario while refraining from applying

traffic signal information when it is absent.

5.3 RQ2: Ego Car Behaviors in Original and Trans-

formed Scenarios

We investigated how Apollo and Autoware behave differently in similar environments, com-

paring the original Apollo scenario and transformed Autoware scenarios. We identified three

main differences in their behaviors.

Difference in Obstacle Prediction and Stop Decision: In the Apollo scenario, the

ego car makes decisions earlier than Autoware’s ego car by predicting the movement of

obstacles. Autoware’s ego car checks for obstacles when entering a junction or passing a

crosswalk, determining if it can drive safely. Once it decides it is safe, the ego car continues

moving until it detects an obstacle directly in its path. Figure 5.3 illustrates this situation

in detail. In the Apollo scenario, the ego car predicts obstacle movements and yields when

30

it is dangerous to move forward. In contrast, in the Autoware scenario, the ego car does

not consider the future movement of an obstacle until it is directly in its driving path.

Consequently, it does not slow down even if the obstacle is about to move into its path.

Figure 5.3: Comparison of obstacle movement predictions by ego cars: In the Apollo scenario
(left), the ego car predicts obstacles that are expected to enter its driving path and yields to
those obstacles to move safely, as indicated by the purple fence. In contrast, in the Autoware
scenario (right), the ego car does not yield to or stop for an obstacle unless that obstacle is
exactly in its driving path.

Speed and Acceleration: In the Apollo scenario, the ego car accelerates relatively faster

than in the Autoware scenario. The speed of the ego car varies based on its position and

the lane’s speed limit in both scenarios. However, when the ego car encounters identical

situations and speed limits in both scenarios, the Apollo ego car exhibits relatively more

rapid acceleration compared to the Autoware ego car. This acceleration difference can also

influence the outcome of the scenario. Figure 5.4 illustrates the ego car attempting to

change lanes with identical speed limits in each scenario. In the Apollo scenario, the ego car

accelerates rapidly, completing the lane change in approximately 10 seconds and overtaking

the stationary obstacle. Conversely, in the Autoware scenario, the ego car accelerates more

slowly, taking about 15 seconds to change lanes and failing to overtake the obstacle.

Stopping Behavior in Junctions: We observed that Autoware’s ego car independently

processes traffic signal recognition and pedestrian recognition at junctions, whereas Apollo’s

31

Figure 5.4: A case where the result of the scenario changes due to differences in ADS speed
control. In the Apollo scenario, the ego car successfully overtakes a stationary vehicle.
Conversely, in the Autoware scenario, the ego car changes lanes slowly, allowing the vehicle
on the road to go first, thereby preventing the ego car from completing the overtaking
maneuver.

ego car integrates these tasks. Autoware’s ego car consistently stops at crosswalks when

pedestrians are present. However, if it can safely pass without endangering pedestrians,

Apollo’s ego car proceeds through crosswalks without stopping. Figure 5.5 illustrates the

different behaviors of two ADSes. In both cases, the ego car is exiting the junction on a green

32

light while pedestrians are on the crosswalk. Apollo predicts the pedestrians’ movements

and decides whether it can proceed safely, not stopping if there are no issues. On the other

hand, Autoware stops in front of the crosswalk whenever there are pedestrians, even though

it is not dangerous for pedestrians for the ego car to pass through the crosswalk.

Figure 5.5: Comparison between Apollo and Autoware ego car’s movement in exiting junction
if a pedestrian is on the crosswalk. In the Apollo scenario, the ego car does not stop if
pedestrians are not in danger due to the car’s movement in green light. However, in the
Autoware scenario, the ego car always stops in front of the crosswalk if a pedestrian is
present, regardless of their movement and traffic light states.

33

Chapter 6

Future Work

In order to enhance the robustness of scenario transferring and evaluate the output of the

ADS Scenario Transformer, we can consider the following future works:

Employ Record-Based Analysis: Transformations are evaluated by manually comparing

the original and transformed scenarios. This process can be improved by adopting a record-

based analysis. By recording both scenarios, we can track the movement of each obstacle

through these records. This approach lets us directly compare each obstacle’s routing tra-

jectory and speed at each timestamp, enabling a quantitative evaluation of the transformer.

Validate Traffic Signal Phases: The original scenario input includes both scenario files

and traffic signal phases, indicating which color each traffic signal should display at specific

timestamps. We can use this information as an oracle to validate the traffic signal phases

in the transformed scenario. This validation ensures that the traffic signal transformations

accurately preserve the original timing and color changes.

Improve Lane Path Finding Approach: Finding the correct lane path for each object

is one of the significant challenges of the ADS Scenario Transformer. In addition to defining

34

a more precise algorithm that uses additional information beyond the routing trajectory, we

can consider another approach. This approach involves constructing all possible trajectories

based on candidate lanes and then selecting the correct trajectory by determining if it is

navigable by the object and comparing its similarity to the object’s trajectory in the original

scenario. Specifically, when we need to find a lane at a particular point, we explore all lanes

and construct paths from these lanes. We first determine if these lane paths are navigable on

the routing graph. Then, we can identify the correct lane paths by comparing the similarity

between the object’s actual movement and the trajectory formed by these lane paths.

35

Chapter 7

Conclusion

We present an ADS Scenario Transformer that enables scenarios running on one ADS sim-

ulator to be transferred to others. Our research reproduces the same scenario in different

ADS simulator environments, allowing a single scenario to be executed across various ADS

simulators. We evaluated the ADS Scenario Transformer by manually transforming and

analyzing 13 scenarios. We investigated whether the movement of obstacles and changes

in traffic signals appeared similarly in the generated scenarios. Additionally, we identified

cases where Apollo and Autoware’s ego cars behaved differently in similar environments and

examined these differences. For future work, we suggest employing record-based analysis,

validating traffic signal phases, and improving lane path-finding approaches to enhance the

robustness of the transformations and evaluations.

36

Bibliography

[1] Association for Standardization of Automation and Measuring Systems (ASAM). 8.3
Road reference line coordinate systems :: OpenDRIVE®.

[2] Association for Standardization of Automation and Measuring Systems (ASAM). Open-
DRIVE: Road Networks for Vehicle Simulation.

[3] Association for Standardization of Automation and Measuring Systems (ASAM). Open-
SCENARIO V1.2 Standard.

[4] Baidu. Baidu Apollo-Autonomous Driving, solutions for intelligent vehicles.

[5] F. Batsch, S. Kanarachos, M. Cheah, R. Ponticelli, and M. Blundell. A taxonomy of
validation strategies to ensure the safe operation of highly automated vehicles. Journal
of Intelligent Transportation Systems, 26(1):14–33, Jan. 2022.

[6] California DMV. Autonomous Vehicle Collision Reports.

[7] California DMV. Autonomous Vehicle Permit Holders Report a Record 9 Million Test
Miles in California in 12 Months.

[8] J. Dai, B. Gao, M. Luo, Z. Huang, Z. Li, Y. Zhang, and M. Yang. SCTrans: Construct-
ing a Large Public Scenario Dataset for Simulation Testing of Autonomous Driving
Systems. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE ’24, pages 1–13, New York, NY, USA, Feb. 2024. Association for
Computing Machinery.

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban
driving simulator. In S. Levine, V. Vanhoucke, and K. Goldberg, editors, Proceedings
of the 1st Annual Conference on Robot Learning, volume 78 of Proceedings of Machine
Learning Research, pages 1–16. PMLR, 13–15 Nov 2017.

[10] Y. Huai, S. Almanee, Y. Chen, X. Wu, Q. A. Chen, and J. Garcia. scenoRITA: Gener-
ating Diverse, Fully Mutable, Test Scenarios for Autonomous Vehicle Planning. IEEE
Transactions on Software Engineering, 49(10):4656–4676, Oct. 2023.

[11] Y. Huai, Y. Chen, S. Almanee, T. Ngo, X. Liao, Z. Wan, Q. A. Chen, and J. Garcia.
Doppelgänger Test Generation for Revealing Bugs in Autonomous Driving Software.
In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE),
pages 2591–2603, May 2023. ISSN: 1558-1225.

37

[12] S. Kim, M. Liu, J. J. Rhee, Y. Jeon, Y. Kwon, and C. H. Kim. DriveFuzz: Discovering
Autonomous Driving Bugs through Driving Quality-Guided Fuzzing. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS
’22, pages 1753–1767, New York, NY, USA, Nov. 2022. Association for Computing
Machinery.

[13] G. Lou, Y. Deng, X. Zheng, M. Zhang, and T. Zhang. Testing of autonomous driving
systems: where are we and where should we go? In Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 31–43, 2022.

[14] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt, and M. Mayr.
Lanelet2: A high-definition map framework for the future of automated driving. In
2018 21st International Conference on Intelligent Transportation Systems (ITSC), pages
1672–1679, Nov. 2018. ISSN: 2153-0017.

[15] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko, E. Boise, G. Uhm,
M. Gerow, S. Mehta, et al. Lgsvl simulator: A high fidelity simulator for autonomous
driving. In 2020 IEEE 23rd International conference on intelligent transportation sys-
tems (ITSC), pages 1–6. IEEE, 2020.

[16] Q. Song, E. Engström, and P. Runeson. Industry practices for challenging autonomous
driving systems with critical scenarios. ACM Transactions on Software Engineering and
Methodology, 2023.

[17] The Autoware Foundation. Autoware.

[18] TIER IV, Inc. AWSIM.

[19] TIER IV, Inc. Scenario testing framework for Autoware.

[20] TIER IV, Inc. Vector Map Builder - Autoware Tools.

[21] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer. Defining and Substanti-
ating the Terms Scene, Situation, and Scenario for Automated Driving. In 2015 IEEE
18th International Conference on Intelligent Transportation Systems, pages 982–988,
Sept. 2015. ISSN: 2153-0017.

[22] Waymo. Waymo safety report - 2021. https://waymo.community/resources/

waymo-safety-report-2021.html, 2021.

[23] Z. Zhong, G. Kaiser, and B. Ray. Neural Network Guided Evolutionary Fuzzing for
Finding Traffic Violations of Autonomous Vehicles, July 2022. arXiv:2109.06126 [cs].

38

https://waymo.community/resources/waymo-safety-report-2021.html
https://waymo.community/resources/waymo-safety-report-2021.html

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	 Background and Related Work
	Background
	Autonomous Driving Software
	Autonomous Driving Software and Simulator

	Related work
	Scenario Generation Approaches

	Approach
	Architecture Overview
	Coordinate Conversion
	Lane Finding Algorithm

	Transformation
	Transformation Source in Apollo Scenario
	Movement Patterns of Obstacles
	Status Changes of Traffic Signals

	 Embedding Routing Trajectory of the Ego Car

	 Implementation
	Evaluation
	Experiment Setup
	RQ1: Fidelity of Transformed Scenarios
	RQ2: Ego Car Behaviors in Original and Transformed Scenarios

	Future Work
	Conclusion
	Bibliography

